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ABSTRACT

This work identifies anisotropy in the singular value spectra of parameters, ac-
tivations, and gradients as the fundamental barrier to low-bit training of large
language models (LLMs). These spectra are dominated by a small fraction of
large singular values, inducing wide numerical ranges that cause quantization bias
and severe spectral distortion, ultimately degrading training performance. This
work presents Metis, a spectral-domain quantization framework that partitions
anisotropic spectra into narrower sub-distributions for independent quantization,
thereby reducing errors and preserving spectral structure. To minimize overhead,
Metis leverages two key properties of the dominant spectral subspace: preser-
vation via sparsely random sampling and preservation via random projection,
reducing decomposition cost to a negligible level. On LLaMA-3 8B trained with
100B tokens, Metis enables robust W4A4G4 training with FP4 quantization of
weights, activations, and gradients, yielding only a 0.4% training loss gap and a
0.1% degradation in downstream accuracy relative to BF16. Beyond matching
BF16 fidelity, Metis also surpasses our implementation of Nvidia’s recently an-
nounced (yet to be publicly released) FP4 recipe, consistently achieving lower
loss and higher downstream accuracy while incurring significantly lower compu-
tational overhead. The code implementation for Metis is available at: https:
//anonymous.4open.science/r/Metis-quantization-644B.

1 INTRODUCTION

Training large language models (LLMs) with low-bit quantization of parameters, activations, and
gradients offers substantial gains in efficiency, cost, and scalability. In recent years, progress has
advanced from FP32 to BF16 and, more recently, to FP8 training (Micikevicius et al., 2022; Peng
et al., 2023; Perez et al., 2023). Looking ahead, Nvidia’s Blackwell technical report shows that the
NVFP4 format reduces memory consumption by 1.8× and accelerates General Matrix Multiplications
(GeMM) by 7× compared to FP8, underscoring the efficiency potential of FP4 training (Alvarez
et al.; Devleker & Ghodsian). However, pushing the training frontier further down to FP4 is not a
straightforward continuation: FP4 imposes exponentially tighter constraints on precision and dynamic
range, which conflict with the inherently wide distributions of parameters, activations, and gradients.

This study investigates the origins of these wide distributions and analyzes their impact on training
stability and effectiveness under FP4 quantization. The key findings are outlined below and visualized
in Fig. 1.

Anisotropy is universal in modern LLMs. In weight, activation, and gradient matrices, a small
fraction of singular values dominate, yielding a highly imbalanced spectrum. This phenomenon is
consistently observed across model architectures and parameter scales up to 671B.

Anisotropy induces wide numerical distributions. Wide distributions of weights, activations, and
gradients arise from the superposition of singular components: larger components contribute to the
large-value region, whereas smaller ones concentrate near zero. This spread originates from variability
in singular values, which projects aligned components into entries of corresponding magnitudes.

Quantization bias induces spectral distortion. Commonly used block-level low-bit quantization
introduces bias that disproportionately favors large values, thereby reducing the effective resolution
for small values. Under anisotropy, this effect leads to severe distortion in spectral space: smaller
singular components incur substantially larger value errors and direction perturbations than their
larger counterparts.
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Figure 1: Overview of anisotropy and its impact on quantization, illustrated using a gradient matrix
from LLaMA-3 8B. (A) Singular value spectrum exhibits strong anisotropy, with a few singular values
dominating the spectrum. (B) The wide matrix distribution arises from the superposition of singular
components: large components (e.g., i=0) drive the high-value region, while small components
concentrate near zero. (C) Quantization bias disproportionately rounds many small values to zero.
(D–E) In spectral space, smaller singular components incur substantially larger relative quantization
errors in singular values and more severe perturbations in singular directions. Details corresponding
to (A) in Section 2.1, (B) in Section 2.2, and (C–E) in Section 2.3.

Inspired by these findings, we propose Metis, a quantization framework that preserves the spectral
structure under FP4 formats and allows robust FP4 training. Metis operates in the spectral domain,
applying decomposition to weight, activation, and gradient matrices to disentangle dominant from
long-tailed singular components, thereby allowing quantization over substantially narrower distribu-
tions. A central challenge is the computational complexity of spectral decomposition. To address
this, we leverage two key structural properties revealed in our empirical study:

(i) Subspace Preservation via Sparsely Random Sampling, where the dominant subspace estimated
from a sparsely random sampled subset is reliably generalized to the whole batch;

(ii) Subspace Preservation via Random Projection, where the dominant subspace can be faithfully
captured within a reduced hidden dimension via random projection.

Building on these insights, Metis renders the decomposition cost negligible by employing sparse
random sampling over sequences and random projections on the hidden dimension, each reducing
complexity by approximately two orders of magnitude.

