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ABSTRACT
Large language models (LLMs) training is extremely data-intensive, often involving over trillion-level tokens.
Although LLM datasets are usually ingested and stored in columnar formats, they often need to be converted into
another format for training, which incurs significant storage and maintenance costs due to extra data copies. While
eliminating the conversion would save tens of terabytes of space in costly high performance storage, this work
identifies challenges that drive us to re-think the entire data pipeline. Without conversion, we find that fine-grained
random access patterns incur hundreds of times efficiency drops. Specifically, the existing data pipelines have
two fundamental drawbacks: (1) They cannot efficiently support directly digesting data in columnar format due
to default coarse-grained I/O; (2) Solutions to the first drawback sacrifice memory footprint to cache datasets.
In this paper, we present YOUMU, a new data pipeline that directly feeds fine-grained columnar data into GPUs,
enabling cost-efficient LLM training. Meanwhile, YOUMU maintains high training accuracy, whose perplexity
outperforms widely adopted local shuffle by reducing 0.3-0.7 for pretraining. Compared to performance-optimal
state-of-the-art, distributed memory-based pipelines, YOUMU achieves comparable throughput with ∼80% less
memory footprint.

1 INTRODUCTION

Large language models (LLMs) training relies on huge
datasets, often sourced from web-scale repositories (Crawl,
2023; Zhong et al., 2023; Li et al., 2023). Satisfying such
demand comes with high storage costs on extensive datasets.
Additionally, to generate high-quality training data, inten-
sive processing is required at the data preparation phase (To-
gether Computer, 2023; Penedo et al., 2023; Miao et al.,
2024; Tang et al., 2024). To meet the above two require-
ments, columnar data formats, such as Parquet (Apache,
2023), have become popular in the early stages of data
preparation (e.g., storage and cleaning). Benefits brought
by columnar formats include high compression ratios and
efficient scan-based operations (HuggingFace, 2024c).

As for columnar formats, data is stored and read in large
continuous chunks to fully exploit the high performance
of storage devices. However, we observe that when di-
rectly feeding training datasets under columnar formats into
GPUs, retrieving the dataset can become the bottleneck of
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LLM training, degrading I/O performance by more than
100×. We find that the root cause of such inefficiency is
the granularity mismatch between (1) fine-grained random
access required by GPUs, and (2) coarse-grained colum-
nar chunk-based I/Os supported by current systems. Note
that the requirement of a fine-grained random access pat-
tern results from shuffling, which offers mandatory random-
ness of dataset accesses. Random shuffling is necessary for
achieving high model training accuracy (Meng et al., 2019;
Gorbunov et al., 2020).

To address this inefficiency problem, prior work adds an
extra step between data preparation and training runtime,
i.e., converting columnar into other formats that are more
random access-friendly. However, such format transforma-
tion in the preparation phase is costly in the following two
aspects. First, the conversion acts as extra “pit-stops” in
the data pipeline, resulting in significant redundant storage
costs on data copies. For example, converting the 43 TB
FineWeb dataset from Parquet to JSON requires approxi-
mately 95 TB of additional storage capacity (Penedo et al.,
2024). Second, frequent conversions add human effort for
maintenance (e.g., version control of differently-formatted
datasets) during this pit-stop, leading to higher complexity
in end-to-end LLM data management.

In this work, our design goal is to avoid costly format trans-
formation and keep the data format consistent during the
entire LLM training data pipeline. Data collected and stored
in columnar formats can be directly used by any training
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processes with high efficiency. To realize this goal, the
core challenge lies in the inefficiency of random access to
columnar data. There are three existing approaches to tackle
this challenge, while each of them has fundamental draw-
backs. The first approach trades memory footprint for lower
storage costs. It prefetches a large portion of the dataset
from storage into DRAM and uses DRAM as a cache for
efficient random access during shuffling (Zhu et al., 2018;
Luan et al., 2023). However, this approach introduces a
considerably high memory footprint up to tens of terabytes,
which often leads to impracticality as modern LLM dataset
sizes keep increasing. Meanwhile, a high memory footprint
also constrains the memory for other key tasks in LLM train-
ing systems, such as checkpointing (Wang et al., 2023) and
tensor offloading (Ren et al., 2021). The second approach
relies on memory-mapped I/O to directly access datasets
on disk (HuggingFace, 2024a). But it introduces heavy
cache thrashing in the OS kernel (Choi et al., 2017; Mohan
et al., 2021b), thus leading to poor I/O throughput. The
third approach trades shuffle quality for efficiency (Ham-
bardzumyan et al., 2022; HuggingFace, 2024b; PyTorch,
2024; TensorFlow, 2024a), at the risk of significantly de-
grading model accuracy.

We propose YOUMU, an efficient and practical LLM train-
ing data pipeline that (1) enables LLM training to take in
columnar data efficiently, (2) requires no format transfor-
mation in data preparation phase, (3) preserves high shuffle
quality, and (4) improves training efficiency. YOUMU offers
the following three insights. First, we observe that the mis-
match incurs significant wastes of I/O bandwidth because a
large fraction of data in each chunk is fetched but never used
by GPUs (i.e., extremely low goodput). Hence, YOUMU
proposes finer-grained access on columnar data to improve
the goodput. Second, storage systems that hold datasets
are often backed by SSDs, highly performant at page level
accesses. Thus, YOUMU chooses pages as the data retrieval
granularity, maximizing SSDs’ performance. Third, given
a TB-scale LLM datasets, our observation is that accessing
the dataset by randomly selecting multi-billion KB-level
pages provides much more randomness than randomly ac-
cessing several thousand GB-level columnar chunks. Our
experiments demonstrate that the proposed page-level ran-
dom access pattern provides sufficiently high shuffle quality
to preserve model accuracy. YOUMU hence further intro-
duces page-level shuffling, which unifies shuffling and disk
I/Os both at the page level – eliminating the aforementioned
granularity mismatch. As a result, YOUMU avoids format
conversions and their resultant extra storage or DRAM cost,
i.e., no “pit-stops" on the data pipeline anymore, as shown
in Figure 1.

