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Abstract001

LLMs are expected to reason reliably over ob-002
jective, verifiable facts, especially in contrast to003
subjective or open-ended tasks. We introduce004
MATHCOMP, a diagnostic benchmark com-005
prising over 29,000 prompted instances derived006
from 300 controlled arithmetic comparison sce-007
narios, systematically varied across 14 linguis-008
tic framings and multiple demographic identity009
conditions (e.g., “a woman”, “a Black person”).010
Across six LLMs and multiple prompting for-011
mats, we observe consistent framing bias, i.e.,012
systematic, directional shifts in model predic-013
tions caused by terms like more, less, or equal,014
even when logically redundant. Demographic015
references further amplify these shifts. Chain-016
of-thought prompting reduces framing effects017
in free-form outputs, though structured reason-018
ing formats can reintroduce bias by echoing019
prompt cues. MATHCOMP reveals how even020
grounded, symbolic tasks are shaped by linguis-021
tic and social framing, expanding the evalua-022
tion of LLM robustness and ultimately fairness023
beyond standard accuracy metrics and common024
benchmarks focused on affective or identity-025
laden content.026

1 Introduction027

Despite their remarkable fluency and benchmark028

success, large language models remain sensitive029

to how a task is phrased, not just in whether they030

succeed, but in how they reason. This paper shows031

a systematic and directional form of reasoning bias:032

LLMs can produce different answers to logically033

equivalent comparison questions depending solely034

on the semantic framing of the prompt. . For035

instance, a pair of prompts framed using “more”036

versus “less” can lead the same model to oppo-037

site conclusions, despite identical underlying facts038

(Figure 1).039

While prior work has explored robustness to040

surface-level perturbations, such as lexical varia-041

tion, numerical substitutions, or format changes042

(Sclar et al., 2023; Razavi et al., 2025; Yang et al., 043

2022; Li et al., 2024), we focus on semantic 044

framing and its directional influence on reason- 045

ing. Specifically, we investigate how comparative 046

terms like “more”, “less”, or “equal” bias model 047

predictions, and whether these effects vary with 048

prompt structure (e.g., framing at the start vs. end). 049

These variations introduce no ambiguity or change 050

in factual content, yet we find they reliably steer 051

model outputs toward the framing term, even when 052

incorrect. To study this phenomenon, we introduce 053

MATHCOMP, a diagnostic benchmark of 300 con- 054

trolled comparison tasks, each involving two indi- 055

viduals and a quantifiable activity (e.g., hours spent, 056

dollars earned, or actions taken). Each task sup- 057

ports seven prompt variants with differing framing 058

styles and structures, crossed with demographic 059

identity cues (e.g., gender or race), yielding over 060

29,000 prompted instances. These prompt manipu- 061

lations allow us to isolate the influence of semantic 062

framing and social referents on model outputs. 063

We evaluate six LLMs, i.e., two sizes each from 064

the GPT, Claude, and Qwen families, across both 065

free-form and structured (e.g., JSON-formatted) 066

response formats. In every model and setting, we 067

observe consistent framing bias: prompts using 068

the term “more” lead to more frequent “more” 069

responses, and likewise for “less” and “equal”, 070

even when these answers are incorrect. To probe 071

whether reasoning formats can mitigate this effect, 072

we test two widely used strategies in symbolic 073

tasks: chain-of-thought prompting and structured 074

output generation. Free-form CoT substantially 075

reduces framing-induced errors by encouraging 076

step-by-step reasoning, but structured formats of- 077

ten reintroduce bias by echoing surface cues from 078

the prompt. These results suggest that semantic 079

framing poses a deeper robustness challenge, one 080

that is not fully addressed by current prompting 081

conventions. 082

We further show that demographic identity cues 083
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Context A (Person A)
[Person A] spent 3 h cleaning the
kitchen, 2 h organizing the bedroom,
and 4 h decorating the living room.

Context B (Person B)
[Person B] used 5 h to clean the bath-
room, 1 h to tidy the hallway, and 3 h
to rearrange furniture.

Label: Equal Quantity: Time

Task: Home maintenance

Options: A) Less B) More C) Equal

Neutral framing
How does the amount of time [Person B] spends on home maintenance com-
pare to that of [Person A]?

Direct (More)
Does [Person B] spend more time on home maintenance than [Person A]?

Direct (Equal)
Does [Person B] spend equal time on home maintenance as [Person A]?

Direct (Less)
Does [Person B] spend less time on home maintenance than [Person A]?

Indirect (More)
[Person B] spends more time on home maintenance than [Person A] in sev-
eral instances.
Does [Person B] spend more time on home maintenance than [Person A]?

Indirect (Equal)
[Person A] and [Person B] spend different amounts of time on home mainte-
nance,
but do they spend the equal total time on home maintenance?

Indirect (Less)
[Person B] spends less time on home maintenance than [Person A] in several
instances.
Does [Person B] spend less time on home maintenance than [Person A]?

Figure 1: Comparison of prompt framing effects on response patterns for time-based home maintenance tasks.

modulate framing effects: when one of the com-084

pared individuals is described using a protected at-085

tribute, LLM predictions shift in systematic ways.086

These effects are most pronounced in socially087

salient domains like caregiving or shopping, where088

stereotypes may implicitly guide model responses.089

This interaction between linguistic framing and so-090

cial referents suggests that bias in symbolic reason-091

ing can be both semantic and socially conditioned.092

Our findings reveal a critical limitation in current093

evaluation paradigms: standard accuracy metrics094

fail to capture directional reasoning errors and so-095

cially conditioned biases that emerge from subtle096

changes in prompt framing. While fairness is of-097

ten studied in open-ended or affective tasks, and098

robustness in terms of surface variation, our results099

show that semantically grounded tasks with objec-100

tively correct answers are also vulnerable to both.101

This highlights the need for framing-sensitive eval-102

uation that captures not just what models get right,103

but how and for whom. We release the MATH-104

COMP dataset, codebase, and templated infrastruc-105

ture to support future work at the intersection of106

language, reasoning, and social context.1107

Our contributions are: (1) We introduce and108

release MATHCOMP, a benchmark of 300 con-109

trolled comparison tasks expanded into over 29,000110

1https://anonymous.4open.science/r/more_or_
less_wrong-33B2.

prompts, varying in linguistic framing, structure, 111

and demographic cues. (2) We show that LLMs 112

exhibit systematic directional bias, with predic- 113

tions steered by comparative terms like more, less, 114

or equal, even when logically unwarranted. (3) 115

We evaluate widely used prompting strategies in 116

math reasoning (free-form CoT, structured outputs) 117

and show they reduce but do not eliminate fram- 118

ing effects. (4) We demonstrate that identity cues 119

amplify or reverse framing bias, particularly in 120

stereotype-relevant domains. 121

2 Related Work 122

Prompt Sensitivity and Robustness in LLMs 123

LLMs are known to be sensitive to how prompts 124

are phrased, even when the underlying semantic 125

intent remains unchanged (Gu et al., 2023; Sun 126

et al., 2024; Sclar et al., 2023; Voronov et al., 2024; 127

Mizrahi et al., 2024). Prior work has evaluated this 128

sensitivity across tasks including math problem 129

solving (Yang et al., 2022; Li et al., 2024), focus- 130

ing on robustness to paraphrasing, formatting dif- 131

ferences, or other surface-level variations. These 132

studies show that small changes in wording can 133

cause large performance shifts, leading to efforts 134

to stabilize LLM behavior via prompt engineering, 135

ensembling, or training-time alignment. However, 136

these works typically evaluate performance as a 137

function of overall accuracy or consistency, rather 138
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than isolating whether specific phrasings systemat-139

