Self-Compressing Vision Tower for Efficient Dense
Prediction Tasks

1[0009—0003—4094—5455] Guangzhi Tangl [0000—0002—0204—9225]
b
Chang Sunl,Q[0000—0001—8325—8848]

Aditya Shourya , and

! Department of Advanced Computing Sciences, Maastricht University, Netherlands
2 Institute of Data Science, Maastricht University, Netherlands
a.shourya@student.maastrichtuniversity.nl,

{guangzhi.tang, chang.sun}@maastrichtuniversity.nl

Abstract. Dense prediction tasks such as classification, segmentation,
and optical flow require models that deliver high accuracy while maintain-
ing sufficient throughput for practical applications on mobile or portable
computing devices. However, most state-of-the-art architectures rely on
deep sequential operations that are computationally expensive and chal-
lenging to execute on consumer-grade parallel hardware; this often leads
to reduced inference speed or degraded accuracy, thereby limiting their
applicability in real-time and edge scenarios. To address this challenge,
we propose a novel, self-compressing vision architecture that applies
structured pruning and quantization across key modules: convolutional
layers, transposed convolutions, and linear attention in proportion to their
parallel-time computational cost. By selectively reducing precision and
pruning tensors in less critical layers, our approach achieves significant
model compression. We evaluate our method on fine-grained classification
(CUB-200-2011, Country211), semantic segmentation (ADE20K), and
optical flow (HD1K). Our model matches the accuracy of state-of-the-art
baselines (Efficient VIT) at full precision (FP32) and surpasses them under
lower-precision settings, achieves reduced storage and higher throughput,
all while maintaining similar training time. Finally, we highlight that
compression serves not only as a mechanism for reducing model size but
also as a basis for investigating the relationship between model depth
and overall performance during inference.

Project at: https://github. com/adishourya/SelfcompressingDepthWiseAttn

Keywords: Dense Prediction - Model Compression - Structured Pruning - Quan-
tization - Efficient Vision Models

1 Introduction

Dense prediction remains a critical task in computer vision, and the efficacy
of a vision model is commonly benchmarked by its performance in both ac-
curacy and latency on large-scale dense prediction datasets [6]. Models with
low computational demands are essential for real-time applications, including

https://github.com/adishourya/SelfcompressingDepthWiseAttn

2 A. Shourya, G. Tang, C. Sun

autonomous drones, on-device image processing, and computational photography
[26]. In specific domains such as sports or wildlife photography, high inference
throughput is often as critical as high accuracy [40].

Despite this need, many state-of-the-art vision architectures [5] remain too
computationally expensive for deployment on consumer-grade devices. A key
insight from recent works [9] [14] shows the possibility of over-parameterization
in deep networks. The findings suggest that the latter layers of deep sequential
models often contribute marginally less to final accuracy than earlier ones.
This challenges the necessity of the high computational cost inherent in deep
architectures and motivates the design for more efficient models. However, most
post-training methods [16], [I7] that are applied to the state of the art vision
models to meet device compute capability constraints, often incur significant
drop in accuracy, particularly in dense prediction tasks where fine-grained spatial
details are critical.

A key hypothesis we examine in this work is the need for uniform allocation
of model precision and compute cost across model depth. In non-self-compressing
models [22], [36], weight precision and compute budgets are assigned identically
to all layers regardless of their relative contribution to final performance. This
uniform treatment can result in over-parameterization and inefficient use of
compute resources.

Motivated by previous work, we present a fully compressible vision backbone
that matches the accuracy of the current state-of-the-art model EfficientViT [5]
at full precision and surpasses it under low-precision settings. Our architecture
integrates structured pruning and quantization-aware training to dynamically
adjust model precision and computational cost across different compute mod-
ules, including convolutional filters and attention weights. This non-uniform
compression strategy yields substantial reductions in storage and compute re-
quirements with minimal impact on accuracy. We validate the robustness and
generalizability of proposed approach across multiple dense prediction tasks such
as a fine-grained classification (CUB-200-2011 [35], Country211 [28]), semantic
segmentation (ADE20K [41]), and optical flow (HD1K [20]). We further show
that the compression process can serve as an analysis tool for identifying and
prioritizing critical model components, informing the design of more efficient
architectures.

2 Related Study

Our methodology builds upon recent advancements in efficient vision towers and
quantization approaches, drawing insights from prior work. Below, we summarize
key contributions from related works that have informed our approach.

Efficient ViT [5] carefully selects computational operations to maximize accu-
racy while sustaining high inference throughput. The design philosophy delegates
the computation of local inductive biases to lightweight convolutional kernels and
global feature aggregation to linear attention mechanisms, avoiding the quadratic

SCVision 3

complexity of full softmax attention [19]. The local processing module adopts
inverted bottleneck convolutions [30], which first expand the channel dimension,
apply a depthwise convolution for spatial processing, and then project the features
back to a lower dimension. This structure enables efficient feature learning in a
higher-dimensional space while keeping computational costs low.