To enable efficient and flexible page data retrieval, YOUMU
supercharges columnar data I/Os by a decoupled control
plane and data plane. The control plane collects metadata
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Figure 1. The data path from columnar storage to training process.

of the targeted columns and then builds a global page in-
dex. This index maps random global page order into the
index of file and column chunk, which contains that page
and its corresponding physical page address. Hence, the
shuffling process can find a random page order’s metadata
and physical page address on disk by looking up the global
page index. The data plane fetches data from the given page
address and decodes the compressed data based on corre-
sponding metadata. It also introduces a fixed-size memory
buffer to enable (1) additional in-buffer shuffling to further
enhance the shuffle quality and (2) overlapping with the
training process to hide the data retrieval latency. We ex-
pose the decoupled control and data plane with APIs for
explicitly managing YOUMU I/Os.

YOUMU is a system that relies on optimized disk I/Os; it
primarily targets scenarios where (1) pre-loading the en-
tire dataset into memory is infeasible, or (2) high memory
overheads or network contention is unacceptable, degrading
training performance.

We implement YOUMU based on open-source Parquet and
Arrow libraries in Rust. We conduct extensive experiments
to evaluate model accuracy and system overheads, includ-
ing perplexity measurements, memory footprint, and itera-
tion batch latency. For model accuracy, YOUMU’s page-
level shuffling achieves comparable accuracy to perfect
fully-random shuffling. For system overheads, YOUMU
achieves ∼80% less memory footprint compared to the dis-
tributed memory-based alternatives, and ensures sufficiently
low iteration batch latency for high GPU utilization. To
the best of our knowledge, YOUMU is the first practical
data pipeline that enables direct fine-grained data access on
widely adopted columnar storage for LLM training.

2 COLUMNAR DATA STORAGE FORMAT

Columnar storage formats were developed for efficient anal-
ysis of web-scale datasets (Melnik et al., 2010; Armenat-
zoglou et al., 2022; Google, 2024a). When data is stored
in such formats, typical scan-based queries (e.g., selection,
projection, and aggregation) can be completed within sec-
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Figure 2. Parquet format’s logical representation and physical lay-
out.

onds through workload partitioning and I/O reduction (e.g.,
data skipping and compression).

In the LLM training data pipeline, the training process only
accepts data that are extensively cleaned from raw datasets
(a.k.a. data preparation), with typical operations like URL
filtering, text extraction, quality filtering, deduplication, and
anonymizing sensitive information (e.g., personal addresses
and public IPs). These operations are primarily scan-based,
on which columnar storage formats like Parquet have signif-
icant advantages. Typically, HuggingFace Hub, the main-
stream dataset hosting platform, adopts Apache Parquet
format (Apache, 2023). Parquet is an open-sourced standard
columnar data format, useful for cloud storage and online
analysis (Lhoest et al., 2021; HuggingFace, 2024c). In this
paper, Parquet is the default columnar format.

Features. With a block-based design, Parquet is optimized
for distributed storage systems like GFS (Ghemawat et al.,
2003) and HDFS (Shvachko et al., 2010). Figure 2 illustrates
Parquet’s logical representation and physical layout. The
Parquet format has a three-layer storage hierarchy: (1) Row
group consists of logical data blocks that are visible to
typical Parquet reading APIs. (2) Columnar chunk. Each
row group consists of multiple columnar chunks, e.g., chunk
x0 and chunk y0 in Row Group 0, shown in Figure 2(a).
Each Parquet I/O accesses a columnar chunk of a row group.
(3) Data page. Each columnar chunk is divided into pages,
which are the units of data compression. Pages within the
same chunk (e.g., page 0 and page 1 of x0 in Figure 2(b))
are decompressed in parallel.

3 LLM DATA PIPELINE REQUIREMENTS

To guarantee the efficiency and accuracy of model training,
a modern LLM training data pipeline has four important
requirements: (1) enough capacity in storage systems, (2)
alleviation of memory contention, (3) sufficient I/O through-
put, and (4) high shuffle quality.

Table 1. Comparison of different training data pipeline solutions.

Method Mem. Efficiency Tput. Model Acc.

Dist. Memory ✗ ✓ ✓
Disk. MMap ✓ ✗ ✓
Streaming ✓ ✓ ✗
YOUMU ✓ ✓ ✓

3.1 Ever Increasing Storage Cost of LLM Datasets

Storing massive LLM datasets in near-GPU high perfor-
mance storage systems has become increasingly expensive,
with costs even comparable to GPU expenses when consider-
ing redundant data copies (Google, 2024b). This escalating
storage cost is primarily driven by the following two factors.

Dataset format conversion. Due to the lack of efficient
row-wise random access in Parquet, data often needs to be
converted into other formats before being fed into the train-
ing pipeline. We observe that for LLM datasets conversion
from Parquet to JSON requires around 3× more storage
space. This conversion process not only results in terabytes
of redundant data but also complicates data management,
breaking the rule of “single source of truth for the data"1.

Frequent dataset update. Data preparation pipelines are
continuously refined based on user feedback from model
inference. Dynamic datasets often requires more up-to-
date data and broader domains of knowledge. Companies
frequently upgrade their models, releasing new versions ap-
proximately every three months (OpenAI, 2024; Anthropic,
2024). Each update mandates changes to the training dataset,
leading to continuous format conversion overheads over
time. In the long run, format conversion is a costly pit-
stop between data preparation and LLM training, while not
acquiring enough attention.