Metis enables robust W4A4G4 training by quantizing all GeMM matrices to 4-bit floating point. On
an 8B LLaMA-3 model (et al., 2024) trained with 100B tokens from the DCLM dataset (Li et al.,
2025), Metis narrows the gap to BF16 to only a 0.4% increase in training loss and a 0.1% degradation
in downstream accuracy. Compared to our implementation of NVIDIA’s recently announced (but not
yet publicly released) FP4 recipe (Devleker & Ghodsian), Metis consistently achieves lower training
loss and higher downstream accuracy while incurring significantly less computational overhead.

2 ANALYSIS

Anisotropy emerges as a key structural factor underlying the wide distributions observed in weights,
activations, and gradients. This section analyzes these anisotropic matrices and examines how
they misalign with low-bit quantization schemes. Unless otherwise specified, all experiments are
conducted on the LLaMA-3 8B model trained on 100B tokens from the DCLM dataset.

2.1 ANISOTROPY: A UNIVERSAL PROPERTY OF MODERN LLMS

For a matrix M ∈ Rm×n, we perform Singular Value Decomposition (SVD) to obtain singular
values {σi}min(m,n)

i=1 , left singular vectors {ui} ∈ Rm, and right singular vectors {vi} ∈ Rn, such
that M =

∑min(m,n)
i=1 σiuiv

⊤
i . We assume singular values are sorted in descending order, i.e.,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 with r = min(m,n).

Anisotropy is characterized by a spectrum where a few leading singular values dominate, yielding
a highly imbalanced distribution across directions. Previous studies have reported anisotropy in
activation matrices (Ethayarajh, 2019; Mu et al., 2017; Puccetti et al., 2022; Rudman & Eickhoff,
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2023; Yu et al., 2021), and our analysis further demonstrates that it is universal across weights,
activations, and gradients. As shown in Figure 2 (A), their singular value spectra exhibit pronounced
anisotropy, with only 0.63%, 3.15%, and 2.91% of components (identified by the elbow point of
maximum curvature) dominating the spectra of weights, activations, and gradients, respectively. We
further validate this pattern on publicly released models, including the Qwen family (Bai et al., 2023)
and DeepSeek-R1 (Liu et al., 2024), where weight matrices from 7B to 671B parameters consistently
show fewer than 3% of singular values dominating the spectrum, confirming anisotropy as a universal
property across architectures and scales.

Figure 2: Analysis of weight, activation, and gradient matrices (layer 32, FeedForward(FFN)).
(A) The singular value spectra exhibit strong anisotropy, with only 0.63%, 3.15%, and 2.91% of
components (identified by the elbow point of maximum curvature) dominating the spectrum. (B)
Filled regions denote full-matrix distributions; dashed histograms showes selected rank-1 components
(uiσiv

⊤
i for i = 0, 16, 128, 1024). Dominant components (e.g., i = 0) drive the high-value region,

while smaller ones (e.g., i = 1024) contribute near zero. See A.1 for additional results.

2.2 ANISOTROPY INDUCES WIDE NUMERICAL DISTRIBUTIONS

The wide distributions of weights, activations, and gradients arise from the superposition of singular
components (uiσiv

⊤
i ): dominant components (e.g., i = 0) account for the large-value region,

whereas smaller components (e.g., i = 1024) concentrate near zero, as illustrated in Fig. 2 (B).

Figure 3: Analysis of weight, activation, and gradient matrices with hidden dimension 4096 (layer 32,
FFN). (A) Left singular vector distributions: all exhibit similar shapes with widths much smaller than
that of the full matrix. (B) Yellow regions show the residuals after removing the top 128 components
(3% × 4096 ≈ 123, rounded to the nearest power of two), while the grey region represents the
original matrix distribution. The residuals are one to two orders of magnitude narrower than the full
matrix, confirming that wide ranges originate from dominant components. More results in A.2

.
Wide distributions arise from the skewed singular value spectrum. This spread originates
from variability in singular values, which project aligned components into entries of corresponding
magnitudes. In the SVD decomposition M =

∑
i σiuiv

⊤
i , large singular values amplify aligned

components into high-magnitude entries, whereas small singular values suppress others toward
near zero, thereby producing long-tailed distributions. After isolating the impact of singular values,
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Fig. 3(A) shows that the singular vectors all exhibit similar shapes with widths far narrower than that
of the full matrix. Thus, the wide ranges are a direct consequence of the skewed singular spectrum.

Residual singular components confirm the dominant subspace effect. To validate this mechanism,
we analyze residual matrices, corresponding to the long-tail singular components, after subtracting
the leading singular components amplified by large singular values. As shown in Fig. 3 (B), removing
the top 3% of components, which dominate the spectrum, yields residual distributions one to two
orders of magnitude narrower than those of the full matrix. This demonstrates that wide ranges arise
primarily from the dominant subspace, while the residual remains quantization-friendly.