Our work adopts a similar architectural philosophy to achieve high throughput.
However, unlike EfficientViT, which focuses primarily on operator efficiency, our
approach also integrates compression techniques such as pruning and quantization
directly into these modules to further improve throughput, reduce model size,
and maintain accuracy.

DiffQ[11] introduces a differentiable quantization framework that avoids gradi-
ent approximations such as the Straight-Through Estimator (STE). It models
quantization as the addition of pseudo-quantization noise during the forward pass,
enabling direct gradient flow through the quantization step. The method jointly
learns both full-precision weights and their bit-depths, with a regularization term
that penalizes model size, controlled by a single hyperparameter. This allows
automatic discovery of mixed-precision strategies, allocating higher precision to
more sensitive parameters.

While DiffQ achieves strong compression rates across vision, language, and
audio tasks, it incurs additional training overhead from generating noise for every
group of weights the noise parameter is tied to, and requires careful tuning of its
trade-off hyperparameter. Moreover, it focuses solely on minimizing storage rather
than directly optimizing for latency. Inspired by DiffQ’s bit-depth regularization,
we adopt a similar precision-penalizing strategy but use STE-based gradient
approximation to avoid the computational overhead of noise injection.

Self-Compressing Convolutions (SCC) [8] removes the need for noise
injection by directly parameterizing bit-depth as a trainable continuous variable.
A tempered sigmoid gate allows smooth reduction of bit-depths to zero, effectively
pruning weights or entire channels (modes of tensor) during training. Unlike
DiffQ’s fine-grained grouping, SCC typically operates on coarser structural units,
improving stability and reducing catastrophic forgetting.

Although originally applied to only convolutional layers, SCC’s principles can
extend to other operator types. In our work, we generalize this approach to com-
press all major components of the vision tower, including attention mechanisms,
transposed convolutions, and linear projections, enabling a fully compressible
architecture.

3 Architecture

The architecture design of this work was inspired by the recent vision models [5]
and [8]. The proposed architecture follows a decoder-only transformer structure
(Figure[l)). The input image is first projected into a latent sequence of embeddings,

4 A. Shourya, G. Tang, C. Sun

where each embedding dimension corresponds to a learnable convolution kernel.
Each transformer block is then implemented as a sequential composition of
convolutional and transpose convolution operations [39) [I5], 29] followed by a
linear attention module to capture global receptive fields as shown in Figure

Quantization is applied to the parameter matrices of all the aforementioned
compute modules. The compression penalty for each module is designed to be
directly proportional to its parallel-time arithmetic intensity, with the expectation
that this scaling induces an inverse relationship with the measured throughput
on a generic parallel accelerator. This formulation explicitly favors operations

Transformer

Image]—)I Embedding I—) Blocks (repeat —)I MLP Head |—)[Logits I

n times)

Transformer Block

Fig.1: Overall Architecture: The input image is processed through a series of
transformer blocks, each consisting of convolutional operations (Local Module) and
linear attention (Context Module), followed by an MLP head for dense prediction
tasks.

Expand Upscaling Depthwise Ly Projection Linear
Block(ConvD) Block(ConvT) Block(ConvD) Block(Conv) Attention

Transformer Block

Fig. 2: Transformer Block Detail: Each transformer block (in Figure consists
of a modified Inverted Bottleneck Convolution (expansion stage using depthwise
convolution (ConvD), an upscaling stage using transposed convolution (ConvT),
and a depthwise convolution before a projection stage) followed by a lightweight
linear attention module.

240 60 30
Convolution 55 Softmax Attn
5
210 DepthWise Convolution 50 - _ 25 Linear Attn
Efp/ <) 45 g 20
= = 40 =
2, E 2 15
5 5 35 £
E 3 3
& =30 £ 10
= E oo E
——— Tra lution 5
60 20 |y epthWise Convolution
15 0
32 64 96 128 32 64 96 128 32 64 96 128
Resolution Resolution Resolution

(a) Convolutional modules (b) Transposed convolution (c) Attention mechanisms

Fig. 3: Module Throughput: Throughput evaluation of convolutional, transposed
convolutional, depthwise convolutional, and attention-based modules across varying
input resolutions on an NVIDIA 4070 [25)] with FP32 precision.

SCVision 5

that are intrinsically well-suited to parallel execution. For example, both map
and reduction operations have a step complexity of O(N) on a CPU, whereas on
a GPU, map executes in O(1) and reduction in O(log N), where N denotes the
input size [I].

The penalty term is similar to the works of [II] and is incorporated into
the training objective as a hinge-style regularizer, resulting in the overall loss
function, where Lg is the original loss of the model and ~y acts as the compression
factor over the module size normalizing constant C"

all modules

Loss = Lo + % kz::l Qsizey, (1)

For our experiments, we use quantization approach (from [8]) to quantize
weights in the forward pass and use symmetric differentiable number Q8A format
[23] as shown in Equation [2} The bit depths (b) and the scaling factor (e) are set
to be trainable and is broadcasted to the weights of the tensor (W) during the
forward pass of the training.