3.2 Extensive Memory Demands of Training Systems

The consumption of memory footprint is performance-
critical in model training frameworks. In our context, it
is important to keep the memory footprint consumed by the
data pipeline as low as possible, because there are other
memory-intensive functionalities contending memory re-
sources with the data pipeline.

Tensor offloading (Ren et al., 2021; Fang et al., 2023; Yuan
et al., 2024) enables training of larger models and datasets
beyond GPU memory capacity by dynamically transfer-
ring tensors between GPU memory and host DRAM. This
technique often requires tens of gigabytes of DRAM per
replicate, which accumulates to hundreds of gigabytes on a
single node.

1Ensuring data consistency between formats of the dataset,
each with multiple versions.
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Model checkpointing (Mohan et al., 2021a; Eisenman et al.,
2022; Wang et al., 2023) is crucial for rapid restoration of
the training process in the event of system failures, with
host DRAM serving as the fastest storage medium for these
checkpoints. As models grow in size and more checkpoints
are retained, DRAM requirements increase correspondingly.
For instance, a single checkpoint of GPT-3 175B (Brown
et al., 2020) model occupies ∼2.3 TB DRAM, reaching the
limit of typical system DRAM capacities.

3.3 Sufficient I/O Throughput for GPU Utilization

To maximize GPU utilization in LLM training, it is common
practice to overlap data loading with the previous iteration’s
training, effectively hiding the data loading latency. How-
ever, this strategy has limitations when the data loading
latency exceeds the iteration time, resulting in GPU uti-
lization drops due to data waiting. With the rapid advance
of GPU computing power, the training workload becomes
more sensitive to the iteration batch latency (MLCommons,
2024). The diversity of training tasks and cluster configura-
tions necessitates a data loading pipeline with sufficiently
high throughput to accommodate various scenarios.

3.4 High Shuffle Quality for Model Accuracy

Data shuffling is a necessary step for guaranteeing high
model accuracy. However, better shuffle quality with larger
datasets comes alongside higher shuffling overheads, which
can be prohibitive to the overall training performance (Yang
& Cong, 2019; Kumar & Sivathanu, 2020; Sun et al., 2022;
Liu et al., 2023). Since the model sensitivity to shuffle
quality varies, there are numerous pseudo-shuffle strategies
to alleviate the high overheads of fully random shuffling,
which results in the highest possible shuffle quality.

4 MOTIVATION

To avoid costly dataset conversions while keeping shuffling
quality as high as possible, we need to (1) preserve as much
randomness as possible in the shuffling process, and (2) di-
rectly shuffle datasets in columnar storage at low overheads.
The former achieves as high shuffle quality as fully-random
shuffle, and the latter realizes higher shuffling efficiency.
Next, we show the following limitations we observe to mo-
tivate our designs.

4.1 Limitations of Existing Solutions

While some existing systems can already take data in colum-
nar storage as input for LLM training (§3.1), none of them
adequately satisfy all requirements in §3. We analyze the
limitations of the state-of-the-art as follows.

Distributed memory (Rocklin, 2015; Moritz et al., 2018;

Luan et al., 2023) loads and distributes data across multiple
nodes in a cluster, leveraging the combined memory re-
sources to handle massive datasets. Essentially, they cache
the entire dataset in memory for fast data access. How-
ever, such a method correlates the memory footprint with
dataset size. Given limited memory size, pre-loading LLM
datasets at tens of terabytes can be infeasible. Moreover,
the need for random access across the entire dataset neces-
saries frequent inter-node exchanging, resulting in potential
contention with GPU communications (Dryden et al., 2021)
and subsequently affects training speed.

Memory mapping from disk (Pumma et al., 2019; Hugging-
Face, 2024a) provides fast access to on-disk datasets, backed
by a memory-mapped cache. This approach allows out-of-
core processing on datasets larger than available physical
memory. The users can randomly request any row from the
dataset through a memory-mapped table which leverages
virtual memory capabilities for fast lookups. While the OS
page cache mechanism automatically manages data place-
ment and eviction through demand paging, this approach
can lead to performance degradation due to thrashing when
access patterns trigger frequent page faults (Kumar & Si-
vathanu, 2020; Mohan et al., 2021b). Also, the memory
overhead of the memory-mapped table itself can be high for
large datasets. We notice that for a dataset with 200B to-
kens, one instance of its memory-mapped table takes around
12GB memory space and often each GPU needs one instance
to keep track of data loading process.

Streaming is a widely used practice of pseudo-shuffle and
it is one of the operations highly optimized in columnar
storage format. It sequentially reads large dataset partitions
into an in-memory buffer and then randomly samples data
from the buffer (Hambardzumyan et al., 2022; TensorFlow,
2024a; HuggingFace, 2024b; PyTorch, 2024). This is of-
ten referred to as local shuffle as well. We find that using
local shuffle in LLM training can degrade model accuracy
significantly (§7).

4.2 Observations

Given the limitations of existing solutions, we aim to achieve
memory efficiency, sufficient throughput and high shuffle
quality for columnar storage-based LLM data pipeline si-
multaneously. Our insight is to explicitly manage the disk
I/O instead of delegating them to the underlying implicit
data movement by memory mapping or distributed memory.
In this way, we aim to demonstrate that high performance
storage systems are fast enough in fine-grained I/O for LLM
training if their bandwidth can be sufficiently utilized. In
detail, we have the following observations:

Marginal benefits of caching large datasets (O1). Al-
though the data random access order during training can
be predetermined, the data access to the same data point
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is exactly once per epoch. Since data use in one training
step would not be reused again until the next epoch, the
benefits of caching is minimal unless the entire dataset can
fit in the cache (Zhu et al., 2018; Kumar & Sivathanu, 2020).
Given the massive size of LLM datasets, full size can be
challenging for the system memory size. Consequently, disk
I/O remains an inevitable bottleneck.