2.3 QUANTIZATION BIAS: SPECTRAL DISTORTION

In extreme low-bit regimes such as FP4, block-wise quantization is a commonly-used approach. By
restricting scaling to small blocks with fewer entries, the likelihood of encountering extreme values is
reduced, resulting in narrower local distributions and finer-grained scaling that mitigates quantization
error (Rouhani et al., 2023; Nvidia, 2025). Formally, a b-bit quantizer Qb maps a matrix M ∈ Rm×n

to its quantized form M = Qb(M). Throughout the paper, we will use the bar symbol to denote the
matrix after quantization for simplicity. The matrix is partitioned into fixed-size blocks (e.g., size 16
in the NVFP4 format (Nvidia, 2025)). For each block E ∈ Rt, NVFP4 selects a single scaling factor
s in FP8 (E4M3), set by the block’s maximum magnitude and rounded up to the nearest representable
FP8 value to ensure coverage. Each element is then quantized as QNV

4 (ei) = round
(
ei

s

)
· s.

Quantization bias. In broad distributions, where the range can span multiple orders of magnitude, as
observed in weight, activation, and gradient matrices in Fig. 2, determining the scaling factor s by the
block maximum introduces bias. This bias disproportionately favors large values while suppressing
the resolution available for small ones. As shown in Fig. 1 (C), nearly half of the values are rounded
entirely to zero after quantization, resulting in the destructive loss of the information they represent.

Spectral distortion. In an anisotropic matrix with uneven singular value distribution, quantization
bias causes severe distortion in spectral space, especially for small singular components. As shown in
Fig. 1 (D) (E), all components suffer relative errors in singular values and directional perturbations,
with smaller ones exhibiting greater distortion in both magnitude and direction.

3 METIS

We propose Metis, an FP4 training framework designed to address the challenge of spectral anisotropy.
Metis partitions the spectrum into narrower sub-distributions and applies quantization independently
within each. This design yields two benefits: (i) as shown in Fig. 3, each sub-distribution is
significantly narrower than the full spectrum, reducing quantization error; and (ii) it prevents small
singular components from being overwhelmed by large ones, thereby mitigating perturbations in
singular values and preserving directional consistency within the subspace.

The central challenge, however, lies in the high cost of repeatedly performing spectral decomposition
during training. Section 3.1 shows that anisotropy induces two key properties of the dominant
subspace, preservation via sparsely random sampling and random projection, making scalable
spectral decomposition feasible. Section 3.2 integrates this scalable decomposition into GeMM,
the source of over 95% of the training workload in large language models (Vaswani et al., 2017;
Wang et al., 2025), applying FP4 quantization to all GeMMs in both forward and backward passes.
Section 3.3 analyzes the additional computational complexity introduced by Metis.

3.1 ENABLING PROPERTIES FOR SCALABLE SPECTRAL DECOMPOSITION

The prohibitive cost of spectral decomposition presents a major obstacle to deploying spectral-domain
quantization at scale. Let X ∈ Rl×m denote the activation tensor, where l = b · s with b the batch
size, s the sequence length, and m the hidden dimension. In practice, l can reach millions while m is
typically in the thousands. Performing a full SVD on such matrices at every iteration incurs a cost of
O(lm2), making direct application impractical.

However, anisotropy offers a crucial opportunity: it causes a small number of singular values k
to dominate, with k ≪ l,m, so spectral decomposition only needs to isolate the corresponding

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

dominant subspace, yielding markedly narrower spectral sub-distributions. Building on this, our
further investigation reveals two properties that enable dimension reduction along both the sequence
and hidden axes: (i) the dominant subspace estimated from a sparsely sampled subset generalizes
reliably to the full batch, and (ii) the dominant subspace can be faithfully captured within a reduced
hidden dimension via random projection.

Figure 4: Subspace alignment between the domi-
nant subspace of the full batch and that of randomly
sampled subsets of sequences. Alignment quickly
saturates as the sample ratio increases, with just
1% of sequences achieving nearly 0.9 alignment
with the full-batch subspace. More results in B.1.

Subspace Preservation via Sparsely Random
Sampling. The sequence dimension l is typi-
cally orders of magnitude larger than the dom-
inant subspace dimension k. Intuitively, this
abundance of samples ensures that the dominant
subspace can be estimated stably even from a
small random subset of samples. From a theoret-
ical perspective, the anisotropic structure guar-
antees that random subsampling preserves the
dominant subspace with high probability. Let
Σ = 1

lX
⊤X ∈ Rm×m be the covariance. For

a random subset XΩ ∈ Rlk×n with lk ≪ l, the
sample covariance Σ̂ = 1

lk
X⊤

ΩXΩ satisfies the
matrix Chernoff (Tropp, 2012):

Pr
[
∥Σ̂−Σ∥2 ≤ ϵ∥Σ∥2

]
≥ 1− δ,whenever lk = O

( n

ϵ2
log

n

δ

)
.