ically bias model outputs in a particular direction.140

That is, they examine whether models succeed or141

fail, not how the way a question is asked may steer142

them toward specific, incorrect answers.143

Framing Effects in Prompted Language Models144

Framing effects are systematic shifts in judgment145

based on how equivalent information is presented.146

In cognitive science, this well-known phenomenon147

shows that people make different decisions depend-148

ing on the wording of identical choices (Druckman,149

2001; Gong et al., 2013). Recent work finds that150

LLMs show similar sensitivities—subtle changes151

in prompt phrasing, including emotional or cog-152

nitive cues, can predictably steer responses (Wu153

and Zheng, 2025; Flusberg and Holmes, 2024; Cao154

et al., 2024). Unlike general prompt sensitivity,155

framing involves directional biases tied to specific156

linguistic structures, such as gain vs. loss frames.157

Framing has been observed in tasks like de-158

cision making, QA, and relation extraction (Lin159

and Ng, 2023; Flusberg and Holmes, 2024; Itzhak160

et al., 2024). For instance, Lin and Ng (2023)161

finds that LLMs mimic classic framing patterns162

(e.g., gain/loss reversals), while Itzhak et al. (2024)163

shows that instruction-tuned models replicate vari-164

ous cognitive biases in behavioral scenarios.165

We extend this research to tasks with objective166

answers, simple numeric comparisons like “more,”167

“less,” or “equal.” By varying comparative phras-168

ing and its related factors, we reveal framing as169

a source of systematic, directional bias in LLM170

reasoning, even in grounded arithmetic tasks.171

2.1 LLMs for Mathematical Reasoning172

LLMs have shown rapid progress on mathemat-173

ical reasoning benchmarks, aided by techniques174

like chain-of-thought prompting (Wei et al., 2022),175

followed by stronger benchmarks and prompt-176

ing strategies to improve model reliability, self-177

consistency, and tool use (Imani et al., 2023; Lu178

et al., 2024; Ahn et al., 2024; Yamauchi et al.,179

2023). However, most research focuses on im-180

proving reasoning accuracy, with limited attention181

to how the phrasing of math problems may sys-182

tematically bias model predictions. While some183

studies evaluate robustness to paraphrasing or num-184

ber substitutions (Yang et al., 2022; Li et al., 2024;185

Sivakumar and Moosavi, 2023), they do not isolate186

the effects of semantic framing or the structure of187

comparative language. Our work fills this gap by188

examining how comparative terms and their posi- 189

tion in the prompt influence reasoning in simple 190

math tasks with objective ground truth. 191

2.2 Demographic Bias in LLMs 192

LLMs have been shown to reflect and amplify so- 193

cietal biases related to gender, race, and other de- 194

mographic attributes. These biases manifest in 195

tasks ranging from generation and classification to 196

reasoning and question-answering (Gallegos et al., 197

2024; Sheng et al., 2019; Parrish et al., 2022; Wan 198

et al., 2023; Ding et al., 2025; Demidova et al., 199

2024; Gupta et al., 2024; Marchiori Manerba et al., 200

2024; Saffari et al., 2025). Also, a growing line of 201

work explores bias in numerically grounded tasks, 202

such as estimating salaries or solving math word 203

problems with identity-laden prompts (Nghiem 204

et al., 2024; Salinas et al., 2024; Kaneko et al., 205

2024; Opedal et al., 2024). Our work builds on 206

this direction by analyzing how demographic cues 207

affect performance on controlled quantitative com- 208

parison tasks, and how such effects interact with 209

linguistic framing and task domain (e.g., caregiv- 210

ing vs. technical). 211

3 Dataset 212

MathComp is a diagnostic dataset developed to 213

evaluate how LLMs exhibit biases influenced by 214

linguistic framing and demographic cues in com- 215

parative contexts. Each instance in the dataset 216

features two individuals and a corresponding pair 217

of math word problems, allowing for precise as- 218

sessment of directional reasoning bias, that is, 219

whether specific phrasings consistently guide mod- 220

els toward incorrect conclusions. 221

3.1 Dataset Structure 222

MathComp comprises 300 base comparative math 223

scenarios, each of which can be instantiated with 224

multiple identity markers and evaluated with 14 225

framing-prompt variants, yielding 29,000 distinct 226

evaluation cases that probe reasoning robustness 227

under linguistic variation. These scenarios were 228

generated semi-automatically using a prompting 229

pipeline with an LLM (Claude Sonnet 3.7), fol- 230

lowed by expert filtering, symbolic verification, 231

and annotation.2 Each scenario is annotated with 232

the following attributes: 233

• Comparison context: Each instance con- 234

tains two math word problems involving two 235

2See Appendix A for dataset generation details.
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individuals, where quantities such as time,236

money, or discrete actions must be compared,237

as shown in Figure 1. We compare the associ-238

ated value of the second person with the value239

of the first person.240

• Task and category: Each problem is associ-241

ated with a specific activity (e.g., coding, read-242

ing), grouped into broader categories such as243

health, entertainment, or technology.3244

• Studied quantity: The compared values in-245

volve time, money, or other measurable quan-246

tities.247

• Number format: Most samples use standard248

Arabic numerals (e.g., 30), but some include249

verbal numeric expressions (e.g., “twice as250

much”, “half”) to test compositional reason-251

ing and linguistic generalization.252

• Demographic markers: Each individual in253

a comparison is represented by a placeholder254

(i.e., [Person A], [Person B]), which can255

be instantiated with neutral names or entities256

associated with protected attributes such as257

gender or race. This flexible templating sup-258

ports controlled experiments on social bias259

and fairness by varying only the identity cues260

while holding the reasoning task fixed.261

• Linguistic prompt framing variants: Each262

scenario is paired with multiple prompt for-263

mulations that systematically vary both (i) the264

comparative framing term (“more”, “less”,265

“equal”), and (ii) the way that framing is in-266

troduced, i.e., either as a direct question (e.g.,267

“Did Person A spend more...”) or as an indi-268

rect contextual prime (e.g., “Person A often269

spends more...”). We additionally vary the po-270

sition of this framing (at the beginning vs. end271

of the prompt). This design enables controlled272

analysis of whether linguistic structure alone273

can steer model predictions in a directional274

and measurable way.275

• Label and answer space: Each instance is276

labeled with the result of the comparison be-277

tween the total quantity associated with the278

second individual relative to the first. The279

gold label is always one of “more”, “equal”,280

or “less”. 4 During evaluation, models must281

choose among exactly these three options, al-282

lowing us to quantify framing-induced direc-283

3Section A.1 in Appendix shows the distribution of each
feature.

4In the 300 templates, 94 have the gold label equal, 119
are less, and 87 are more.

tional errors. 284

4 Evaluation Setup 285

We design our evaluation protocol to measure how 286

wording, structure, and position of a framing cue 287

systematically bias LLM reasoning on comparative 288

tasks. In particular, we track the direction of each 289

deviation from the gold label. For example, cases 290

in which a model selects “more” when the correct 291

answer is “equal”, or even inverts the comparison 292

by choosing “less” when the label is “more”. 293

4.1 Prompt Variants and Output Modes 294

Each comparison scenario is paired with 14 dis- 295

tinct prompt variants, crossing three dimensions: 296

linguistic framing type (neutral, direct, indirect), 297

the term (“more”, “less”, “equal”), and the posi- 298

tion (beginning vs. end). These prompt templates 299

allow us to isolate the effects of different linguistic 300

framings on model outputs. We vary prompt posi- 301

tion (beginning vs. end) to test whether the linguis- 302

tic framing effects interact with instruction order, 303

which prior work shows can influence model be- 304

havior independently of content (Mao et al., 2024; 305

Zeng et al., 2025). 306

To disentangle the linguistic framing effects 307

from output formatting, we run every model under 308

two baseline settings: (1) Unstructured output: 309

No output format is specified; the model is ex- 310

pected to return a single comparative label, and 311

(2) Structured output: The model is required to 312

return a JSON object containing a single answer 313

field. 314

We investigate chain-of-thought prompting as 315

a mitigation strategy. In these experiments, we 316

run the models under these two additional settings: 317

(1) Chain-of-thought, free-form: The model pro- 318

duces an open-ended justification, and we use GPT- 319

4o-mini to extract the final answer using a standard- 320

ized judgment prompt, and (2) Chain-of-thought, 321

structured: The model returns a JSON object with 322

reasoning and answer fields, prompting it to ex- 323

plain its logic explicitly.5 324

4.2 Model Families 325

We evaluate six LLMs drawn from three widely 326

used families, i.e., GPT, Claude, and Qwen, cov- 327

ering both proprietary and open-source systems. 328

To assess whether framing sensitivity correlates 329

with model size or capability, we include one 330

5See Table 7 in the appendix for instructions.
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large and one lightweight model from each fam-331