Granularity gap between shuffling and I/O (O2). For
columnar storage, the default I/O unit is a column chunk,
typically hundreds of MB or even GB for an optimized
columnar data reading setup. This implies that when re-
questing random rows, only around 0.1% bandwidth is ef-
fective. This leads to significant bandwidth waste. However,
we notice that nowadays near-GPU storage systems are of-
ten backed by solid state drives (SSD) (Wei et al., 2023;
Meta, 2024), which can tolerate page-level data access with-
out degrading performance, suggesting an opportunity for
finer-grained access (Jun et al., 2024).

5 YOUMU DESIGN

YOUMU is a practical high-performance data pipeline that
is directly built on columnar storage in Parquet with fine-
grained I/O and low memory footprint. Based on our obser-
vations (§4.2), YOUMU has the following design highlights:

No cache, only buffer (from observation O1). We focus on
optimizing direct disk I/O access pattern and its efficiency,
instead of trying to alleviate it through extensive caching.
We only reserve a fixed size buffer for overlapping with
training to hide I/O latency and in-memory shuffling to
further enhance the shuffle quality when needed. In this way,
YOUMU achieves very low memory footprint regarding very
large datasets.

Fine-grained unified access (from observation O2). To
provide high shuffle quality without caching, the disk I/O
granularity needs to be fine-grained in the first place to
avoid wasting I/O bandwidth due to the granularity gap
issue. Ideally, the disk I/O granularity should be matched
with the granularity of shuffling operations for the highest
goodput.

Practical compatibility. We build YOUMU on the existing
widely adopted columnar storage format Parquet instead of
inventing new ones. This makes YOUMU highly practical
in real-world systems and compatible with existing data
processing ecosystems.

5.1 System Architecture

The overview of YOUMU is shown in Figure 3. YOUMU
directly works with Parquet files on the storage and its meta-
data without any modifications. The upper-level training
frameworks can call YOUMU Python APIs for integration

Dataset Interface

Dataset FilesStorage

Global Page
Index Store Page Fetcher

Index
Translator Page DecoderYoumu

PageMetadata

 Control Path  Data Path

Index Buffer

Training Tasks

App
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Figure 3. YOUMU system overview.

with their provided data interface (e.g., PyTorch Dataset).
In essence, YOUMU serves as an I/O backend to datasets
stored as Parquet files and requires minimal modifications
to existing systems for adoption.

YOUMU provides page-level data granularity (§5.2) for fine-
grained data access and shuffling. The control plane (§5.3)
collects Parquet metadata to build global page index. With
the global page index and the page index translator, YOUMU
can obtain the physical address of a random page and the
necessary metadata for decoding. With given data location
and metadata, the data plane (§5.4) can directly retrieve
the page data from the disk, without the need of caching
the datasets in memory or memory mapping. The extreme
flexibility and compatibility of YOUMU also enables user-
defined pipeline for their custom last-mile processing and
aggressive buffer shuffling for enhanced shuffle quality.

5.2 Page-level Data Granularity

YOUMU implements page-level data access and shuffling as
its core mechanism. We justify this design choice from the
following two aspects:

Improving I/O performance. Since modern SSD are opti-
mized for random access at page level (recall §4.2 O2), we
can leverage most of the storage device performance by
reading random pages. Additionally, by direclty reading
pages inside the data column of interest, YOUMU naturally
skips columns that are not in use. This saves I/O band-
width and avoids runtime overheads of alignment between
columns. The saving comes from the fact that only one
column is needed for most data-intensive auto-regressive
LLM training including pretraining and continual training.

Improving shuffle quality. Page is the minimal divisible
data storage unit in Parquet since it is the level at which data
is compressed. Considering that a typical page size is at
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multiple KB or MB, a large LLM dataset at TB-level would
contain many millions of pages, which provides much finer-
grained shuffle than simply shuffling the order of several
hundred files or column chunks. Previous work (Zhu et al.,
2018; Xu et al., 2022) has shown that the shuffle quality is
heavily impacted by shuffle unit size.

Challenges. The PageIndex structure within the Parquet
file metadata contains the page data’s physical locations.
However, the one-dimensional index of page physical loca-
tions alone is insufficient to achieve random page level data
access. The page data requires decoding based on metadata
defined in higher storage hierarchies. Moreover, the number
of pages in each column chunk and file is uneven, which
prevents the direct identification of belonging column chunk
and file for an arbitrary page. Hence, we need to build a
mapping between page data address and their correspond-
ing decoding-related metadata in higher-level hierarchies.
We address this challenge by introducing Global Page Index
and its index translation mechanism to navigate through
multiple storage hierarchies and metadata retrieval, which
will be introduced next.

5.3 Control Plane with Global Page Index

Lightweight initialization. At initialization, YOUMU
collects metadata from column chunks, which includes
the physical addresses of pages within these chunks by
PageIndex. While the native page index of columnar
formats is typically limited to individual column chunks,
YOUMU constructs a global page address index that spans
the entire dataset. This index is structured as a three-
dimensional matrix, incorporating file index, column chunk
index, and page index. This comprehensive indexing ap-
proach enables efficient navigation and access across the
full scope of the dataset. At the same time, the file-level and
column chunk-level page number offset lists are created for
the convenience of index translating.