Combined with the Davis–Kahan theorem (Davis & Kahan, 1970), ∥AkA
⊤
k −ÂkÂ

⊤
k ∥2 ≤ ∥Σ̂−Σ∥2

∆ ,

where Ak and Âk ∈ Rm×k are the top-k eigenspaces of Σ and Σ̂, and ∆ is the eigengap, this
guarantees that the dominant subspace estimated from a small random subset faithfully recovers that
of the full batch. Empirically, we measure the alignment of the dominant subspace between the full
batch and randomly sampled subsets using the mean squared canonical correlation between their
orthonormal bases. We observe rapid saturation as the sample ratio increases. For instance, as shown
in Fig. 4, sampling only 1% of sequences achieves nearly 0.9 overlap with the full-batch subspace,
demonstrating the effectiveness of this subspace approximation.

Subspace Preservation via Random Projection. We further establish that the dominant spectral
structure remains stable under random projections of the hidden dimension. Let Ω ∈ Rn×(k+s)

be a Gaussian test matrix with oversampling parameter s, and form the sketch Z = XΩ with thin
QR factorization Z = HR. Randomized SVD theory (Halko et al., 2011) shows that, with high
probability, the projection error ∥(I − HH⊤)X∥2 is controlled by the tail singular values of X.
Furthermore, by Davis–Kahan, the subspace error for the top-k eigenspace satisfies ∥AkA

⊤
k −

(HÃk)(HÃk)
⊤∥2 ≤ 2∥(I−HH⊤)X∥2

∆ , where Ãk ∈ Rm×k are the top-k eigenspaces of H⊤ΣH.
This demonstrates that a modest oversampling parameter s and a nontrivial spectral gap suffice to
ensure that Gaussian projections preserve the dominant subspace with high fidelity, enabling accurate
recovery without operating in the full ambient dimension m.

Scalable Spectral Decomposition. Leveraging these properties, we adopt a two-step procedure for
efficient decomposition. First, sparse random sampling selects less than 1% of sequences to estimate
the dominant subspace, which is then broadcast to the full batch. Second, we apply randomized SVD
to recover the top-k components. This reduces the complexity from O(ln2) to O(lknk), while the
additional cost remains asymptotically negligible compared with forward and backward GeMM.

3.2 SPECTRAL DECOMPOSITION

Each matrix in GeMM is decomposed into a low-rank component and a residual: low-rank singular
values are kept in high precision, while the associated singular vectors and residual are quantized to
low bit. Metis handles parameters, activations, and gradients differently: for parameters, low-rank
and residual parts are stored as separate trainable variables and updated independently; for activations
and gradients, spectral decompositions are recomputed dynamically at each iteration.

Forward pass. Let W ∈ Rm×n denote a weight matrix and X ∈ Rb×s×m an input activation
tensor, where b is the batch size, s the sequence length, and m the hidden dimension. For the GeMM

5
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operation, X is reshaped into a matrix of size X ∈ Rl×m with l = b · s, yielding Y = XW ∈ Rl×n.
Our goal is to quantize this GeMM computation under low-bit formats.

A rank-k approximation of W is given by Ŵk = UkSkV
⊤
k , where Uk ∈ Rm×k, Vk ∈ Rn×k,

and Sk = diag(σ1, . . . , σk) ∈ Rk×k. The residual is WR = W − Ŵk, so that W = Ŵk +

WR = UkSkV
⊤
k +WR. Similarly, the activation matrix X is decomposed as: X = X̂k +XR =

AkΛkB
⊤
k +XR, where Ak ∈ Rl×k, Bk ∈ Rm×k and Λk ∈ Rk×k.

Accordingly, the forward GeMM can be written as

Y = (AkΛkB
⊤
k +XR)(UkSkV

⊤
k +WR) (1)

The quantization function Qb is then applied separately to matrices in Eq. 1 other than Sk and Λk.
Specifically, the forward computation of Y under b-bit quantization, denoted as Ŷ, is computed as

Ŷ = (Qb(Ak)ΛkQb(B
⊤
k ) +Qb(XR))(Qb(Uk)SkQb(V

⊤
k ) +Qb(WR))

= XUkSkV
⊤
k +XWR.