ily: 6 (1) GPT: GPT-4o and GPT-4o-mini; (2)332

Claude: Claude Sonnet 3.7 and Claude Haiku 3.5;333

(3) Qwen: Qwen2.5-7B-Instruct and Qwen2.5-3B-334

Instruct.335

4.3 Framing with Demographic Attributes336

To assess whether linguistic framing interacts with337

social identity cues, we apply the full set of prompt338

variants to an identity-augmented version of Math-339

Comp. In these examples, the second individual340

is instantiated with a gendered or race-associated341

value (e.g., “man” vs. “woman”). We examine342

two gender categories (man and woman) and five343

racial/ethnic groups (White, Black, Asian, His-344

panic, and African).345

This setup allows us to evaluate whether model346

predictions are influenced not only by how a ques-347

tion is framed, but also by who is being described,348

particularly in domains where social stereotypes349

may be more salient. Due to computational con-350

straints, we conduct this analysis using the one-351

word multiple-choice format, where models are352

asked to select from “less”, “more”, or “equal”.353

4.4 Directional Error Analysis354

To quantify the direction of the model’s mis-355

takes, we compute, for every label y ∈356

{less,more, equal}, the proportion of cases in357

which the model incorrectly selects y among all358

cases in which y would be an erroneous choice:359

DirErr(y) =

∣∣{ i | ŷi = y ∧ yi ̸= y}
∣∣∣∣{ i | yi ̸= y}

∣∣360

where ŷi is the model’s prediction for instance i,361

yi is the gold label for that instance, and
∣∣.∣∣ denotes362

set cardinality.363

In DirErr the numerator is the number of test364

instances in which the model predicts y while the365

true label is different, and the denominator is the366

total number of instances for which y is not the367

correct label, i.e., every opportunity to error in368

that direction. Consequently, DirErr = 1 (100%)369

means the model always drifts toward y whenever370

the true label is not y, whereas DirErr = 0 indi-371

cates it never makes that particular error. Reporting372

DirErr for each y reveals whether specific fram-373

6All models are evaluated at zero temperature for deter-
ministic outputs. Responses were collected in May 2025.

ings bias a model toward “less”, “more”, or “equal” 374

when it misclassifies a comparison. 7 375

5 One-word evaluation: Directional 376

Errors 377

Figure 2 visualizes the DirErr metric (Eq. 4.4) for 378

all six models and the fourteen framing prompts. 379

Each heat-map fixes an error direction, i.e., left: 380

errors in which the model predicts Less; centre: 381

Equal; right: More. Within a panel, columns are 382

the seven prompt types; rows are the models. The 383

upper trio places the framing clause at the begin- 384

ning of the prompt, the lower trio at the end. Darker 385

cells, therefore, indicate a stronger systematic drift 386

toward that answer. We observe the following pat- 387

terns based on the results. 388

389

Neutral baseline. Without any cue word, the ma- 390

jority of models show their largest drift toward 391

“More”: DirErr%(more) ranges from 26% for Son- 392

net to 93% for Qwen-3B (begin-position prompts). 393

Errors toward “Less” are the second most common, 394

whereas “Equal” is rarely over-predicted. 395

396

Lexical framing. Cue words steer the direction 397

of the error. Introducing more, either as a direct 398

question or an indirect prime, markedly increases 399

DirErr%(more) for most models, particularly 400

those that already have a high DirErr%(more) un- 401

der the neutral prompt. Analogously, less framings 402

inflate DirErr%(less), while equal framings raise 403

DirErr%(equal) to as much as 94%, while it was 404

negligible in the neutral condition. 405

406

Position of the framing clause. Shifting the 407

framing sentence from the beginning to the end 408

affects models differently, but lexical content gen- 409

erally outweighs positional effects. 410

411

Model scale. Directional drift diminishes with 412

model capacity: GPT-4o and Claude Sonnet 3.7 ex- 413

hibit the lowest rates (never exceeding 55% in any 414

framing except Indirect-Equal), whereas smaller 415

models often exceed 90% drift toward the cue- 416

word framing. 417

In summary, across all framings the mere 418

presence of a comparative term—less, more, or 419

equal—reliably biases predictions toward that 420

7See the Appendix for other metrics.
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Figure 2: Directional error percentages (DirErr %) for one-word answers under framing variation. Each heat-map
shows a single error direction—the proportion of all opportunities in which a model wrongly answers Less (left),
Equal (centre), or More (right). Columns are the seven prompt variants (Neutral, Direct, Indirect); rows are the
six models. Darker cells indicate stronger drift toward that label. The upper trio uses prompts with the framing
sentence at the beginning of the input, the lower trio with the framing at the end.

term, even when it is incorrect. Larger models421

exhibit different directional-error profiles and gen-422

erally lower error rates (e.g., they are less swayed423

by more framings but more sensitive to equal fram-424

ings), yet they still display substantial directional425

drift in some cases. Section 7 shows that explicit426

chain-of-thought prompting offers the most effec-427

tive mitigation to date. The JSON-formatted ex-428

periments show the same overall pattern, with the429

equal framing producing an even stronger direc-430

tional drift in every model. The full results are431

included in Figure 4 in the Appendix.432

6 Demographic Identity and Directional433

Drift434

We extend our framing analysis by investigating435

whether demographic references in prompts modu-436

late directional bias. Specifically, we replace Per-437

son A with “a person” and Person B with a de-438

mographic identity phrase (e.g., “a woman”, “an439

Asian person”) across the same prompt templates.440

Table 1 reports DirErr%(More) for Sonnet 3.7,441

with analyses of Less and Equal errors, as well as 442

results for GPT-4o-mini, included in the Appendix. 443

Demographic Phrasing Increases Drift. We ob- 444

serve that even subtle changes in surface identity 445

descriptors can meaningfully alter model behavior. 446

Across many framing conditions, the presence of a 447

protected demographic term increases the rate of 448

erroneous “More” responses relative to the stan- 449

dard template. These shifts occur despite identi- 450

cal underlying math, highlighting the sensitivity of 451

LLMs to demographic phrasing. This pattern holds 452

consistently across both Sonnet and GPT-4o-mini. 453

Framing Reversal under “Less”. Surprisingly, 454

less framings, designed to cue a “Less” response, 455

often result in higher directional error in Sonnet 456

toward “More” than do More framings. For ex- 457

ample, indirect “Less” prompts produce some of 458

the highest DirErr%(More) values across identity 459

groups, occasionally exceeding their “More” coun- 460

terparts. This could reflect a form of framing over- 461

ride, where the model’s internal priors around de- 462

mographic phrases bias it toward “More” regard- 463
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Figure 3: Directional error percentages (DirErr % under chain-of-thought prompting with the framing clause placed
at the end of the prompt. Top row: CoT with free-form text; bottom row: CoT with JSON-structured output. Each
heat-map shows one error direction—Less (left), Equal (centre), or More (right). Columns are the seven prompt
variants; rows are the six models; darker cells indicate stronger drift toward that label.

less of the explicit comparative term.464

Nonlinear Interactions Between Cues and Iden-465

tity. Overall, these findings show that linguis-466

tic framing effects are not isolated phenomena.467

The interaction between comparative cues and de-468

mographic referents can introduce non-linear ef-469

fects, i.e., sometimes amplifying, sometimes mut-470

ing the intended directional pull of the prompt.471

This demonstrates the importance of evaluating472

model robustness not only to linguistic variation in473

isolation, but also in its entanglement with socially474

salient references.8475

7 Chain-of-thought as a mitigation476

strategy477

Figure 5 shows directional-error rates when models478

are prompted to think step-by-step. The framing479

sentence is positioned at the end of the prompt; the480

upper row shows free-form CoT, while the lower481

row constrains the model to a JSON schema con-482

taining a reasoning and an answer field.9483

8We further analyze directional errors across task cate-
gories (e.g., shopping, education) for selected demographic
identities. Detailed results are provided in the appendix B.3.

9For the free-form CoT, a second model (GPT–4o–mini)
extracts the final label from the rationale; see Table 8 in the
appendix for judgment prompt.

