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Abstract—Robust and adaptable behavior is critical for
multi-agent reinforcement learning (MARL) systems deployed
in dynamic and unpredictable environments. However, common
evaluation practices, such as reporting the mean episodic
reward, often fail to reveal coordination fragilities that can
undermine reliability in practice. This paper introduces a
lightweight evaluation framework that combines Signal Tem-
poral Logic (STL) monitoring with Conditional Value-at-Risk
(CVaR) analysis to expose coordination pathologies in MARL
policies. Using the Steakhouse cooking simulator, we specify
interpretable temporal properties of collaboration—such as
fairness, activeness, and conflict resolution—and complement
them with risk-sensitive performance metrics. Our experiments
show that policies with similar average returns can diverge
significantly in terms of robustness, role allocation, and tail-risk
fragility. By bridging formal specification with empirical MARL
evaluation, our framework contributes to ongoing efforts in
benchmarking robustness, interpretability, and safety in multi-
agent systems.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has become
a promising approach for coordinating autonomous agents in
shared, dynamic environments such as collaborative robotics,
autonomous driving, and interactive games. However, for
real-world deployment, MARL policies must not only be
high-performing on average, but also robust, adaptable, and
interpretable under diverse and unpredictable conditions [14],
[3]. Conventional evaluation practices—dominated by mean
episodic reward—fall short of capturing these requirements,
as they often obscure coordination failures, unfair work-
load distributions, or catastrophic breakdowns in worst-case
scenarios. To address this gap, we propose an evaluation
framework that integrates formal specification and risk-aware
metrics to provide a more complete picture of MARL ro-
bustness, including asymmetric role specialization, persistent
conflicts, or brittle worst-case performance.

Recent MARL benchmarks largely emphasize sample ef-
ficiency and asymptotic averages [9] [14] while overlooking
robustness and interpretability [3] [15], precisely where real
systems fail: rarely, abruptly, and expensively. We address
this gap by coupling temporal-logic monitoring, which ex-
poses behavioral asymmetries, with risk-sensitive evaluation
that quantifies the severity of tail failures. This alignment
with verification and risk analysis moves the evaluation
toward benchmarks that reflect a safety-critical deployment.
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Our experiments systematically analyze these dimensions
in a cooperative cooking environment [7] by introducing
four key evaluation axes: (1) conflict behavior, measured
through STL-monitored interaction patterns; (2) activeness,
ensuring agents remain actively engaged; (3) robustness un-
der worst-case outcomes; and (4) workload balance and role
specialization, revealing emergent imbalances. In particular,
we evaluate RL-RL pairs, where both agents are trained
reinforcement learning policies, to examine the capabilities
and limitations of fully learned coordination. We also ex-
amine greedy agents, which operate based on hand-coded
heuristics. At each step, they select a medium-level action
(e.g., picking up meat, washing a plate) and then choose a
concrete motion toward that goal—optionally perturbed with
Boltzmann noise. To avoid deadlocks, the agent detects no-
progress states and executes a random unblocking move. This
design maximizes immediate reward while offering a simple
and interpretable baseline for cooperative behavior. For in-
stance, we find that while RL-RL pairs achieve competitive
average rewards, they exhibit high fragility and unintended
role polarization, with one agent often relegated to low-
reward sub-tasks. In contrast, greedy agents avoid conflicts,
but suffer from inactivity.

These insights highlight the necessity of multi-faceted
evaluation: Conditional Value at Risk (CVaR)[8], a met-
ric that captures expected performance in the worst-case
outcomes beyond a specified percentile, quantifies fragility
under adverse conditions, while our STL-based evaluation
uncovers latent asymmetries, both crucial for deploying
agents in real-world settings where reliability and fairness
are paramount.

II. RELATED WORK

Cooperative multi-agent reinforcement learning (MARL)
has largely emphasized maximizing shared rewards under
the centralized training and decentralized execution (CTDE)
paradigm [9], [6]. Although this approach often improves
mean task performance, it can mask important dimensions
such as robustness and fairness: naive reward design may
produce inactive or “lazy” agents and uneven reward distri-
butions that degrade long-term cooperation [9], [15].

Formal methods have been explored as one remedy.
Signal Temporal Logic (STL) provides an expressive way
to formalize temporal and safety requirements, and has
been used to diagnose and enforce behaviors in RL [1],
[10]. More recently, several works have embedded STL
directly into the training loop: specifications are converted
into robustness-based rewards or used to construct safety



Fig. 1: Different map layouts in the Overcooked environment [4].

shields that constrain learning, improving both performance
and safety during policy acquisition [13], [11], [5]. These
training-time uses of STL contrast with approaches that treat
logic as a post-hoc analytic tool.