Q(W, b, e)), = 2° {Clip (Z —ob=1 gb—1 _ 1)} (2)

The |-] acts as a straight-through estimator [4] for the rounding function,
which returns the identity of upstream gradient during the backward pass.

We now present our proposed method of derivation for the penalty cost of
the compute modules in our transformer block.

Convolution serve as the foundational operation within our transformer blocks,
providing a strong local inductive bias essential for vision tasks. Although full
softmax attention [34] excels at capturing both local and long-range dependencies,
its computational requirements are prohibitive for high-resolution images. The
standard attention mechanism scales as O((HW)2dp~2) for an image of spatial
dimensions H x W, embedding dimension d, and patch size p, resulting in
quadratic complexity with respect to spatial resolution.

In contrast, the convolutional layers in our architecture offer a significantly
more efficient alternative. A convolutional kernel of shape (O, I, k, k) performs
O(I - H - W - k?) operations (quadratic only on kernel size). Crucially, it ex-
hibits constant time step complexity (parallel time) due to its highly parallel
nature. This efficiency stems from the small kernel sizes, which allow the op-
eration to be executed via a fast, within-block reduction on the accelerator.
On resource-constrained devices or when dealing with high resolutions images,
compute scheduling is needed, which scales linearly with spatial resolution and
input/output modes.

We enhance this efficiency through learned quantization. Each output channel
mode of a tensor O; is associated with a learnable bit-depth b; and exponent
e;. The quantized weights are returned by applying the quantization function
(Equation [2)) to the full-precision kernel.

6 A. Shourya, G. Tang, C. Sun

o
size(l) = THW Y~ max(0, [b;,]) (3)
i=1
Equation [3] shows that penalizing the parallel step complexity of convolution
is equivalent to penalizing its tensor size (storage cost). As a result, the penalty
discourages allocating high precision across many output channels and instead
promotes sparse filters within the filter bank.

Depthwise Convolution One of the ways to improve throughput in convo-
lutional layers is to apply strided convolution, which reduces the work linearly
with spatial resolution, though at the expense of reducing the effective local
receptive field. Another option is to use grouped convolution, where the input
channels are divided into g groups. In this case, the convolutional kernel has the
shape (O, I/g, k?), with g denoting the number of groups. A special case of this is
depthwise convolution, where the number of groups g equals the number of input
modes I. As shown in Figure 3al depthwise convolution [40] has higher throughput
than ungrouped convolution, specially when spatial resolution increases.

In this work, we employ depthwise convolutions in the expansion phase of the
vision tower (Figure . This ensures that the computational cost does not scale
with the embedding dimension, unlike ungrouped convolutions. To regularize
these layers, we apply the same heuristic penalty formulation as in the ungrouped
convolution mentioned above.

Transposed Convolution For the upscaling stage, we employ transposed con-
volution after the projection block to generate upscaled features from expanded
convolution outputs [32]. Although transposed convolutions are more expensive
than standard convolutions (Figure , we opt for ungrouped transposed oper-
ations since they provide richer local features than depthwise alternatives. To
mitigate cost, we restrict the number of output channels rather than performing
full ungrouped upscaling. This strategy follows the bottleneck principle in ResNet
[15] and the reduced-channel decoding of U-Net [29], where only a limited set of
upscaled features is sufficient to recover fine spatial details. In the subsequent
stages, we apply one final composition of depthwise convolution and strided
convolution to efficiently downscale the features for the linear attention module.

Linear Attention While softmax attention captures both local and global de-
pendencies, we expexct that local context is already captured by the composition
of convolution functions in the previous stages of our transformer block. The
linear attention module therefore focuses exclusively on global receptive fields.
Unlike standard attention, which scales quadratically with spatial resolution,
linear attention computes global interactions in time linear with respect to spatial
resolution [37] [19].

QERBXNXd7 KGRBXNXd, VERBXNXCZ7 (4)

SCVision 7

$(Q)(o(K)'V)
$(Q)(o(K) 1)’

In the context of parallel accelerators, the computational cost of linear atten-
tion reduces to a sequence of matrix multiplications, since the attention scores
are obtained using a constant-time activation function (like ELU(x)). A matrix
multiplication can be decomposed into parallel dot-products, each of which cor-
responds to a reduction operation. On a parallel machine with R inputs, such
reductions can be performed hierarchically in O(log R) steps [13]. As a result,
the effective depth of a matrix multiplication scales only logarithmically with the
dimension of the reduction. For instance, computing K 'V has a depth complexity
of O(log N), where N denotes the spatial (H - W), while multiplying @) with the
result incurs a depth complexity of O(logd).

We leverage per-head quantization of queries, keys, values, and outputs, which
can be broadcasted prior to computation. This design enables integration with
off-the-shelf implementation of Flash Linear Attention [3], improving runtime
throughput while preserving linear complexity.