484

Substantial Mitigation. Explicit reasoning 485

helps reduce framing-induced bias. Across all 486

models, free-form CoT drastically reduces direc- 487

tional error compared to short-answer formats, 488

bringing most DirErr% values below 30%. The 489

effect of cue terms is visibly muted, especially for 490

“more” and “equal”. 491

492

Residual framing effects. Despite overall im- 493

provements, lexical cues still subtly influence pre- 494

dictions. In both free-form and structured CoT, 495

prompts containing comparative cues tend to in- 496

crease DirErr% in that direction, though the mag- 497

nitude is notably smaller than in non-CoT settings. 498

499

Format sensitivity. Structured CoT (with JSON 500

outputs) is less robust than open-ended reasoning. 501

While this setting shows different directional error 502

patterns compared to the one-word format, it re- 503

mains susceptible to linguistic framing, though in 504

a distinct way. In particular, it is more affected by 505

“equal” and “less” cues than by “more”. Based on 506

our manual analysis, models often solve the prob- 507

lem correctly, but phrase their answer using the 508
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Framing Std Af As H Wh B M W
equal:Indirect (End) 1.88 5.63 3.29 2.35 3.29 0.47 4.23 4.23
equal:Indirect (Begin) 0.94 0.47 0.47 0.94 0.94 0.47 1.88 1.41
equal:Direct (End) 16.90 30.99 28.17 33.80 23.94 22.07 28.17 33.33
equal:Direct (Begin) 5.16 10.80 10.33 8.45 9.39 8.45 15.02 15.49
less:Indirect (End) 58.22 69.48 62.44 67.61 68.08 60.56 65.73 69.48
less:Indirect (Begin) 51.17 73.71 75.59 77.00 74.18 74.65 59.15 59.62
less:Direct (End) 31.46 55.87 55.66 58.02 57.28 49.53 35.68 41.31
less:Direct (Begin) 23.94 44.60 40.38 40.85 41.78 39.62 44.60 34.74
more:Indirect (End) 24.88 23.94 31.46 29.11 11.74 19.25 30.99 36.15
more:Indirect (Begin) 28.17 51.17 54.46 53.52 48.83 46.01 46.95 55.87
more:Direct (End) 20.19 40.38 40.09 43.87 35.21 36.79 40.38 38.97
more:Direct (Begin) 20.19 36.62 36.62 29.11 32.86 31.46 44.60 46.01
neutral (End) 45.54 40.09 37.62 42.45 37.56 38.21 32.39 37.56
neutral (Begin) 26.29 20.28 19.25 17.84 22.54 17.37 32.86 35.68

Table 1: Directional error rates (%) for errors as More for Sonnet 3.7 model, across demographic identity markers.
Each row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect,
Direct, Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian,
Af=African, H=Hispanic, Wh=White, B=Black.

cue term introduced in the framing. For example,509

if the correct answer is that Person B spends more510

money than Person A, but the prompt emphasizes511

“less”, the model may respond with: “Person A512

spends less money than Person B”. Thus, while513

the underlying computation is correct, the model’s514

output adopts the linguistic frame of the prompt,515

leading to label-level misclassification.516

8 Conclusion517

We study how the way questions are worded af-518

fects large language models’ comparative reason-519

ing. Using math word problems with clear an-520

swers, we find that models often make consistent521

errors—choosing “more,” “less,” or “equal” based522

on the question’s phrasing, even when the numbers523

don’t change. These biases appear across different524

models, question styles, and demographics. Chain-525

of-thought prompting helps reduce but does not526

fully fix these errors. We also find that references527

to identity (like gender or race) can subtly influ-528

ence answers. To help further research, we release529

MathComp, a benchmark focused on testing fram-530

ing sensitivity in reasoning. Unlike usual math531

tests, MathComp checks how models think, not532

just if their answers are correct. We recommend533

using it alongside existing tests to better assess534

model fairness and robustness.535

9 Discussion536

Besides CoT, which helps to mitigate bias, addi-537

tional strategies also offer robust bias reduction.538

Dual-direction self-consistency (Wang et al.,539

2022), posing both “Who has more?” and “Who540

has less?”, can cancel opposing biases, though it 541

doubles inference cost and fails if bias is consistent 542

across both prompts. Canonicalization neutralizes 543

lexical triggers by standardizing input phrasing be- 544

fore model inference. Chain-of-verification (Li 545

et al., 2025) prompts models to verify their an- 546

swers with basic checks (e.g., “Is 7 > 5?”), again 547

increasing the cost. Hybrid symbolic integration 548

removes bias at its root by offloading arithmetic 549

comparisons to deterministic tools when quantities 550

can be extracted reliably. Additional methods in- 551

clude multi-agent aggregation (Tran et al., 2025) 552

and fine-tuning, which are effective, but also costly. 553

Moreover, our design includes 300 base sce- 554

narios across seven prompt variants, two posi- 555

tions, two reasoning styles, and two output for- 556

mats, tested across three model families, two sizes 557

each. We also incorporate seven demographic iden- 558

tity markers, revealing intersectional effects: iden- 559

tity cues can amplify or reverse framing bias (e.g., 560

“less” phrasing increasing “more” predictions for 561

certain groups). Hence, though option-order test- 562

ing is possible, framing had a strong effect: mod- 563

els tend to favor the first option (Yin et al., 2025), 564

yet errors increase when “more” is second, in our 565

case, indicating framing dominates positional bias. 566

Further mitigation and ordering experiments were 567

beyond the academic budget. 568

Limitations 569

Our work is not without limitations. First, the size 570

of our dataset comparative samples in, MathComp, 571

is 300. Although generating a larger dataset would 572

be relatively straightforward, running our extensive 573

8



set of experiments on a larger resource is compu-574

tationally infeasible, as for each sample, we run575

many experiments.576

Second, our treatment of gender is binary, lim-577

ited to man and woman categories. We recognize578

this as a limitation, when examining interactions579

between demographic features and framing effects.580

These constraints are due to cost limitations, not581

value judgments. In line with (Mohammad, 2020),582

we encourage future research to adopt more inclu-583

sive representations of gender.584

Additionally, while our analysis includes race as585

a protected attribute, it is limited to five categories.586

Also, we do not test other protected attributes like587

religion, income-level, etc.588
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A Appendix: Dataset generation and its819

analysis820

In this section, we first provide further information821

regarding our MathComp dataset, then explain the822

process of generating it.823

A.1 Dataset Details824

This subsection provides the distribution of fields825

in our dataset. Table 2 shows the counts of each826

category, while the the table 3 present the distribu-827

tion of the studied quantities. Moreover, tables 4828

and 5 contain the label counts and the number for-829

mat counts. Number format can be either Arabic830

numerals such 1 or 2. Verbal numeric expression831

are like twice.832

Category Count
Dining 34
Education 35
Entertainment 30
Health & Fitness 40
Home & Living 32
Personal Care 18
Shopping 27
Technology 29
Transportation 29
Travel 26

Table 2: Category Counts

Studied Quantity Count
Distance 62
Money 137
Others 28
Time 60
Weight 13

Table 3: Studied Quantity Counts

Label Count
Equal 94
Less 119
More 87

Table 4: Label Counts

Number format Count
Arabic numerals 158
verbal numeric expressions 142

Table 5: Number format Counts

A.2 Dataset Generation Details 833

To generate the base comparison scenarios in Math- 834

Comp, we employed a semi-automated approach 835

that combines large language model prompting 836

with expert filtering and symbolic verification. 837

Specifically, we used Claude Sonnet 3.7 to produce 838

pairs of math word problems involving two indi- 839

viduals and a shared task (e.g., spending money, 840

tracking time). Each generated pair was accompa- 841

nied by symbolic equations representing the total 842

quantity for each individual. 843

A.3 Prompting and Generation 844

We prompted the model to generate diverse sam- 845

ples by varying task types, studied quantities (e.g., 846

time, money), and comparative labels. In addition 847

to the word problems, we asked the model to re- 848

turn an interpretable mathematical expression for 849

each individual’s quantity. While final values were 850

sometimes incorrect, the symbolic equations were 851

consistently accurate and formed the basis of our 852

annotation pipeline. 853

A.4 Annotation and Filtering 854

Our manual filtering process applied several crite- 855

ria to ensure semantic clarity, mathematical valid- 856

ity, and syntactic consistency: 857

• Arithmetic reasoning: We retained only ex- 858

amples requiring at least one compositional 859
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arithmetic operation (e.g., addition or multi-860