(2)

Backward pass. In backward propagation, we quantize the GeMM operations associated with
derivative computations of matrices in Eq. 1. Formally, denote the derivatives of the loss function
L with respect to (w.r.t) Y as D = ∂L

∂Y ∈ Rl×n, we need to compute the following derivatives
for updating parameters: ∂L

∂X , ∂L
∂Uk

, ∂L
∂Sk

, ∂L
∂Vk

, and ∂L
∂WR

. Similarly, we first decompose D into a
SVD low-rank approximation and the residual, which is D = PkTkQ

⊤
k +DR, where Pk ∈ Rl×k,

Qk ∈ Rn×k, Tk ∈ Rk×k. The derivative ∂L
∂X is computed as

∂L
∂X

=
∂L
∂Y

∂Y

∂X
= D(VkS

⊤
k U

⊤
k +W⊤

R),

= PkTkQ
⊤
k VkS

⊤
k U

⊤
k +PkTkQ

⊤
k W

⊤
R +DRVkS

⊤
k U

⊤
k +DRW

⊤
R .

We then compute ∂L
∂X under 4-bit quantization as

∂̂L
∂X

= PkTkQ
⊤
k VkS

⊤
k U

⊤
k +PkTkQ

⊤
k W

⊤
R +DRVkS

⊤
k U

⊤
k +DRW

⊤
R . (3)

Following a similar pathway, we compute other derivatives under 4-bit quantization as follows:

∂̂L
∂Uk

= X⊤PkTkQ
⊤
k VkS

⊤
k +X⊤DRVkS

⊤
k ,

∂̂L
∂Sk

= U⊤
k X

⊤PkTkQ
⊤
k Vk +U⊤

k X
⊤DRVk,

∂̂L
∂Vk

= S⊤
k U

⊤
k X

⊤PkTkQ
⊤
k + S⊤

k U
⊤
k X

⊤DR,
∂̂L

∂WR
= X⊤PkTkQ

⊤
k +X⊤DR.

3.3 DISCUSSION ON TRAINING EFFICIENCY

Since Nvidia’s Blackwell FP4 training stack is not yet publicly available, native NVFP4 training is
unavailable. Thus, we emulate NVFP4 in BF16, as shown in C.1. Consequently, the actual runtime
speedup and memory savings of FP4 training cannot be directly measured. We therefore analyze
Metis’s additional computational overhead, arising from (i) the extra small-scale GeMMs introduced
by the decomposition and (ii) the decomposition itself.

Forward pass. In the baseline, evaluating Y = XW requires O(lmn) operations. Under Metis, the
forward computation follows Eq. 1, where the additional mixed products introduce O(lmk +mnk +
lnk) overhead on top of the baseline cost. Moreover, the activation decomposition performed at each
step adds O(lkmk), where lk ≪ l by sparse random sampling.

Backward pass. In the baseline, gradients with respect to X and W require O(lmn) operations.
Under Metis, gradient computation follows Eq. 3, where mixed products contribute O(lmk+mnk+
lnk). In addition, output gradient decomposition at each step adds O(lknk).

Overall complexity. Combining forward and backward contributions, Metis introduces an additional
cost of O(lmk+mnk+ lnk+ lkmk+ lknk) per training step, which is asymptotically much smaller
than the baseline O(lmn), making Metis tractable at the scale of modern LLMs.
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4 EXPERIMENTS

This section evaluates Metis on training loss and downstream task accuracy.

Models and Datasets. We conduct experiments on GPT-2 (130M and 1.1B) (Radford et al., 2019)
and LLaMA-3 (8B) (et al., 2024). For pretraining, we use the DCLM (Li et al., 2025) dataset and train
each model on 100B tokens. The raw data are segmented to split long documents and concatenate
short ones, filtered to remove non-Unicode and non-English content, and further processed with
Qwen3 to discard entries whose perplexity deviates by more than two standard deviations from the
mean. For downstream evaluation, we consider three task types: question answering, classification,
and cloze prediction. For question answering, we use ARC (Clark et al., 2018), RACE (Lai et al.,
2017), and BoolQ (Clark et al., 2019); for classification, we use HellaSwag (Zellers et al., 2019) and
PIQA (Bisk et al., 2019); and for cloze prediction, we use LAMBADA (OpenAI) (Kazemi et al.,
2023).

FP4 Training. The efficacy of Metis under FP4 quantization is evaluated against both FP4 and BF16
baselines. All FP4 training in this work adopts W4A4G4 quantization, where weights, activations, and
gradients are represented in the E2M1 NVFP4 format. Due to NVIDIA’s closed-source FP4 training
software stack, native hardware-supported FP4 training is not currently accessible; consequently, our
experiments with NVFP4 are conducted through simulation in BF16. Stochastic rounding (SR) is
applied by default in all FP4 experiments, as it mitigates quantization bias, is orthogonal to other
methods. The Metis rank is fixed at 1.5% for low-rank approximation in both forward and backward
passes, as our sensitivity analysis in C.2 shows that 1.5% is sufficient to maintain performance.