Att(Q, K, V) = ¢(z) =ELU(z) +1 (5)

heads
siz€attn, = log(d- H - W) - Z max(0, [bread;.1]) (6)
i=1
In Equation @ bhead;, is the learned bit-depth for the i-th output chan-
nel (head) of the query weight matrix. This formulation allows the model to
learn mixed-precision strategies per attention head, potentially allocating higher
precision to more sensitive components of the attention mechanism. (Note:
log(d- HW) ~ log(HW), as the order of spatial resolution HW is much higher
than the embedding dimension d.)
For the final MLP heads that project features to the final output logits, we apply
quantization to the weight matrices in order to enable low-precision inference.
However, no additional compression penalty is imposed on these layers (sizem, =
0) since they do not significantly contribute to the overall latency of the model.

4 Experiments

4.1 Experimental Setup

Target Device and Throughput Measurement A core contribution of our
work is the integration of hardware-aware compression into the training objective.
We profile the throughput of each computational module on our target device,
an NVIDIA RTX 4070 Mobile GPU [25], at FP8 precision with a standardized
batch size to establish a baseline.

While profiling is on the mobile GPU, training is performed on a single
NVIDIA H100 GPU [24]. For Compute-bound operations, such as linear attention,
we modify fused kernels [38] to support quantization-aware training, whereas
for memory-bound operations like top-k selection and cross-entropy, we rely on
off-the-shelf optimized libraries [I0] to improve training time.

8 A. Shourya, G. Tang, C. Sun

Model Implementation and Training Protocol Our architecture is imple-
mented in PyTorch [27], leveraging fused kernels via CUTLASS [7] and Triton [I8].
All models are optimized with AdamW [21] (31 = 0.9, B2 = 0.999, ¢ = 1078,
weight decay 0.01). We use a cosine annealing schedule for the learning rate,
decaying from 1072 to 10~°, while the compression coefficient v ramps from 0.1 to
0.2 on a separate cosine schedule, ensuring stable convergence before introducing
significant compression pressure.

All models are trained from scratch with parameters initialized to simulate
4-bit precision for stable quantization-aware training. Training runs for up to
1000 epochs with early stopping (patience 50, minimum delta 0.01 on validation
loss).

4.2 Datasets

We evaluate our method across three standard dense prediction tasks: image
classification, semantic segmentation, and optical flow, chosen to test both local
feature extraction and global contextual reasoning (Table . All datasets are
publicly available. We follow the official train-validation-test splits provided
by the original dataset. Both rectangular and square images are normalized
and resized to 448 x 448 pixels using bilinear interpolation, and augmented
with random cropping to improve robustness and prevent overfitting, ensuring
consistent evaluation across tasks.

Classification We use two benchmarks for classification: CUB-200-2011 [35]
for fine-grained species recognition (11,788 images of 200 bird classes) and
Country211 [28] for geo-location classification (63,000 images across 211 countries).
CUB emphasizes subtle local visual differences, while Country211 evaluates global
context recognition and long-term memory capacity (Figure [4]).

Segmentation For semantic segmentation, we adopt ADE20K [41], containing
20,000 training images and 2,000 validation images annotated across 150 semantic
categories (Figure [5)).

Optical Flow For optical flow estimation, we use HD1K [20], which provides
1,066 high-definition frames with dense ground truth flow fields. Frames are
resized to 448 x 448 pixels for consistency across experiments.

Table 1: Summary of datasets used in our experiments.

Dataset Task #Images Resolution Classes / Channels

CUB-200-2011 Classification 11,788 500 x 500 200 species
Country211 Classification 63,000 Variable 211 countries
ADE20K Segmentation 22,000 Variable 150 categories
HD1K Optical Flow 1,066 frames 1920 x 1080 Flow fields

SCVision 9

(a) Hooded Warbler (b) Golden-winged (c) Urban landscape (d) Natural scenery

Fig. 4: Representative examples from the classification datasets: CUB-200-2011
(birds a), b)) and Country211 (landscapes from the same country label 0 ¢), d)).

(a) Input image (b) Semantic mask

Fig.5: Example from ADE20K dataset showing input image and the output mask.

4.3 Ablation Studies

We perform ablation studies on a compact 1.98M-parameter model evaluated on
CUB-200-2011 [35] to isolate the effects of individual architectural components
on performance and compression.

Pixel Shuffling vs. Transposed Convolution We evaluate pixel shuffling [31]
as a non-learnable alternative to transposed convolution for feature upscaling.
While pixel shuffling rearranges the input tensor to generate higher resolution
features without additional compute costs, it inherently couples feature channels,
preventing independent pruning or precision reduction. This coupling further
limits the use of non-uniform compression in the preceding projection convolutions,
as it would otherwise yield uniformly noisy upscaled outputs. For this reason,
we retain transposed convolution for upscaling, since it preserves channel-wise
independence that is essential for effective, precision-guided pruning.

Pointwise vs. 3x 3 Convolution for Projection Pointwise (1x1) convolutions
are parameter-efficient, but quantized low-bit kernels tend to collapse feature
representations early in training, disrupting gradient flow. Using 3x3 kernels
mitigates this issue by providing additional spatial context while maintaining
efficiency. In our experiments, quantized 3x3 kernels achieve stable training

10 A. Shourya, G. Tang, C. Sun

without degradation in final performance when compared to an unquantized 1x1
pointwise kernels.