plication).861

• Human agency: Both sentences had to center862

on human subjects (e.g., “Person A bought. . . ”863

rather than passive constructions).864

• Task relevance: The annotated task had to de-865

scribe the full chain of actions involved in the866

computation, not just a partial element. For867

instance, if a person bought both apples and868

oranges, the task would be annotated as “buy-869

ing fruits”, not “buying oranges”, to ensure870

that the task meaning aligns with the complete871

mathematical operation.872

A.5 Equation Validation and Label873

Assignment874

To ensure the ground-truth label was valid, two re-875

viewers independently verified the symbolic equa-876

tions produced by the model. After validation, we877

used a Python script to compute final totals for each878

individual and compare them automatically. This879

process demonstrates that prompting LLMs for in-880

terpretable symbolic reasoning can be an effective881

strategy for scalable, semi-automatic generation of882

labeled math problems requiring minimal human883

intervention.884

A.6 Prompt Example885

To generate the examples, we used the following886

category definitions:887

• Entertainment: This includes activities re-888

lated to leisure and enjoyment, such as889

movies, concerts, theme parks, video games,890

events, and other forms of recreational spend-891

ing.892

• Shopping: Any purchase of goods, whether893

it’s clothing, electronics, groceries, or other894

items. It’s the act of buying things for per-895

sonal use or gifts.896

• Dining: Spending on food outside the home,897

such as restaurant meals, takeout, or delivery898

services. This category also covers café and899

fast food expenditures.900

• Travel: Expenses related to going on trips,901

whether for business or leisure. This can902

include flights, hotels, car rentals, vacation903

packages, and sightseeing.904

• Health & Fitness: Anything related to per- 905

sonal health, well-being, and physical fitness, 906

such as gym memberships, fitness equipment, 907

medical expenses, supplements, or wellness 908

retreats. 909

• Education: Costs associated with learning 910

and academic pursuits, including tuition fees, 911

books, online courses, workshops, and any 912

other learning-related expenses. 913

• Transportation: Spending on travel from one 914

location to another. This includes gas, pub- 915

lic transport, car maintenance, ride-sharing 916

services, and vehicle leasing or purchasing. 917

• Home & Living: Expenses related to main- 918

taining a home, such as rent, mortgage pay- 919

ments, home repairs, furniture, décor, appli- 920

ances, and utility bills. 921

• Personal Care: This category covers spend- 922

ing on grooming and self-care items, such 923

as skincare products, haircuts, cosmetics, toi- 924

letries, and wellness services like massages 925

or spa visits. 926

• Technology: Costs related to electronic gad- 927

gets, software, and internet services. This 928

includes smartphones, computers, apps, sub- 929

scriptions to streaming services, or any tech- 930

related purchases. 931

Table 6 shows a representative example of the 932

prompt template used to elicit structured compara- 933

tive word problems from the model. 934
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Generate pairs of sentences that include chains of calculations where the final results in both sentences
are [label].
Requirements

• Create 20 pairs of sentences.

• Each pair should contain calculations.

• The intermediate values and operations in each pair can be different

• In all the pairs, [PERSON_A] and [PERSON_B] are the subjects.

• Each sentence in a pair must be complete without the other one.

• The sentences must not be ambiguous.

• With each pair, you must provide additional information about these items

– Studied quantity: can be very different, like time, distance, etc.
– Equations: The equation for each sentence includes its chain of calculations, like (3 * 2) + 5 -

10 / 2 = 6.
– Task: indicating the specific act done. It might be “buying apples”, “cleaning”, etc.
– Category: [list of categories]

Output structure: Separate the values using “|”. sentence1 | sentence2 | category | studied_quantity |
equation_sentence1 | equation_sentence2 | task
Example [Person_A] spends 8 hours cleaning on Mondays, half of Monday’s time on Wednesdays, and
twice Monday’s time on Saturdays. | [Person_B] spends 8 hours cleaning on Mondays, twice Monday’s
time on Wednesdays, and half of Monday’s time on Saturdays. | Home & Living | time | 8 + (8/2) + (2*8)
= 28 | 8 + (2*8) + (8/2) = 28 | cleaning
Now give me 20 pairs.

Table 6: The prompt used to generate the initial dataset.
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B Appendix: Additional Results935

This section presents results in addition to what936

has already been discussed in the main paper. We937

mainly divided this section into three subsections.938

The first part is about the prompts. The second part939

is around the results that were achieved without940

involving the protected attributes, such as man or941

woman. In the third subsection, we provided a942

more detailed analysis of the results when demo-943

graphic features were included.944

B.1 Prompts945

The table 7 provide the four instruction types that946

were tested in our experiments. Each framing was947

attached to these instructions, based on the potion948

of the framing that could be either the beginning949

of the prompt or the end. We mainly have two type950

of output structure instructions: JSON-based and951

simple free-form output. We also have simple one952

word answers or explicit reasoning.953

The table 8 also provide the prompt used to ex-954

tract the final answer from the responses provided955

by the model under CoT reasoning with free-form956

output. The judgment prompt was given to GPT4O-957

mini.958

B.2 Results without protected attributes959

In this subsection, we present the additional results960

related to the four types of experiments based on961

the four instruction types, provided in the table 7.962

Figure 4 presents the results using the second963

instruction type in the table 7. Accordingly, we964

can see that the results are comparable to the one-965

word output. Moreover, for the equal case, we can966

see that the DirErr rates even are increased com-967

pared to the one-word case. The upper row shows968

when framing where positioned at the beginning969

while then other row present the results when the970

framings where positioned at the end.971

Figure 5 provides the results for the third in-972

struction type in the table 7. This figure provides973

the results for both when the framings where at974

the beginning and at the end, compared to the 3975

that provides only the end cases for the two CoT976

instruction types.977

Finally, the figure 6 presents the results of the978

fourth instruction type in the table 7. We can see979

that there is not much difference between the be-980

ginning and end cases in general. However, there981

are patterns of difference like the neutral case for982

sonnet 3.7. For the more case, we can see that there983

are also some differences such the larger error rates 984

in the beginning case. 985

B.3 Results with Protected attributes 986

This section provides an important part of our re- 987

sults. We, here, present the results when the set of 988

protected attributes like gender and race included 989

in our experiments. As described in the paper, we 990

only tested the first instruction type in the table 7 991

due to the hight costs. 992

We here present two types of results. The set of 993

tables for sonnet 3.7 and GPT4O-mini similar to 994

the Table 1 as well as the figures that explore the 995

framing effects along with the protected attributes 996

based on the categories. Tables 9 and 10 contain 997

the DirErr percentages for the Less and Equal label, 998

while including the protecting attribute values. The 999

tables 11, 12, and 13 show the similar values for 1000

GPT4O-mini. It is observed that the pattern is 1001

similar across the two models and as explained in 1002

the main paper, there is a shift toward the more 1003

class. Moreover, we present the results of these 1004

two models across categories that we have in our 1005

resource to capture potential types of categorical 1006

biases and see how they interact with the framing 1007

effects when demographic features are involved. 1008

Our observation of the figures 7, 8, 9, and 10 are 1009

related to the sonnet model. In these figures, we 1010

can see the comparison between the times when 1011

the framings are placed at the beginning of the 1012

prompt as well as the times they are located at the 1013

end. As we can see, there are patterns of difference 1014

between these two locations, such as the different 1015

ranges of values for the less label as DirErr for 1016

African. 1017

The figures 11, 12, 13, and 14 provide similar 1018

information for GPT4O-mini. In terms of specific 1019

categorical differences across genders and races, 1020

we can see that for example sonnet has a larger 1021

DirrErr values for shopping for man than woman, 1022

meaning that it associates such activity with man 1023

less that woman. Moreover, for personal care cat- 1024

egory, the DirrErr as more is larger for woman, 1025

suggesting the potential bias of the model toward 1026

this category and women. Also, shopping DirrErr 1027

as less is larger for Africans than Asians as well 1028

as Hispanics. Interestingly, the travel category for 1029

white people has a larger less DirrErr than black 1030

people. For GPT4o-mini, we can see that DirrErr 1031

as equal is even less than the sonnet model. This 1032

suggest that the model is general is more biased 1033

toward more or less values. 1034
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Instruction Type Instruction Text
One-word Answer A) less B) more C) equal

ONLY RETURN ONE WORD THAT IS THE TRUE OPTION’S TEXT [less, more, or equal],
WITHOUT ANY EXPLANATION.

JSON Answer A) less B) more C) equal
Return only a JSON object with a single field ‘answer‘, whose value is one of: less, more, or equal.
Example: {"answer": “less”}.

CoT A) less B) more C) equal
Let’s think step by step.

CoT with JSON A) less B) more C) equal | Return only a JSON object with two fields:
- ‘reasoning‘: a concise explanation of how you reached your conclusion.
- ‘answer‘: one of the following strings: less, more, or equal.
Example:
{
"reasoning": "Person B spent more time lifting weights based on both sentences.",
"answer": “more”
}
Let’s think step by step.