Index translation. To determine the random page access
order, we permute an integer list sized to the total page
count. This random order is then translated to physical page
addresses using a layered binary search as it is outlined
in Algorithm 1. It first identifies the file containing the
requested page through a binary search of file-level page
number offsets. Then it locates the specific column chunk
within the identified file via binary search of column chunk-
level page number offsets. Finally it calculates the page
index within the column chunk by subtracting the chunk
page number offset from the random access order ID. This
approach of establishing a global page index and perform-
ing efficient index translation at runtime allows YOUMU to
avoid full materialization of the dataset in system memory
for shuffling.

Metadata mapping. After we have the file, column chunk

Algorithm 1 Layered Binary Search-Index Translation

Input: Random page access order id, File-level page
offset list F , Column chunk-level page offset list C
Output: Three-dimensional index for global page index
fileIdx← BinSearch(F, id)
chunkIdx← BinSearch(C[fileIdx], id)
pageIdx← id− C[fileIdx][chunkIdx]

and page index for a random page access ID, we consult the
global page index to retrieve the corresponding metadata
and page physical location. To avoid incurring additional
disk I/O for metadata, the global page index caches all the
metadata and page locations in memory at initialization.

5.4 Data Plane with Page-level I/O

In this section, we detail the step-by-step process by which
YOUMU’s data plane retrieves and decodes the requested
data from storage, utilizing the page location and metadata
provided by the control plane.

Page data retrieval. Given the physical address range
of a page, we directly extract the specified data segment
from the file and load it into memory. Since Parquet pages
are column-specific (each page contains data for only one
column, as it is a sub-unit of a column chunk), unrelated
columns are naturally bypassed, thereby conserving disk
I/O bandwidth.

Decoding. Once the requested page is loaded into DRAM,
it remains in a compressed state. Decompression requires
metadata from the column chunk to which the page belongs,
as provided by the control plane. This metadata includes
crucial information about the data type and the specific
decompression algorithm needed. After decompression,
YOUMU constructs an in-memory page reader to convert the
page data into Arrow arrays.

Aggressive buffer shuffle. Due to the page-level I/O gran-
ularity, the data retrieval unit size in YOUMU is smaller
than the typical buffer size, presenting opportunities to en-
hance shuffling quality. Unlike standard double buffering
which typically shuffles only once at initialization, YOUMU
aggressively reads new pages into the buffer as soon as
possible and performs shuffling upon the arrival of each
new page. As outlined in Algorithm 2, YOUMU estimates
an approximate row count per page (#rowPage) during
initialization and refills the buffer with a new page when
more than #rowPage rows have been consumed. This ap-
proach results in superior buffer shuffle quality compared to
standard buffering. By complementing page-level data ac-
cess shuffling, YOUMU achieves exceptionally high shuffle
quality for data loading.

User-defined last-mile preprocessing. YOUMU utilizes Ar-
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Algorithm 2 Aggressive Buffer Shuffle

Input: Dataset D, Buffer size B, Number of rows per
page #rowPage, Batch size BS
Output: Shuffled data in buffer
Initialize an empty buffer bf
{Initial buffer filling}
while size(bf) < B do
page← ReadRandomPage(D)
Append(bf,Decode(page))

end while
{Continuous refilling and shuffling}
while true do

while size(bf) + #rowPage ≤ B do
page← ReadRandomPage(D)
Append(bf,Decode(page))
ShuffleRows(bf)

end while
batch← bf.pop(BS)

end while

Table 2. A partial list of YOUMU Python APIs.
Function Parameters

get_idx_matrix file_paths, col_id
read_page global_page_idx
shuffle_index index_matrix

row arrays as a versatile in-memory model. This approach
facilitates seamless zero-copy conversion to dataframe for-
mats (Wes McKinney, 2010; Harris et al., 2020), as well
as tensor formats used in deep learning frameworks (Abadi
et al., 2015; Chen et al., 2015; Paszke et al., 2019) via DL-
Pack (DLPack contributers, 2024).

6 IMPLEMENTATION

We implement YOUMU on top of Apache Parquet and Ar-
row’s official Rust implementation, utilizing PyO3 to pro-
vide Python bindings. In this way, YOUMU plays as the
replacement of I/O modules from PyArrow but still results
in PyArrow objects for wide compatibility.

Rust runtime. Our implementation adds a new mod-
ule direct_page.rs that encapsulates all functionality
while maintaining compatibility with existing APIs. To en-
able direct page access, we leverage experimental features
of Arrow readers and expose specific internal states to ac-
cess page physical types and decompression utilities. The
core functionality of YOUMU is efficiently implemented in
approximately 500 lines of Rust code.

Python APIs. We leverage arrow-rs::pyarrow
and PyO3 to seamlessly integrate with Python, returning
PyArrow objects from the Rust runtime. As shown in Ta-

ble 2, we expose low-level page access APIs that enable
users to implement custom logic compatible with standard
interfaces such as PyTorch Dataset. In our PyTorch imple-
mentation, get_idx_matrix is invoked at dataset ini-
tialization, with the resulting list being shuffled later by
shuffle_index and distributed across workers for non-
overlapping random page access. When reading data from
disk, read_page is used with given requested global page
index. This entire PyTorch Dataset implementation requires
only approximately 100 lines of Python code. We present
an example of building PyTorch dataset class with YOUMU
Python APIs in listing 1.