Risk-sensitive evaluation offers another complementary
perspective. Metrics such as Conditional Value-at-Risk
(CVaR) highlight tail behavior and worst-case outcomes that
average-return statistics miss, and have been shown useful for
quantifying fragility in reinforcement learning systems [8].
Finally, emergent role specialization—where agents implic-
itly assume asymmetric responsibilities without explicit coor-
dination—poses another challenge: specialization can boost
efficiency, but also hide unfairness and brittleness from
conventional metrics [2].

Our work brings these strands together by using STL not
to shape training, but as a runtime, black-box monitoring
instrument for coordination properties (conflict, activeness,
fairness), and by coupling these logical checks with CVaR-
based risk analysis to surface latent fragilities in MARL
policies.

By bridging formal specification with risk-sensitive evalu-
ation, we provide a diagnostic tool to reveal hidden fragilities
essential for deploying MARL in safety-critical applications.
We now demonstrate these ideas in the Steakhouse environ-
ment, a gridworld designed for studying cooperative cooking
tasks.

III. THE STEAKHOUSE ENVIRONMENT

The Steakhouse environment [7] is a multi-agent gridworld
simulator inspired by Overcooked [4], designed to study
complex coordination in cooperative cooking tasks. Agents
control chefs with six discrete actions (movement, interac-
tion, or idle) and must collaborate to complete sequential
subtasks (ingredient collection, cooking, and dish delivery)
in variable kitchen layouts, receiving joint rewards for suc-
cessful deliveries. This setup tests simultaneous strategy
coordination, motion planning, and emergent role assignment
without predefined roles or communication channels.

It provides an ideal testbed for analyzing MARL policies,
as shared rewards during training often lead to emergent
asymmetries and specialization. We leverage its structure
to investigate coordination behaviors through temporal logic
specifications and risk metrics, evaluating policies as black
boxes without internal access.

A. Risk analysis for reward

Conditional Value at Risk (CVaR) [8] is a coherent risk
measure that evaluates the expected loss in the worst-case

scenarios beyond a given confidence level (e.g. the 95th
percentile). To complement logical property check, we also
quantify coordination consistency using Conditional Value-
at-Risk at confidence level a = 0.1 for the reward variable:

CVaRg(—R) =E[-R| —R > qo1] )

where go.1 is the 90th percentile 1 — 0.1 of the negative
episodic reward distribution, E is the expectation operator,
and R is the episodic reward. CVaR captures the expected
performance in the worst 10% of cases, revealing fragile
coordination behaviors that may remain hidden when only
considering average reward.

a) Agent pair configurations: We evaluate agent co-
ordination across three pair configurations. In the RL-RL
setting, both agents are independently trained via Proxi-
mal Policy Optimization (PPO) [12] with shared layouts
and reward functions. In the Greedy-Greedy setup, both
agents follow a deterministic, hand-coded policy that always
chooses the nearest subtask (ingredient collection, cooking,
and dish delivery) contributing to delivery. The RL-Greedy
configuration pairs an RL-trained agent with a fixed greedy
partner, highlighting the adaptability and role preference of
the learned policy.

Each pair is evaluated over 100 episodes in two kitchen
layouts. We log all agent positions, actions, rewards, and
environment events at every timestep.

B. Behavior analysis with STL

Rather than relying solely on aggregate rewards based
on whether a dish is successfully delivered, we incorporate
Signal Temporal Logic (STL) specifications [10] to capture
nuanced coordination behaviors that evolve over time.

Agents remain on a grid and move in four cardinal
directions: up, down, left, and right. We define a “conflict” as
one agent trailing behind the other without performing any
useful interactions. An agent is considered to be in conflict
at timestep ¢ if it faces the same direction as its partner, is
located on the same row or column in that facing direction,
is within a Manhattan distance of 2 in that direction, and
performs no environment interaction (e.g., INTERACT is not
used). This is formally captured by the STL specification
@eonflict 10 Table I, which identifies conflict intervals lasting
longer than 5 steps.

For liveness, we verify that each agent maintains sufficient
activity by requiring that no agent remains idle for more
than 10 consecutive steps. Here, (¢ : ¢ + 10) denotes the
interval over which the idle condition holds, as formalized
by @activeness in Table 1.