Table 7: Instruction formats used across evaluations. Models were required to respond under different format
constraints ranging from one-word output to structured reasoning with chain-of-thought.

System Prompt: You are a helpful assistant. Your job is to judge a model’s response.
Based on the provided text, how does the amount of {studied_quantity} person B spends on {task} compare to that of person A?
Only answer with: less, more, or equal.

Table 8: The judgement prompt used for the GPT4o-mini to provide the final answer of CoT experiments..

Figure 4: Directional error percentages (DirErr %) for JSON-formatted answers (the second instruction type) under
framing variations. Each heat-map shows a single error direction—the proportion of all opportunities in which a
model wrongly answers Less (left), Equal (center), or More (right). Columns are the seven prompt variants (Neutral,
Direct, Indirect); rows are the six models. Darker cells indicate stronger drift toward that label. The upper trio uses
prompts with the framing sentence at the beginning of the input, the lower trio with the framing at the end.
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Figure 5: Directional error percentages (DirErr % under chain-of-thought prompting (the third instruction type).
Top row: framing variations are placed at the beginning; bottom row: framing variations are placed at the end. Each
heat-map shows one error direction—Less (left), Equal (center), or More (right). Columns are the seven prompt
variants; rows are the six models; darker cells indicate stronger drift toward that label.

C Appendix: Additional Metrics1035

C.1 Results for simple one-word scenario1036

C.2 Results for JSON one-word evaluation1037

C.3 Results for simple CoT scenario1038

C.4 Results for JSON-based CoT scenario1039
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Figure 6: Directional error percentages (DirErr % under chain-of-thought prompting (the fourth instruction type)
with JSON answers. Top row: framing variations are placed at the beginning; bottom row: framing variations are
placed at the end. Each heat-map shows one error direction—Less (left), Equal (center), or More (right). Columns
are the seven prompt variants; rows are the six models; darker cells indicate stronger drift toward that label.

Figure 7: DirErr % for sonnet 3.7, the best model on average while including Asian and African races, when the
framing variations are positioned at the beginning and end of the prompt.
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Framing Std Af As H Wh B M W
equal:Indirect (End) 24.31 7.73 6.63 3.87 13.81 7.18 4.42 3.87
equal:Indirect (Begin) 2.21 3.87 4.42 4.42 7.73 3.31 4.97 4.42
equal:Direct (End) 35.36 18.23 19.34 16.57 13.81 11.60 20.99 22.65
equal:Direct (Begin) 23.20 20.44 19.34 15.47 20.99 13.81 32.60 33.70
less:Indirect (End) 19.89 6.08 8.84 7.73 4.97 3.31 11.60 11.05
less:Indirect (Begin) 13.26 9.39 6.63 6.08 8.84 6.63 22.10 19.89
less:Direct (End) 41.44 15.47 16.02 14.92 12.71 12.71 34.81 30.94
less:Direct (Begin) 34.25 21.55 24.86 18.78 30.39 21.55 27.62 37.02
more:Indirect (End) 46.41 45.86 39.78 37.57 50.83 32.04 39.78 40.33
more:Indirect (Begin) 30.94 18.78 18.78 19.34 24.31 22.65 24.86 19.34
more:Direct (End) 46.96 29.28 27.07 25.97 28.18 21.55 27.62 32.04
more:Direct (Begin) 35.36 27.07 24.31 27.07 28.18 22.65 27.62 25.97
neutral (End) 12.15 10.50 14.36 11.60 9.94 9.39 15.47 17.68
neutral (Begin) 16.02 14.36 14.36 12.71 16.57 6.63 18.78 17.68

Table 9: DirErr rates (%) for errors as Less for Sonnet 3.7 model, across demographic identity markers. Each row
represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.

Measurement Std Af As H Wh B M W
equal:Indirect (End) 75.73 87.86 90.78 93.69 86.41 92.72 89.81 91.26
equal:Indirect (Begin) 94.66 93.69 94.66 94.17 89.81 92.23 92.23 94.66
equal:Direct (End) 31.55 36.89 38.83 40.78 53.88 60.19 43.20 39.81
equal:Direct (Begin) 57.28 58.74 60.19 59.71 62.62 65.05 36.89 33.98
less:Indirect (End) 9.22 17.48 20.87 18.93 20.87 33.98 10.68 9.22
less:Indirect (Begin) 15.53 6.31 7.28 6.31 5.34 6.80 7.28 6.31
less:Direct (End) 12.14 22.33 23.41 21.95 26.70 33.17 16.99 17.96
less:Direct (Begin) 22.33 17.48 17.96 22.33 14.08 22.93 8.25 12.14
more:Indirect (End) 12.62 16.50 15.05 14.56 24.76 46.12 16.99 13.11
more:Indirect (Begin) 21.84 7.77 9.22 7.28 6.80 7.28 10.19 7.28
more:Direct (End) 15.05 17.48 19.02 17.56 24.76 33.66 17.96 15.53
more:Direct (Begin) 22.82 16.99 21.36 23.79 22.33 27.18 9.22 8.25
neutral (End) 33.98 42.44 43.84 40.98 50.49 48.78 42.23 33.98
neutral (Begin) 42.72 48.78 59.71 61.65 49.51 67.96 31.07 31.07

Table 10: DirErr rates (%) for errors as Equal for Sonnet 3.7 model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.

Condition Std M W Af As H Wh B
equal:Indirect(Begin) 56.34 80.28 77.00 79.34 77.93 77.46 79.34 79.81
more:Indirect(End) 95.77 99.53 99.06 99.06 100.00 99.53 99.06 99.53
equal:Indirect(End) 36.15 59.62 64.32 47.89 39.44 43.19 51.64 53.05
more:Direct(Begin) 74.18 90.14 91.08 84.04 84.98 87.79 90.14 84.04
more:Direct(End) 81.69 93.90 96.24 82.16 84.51 87.79 89.20 84.51
more:Indirect(Begin) 86.38 95.77 94.84 91.08 93.43 92.96 91.55 89.20
neutral(Begin) 63.38 81.69 77.93 78.40 75.59 76.53 86.38 78.40
neutral(End) 69.48 88.73 85.92 64.32 69.48 65.73 86.38 69.48
equal:Direct(End) 53.99 66.20 63.38 33.33 30.05 23.94 48.83 28.64
equal:Direct(Begin) 44.13 77.93 71.83 72.30 70.42 65.73 78.40 65.26
less:Direct(Begin) 5.63 25.82 21.60 33.80 35.21 34.74 54.93 36.15
less:Indirect(End) 0.47 1.88 0.94 0.00 0.00 0.00 0.47 0.00
less:Direct(End) 13.15 46.01 27.70 15.02 10.80 8.45 40.85 13.62
less:Indirect(Begin) 2.82 2.82 2.35 8.45 4.69 4.69 10.33 5.63

Table 11: DirErr rates (%) for errors as More for GPT4O-mini model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.
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Condition Std M W Af As H Wh B
equal:Indirect(Begin) 48.62 13.81 14.36 13.26 11.60 13.81 13.81 11.05
more:Indirect(End) 3.87 0.55 1.10 0.00 0.00 0.00 0.55 0.00
equal:Indirect(End) 70.17 19.34 16.57 30.94 31.49 25.97 27.07 25.41
more:Direct(Begin) 24.86 9.94 6.63 15.47 13.81 12.15 4.97 16.02
more:Direct(End) 16.02 7.18 1.66 19.34 18.23 13.26 11.60 16.02
more:Indirect(Begin) 8.29 2.21 3.31 7.73 6.08 6.08 6.08 9.94
neutral(Begin) 35.36 15.47 20.99 20.44 20.99 22.65 12.15 20.99
neutral(End) 27.07 12.15 14.36 35.91 32.04 27.07 14.36 26.52
equal:Direct(End) 44.75 36.46 30.94 64.64 67.40 72.38 53.04 68.51
equal:Direct(Begin) 46.41 16.02 23.20 19.34 22.65 23.76 16.02 26.52
less:Direct(Begin) 92.27 71.82 72.93 60.77 61.88 62.43 43.65 56.91
less:Indirect(End) 98.34 95.58 97.24 99.45 98.90 98.90 98.34 98.34
less:Direct(End) 82.87 62.43 71.27 80.11 83.43 83.43 56.91 78.45
less:Indirect(Begin) 95.03 93.92 94.48 86.74 91.71 90.06 87.29 90.61

Table 12: DirErr rates (%) for errors as Less for GPT4O-mini model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.