Listing 1. Youmu Dataset Interface Example
1 import torch
2 import numpy as np
3 from torch.utils.data import IterableDataset
4 from youmu import get_idx_matrix, read_page, shuffle_index
5
6 # this is a comment
7 class YoumuDataset(IterableDataset):
8 def __init__(...):
9 self.index_matrix = get_idx_matrix(dataset_path, col_id)

10 self.shuffled_idx_matrix = shuffle_index(self.
index_matrix)

11 ... # other attributes
12 def __len__(self):
13 # can be inferred from Parquet metadata
14 return self.total_row_num
15 def fill_buffer(self):
16 while len(self.buffer) < self.buffer_size:
17 new_samples = self.read_page(self.

shuffled_index_matrix.pop(0))
18 tensor_array = torch.from_dlpack(new_samples)
19 # can also extend buffer with a random row instead
20 # to achieve row-wise shuffling
21 self.buffer.extend(new_samples)
22 np.random.shuffle(self.buffer)
23
24 def __iter__(self):
25 ... # logic for DataLoader multi-processing
26 for _ in range(iter_start, iter_end):
27 if len(self.buffer) < self.refill_threshold:
28 self.fill_buffer()
29 sample = self.buffer.pop(0)
30 yield sample

Fully random shuffle support. YOUMU’s fine-grained
control over page I/O enables row-wise full shuffling. Fully
random shuffle is implemented by extracting individual rows
from randomly accessed pages while maintaining epoch
integrity through tracking of sampled page and inner row
index pairs. While this approach incurs some I/O waste from
unused rows in fetched pages, it significantly reduces waste
compared to traditional chunk-based I/O methods. Users
can choose this method when I/O bandwidth is sufficient to
accommodate such overhead.

7 EVALUATION: MODEL ACCURACY

In this section, we answer the question: how does YOUMU’s
page-level shuffle perform in terms of training accuracy?
Our results show that it achieves model accuracy compara-
ble to fully random shuffling, significantly outperforming
the streaming-based local shuffle. This demonstrates the
importance of high shuffle quality for LLM datasets and the
effectiveness of YOUMU’s page-level shuffle.
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Table 3. The model perplexity results for model pre-training and continual training. Lower is better.

Shuffle method Small LLaMa pre-training OpenLLaMa-3B continual training
WikiText-103 line-level doc-level arXiv algebraic-stack

Row (Ideal) 12.671 12.718 12.316 6.318
Page (YOUMU 1MB) 12.884 (+0.213) 12.874 (+0.156) 12.323 (+0.007) 5.071 (-1.247)
Streaming (Baseline) 13.371 (+0.700) 13.570 (+0.852) 12.655 (+0.339) 24.741 (+18.423)
No shuffle (Worst) 14.324 (+1.653) 14.127 (+1.409) 12.801 (+0.485) 285.424 (+279.106)

Table 4. The model configuration for pre-training.
Config. Number

num_hidden_layer 12
num_attention_heads 12
head_dimension 64
vocab_size 30522
max_sequence_length 512

We measure the achieved validation perplexity, a widely
used metric in language model evaluation. We measure
this metric when running two data-intensive tasks in LLM
training over four distinct system approaches. The two tasks
are pre-training from scratch and domain-specific continual
training. The four system approaches are as follows.

Row-wise fully random shuffle: This delivers the ideal shuf-
fle quality, serving as the upper bound for model perfor-
mance in terms of accuracy (Meng et al., 2019). It pro-
vides perfect randomization but is often impractical for large
datasets due to its high overheads.

Page-level shuffle: The shuffle strategy introduced by
YOUMU, achieving both efficient data access and high model
accuracy due to good shuffle quality. Note that YOUMU
also supports fully random shuffle.

Streaming-based local shuffle: The most widely adopted
shuffle strategy (HuggingFace, 2024b; TensorFlow, 2024a)
for large datasets exceeding DRAM capacity. In all exper-
iments, we set the same buffer size of 10K rows for both
streaming and page-level shuffle.

No shuffle: This represents the worst possible shuffle quality,
serving as the lower bound. It helps quantify the impact of
shuffling on model performance.

7.1 Pre-training from Scratch

Task. Due to computational resource constraints, we were
unable to conduct a full-scale large model pre-training. In-
stead, we constructed a language model that shares the same
basic structure as the LLaMa model (Touvron et al., 2023),
but with a total of 160 million parameters. This model serves
as our subject for training from scratch. The detailed model
configuration is presented in Table 4. The pre-training ex-

periments has two folds: the first set is to train the model
on small datasets until convergence and the second set is to
train the model on a large dataset with given step numbers.

For the first fold, We conduct model pretraining on two
widely used datasets: WikiText-103 (Merity et al., 2016)
and arXiv abstracts. Note that for WikiText-103, we eval-
uate both doc-level and line-level organizations, meaning
one row includes a full document or a single line of text,
respectively, to show the robustness against different dataset
organizations. For the second fold, we train the model on
C4 English subset dataset for 120 thousand steps with two
different page sizes, i.e., 10KB and 1MB, for YOUMU to
show its robust effectiveness on larger datasets.

Results. As shown in TABLE 3, YOUMU achieves model
perplexity results much closer to the perfect row-wise
full shuffling, compared with the perplexity delivered by
streaming-based shuffling. On average, when the model
is trained to convergence with small datasets, YOUMU’s
approach results in only 10.6% of the perplexity degrada-
tion observed with no shuffling, compared to 53.3% for
streaming-based shuffling.

For training results on a large dataset, the C4 English subset,
both 10KB and 1MB configurations of YOUMU outperforms
the streaming-based shuffle baseline. The YOUMU 10KB
even slightly outperforms the ideal fully random shuffling,
showing that YOUMU’s page-level shuffling provides suffi-
cient shuffle quality to ensure same level of model accuracy
as the fully random shuffle. Regarding the explanation
on outperforming fully random shuffle, our understanding
here is that, the theory of “better shuffle randomness leads
to better model accuracy" generally holds true but is not
guaranteed in the real world. Meanwhile, “less shuffle ran-
domness leads to poorer model accuracy" corroborates with
our observations and strengthens the motivation of YOUMU.