4.1 MAIN RESULTS

Figure 5: Training loss curves for (A) GPT-2
130M, (B) GPT-2 1.1B, and (C) LLaMA-3 8B.
Direct NVFP4 incurs a loss gap of 3–4% relative
to BF16 baseline, while Metis reduces the gap to
0.4% on LLaMA-3 and even slightly surpasses the
BF16 baseline on GPT-2 models. This may be at-
tributed to the separation of low-rank and residual
branches in weight matrices, which reduces inter-
ference between feature subspaces.

Training Loss. Fig. 5 shows the training
loss curves of the BF16 baseline, NVFP4, and
NVFP4 + Metis, while Table 1 reports the cor-
responding final test losses. NVFP4 exhibits a
clear gap relative to the BF16 baseline, particu-
larly on LLaMA-3 8B, with test loss increasing
by 3–4% across all models. In contrast, Metis
narrows the gap to 0.4% on LLaMA-3 8B and
even achieves slightly lower loss than the BF16
baseline on GPT-2 models.This expressivity en-
hancement of Metis over the BF16 baseline may
stem from the separation of low-rank and resid-
ual branches of weight matrices during training,
which reduces interference between feature sub-
spaces and contributes to the observed perfor-
mance gains. We further examine the spectrum
of the residual matrix to test whether anisotropy
re-emerges. The results in C.3 show it does not:
the singular value spectrum of the residual ma-
trix remains flat, indicating that anisotropy is
effectively addressed by the low-rank branch.

Performance on Downstream Tasks. As
shown in Table 1, direct NVFP4 quantization
results in an average drop of 1% relative to the
BF16 baselines across all models. In contrast,
Metis consistently outperforms these FP4 base-
lines, reducing the drop to 0.1% on LLaMA-3
8B and even slightly surpassing the BF16 base-
line on GPT-2 models. These findings are con-
sistent with the loss results reported earlier and
demonstrate Metis’s ability not only to preserve
but, in some cases, to enhance model expressive-
ness under ultra-low-bit constraints.
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Table 1: Downstream performance across different settings, reported with task-specific metrics.
Direct NVFP4 quantization leads to an average drop of 1% relative to the BF16 baseline, while Metis
reduces the gap to 0.1% on LLaMA-3 and slightly surpasses BF16 on GPT-2 models.

Model Method Loss ARC-C ARC-E BoolQ LAMBADA PIQA RACE HellaSwag Avg

GPT-2 BF16 3.23 24.3 32.1 60.4 31.3 62.1 47.3 32.5 41.4
(130M) FP4 3.32 22.9 31.5 60.7 31.2 60.9 47.0 31.7 40.8

FP4-Metis 3.20 24.1 31.9 60.2 31.8 61.8 48.4 32.2 41.5

GPT-2 BF16 3.09 30.7 59.5 60.0 35.4 64.9 47.3 41.1 48.4
(1.1B) FP4 3.22 29.8 57.6 59.8 35.5 63.6 46.8 39.5 47.5

FP4-Metis 3.01 30.1 60.0 59.5 36.2 64.1 48.5 41.9 48.6

LlaMa-3 BF16 2.44 32.4 60.4 59.2 37.6 70.5 47.0 50.9 51.1
(8B) FP4 2.53 31.3 58.5 58.2 36.5 69.8 46.9 49.4 50.0

FP4-Metis 2.45 32.7 59.6 59.8 37.0 70.9 46.5 50.7 51.0

4.2 ABLATION STUDY

We ablate the two key components of Metis: Spectral Decomposition and Sparse Random Sampling.

Spectral Decomposition. To assess the role of spectral decomposition in weights, activations, and
gradients, we replace it with direct FP4 quantization for each case. As shown in Table 2, removing
spectral decomposition from gradients yields the largest degradation relative to Metis, with training
loss increasing by 2.4% and downstream performance dropping by an average of 1.0%. In comparison,
removing it from activations or weights results in smaller and similar degradations: training loss rises
by about 0.5% and downstream performance decreases by an average of 0.3%.

Sparse Random Sampling. We further evaluate Sparse Random Sampling by replacing it with
full-batch spectral decomposition. As shown in Table 2, sparse random sampling reduces the
decomposition cost by orders of magnitude while introducing negligible performance impact.

Table 2: Performance of LLaMA-3 8B under different ablation settings of Metis. “w/o” denotes
removal of the corresponding component. For FP4 training, spectral decomposition is most critical
for gradients (removal yields the largest performance loss), followed by activations and weights.
Sparse random sampling performs on par with full-batch spectral decomposition.