5 Evaluation

To evaluate the proposed method, we assessed the task performance and com-
putational efficiency. When assessing task performance, we report Top-1 and
Top-5 accuracy, capturing exact and lenient recognition capabilities for classifi-
cation task [35]. For semantic segmentation, mean Intersection over Union
(mIoU) [I2] evaluates the overlap between predicted and ground truth seg-
ments, averaged across all classes. For optical flow, Average End-Point Error
(EPE) [2] measures the mean Euclidean distance between predicted and true
flow vectors, capturing both magnitude and directional errors. For all metrics, we
record evaluations at full precision (FP32) and in automatic mixed precision (FP8)
setting to assess the impact of reduced precision. For computational efficiency,
we report FLOPS per forward pass as a theoretical complexity measure [33],
and throughput (images/sec at FP8) on NVIDIA RTX 4070 Mobile, capturing
real-world deployment performance.

5.1 Performance on Classification Tasks

Results on CUB-200-2011 (Table [2)) and Country211 (Table [3) show that our
approach maintains strong accuracy while improving efficiency in both FP32
and FP8. On CUB-200-2011, our models frequently outperform EfficientViT and
DiffQ in Top-1/Top-5 accuracy with fewer parameters. The 0.88M model with
FPS8 inference achieves the highest throughput across all models, while larger
variants match or exceed EfficientViT accuracy with higher efficiency. Under
FP8, our accuracy remains stable (< 1% drop on average across all sizes). In
contrast, EfficientViT suffers sharp FP8 degradation (up to 6%), and DiffQ lags
in accuracy and only modestly benefits from FPS.

On Country211, accuracy differences are smaller, but our models still achieve
better Top-1/Top-5 accuracy than DiffQ and higher throughput than EfficientViT.
FP8 again confirms robustness: our accuracy remains steady while throughput
increases, whereas EfficientViT loses up to 8-9% Top-1 accuracy under FPS.

5.2 Performance on Segmentation

On ADE20K (Table , our method achieves strong compression while preserving
accuracy. With 4.28M parameters, it matches EfficientViT in mIoU (43.7 vs.
44.1) while reducing size by ~9% and FLOPs by 6%, and delivers the highest
throughput (282 img/s). FP8 results show sharper contrasts: EfficientViT drops
drastically (44.1 — 32 mloU), while DiffQ is more stable but less accurate overall.
Our method remains robust, with only a minor decline (43.7 — 43.3) and the
best throughput.

SCVision 11

Table 2: Comparison of our models on the CUB-200-2011 dataset [35]. Throughput
is measured in FP8.

Model Size Top-1 (%) 1 Top-5 (%) 1T FLOPs (G) | Throughput (img/s) 1
FP32 FP8 FP32 FP8 FP8
EfficientViT 0.98M 71.3 66.1 95.5 90.2 7 309
DiffQ 1.12M 68.1 68.0 92.3 92.5 9 281
Ours 0.88M 73.4 73.4 98.0 97.2 7 338
EfficientViT 2.41M 76.2 72.0 100 96.5 24 262
DiffQ 2.50M 71.3 70.0 100 94.1 28 276
Ours 1.98M 75.8 74.9 100 100 24 308
EfficientViT 4.81M 81.5 75.5 100 98.0 48 183
DiffQ 4.92M 78.1 76.4 100 96.2 54 172
Ours 4.68M 83.5 83.4 100 99.3 51 230

Table 3: Benchmark results on the Country211 dataset [28]. Throughput is
measured in FP8.

Model Size Top-1 (%) 1 Top-5 (%) 1+ FLOPs (G) | Throughput (img/s) 1
FP32 FP8 FP32 FP8 FP8

EfficientViT 2.41M 44.4 41.2 65.6 52.1 23 291

DiffQ 2.50M 36.0 35.8 41.1 404 28 270

Ours 2.13M 43.5 43.5 65.3 63.1 25 324

EfficientViT 4.81M 52.1 449 80.2 69.5 48 228

DiffQ 4.92M 384 38.3 652 65.5 54 213

Ours 4.68M 55.7 54.9 81.0 81.3 51 294

Table 4: Semantic segmentation results on the ADE20K dataset [[1|], where mIoU
is mean Intersection over Union. Throughput is measured in FPS.

Model Size mlIoU (%) 1 FLOPs (G) | Throughput (img/s) 1
FP32 FP8 FP8

EfficientViT 4.68M 44.1 32.0 47 255

DiffQ 4.92M 40.1 395 54 241

Ours 4.28M 43.7 43.3 44 282

5.3 Performance on Optical Flow

On HD1K (Table [5), EfficientViT achieves the lowest FP32 EPE (4.8), but our
approach is competitive (5.0) with lower FLOPs, and much higher throughput
(227 img/s vs. 191). DiffQ performs worse in both accuracy (5.4) and speed.

12 A. Shourya, G. Tang, C. Sun

In FP8, EfficientViT degrades sharply (4.8 — 7.2 EPE), showing poor quanti-
zation robustness. DiffQ is more stable but less accurate. Our method shows only
a modest increase (5.0 — 5.2) while retaining the best throughput, demonstrating
that it compresses effectively and adapts better to low-precision inference, making
it well-suited for real-time flow estimation.