Condition Std M W Af As H Wh B
equal:Indirect(Begin) 2.43 2.91 3.40 2.91 4.85 3.88 4.37 4.37
more:Indirect(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
equal:Indirect(End) 2.43 25.73 18.93 21.36 31.07 27.67 25.24 25.73
more:Direct(Begin) 0.00 0.00 0.00 0.49 0.49 0.49 0.49 0.49
more:Direct(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
more:Indirect(Begin) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
neutral(Begin) 0.00 0.00 0.49 0.49 0.49 0.00 0.00 0.00
neutral(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
equal:Direct(End) 0.00 0.49 0.97 0.49 0.97 0.97 0.49 1.94
equal:Direct(Begin) 0.49 0.97 0.97 2.43 1.94 1.46 1.46 1.94
less:Direct(Begin) 0.00 0.00 0.00 0.49 0.49 0.97 0.00 0.49
less:Indirect(End) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49
less:Direct(End) 0.00 0.00 0.00 0.49 0.00 0.00 0.49 0.49
less:Indirect(Begin) 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00

Table 13: DirErr rates (%) for errors as Equal for GPT4O-mini model, across demographic identity markers. Each
row represents a distinct framing variant, defined by comparison target (More, Less, Equal), style (Indirect, Direct,
Neutral), and position (Begin, End). Demographics: Std=Standard, M=Man, W=Woman, As=Asian, Af=African,
H=Hispanic, Wh=White, B=Black.

Table 14: Results for simple on-word evaluation of gpt4o

Column Equal Less More
equal_direct_beginning 143 82 74
equal_direct_end 127 70 102
equal_indirect_beginning 235 37 27
equal_indirect_end 259 6 34
less_direct_beginning 119 94 86
less_direct_end 129 87 83
less_indirect_beginning 84 155 60
less_indirect_end 99 116 83
more_direct_beginning 148 100 51
more_direct_end 137 111 51
more_indirect_beginning 126 91 82
more_indirect_end 149 91 59
simple_beginning 110 68 121
simple_end 105 95 94
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Figure 8: DirErr % for sonnet 3.7, the best model on average while including White and Black races, when the
framing variations are positioned at the beginning and end of the prompt.

Figure 9: DirErr % for sonnet 3.7, the best model on average while including Hispanic race, when the framing
variations are positioned at the beginning and end of the prompt.
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Figure 10: DirErr % for sonnet 3.7, the best model on average while including Woman and Man, when the framing
variations are positioned at the beginning and end of the prompt.

Figure 11: DirErr % for GPT4O-mini on average while including Asian and African races, when the framing
variations are positioned at the beginning and end of the prompt.
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Figure 12: DirErr % for GPT4O-mini on average while including White and Black races, when the framing
variations are positioned at the beginning and end of the prompt.

Figure 13: DirErr % for GPT4O-mini on average while including Hispanic race, when the framing variations are
positioned at the beginning and end of the prompt.
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Figure 14: DirErr % for GPT4O-mini on average while including Woman and Man, when the framing variations
are positioned at the beginning and end of the prompt.

Table 15: Results for simple on-word evaluation of gpt4o-mini

Column Equal Less More
equal_direct_beginning 11 145 144
equal_direct_end 6 128 166
equal_indirect_beginning 17 125 158
equal_indirect_end 14 187 99
less_direct_beginning 2 284 14
less_direct_end 1 257 42
less_indirect_beginning 2 290 8
less_indirect_end 1 297 2
more_direct_beginning 5 73 222
more_direct_end 2 48 250
more_indirect_beginning 4 32 264
more_indirect_end 1 12 287
simple_beginning 7 93 200
simple_end 3 80 217
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Table 16: Results for simple on-word evaluation of sonnet 3.7

Column Equal Less More
equal_direct_beginning 195 82 23
equal_direct_end 118 119 63
equal_indirect_beginning 289 9 2
equal_indirect_end 232 64 4
less_direct_beginning 93 121 86
less_direct_end 56 137 107
less_indirect_beginning 73 54 173
less_indirect_end 43 66 191
more_direct_beginning 93 124 83
more_direct_end 68 156 76
more_indirect_beginning 85 109 106
more_indirect_end 58 150 92
simple_beginning 148 55 97
simple_end 112 34 154

Table 17: Results for simple on-word evaluation of haiku 3.5

Column Equal Less More
equal_direct_beginning 57 101 84
equal_direct_end 31 21 183
equal_indirect_beginning 181 4 20
equal_indirect_end 214 3 7
less_direct_beginning 19 142 48
less_direct_end 10 21 204
less_indirect_beginning 6 207 40
less_indirect_end 1 182 35
more_direct_beginning 14 15 198
more_direct_end 4 13 258
more_indirect_beginning 6 7 274
more_indirect_end 1 14 261
simple_beginning 22 12 106
simple_end 1 4 94

Table 18: Results for simple on-word evaluation of qwen 7b

Column Equal Less More
equal_direct_beginning 278 12 9
equal_direct_end 0 76 224
equal_indirect_beginning 120 24 156
equal_indirect_end 113 8 179
less_direct_beginning 0 62 238
less_direct_end 0 4 296
less_indirect_beginning 1 211 88
less_indirect_end 0 39 261
more_direct_beginning 1 25 274
more_direct_end 0 35 265
more_indirect_beginning 0 5 295
more_indirect_end 0 1 299
simple_beginning 2 36 262
simple_end 0 32 268
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Table 19: Results for simple on-word evaluation of qwen 3b

Column Equal Less More
equal_direct_beginning 137 100 62
equal_direct_end 0 58 242
equal_indirect_beginning 15 76 187
equal_indirect_end 0 90 210
less_direct_beginning 0 284 15
less_direct_end 0 300 0
less_indirect_beginning 1 297 2
less_indirect_end 0 300 0
more_direct_beginning 0 4 296
more_direct_end 0 3 297
more_indirect_beginning 0 0 300
more_indirect_end 0 0 300
simple_beginning 0 16 284
simple_end 0 35 265

Table 20: Results for JSON one-word evaluation of gpt-4o

Column Equal Less More
equal_direct_beginning 188 51 61
equal_direct_end 125 79 96
equal_indirect_beginning 233 33 34
equal_indirect_end 266 11 23
less_direct_beginning 122 115 63
less_direct_end 93 147 60
less_indirect_beginning 93 154 53
less_indirect_end 72 208 20
more_direct_beginning 150 102 48
more_direct_end 102 120 78
more_indirect_beginning 110 96 94
more_indirect_end 111 91 98
simple_beginning 166 54 80
simple_end 105 77 118

Table 21: Results for JSON one-word evaluation of gpt-4o-mini

Column Equal Less More
equal_direct_beginning 33 139 128
equal_direct_end 24 124 152
equal_indirect_beginning 61 65 174
equal_indirect_end 105 105 90
less_direct_beginning 13 252 35
less_direct_end 14 238 48
less_indirect_beginning 13 260 27
less_indirect_end 6 293 1
more_direct_beginning 15 49 236
more_direct_end 14 58 228
more_indirect_beginning 14 13 273
more_indirect_end 11 10 279
simple_beginning 18 93 189
simple_end 16 99 185
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Table 22: Results for JSON one-word evaluation of sonnet 3.7

Column Equal Less More
equal_direct_beginning 165 74 61
equal_direct_end 75 96 129
equal_indirect_beginning 271 21 8
equal_indirect_end 198 78 24
less_direct_beginning 30 196 74
less_direct_end 28 160 112
less_indirect_beginning 42 138 120
less_indirect_end 27 163 110
more_direct_beginning 39 129 132
more_direct_end 34 143 123
more_indirect_beginning 41 114 145
more_indirect_end 21 149 130
simple_beginning 81 105 114
simple_end 91 62 147

Table 23: Results for JSON one-word evaluation of haiku 3.5

Column Equal Less More
equal_direct_beginning 95 167 37
equal_direct_end 121 39 140
equal_indirect_beginning 290 1 9
equal_indirect_end 296 0 4
less_direct_beginning 56 175 68
less_direct_end 65 64 170
less_indirect_beginning 23 230 47
less_indirect_end 15 215 64
more_direct_beginning 47 41 211
more_direct_end 37 21 241
more_indirect_beginning 16 6 278
more_indirect_end 27 12 252
simple_beginning 94 26 175
simple_end 49 16 228