Method Loss ARC-C ARC-E BoolQ LAMBADA PIQA RACE HellaSwag Avg

Metis 2.45 32.4 60.4 59.2 37.6 70.5 47.0 50.9 51.1

w/o Weight Decomposition 2.47 32.7 58.6 58.5 36.9 71.0 45.8 51.4 50.7
w/o Activation Decomposition 2.46 33.9 59.2 58.7 35.8 71.6 46.2 51.2 50.9
w/o Gradient Decomposition 2.51 30.6 60.3 59.1 36.2 68.5 46.8 49.7 50.1

w/o Sparse Random Sampling 2.44 32.9 60.0 59.1 37.8 70.7 46.7 50.5 51.1

4.3 EXTENDED EVALUATION

Comparison with Nvidia’s Recipe. We compare Metis with Nvidia’s recently announced (yet to
be publicly released) FP4 recipe (Devleker & Ghodsian), which incorporates a random Hadamard
transform alongside SR to mitigate the impact of outliers. Our implementation of this recipe is
described in Appendix C.1. As shown in Table 3 for GPT-2 models, Nvidia’s recipe results in 1-2%
higher test loss and an average 0.5% drop in downstream performance relative to the BF16 baselines,
whereas Metis surpasses BF16 on both test loss and average downstream performance.

Table 3: Nvidia’s recipe yields 1-2% higher test loss and a 0.5% drop in downstream performance
relative to BF16, whereas Metis surpasses BF16 on both metrics.

Model Method Loss ARC-C ARC-E BoolQ LAMBADA PIQA RACE HellaSwag Avg

GPT-2 BF16 3.23 24.3 32.1 60.4 31.3 62.1 47.3 32.5 41.4
(130M) FP4-Metis 3.20 24.1 31.9 60.2 31.8 61.8 48.4 32.2 41.5

FP4-Nvidia’s Recipe 3.27 23.7 31.2 59.4 30.5 62.0 47.6 31.9 40.9

GPT-2 BF16 3.09 30.7 59.5 60.0 35.4 64.9 47.3 41.1 48.4
(1.1B) FP4-Metis 3.01 30.1 60.0 59.5 36.2 64.1 48.5 41.9 48.6

FP4-Nvidia’s Recipe 3.15 28.6 59.8 59.3 36.7 63.2 48.0 40.2 47.9
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The advantage of Metis lies in two aspects: (i) as shown in A.3, spectral decomposition yields much
narrower residual distributions, whereas random Hadamard transform only smooths a few outliers
without reducing overall spread; and (ii) as shown in Fig. 6, Metis attains better alignment of singular
directions and lower singular-value error than both direct NVFP4 and NVFP4 with Nvidia’s recipe,
thereby preserving the spectral structure critical for model performance.

(a) (b)

Figure 6: Spectral preservation under different quantization strategies. (a) Alignment of left singular
vectors measured by cosine similarity. (b) Relative error in singular values. Metis achieves the highest
vector alignment and the lowest singular-value error relative to the BF16 baseline.

5 RELATED WORKS

Block-wise microscaling alleviates FP4’s range mismatch but still compresses small values into few
bins, causing information loss. Existing methods fall into three categories:

Channel-wise Re-parameterization. SmoothQuant (Xiao et al., 2023) applies calibrated per-channel
scaling folded offline, Outlier Suppression+ (Wei et al., 2023) augments scaling with per-channel
shifts, and OmniQuant (Shao et al., 2023) introduces learnable transforms with weight clipping.
These diagonal methods still struggle with residual extremes in low-bit regimes.

Hadamard transformations. Orthogonal Hadamard rotations (Suresh et al., 2017) redistribute
outliers across channels to relax per-block ranges. QuaRot (Ashkboos et al., 2024) applies them
to hidden states and weights for end-to-end 4-bit inference, while QuIP (Chee et al., 2023) uses
randomized preprocessing for weight-only 4-bit PTQ. HALO (Ashkboos et al., 2025) inserts rotations
in both forward and backward passes to stabilize low-precision training. NVIDIA’s FP4 recipe (De-
vleker & Ghodsian) similarly combines random Hadamard transforms with stochastic rounding for
W4A4G4 training. Despite these advances, all Hadamard-based methods incur notable overhead
from repeated rotations and mainly smooth outliers without narrowing overall distributions, leaving
quantized tensors vulnerable to precision loss.

Outlier Separation. These methods divert extreme values into a small high-precision branch. Outlier
Clamping and Compensation (Wang et al., 2025) clamps top-quantile activations and recovers clipped
residuals via sparse GEMM, while SVDQuant (Li et al., 2024) shifts activation mass into weights and
absorbs outlier energy in a high-precision low-rank branch. Both reduce error but rely on auxiliary
precision paths, deviating from full FP4.