7.2 Domain-specific Continual Training.

Task. We conduct continual training for the pre-trained
OpenLLaMa-3B (Geng & Liu, 2023) on the algebraic-stack
dataset (Azerbayev et al., 2023) for 5,000 steps.

Results. As shown in TABLE 3, YOUMU even outperforms
the perfect row shuffling in this task. While row shuffling
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Figure 4. The validation perplexity curve of training with the C4
English dataset.

and YOUMU’s perplexity results are good enough in practice,
the streaming-based shuffling is still far from convergence.
We think this is due to the variance of the data sampling
window: while row and page shuffle can sample data from
the entire dataset, the local and no shuffle can only see data
from the very beginning window. This shows that YOUMU
can greatly reduce the data amount requirement for domain-
specific continual training, as constraining the data size
is important to balance the model’s capabilities in general
and domain-specific fields (Ke et al., 2023), and prevent
catastrophic forgetting (Li & Lee, 2024).

8 EVALUATION: SYSTEM EFFICIENCY

While §7 evaluates model accuracy through controlled-size
full training, in this section we use methodologies in §8.1
to show how well YOUMU performs in terms of system
efficiency when dealing with datasets with billion- or even
trillion-level tokens. The key takeaways of the results are
that across various settings: (1) Relying on a pipeline op-
timized for disk I/Os, YOUMU achieves comparable per-
formance to the performance-optimal state-of-the-art, dis-
tributed memory-based solutions, and YOUMU significantly
reduces memory footprint. (2) When sacrificing bandwidth
for fully random shuffle, YOUMU still achieves sufficient
performance with the least memory footprint.

8.1 Methodology

Baselines. From the system aspects, we choose the most
representative systems as the baselines:

HuggingFace Datasets, a widely-used dataset library that
implements the out-of-core data loading by disk-backed
memory mapped file I/O mechanism. Although Hugging-
Face stores and downloads datasets in Parquet, at runtime it
needs to convert them into Apache Feather format to enable
memory mapped I/O.

Ray Data. a data processing library for ML workloads,
backed by state-of-the-art distributed computing framework
Ray with shared memory object store. We use a nightly
built version of Ray to enable the latest push-based shuf-
fle (Luan et al., 2023) for its best performance. Besides
fully random shuffle, we also evaluate its chunk shuffle
mode which has reduced shuffle overheads. We adopt the
TorchTrainer class in Ray Train library for its imple-
mentation for distributed training. Note that the quality of
such a chunk shuffle is still worse than YOUMU’s page shuf-
fle since its chunk size is often at several hundred MB, 1000
times larger than YOUMU’s pages, indicating less potential
shuffle randomness.

Dataset. We employ the cleaned English C4 (Raffel et al.,
2020) dataset, which contains around 200B tokens and is
widely used in moderate-size language model training. Also,
we employ the latest 7 dumps of FineWeb dataset (Penedo
et al., 2024) to enlarge the workload size, which contains
1.5T tokens. To study the isolated I/O performance, we run
standard preprocessing and tokenization beforehand.

Testbed. 16 nodes in total are used in the evaluation. Each
node has 384GB DRAM (150GB for shared memory) and is
inter-connected by 100 Gb/s InfiniBand. The remote storage
system is WekaFS (WekaIO, 2023). On each node, we run 8
concurrent data loading processes to simulate the case of 8
GPUs per node. The local batch size for each process is 64.

Experiment setup. We conduct two sets of experiments to
show various aspects of the evaluated systems:

Fix workload, scaling workers. We study the scalability of
evaluated systems by increasing involved nodes against the
English C4 dataset. We name them as scalability tests.

Fix workers, scaling workload. We stress-test the system
performance and overhead management by involving more
partitions from the FineWeb dataset against a fixed number
of workers. We denote them as stress tests.

Note that we need to exclude HuggingFace from the stress
tests because the conversion to Apache Feather format re-
quires significant extra storage space that is beyond our
testbed capacity. For example, the C4 dataset employed in
scalability tests only requires 500 GB in Parquet but requires
2.6 TB in Feather.

8.2 Memory Footprint & Disk Usage

Memory footprint. We present memory footprint for scal-
ability tests in Figure 5 and stress tests in Figure 6, where
we can see that YOUMU achieves the least memory foot-
print across all the tests, at most 82% and 76% less than
HuggingFace and Ray Data respectively. Specifically, since
YOUMU only holds dataset metadata and a fixed size buffer
in memory, YOUMU only requires 30 GB for a 200B dataset,
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Figure 5. Scalability tests. Memory footprint per node against total
node numbers with 200B token datasets.
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Figure 6. Stress tests. Memory footprint per node with various
dataset sizes on 16 nodes.

and slightly increases to 47 GB at most for larger datasets
for caching more metadata.

Disk usage by memory offloading. Ray Data employs
the object spilling technique which offloads in-memory ob-
ject store to disk when shared memory is not enough to fit
the dataset. In such cases, disk I/Os would also be heavily
involved at training runtime to fetch the data, which necessi-
tates that the offloading space be a high-performance storage
system located near the GPU. The size of the spilled object
is related to shuffle granularity, number of workers, and
dataset size. In Figure 6, Ray Data encounters out-of-disk
errors with datasets larger than 1 trillion tokens (2 TB in
Parquet) when doing full shuffling. We observe that in such
cases it would need to write more than 10 TB data onto disk
which triggered system kill.

8.3 Iteration Batch Latency

For the training data pipeline, the most important perfor-
mance metric is batch latency, which is defined as the time
needed to get a batch for the next training iteration. In
practice we can overlap batch latency with current training
iteration. Hence, as long as the batch latency is shorter
than the time needed for one training iteration, the GPU
utilization is not bottlenecked by data loading.