Table 24: Results for JSON one-word evaluation of qwen 7b

Column Equal Less More
equal_direct_beginning 216 75 9
equal_direct_end 32 171 97
equal_indirect_beginning 250 7 43
equal_indirect_end 276 2 22
less_direct_beginning 70 140 90
less_direct_end 15 56 229
less_indirect_beginning 41 212 47
less_indirect_end 9 180 111
more_direct_beginning 71 97 132
more_direct_end 31 48 221
more_indirect_beginning 41 47 212
more_indirect_end 3 3 294
simple_beginning 99 89 112
simple_end 12 56 232
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Table 25: Results for JSON one-word evaluation of qwen 3b (alt)

Column Equal Less More
equal_direct_beginning 15 54 231
equal_direct_end 1 50 249
equal_indirect_beginning 5 5 290
equal_indirect_end 101 23 176
less_direct_beginning 3 12 285
less_direct_end 5 12 283
less_indirect_beginning 1 64 235
less_indirect_end 3 86 211
more_direct_beginning 8 21 271
more_direct_end 14 55 231
more_indirect_beginning 1 1 298
more_indirect_end 3 4 293
simple_beginning 3 4 293
simple_end 5 30 265

Table 26: Results for simple CoT evaluation of gpt4o

Column Equal Less More
equal_direct_beginning 94 116 90
equal_direct_end 95 120 85
equal_indirect_beginning 93 143 64
equal_indirect_end 97 140 63
less_direct_beginning 88 122 90
less_direct_end 91 121 88
less_indirect_beginning 93 117 90
less_indirect_end 91 118 90
more_direct_beginning 90 116 94
more_direct_end 95 118 87
more_indirect_beginning 92 118 90
more_indirect_end 94 115 91
simple_beginning 93 114 93
simple_end 93 116 91

Table 27: Results for simple CoT evaluation of gpt4o-mini

Column Equal Less More
equal_direct_beginning 91 130 79
equal_direct_end 91 122 87
equal_indirect_beginning 96 150 54
equal_indirect_end 92 156 50
less_direct_beginning 92 129 79
less_direct_end 91 121 87
less_indirect_beginning 90 122 88
less_indirect_end 92 117 91
more_direct_beginning 92 114 94
more_direct_end 90 117 93
more_indirect_beginning 93 114 93
more_indirect_end 89 116 93
simple_beginning 93 128 79
simple_end 90 125 85
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Table 28: Results for simple CoT evaluation of sonnet 3.7

Column Equal Less More
equal_direct_beginning 94 115 91
equal_direct_end 95 118 87
equal_indirect_beginning 96 118 85
equal_indirect_end 95 115 90
less_direct_beginning 94 116 88
less_direct_end 92 121 86
less_indirect_beginning 92 118 90
less_indirect_end 94 117 89
more_direct_beginning 92 114 92
more_direct_end 95 116 89
more_indirect_beginning 93 116 90
more_indirect_end 93 116 91
simple_beginning 94 115 91
simple_end 97 116 87

Table 29: Results for simple CoT evaluation of haiku 3.5

Column Equal Less More
equal_direct_beginning 92 116 90
equal_direct_end 95 105 94
equal_indirect_beginning 97 119 81
equal_indirect_end 95 115 87
less_direct_beginning 94 113 88
less_direct_end 91 110 90
less_indirect_beginning 92 111 90
less_indirect_end 91 110 96
more_direct_beginning 94 100 103
more_direct_end 92 108 95
more_indirect_beginning 92 110 96
more_indirect_end 92 112 93
simple_beginning 96 101 97
simple_end 97 107 95

Table 30: Results for simple CoT evaluation of qwen 3b

Column Equal Less More
equal_direct_beginning 78 123 99
equal_direct_end 88 112 100
equal_indirect_beginning 87 120 93
equal_indirect_end 89 125 86
less_direct_beginning 81 146 73
less_direct_end 85 144 71
less_indirect_beginning 84 128 88
less_indirect_end 82 150 68
more_direct_beginning 87 113 100
more_direct_end 82 118 100
more_indirect_beginning 87 118 95
more_indirect_end 83 119 98
simple_beginning 85 113 102
simple_end 81 129 90
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Table 31: Results for simple CoT evaluation of qwen 7b

Column Equal Less More
equal_direct_beginning 86 135 78
equal_direct_end 92 116 90
equal_indirect_beginning 89 129 81
equal_indirect_end 94 123 81
less_direct_beginning 83 139 77
less_direct_end 95 145 58
less_indirect_beginning 87 126 86
less_indirect_end 90 130 78
more_direct_beginning 86 122 91
more_direct_end 92 108 99
more_indirect_beginning 89 118 92
more_indirect_end 89 114 95
simple_beginning 80 119 100
simple_end 87 121 91

Table 32: Results for JSON-based CoT evaluation of gpt-4o

Column Equal Less More
simple_beginning 95 56 149
simple_end 96 81 123
more_direct_beginning 95 103 102
more_direct_end 93 114 93
less_direct_beginning 99 122 79
less_direct_end 92 115 93
equal_direct_beginning 97 65 138
equal_direct_end 97 93 110
more_indirect_beginning 99 110 91
more_indirect_end 92 116 92
equal_indirect_beginning 100 26 174
equal_indirect_end 95 54 151
less_indirect_beginning 94 124 82
less_indirect_end 93 122 85

Table 33: Results for JSON-based CoT evaluation of gpt-4o-mini

Column Equal Less More
equal_direct_beginning 89 71 140
equal_direct_end 92 94 114
equal_indirect_beginning 91 51 158
equal_indirect_end 90 75 135
less_direct_beginning 91 117 92
less_direct_end 95 115 90
less_indirect_beginning 87 114 99
less_indirect_end 89 115 96
more_direct_beginning 90 98 112
more_direct_end 96 109 95
more_indirect_beginning 87 111 102
more_indirect_end 88 111 101
simple_beginning 89 40 171
simple_end 92 88 120
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Table 34: Results for JSON-based CoT evaluation of sonnet 3.7

Column Equal Less More
equal_direct_beginning 92 114 94
equal_direct_end 94 118 88
equal_indirect_beginning 95 32 173
equal_indirect_end 99 34 167
less_direct_beginning 94 119 87
less_direct_end 96 117 87
less_indirect_beginning 95 115 90
less_indirect_end 93 118 89
more_direct_beginning 94 118 88
more_direct_end 94 117 89
more_indirect_beginning 95 115 90
more_indirect_end 95 117 88
simple_beginning 99 111 90
simple_end 171 66 63

Table 35: Results for JSON-based CoT evaluation of haiku 3.5

Column Equal Less More
equal_direct_beginning 122 42 136
equal_direct_end 109 62 129
equal_indirect_beginning 105 12 183
equal_indirect_end 109 9 182
less_direct_beginning 100 92 108
less_direct_end 102 67 131
less_indirect_beginning 98 114 88
less_indirect_end 98 90 112
more_direct_beginning 96 60 144
more_direct_end 98 26 176
more_indirect_beginning 92 97 111
more_indirect_end 96 94 110
simple_beginning 109 16 175
simple_end 115 43 142

Table 36: Results for JSON-based CoT evaluation of qwen 3b

Column Equal Less More
equal_direct_beginning 64 58 178
equal_direct_end 66 44 190
equal_indirect_beginning 64 44 192
equal_indirect_end 70 31 199
less_direct_beginning 39 102 159
less_direct_end 65 139 96
less_indirect_beginning 18 168 114
less_indirect_end 58 170 72
more_direct_beginning 42 34 224
more_direct_end 56 39 205
more_indirect_beginning 25 80 195
more_indirect_end 45 69 186
simple_beginning 46 38 216
simple_end 53 79 168
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Table 37: Results for JSON-based CoT evaluation of qwen 7b

Column Equal Less More
equal_direct_beginning 91 110 99
equal_direct_end 88 108 104
equal_indirect_beginning 80 30 190
equal_indirect_end 91 52 157
less_direct_beginning 59 172 69
less_direct_end 78 167 55
less_indirect_beginning 60 140 100
less_indirect_end 76 160 64
more_direct_beginning 57 77 166
more_direct_end 76 98 126
more_indirect_beginning 56 98 146
more_indirect_end 72 100 128
simple_beginning 65 101 134
simple_end 79 120 101
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