Table 5: Optical flow estimation results on the HD1K dataset [20f, where EPE is
End Point Error. Throughput is measured in FPS.

Model Size EPE | FLOPs (G) | Throughput (img/s) 1
FP32 FP8 FP8
EfficientViT 4.81M 4.8 7.2 48 191
DiffQ 492M 5.4 5.8 54 155
Ours 4.68M 5.0 5.2 51 227
410 260 70 -
Acive Convolation Kenels 250
258 65
5 400 g 257 8
E Z 256 £ 60
= 300 = 255 =
£ £ 254 L‘ Z 5
2 < 253 <
380 259 50
251
370 250 45
250 500 750 1000 250 500 750 1000 250 500 750 1000
Epochs Epochs Epochs

(a) Pruning of convolutional (b) Pruning of upscaling lay- (c¢) Pruning of attention
weights ers heads

Fig. 6: Pruning effectiveness across architectural components. Convolutional filters
and attention heads undergo significant reductions, while upscalers are minimally
pruned.

5.4 Quantization and Compression Trends

In this section, we analyze pruning and quantization in our 1.98M model trained
on CUB-200-2011. Figure[6]shows distinct pruning patterns. Convolutional kernels
shrink gradually after ~300 epochs, accelerating between 500-750, with active
kernels dropping from 400 to ~382 (= 4.5%). Transposed convolution upscalers
are barely affected, with only three drops between 500-700 epochs (256 — 253,
~ 1.2%), reflecting their importance as upscaled features. Attention heads face

SCVision 13

. 4.5 6}
o
g 25
5 £ - T
P Q4 T
& 35 5 J‘ T+
z o 3 = - T
3 :éjb 2 I
0 Z1
D
0 250 500 0
Epochs Embed LO L1 L2 L3 L4 L5 L6 L7
. Model Layers and Embedding Convolutions
(a) Average Bit-Depth De- Y &
cay Across Epochs (b) Learned Bit-Depth Allocation Across Layers

Fig. 7: Quantization-aware training dynamics. (a) Progressive reduction of bit-
depth variance throughout training. (b) Heterogeneous precision allocation (higher
precision in sensitive early layers and aggressive compression in deeper layers.)

the strongest compression, staying near 64 until 750 epochs before plunging to
~50 (= 21.9%). Overall, pruning favors preserving resolution-critical modules
while heavily reducing attention.

Quantization (Fig. @ shows bit-depth decays smoothly from ~4.3 to ~3
bits, with an early plateau. The final allocation is heterogeneous: embedding
convolution kernel gain bit depth from initialization (4 —5 bits) suggesting
degraded perfomance if inference performed on an even lower precision setting
such as FP4, early/mid layers (L0-L2) stay near 4, L3-L5 drop to 2.5-3, and
deeper layers (L6-L7) operate at ~2 bits. Early features thus remain precision-
sensitive, while deeper layers show tolerance to aggressive compression.

6 Discussion

Our results strongly support the effectiveness of cost-aware, self-compressing
vision architectures. By selectively pruning and applying quantization based
on the computational cost of each module, our model matches the accuracy of
EfficientViT while consistently improving throughput. Compression is applied
non-uniformly, with more aggressive pruning and lower bit-depths assigned to less
critical modules, validating the hypothesis that module-specific computational
cost can guide compression strategies. Across fine-grained classification, semantic
segmentation, and optical flow tasks, the compressed model maintains perfor-
mance comparable to non-compressed baselines, indicating that contemporary
architectures contain substantial redundancy that can be eliminated without
sacrificing model perfomance.

In addition to reducing storage through pruning and learned quantization, our
approach improves throughput compared to DiffQ, with full speedup realized after
graph re-compilation. The compression patterns also reveal structural insights:
later layers converge to lower bit-depths, suggesting their reduced contribution
to overall performance, while structured pruning assigns varying precision within

14 A. Shourya, G. Tang, C. Sun

the same layer, reflecting heterogeneous importance across compute modules.
These trends not only guide the design of efficient, hardware-aware architectures
but also indicate safe lower-precision regimes for deployment.

7 Limitations and Future Work

Despite the promising results, several limitations remain that point to directions
for future research. First, improvements in inference throughput are only fully
realized post-training through graph compilation. Since the current loop does
not recompile after modules are pruned, the training-time graph fails to reflect
evolving sparsity, leaving potential latency gains unexploited during training.
Second, the analysis was restricted by computational constraints to a single
model scale for the more demanding tasks of optical flow estimation and semantic
segmentation. Extending the study to multiple scales (Small, Base, Large) would
clarify how well the method generalizes across architectures of varying complexity.
Last, while the proposed approach improves throughput and storage, real latency
benefits from mixed-precision computation are hardware-dependent, often re-
quiring dedicated support for low-bit operations. Future work can examine the
generalizability of the compression stratergy with specific deployment hardware
to realize improvement in throughput.