TABLE I: Formal specifications of coordination properties.
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C. Role attribution

To understand how coordination strategies emerge across
agent configurations, we analyze both the distribution of
shaped rewards and the division of task responsibilities
between agents. Although the Steakhouse environment pro-
vides only a shared reward for delivery, intermediate shaped
rewards (e.g., for placing ingredients or handling dishes) en-
able attribution of individual contributions during execution.

Each agent’s action is labeled as either a preparation or
delivery task. Preparation includes actions related to fetching
ingredients, placing them into pots, and interacting with
cooking stations. Delivery includes actions involving collect-
ing cooked soup and delivering it to the serving counter.

We measure task role asymmetry by computing the pro-
portion of delivery and preparation actions taken by each
agent over an episode. This allows us to determine whether
responsibilities are shared symmetrically or skewed toward a
specific agent. These annotations are computed automatically
from action logs.

In parallel, we compare reward distribution under two
reward schemes defined in [7]: sparse rewards, which grant
a fixed 100-point bonus for each successful dish delivery
to both agents, and shaped rewards, which assign smaller
bonuses (e.g., 10 points) exclusively to the agent performing
subtasks such as chopping, washing, or plating. To evaluate
whether both agents contribute meaningfully, we use the STL
property ©pirreward (Table I), which requires each agent to
earn at least 40% of the total shaped rewards, ensuring that
no single agent dominates the cooperative effort.

By combining role labeling and reward tracking, we can
assess whether agents not only coordinate effectively but also
participate equitably.

IV. EXPERIMENTAL EVALUATION

We evaluate each agent configuration over 100 episodes
in two Steakhouse layouts: hallway and ring. The two
layouts are customized overcooked layouts, each contains
two agents inside. The hallway layout splits the kitchen
into two partially separated rooms. One side contains key
preparation stations such as ingredients (onions O and meat
M) and chopping boards (B), while the other houses grills
(G), dishes (D), water sinks (W), and delivery counters
(S). Narrow passageways connect the two sides, requiring
agents to divide responsibilities across rooms and coordinate
hand-offs of partially completed tasks. Unlike the corridor
layout, congestion is less severe, but effective workload
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Fig. 2: We used the environment from [7], which leveraged
the encoding provided by Overcooked to modify and tailor
the map, resulting in customized layouts.

allocation and role specialization are essential for timely
dish delivery. The ring layout is essentially a long narrow
corridor. Ingredients, dishes, chopping boards, and grills
are all positioned along the central strip, with walls tightly
constraining movement. Because the space only allows two
agents to pass side-by-side in limited regions, navigation
becomes a major coordination challenge. Agents frequently
need to resolve conflicts at choke points and manage access
to shared stations, making motion coordination critical.

The agent is responsible for chopping onions on the
chopping board, cooking meat on the grill, washing plates
in the sink when none are clean, assembling the prepared
ingredients on plates, and delivering the completed dishes.

The hallway layout presents less congestion than a
corridor but requires effective workload allocation and role
specialization, as agents must divide tasks across rooms and
coordinate timely hand-offs; for example, agents can save
time by cooperating to pass ingredients through the middle
counter. In contrast, the ring layout is highly congested,
making navigation, conflict resolution, and motion coordina-
tion critical.

Evaluation focuses on four coordination aspects: consis-
tency under failure (CVaR), conflict behavior, activeness,
and balance in task and reward distribution. Our results
demonstrate that average reward alone is insufficient to
assess effective cooperation, and that STL-based runtime
analysis reveals critical behavioral asymmetries.

A. Risk performance analysis

To measure performance stability, we compute the Condi-
tional Value-at-Risk at confidence level o = 0.1, defined in
equation 1.

Table II presents both average reward and CVaR of reward
across configurations.

Greedy-Greedy pairs are fully deterministic, consistently
achieving 200 points with no performance variance. RL-
Greedy pairs exhibit the highest average returns while main-
taining strong worst-case consistency (CVaRg ; = 300). In