Batch latency threshold for GPU utilization. For lan-
guage models, the training iteration step time can be esti-
mated (Narayanan et al., 2021; Hoffmann et al., 2022) with
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Figure 7. Strong scaling test. Batch latency against node numbers
with the 200B token dataset.
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Figure 8. The step latency after Ray Data finishes shuffle wall.

given model parameter size, sequence length, batch size and
GPU specifications. Typically such iteration step time for
language models varies from sub-second to tens of seconds
for various model and cluster sizes.

We present the iteration batch latency in Figures 7 and 8,
with a threshold line at 1.9s indicating when the GPU experi-
ences no data waiting time, a value we measured during real
training in our previous model accuracy evaluation experi-
ments. From this perspective, all the systems except Hug-
gingFace deliver sufficiently low batch latency. YOUMU
with page shuffling only has at most 3ms for batch latency.
Although higher than Ray Data’s 1ms, this is still three
orders of magnitude lower than the data waiting thresh-
old. With full shuffling, YOUMU has 0.4s batch latency,
which is still acceptable for most training workloads. This
is reasonable as YOUMU sacrifices goodput when using full
shuffling.

Shuffle wall time per epoch. At the beginning of each
epoch, Ray Data has an additional shuffle wall time due
to its MapReduce-style shuffling. Since this period cannot
be overlapped, the entire GPU cluster is idle during this
stage. We illustrate Ray Data’s shuffle wall time in Figure
9. In contrast, YOUMU only adds less than 10 seconds of
metadata collection time in the first epoch.



YOUMU: Efficient Columnar Data Pipeline for LLM Training

240 470 710 960 1500
Dataset Sizes (Billion Tokens)

0
1,000
2,000
3,000
4,000

Sh
uf

fle
 W

al
l T

im
e 

(s
)

OOD OOD

RayData (full) RayData (chunk)

Figure 9. The shuffle wall time required by Ray Data on 16 nodes.

8.4 Overhead Discussion

Cross-language interface overheads. The PyO3 interface
introduces minimal performance overhead compared to a
pure Rust implementation. The interface incurs a latency
of nanoseconds per function call, primarily due to safety
mechanisms such as GIL management and FFI boundary
handling (Hewitt, 2021). For our scenarios, this negligible
overhead does not materially impact performance.

CPU overheads. The system architecture of YOUMU im-
plements a one-to-one mapping between GPUs and CPU
processes, where each GPU is assigned a dedicated process
that manages both I/O operations and decoding tasks. This
design choice results in CPU core occupation equal to the
number of GPUs . Since modern GPU computing nodes typ-
ically feature tens of CPU cores, the CPU resource overhead
imposed by YOUMU remains within reasonable bounds and
does not significantly impact overall system resources

9 RELATED WORK

General shuffle services are very common in MapReduce
systems (Dean & Ghemawat, 2008; Zaharia et al., 2012;
Rasmussen et al., 2012) and sophisticated optimized to reor-
ganize data between nodes or processes for query execution
performance (Zhang et al., 2018; Pu et al., 2019; Shen et al.,
2020). As predecessors of Ray Data, they rely on extensive
memory resources and incur unavoidable shuffle wall time.

In-database machine learning systems aim to perform
machine learning directly on database data using SQL ex-
pressions. While some systems support page-level granular-
ity (Xu et al., 2022) for data stored in DB internal formats,
they typically require implementing an entire deep learning
stack inside database systems, isolating them from main-
stream frameworks like PyTorch and TensorFlow. Further-
more, many of these systems focus on row-oriented database
formats rather than the columnar formats prevalent in LLM
dataset storage.

Storage formats for deep learning are specifically de-
signed for training I/O pipeline acceleration (Aizman

et al., 2019; Leclerc et al., 2023; TensorFlow, 2024b).
Lance (LanceDB, 2024) is the most relevant format, which
also targets efficient random access to columnar datasets.
However, these formats often have incomplete functionality
and their acceptance in real-world scenarios remains uncer-
tain due to limited ecosystem support and compatibility.

Data loading services for deep learning encompass var-
ious optimization strategies, often tailored to specific ar-
chitectures or tasks. These include shared dataset caching
for multi-user scenarios (Kumar & Sivathanu, 2020; Gu
et al., 2022), storage-hierarchy-aware prefetching sched-
ules (Dryden et al., 2021), preprocessing acceleration (Graur
et al., 2024; NVIDIA, 2024), and task-specific shuffle strate-
gies (Sun et al., 2022; Nguyen et al., 2022). These tech-
niques can integrate YOUMU as the I/O backend when deal-
ing with LLM datasets in Parquet. Petastorm (Gruener et al.,
2018) is most closely related to YOUMU, as it also aims
to directly train from Parquet files. However, Petastorm
operates at default row group-level I/O granularity, which
leads to the aforementioned granularity mismatch. To avoid
I/O waste, it loads entire row groups into the shuffle buffer,
but this approach significantly compromises shuffle quality
compared to YOUMU’s page-level approach, as row groups
are typically at GBs, thousands of times larger than pages.

10 CONCLUSIONS

This work presents YOUMU, a data pipeline that enables
direct fine-grained columnar data feeding to GPUs for train-
ing on massive LLM datasets. We identify performance-
prohibitive bandwidth waste due to granularity mismatch
between fine-grained shuffling and columnar default chunk-
based I/Os. YOUMU addresses the problem by re-designing
columnar I/Os to be at page-level, and correspondingly per-
forming page-level shuffling with sufficient randomness and
thus achieving high model accuracy. Besides maintaining
high shuffle quality and throughput, YOUMU also signifi-
cantly reduces memory footprint.
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