8 Conclusion

This work proposed a novel, self-compressing vision tower that strategically
prunes and quantizes all major modules convolutions, transposed convolutions,
and linear attention based on their computational cost and contribution to the
network’s output. The model’s performance on classification, segmentation, and
optical flow benchmarks consistently matches the accuracy of the state-of-the-art
EfficientViT, while often providing the added benefits of reduced storage and
improved throughput. Furthermore, the proposed method consistently surpasses
the baseline quantization method, DiffQ, in both accuracy and throughput.

Beyond its practical utility, we conclude that this constructive, cost-aware
approach to compression serves a dual purpose: it efficiently reduces model
size and computational demand, and it also provides a novel methodological
tool for inspecting module importance across layers. The insights gained from
the heterogeneous compression patterns can directly inform and facilitate more
effective and efficient model design for both training and inference on specific
target devices.

1]
2]

7]

8]

191

[10]

[11]

[12]

[13]

[14]

Bibliography

Attention is logarithmic, actually (2025), https://supaiku.com/
attention-is-logarithmic

Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A
database and evaluation methodology for optical flow. In: International
Conference on Computer Vision (ICCV). pp. 233-236 (2011). https://doi,
org/10.1109/ICCV.2011.6126252

Beck, M., Péppel, K., Lippe, P., Hochreiter, S.: Tiled flash linear attention:
More efficient linear rnn and xlstm kernels (2025), https://arxiv.org/
abs/2503.14376

Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients
through stochastic neurons for conditional computation (2013), https://
arxiv.org/abs/1308.3432

Cai, H., Li, J., Hu, M., Gan, C., Han, S.: Efficientvit: Multi-scale linear
attention for high-resolution dense prediction (2024), https://arxiv.org/
abs/2205.14756

Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network
models for practical applications (2016), arXiv preprint arXiv:1605.07678
Corporation, N.: Cute: Cuda tensor expressions. https://docs.nvidia,
com/cutlass/media/docs/cpp/cute/index.html (2025), accessed: 2025-
08-18

Cséfalvay, S., Imber, J.: Self-compressing neural networks (2023), https:
//arxiv.org/abs/2301.13142

Dao, T.: Hybrid linear-softmax attention working very well at large scale
and long-context! as we’ve seen with multiple models now https://x!|
com/tri_dao/status/1879439184462762225| (Jul 2025), https://x.com/
tri_dao/status/1879439184462762225, tweet

Dao-AlLab: QuACK: A quirky assortment of cute kernels. https://github)
com/Dao-AILab/quack| (2025), open-source CUDA kernel collection written
in Python using CuTe-DSL. Apache-2.0 license. Accessed: 2025-08-18
Défossez, A., Adi, Y., Synnaeve, G.: Differentiable model compression via
pseudo quantization noise (2022), https://arxiv.org/abs/2104.09987
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.:
The pascal visual object classes (voc) challenge. International Journal
of Computer Vision 88(2), 303-338 (2010). https://doi.org/10.1007/
511263-009-0275-4

Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix mul-
tiplication. ACM Transactions on Mathematical Software (TOMS) 34(3),
12:1-12:25 (2008). https://doi.org/10.1145/1356052.1356053

Gromov, A., Tirumala, K., Shapourian, H., Glorioso, P., Roberts, D.A.: The
unreasonable ineffectiveness of the deeper layers (2025), https://arxiv|
org/abs/2403.17887

https://supaiku.com/attention-is-logarithmic
https://supaiku.com/attention-is-logarithmic
https://doi.org/10.1109/ICCV.2011.6126252
https://doi.org/10.1109/ICCV.2011.6126252
https://doi.org/10.1109/ICCV.2011.6126252
https://doi.org/10.1109/ICCV.2011.6126252
https://arxiv.org/abs/2503.14376
https://arxiv.org/abs/2503.14376
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/2205.14756
https://arxiv.org/abs/2205.14756
https://docs.nvidia.com/cutlass/media/docs/cpp/cute/index.html
https://docs.nvidia.com/cutlass/media/docs/cpp/cute/index.html
https://arxiv.org/abs/2301.13142
https://arxiv.org/abs/2301.13142
https://x.com/tri_dao/status/1879439184462762225
https://x.com/tri_dao/status/1879439184462762225
https://x.com/tri_dao/status/1879439184462762225
https://x.com/tri_dao/status/1879439184462762225
https://github.com/Dao-AILab/quack
https://github.com/Dao-AILab/quack
https://arxiv.org/abs/2104.09987
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/1356052.1356053
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887

16

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Shourya, G. Tang, C. Sun

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 770-778 (2016)

Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 (2015)

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2704-2713 (2018)
Jiang, J., Zhu, J., Chong, M., Agarwal, S., Hsiao, C.H., Wang, Y., Diao,
C., Wu, T., Singh, A.: Triton: An intermediate language and compiler for
optimizing deep learning on gpus. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) 35 (2022), https://openreview.net/forum?
id=7phvJ2kvEY

Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are
rnns: Fast autoregressive transformers with linear attention (2020), https:
//arxiv.org/abs/2006.16236