Agent Pair Hallway Layout Ring Layout Layout Agent Pair Role  Agent 0 Agent 1 Biased?
Mean CVaRy.1 Mean CVaRg.1 Greedy-Greedy Dc;;;/ery Zgz Zg% II:IIZ
Greedy-Greedy 200.0 200.0 200.0 200.0 p
RL-Greedy 341.0 240.0 372.4 280.0 Hallway RL-Greed Delivery 33% 67% Yes
RL-RL 288.4 0.0 305.0 0.0 Y Prep 70% 30% Yes
. Deli 42% 58% N
TABLE II: Average episode reward and worst-case perfor- RL-RL ;;Z;ry 60”/2 40(72 Ng
mance (CVaRg 7).
( 0.1) Greodv-Greedy  DelVery — 50%  50% No
Y Y Prep 50% 50% No
Agent Pair Layout ACO.l:iﬂiCt Activeness ge:vard Ring RL-Greed Delivery ~ 26% 74% Yes
voldance alance y Prep 78% 22% Yes
Greedy-Greedy Hallway 41% 10.0% 49.0% Deli 40% 60% N
Ring 57% 125%  62.5% RL-RL ?,;Zgry a6 No
RL-Greedy Hallway 58% 18.5% 20.0% ] ] ] ]
Ring 65% 21.2% 18.0% TABLE IV: Proportion of delivery and preparation actions
RL-RL Hallway 65% 26.0% 20.0% by each agent. In RL-Greedy pairs, the RL agent is agent O
Ring 70% 26.4% 20.5% and the greedy agent is agent 1.

TABLE III: Behavioral metrics across agent pairs and lay-
outs. Conflict Avoidance shows episodes satisfying @conflicts
Activeness reports @,ciiveness compliance, and Reward Bal-
ance indicates Pbalance_reward satisfaction.

contrast, RL-RL pairs suffer from severe instability, with
frequent failures leading to zero reward in the worst 10%
of episodes despite comparable mean performance.

B. Behavioral metrics analysis

We evaluate agent pairs across three key metrics: conflict
avoidance, activeness, and reward balance. Conflict intervals
are defined as five or more consecutive steps where one
agent trails another without environment interaction (STL
Peonflict)- Activeness (Qactiveness) 1dentifies episodes where
agents avoid 10+ step inactivity periods. Reward balance
(fairreward) TEqQUires both agents to receive > 40% of shaped
rewards.

The key findings highlight distinct behavioral patterns
between RL-RL and greedy agent pairs. RL-RL pairs demon-
strate the least conflict, achieving 65-70% success rates,
which indicates superior motion coordination. Additionally,
RL-trained agents maintain higher activeness levels (18.5—
26.4%) compared to greedy pairs (10-12.5%). However,
while greedy pairs exhibit a more equitable reward distri-
bution (49—62.5%), RL-based pairs show stronger role spe-
cialization, with reward balance skewed toward 18-20.5%.
These metrics reveal a trade-off: RL agents achieve better
coordination and sustained activity but at the expense of
reward equality, suggesting the emergence of specialized
roles that are not fully captured by individual reward metrics.

C. Role attribution analysis

Next, we examine the division of task roles—specifically,
how often each agent performs preparation tasks (e.g., col-
lecting onions) versus delivery tasks (e.g., serving soup).
Table IV summarizes the action distribution for each agent
type.

These results support the finding that RL
agents—especially when paired with greedy agents—tend

to take on helper roles, performing preparation while
relying on their partner to complete deliveries. This leads to
uneven shaped reward distributions, despite shared objective
functions.

D. Cross-Layout Comparison

Layout complexity amplifies these differences. In the
hallway layout, agents benefit from spatial separation, and
role specialization improves throughput. However, in the
congested two-room layout, choke points intensify conflicts,
magnifying the consequences of poor coordination. RL-
Greedy pairs adapt best to these challenges, maintaining
both high mean performance and non-zero CVaR values.
RL-RL pairs, however, collapse under congestion, as si-
multaneous pursuit of delivery tasks often leads to dead-
lock. These cross-layout findings suggest that robustness is
highly environment-dependent, and evaluation frameworks
must consider how structural constraints shape coordination
dynamics.

V. CONCLUSION

We propose a Multi-Agent Reinforcement Learning
(MARL) evaluation framework that integrates Conditional
Value-at-Risk (CVaR) analysis with Signal Temporal Logic
(STL) monitoring. Unlike conventional metrics that focus
on mean episodic reward, our approach explicitly captures
robustness, behavioral asymmetries, and fairness properties
during execution. Through experiments, we showed that
policies with similar average returns can differ substantially
in their fragility, role allocation, and coordination balance. In
future work, we plan to expand the evaluation to additional
environments, more training seeds, and diverse perturbations.
These extensions will help determine the generality of the
fragilities observed and move toward standardized bench-
marks for multi-agent robustness in dynamic environments.
Ultimately, we aim to apply this framework to real-world
robotic testbeds, where interpretable and risk-sensitive eval-
uation is crucial for safety-critical deployment.
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