Kondermann, D., Nair, R., Honauer, K., Kuhn, A., Schéps, T., Schmidt, J.,
Nowozin, S., Geiger, A., Rother, C., Kondermann, C.: The hci benchmark
suite: Stereo and flow ground truth with uncertainties for urban autonomous
driving. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). pp. 19-28 (2016). https://doil
org/10.1109/CVPRW.2016.121

Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: In-
ternational Conference on Learning Representations (ICLR) (2019), https:
//openreview.net/forum?id=Bkg6RiCqY7

Mehta, S., Rastegari, M.: Mobilevit: Light-weight, general-purpose, and
mobile-friendly vision transformer (2022), https://arxiv.org/abs/2110|
02178

Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P., Grisen-
thwaite, R., Ha, S., Heinecke, A., Judd, P., Kamalu, J., Mellempudi, N.,
Oberman, S., Shoeybi, M., Siu, M., Wu, H.: Fp8 formats for deep learning
(2022), https://arxiv.org/abs/2209.05433

NVIDIA Corporation: Nvidia h100 tensor core gpu. https://www.nvidial
com/en-us/data-center/h100/| (2022), accessed: 2025-08-18

NVIDIA Corporation: Nvidia geforce rtx 4070 laptop gpu.
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/
rtx-4070-1laptop/| (2023), accessed: 2025-08-18

Palmas, A., Andronico, P.: Deep learning computer vision algorithms
for real-time uavs on-board camera image processing. arXiv preprint
arXiv:2211.01037 (2022)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep

https://openreview.net/forum?id=7phvJ2kvEY
https://openreview.net/forum?id=7phvJ2kvEY
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://doi.org/10.1109/CVPRW.2016.121
https://doi.org/10.1109/CVPRW.2016.121
https://doi.org/10.1109/CVPRW.2016.121
https://doi.org/10.1109/CVPRW.2016.121
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2110.02178
https://arxiv.org/abs/2110.02178
https://arxiv.org/abs/2209.05433
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-laptop/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-laptop/

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

SCVision 17

learning library. In: Advances in Neural Information Processing Systems 32
(NeurIPS 2019) (2019)

Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.:
Country211 dataset. https://openaipublic.azureedge.net/clip/data/
country211.tgz (2021), subset of YFCC100M filtered by GPS coordinates
mapped to ISO-3166 country codes. Released as part of the CLIP dataset
resources. Use subject to underlying Creative Commons licenses.
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks
for biomedical image segmentation. In: Medical Image Computing and
Computer-Assisted Intervention (MICCAI). pp. 234-241. Springer (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2:
Inverted residuals and linear bottlenecks (2019), https://arxiv.org/abs/
1801.04381

Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert,
D., Wang, Z.: Real-time single image and video super-resolution using an
efficient sub-pixel convolutional neural network (2016), https://arxiv.org/
abs/1609.05158

Shocher, A., Feinstein, B., Haim, N., Irani, M.: From discrete to continuous
convolution layers (2020), https://arxiv.org/abs/2006.11120
Sovrasov, V.: ptflops: a flops counting tool for neural networks in pytorch
framework (2018-2024), https://github.com/sovrasov/flops-counter)
pytorch

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need (2023), https:
//arxiv.org/abs/1706.03762

Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: Cub-200-2011
(Apr 2022). https://doi.org/10.22002/D1.20098

Wu, K., Zhang, J., Peng, H., Liu, M., Xiao, B., Fu, J., Yuan, L.: Tinyvit:
Fast pretraining distillation for small vision transformers. In: European
conference on computer vision (ECCV) (2022)

Xu, Y., Li, C., Li, D., Sheng, X., Jiang, F., Tian, L., Barsoum, E.: Qt-
vit: improving linear attention in vit with quadratic taylor expansion. In:
Proceedings of the 38th International Conference on Neural Information
Processing Systems. NIPS 24, Curran Associates Inc., Red Hook, NY, USA
(2025)

Yang, S., Zhang, Y.: Fla: A triton-based library for hardware-efficient im-
plementations of linear attention mechanism (Jan 2024), https://github)
com/fla-org/flash-linear-attention

Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional net-
works (2013), https://arxiv.org/abs/1311.2901

Zhang, W., Li, J., Wang, Y.: Real-time image processing in iot devices with
a lightweight yolo approach. In: Proceedings of the International Conference
on Computer Vision and Pattern Recognition. pp. 1234-1242 (2025)

Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene
parsing through ade20k dataset. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 5122-5130 (2017).
https://doi.org/10.1109/CVPR.2017.544

https://openaipublic.azureedge.net/clip/data/country211.tgz
https://openaipublic.azureedge.net/clip/data/country211.tgz
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/2006.11120
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.22002/D1.20098
https://doi.org/10.22002/D1.20098
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://arxiv.org/abs/1311.2901
https://doi.org/10.1109/CVPR.2017.544
https://doi.org/10.1109/CVPR.2017.544

	Self-Compressing Vision Tower for Efficient Dense Prediction Tasks