6 CONCLUSIONS

We identified anisotropy in the singular value spectra of parameters, activations, and gradients as a
fundamental obstacle to low-bit LLM training and introduced Metis, a spectral-domain quantization
framework that mitigates this challenge by partitioning spectra into narrower sub-distributions and
preserving structural fidelity with negligible overhead. On LLaMA-3 8B, Metis enables robust
W4A4G4 training with less than 0.4% loss gap and under 0.1% downstream degradation relative
to BF16, while also surpassing Nvidia’s FP4 recipe. These results establish Metis as a practical,
high-fidelity approach for efficient FP4 training of large language models.

Limitations. Due to NVIDIA’s closed-source FP4 training software stack and recipe, our experiments
with NVFP4 are currently simulated in BF16 rather than executed with native hardware support; the
recipe is implemented based on their technical report. We plan to validate the results once the official
implementation becomes accessible.
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APPENDIX

This section is organized to present empirical results on additional model structures and modules,
which complement the Analysis and Methods sections, as well as experimental details and supple-
mentary results that support the Experiments section.

A ANALYSIS

A.1 ANISOTROPY: A UNIVERSAL PROPERTY OF MODERN LLMS

The universality of anisotropy is further supported by evidence from open-sourced LLM weight
matrices.

Figure 7: Singular value spectra of the final FeedForward module in Qwen2.5-7B, Qwen3-32B,
Qwen2.5-72B, and DeepSeek-R1-671B. The elbow fraction f = k⋆/r, where k⋆ is the index of
maximum curvature, indicates that only a small fraction of singular values dominates the spectrum
(1.9%, 2.2%, 2.1%, 2.4%), demonstrating the universality of anisotropy in modern LLMs.

A.1.1 LLAMA-3 8B

Fig. 2 demonstrated that weight, activation, and gradient matrices exhibit highly anisotropic spectra,
with only a few singular values carrying most of the energy. To further substantiate this observation,
we provide additional results for LLaMA-3 8B in Figures below. Specifically, we show the singular
value spectra and matrix distributions of Wk and Wffn1 from the first layer, as well as from the last
layer. Consistent with the main analysis, these spectra are strongly anisotropic: the leading singular
values dominate, while the majority of smaller components contribute values concentrated near zero.
These results confirm that spectral anisotropy is a persistent phenomenon across different layers and
parameter types.

Figure 8: Analysis of weight, activation, and gradient matrices (layer 1, Attention Key). Singular
value spectra show strong anisotropy, with a few values carrying most of the energy. Dominant
components drive the high-value region, while smaller ones contribute near zero.
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Figure 9: Analysis of weight, activation, and gradient matrices (layer 1, FFN dense2). Singular value
spectra show strong anisotropy, with a few values carrying most of the energy. Dominant components
drive the high-value region, while smaller ones contribute near zero.

Figure 10: Analysis of weight, activation, and gradient matrices (layer 32, Attention Key). Singular
value spectra show strong anisotropy, with a few values carrying most of the energy. Dominant
components drive the high-value region, while smaller ones contribute near zero.

Figure 11: Analysis of weight, activation, and gradient matrices (layer 1, FFN dense2). Singular
value spectra show strong anisotropy, with a few values carrying most of the energy. Dominant
components drive the high-value region, while smaller ones contribute near zero.

A.1.2 GPT-2 1.1B

Fig. 2 demonstrated that weight, activation, and gradient matrices exhibit highly anisotropic spectra,
with only a few singular values carrying most of the energy. To further substantiate this observation,
we provide additional results for GPT-2 8B in Figures below.
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Figure 12: Analysis of weight, activation, and gradient matrices (layer 1, Attention Key). Singular
value spectra show strong anisotropy, with a few values carrying most of the energy. Dominant
components drive the high-value region, while smaller ones contribute near zero.

Figure 13: Analysis of weight, activation, and gradient matrices (layer 1, FFN dense2). Singular
value spectra show strong anisotropy, with a few values carrying most of the energy. Dominant
components drive the high-value region, while smaller ones contribute near zero.

Figure 14: Analysis of weight, activation, and gradient matrices (layer 32, Attention Key). Singular
value spectra show strong anisotropy, with a few values carrying most of the energy. Dominant
components drive the high-value region, while smaller ones contribute near zero.

A.2 ANISOTROPY INDUCES WIDE NUMERICAL DISTRIBUTIONS

This section provides additional empirical evidence from a broader range of models and modules,
further supporting the analysis in the main text. The results demonstrate that the distributions
of singular vectors remain narrow and largely scale-invariant, while the residual components are
substantially compressed after removing the dominant singular values.
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Figure 15: Analysis of weight, activation, and gradient matrices (layer 1, FFN dense2). Singular
value spectra show strong anisotropy, with a few values carrying most of the energy. Dominant
components drive the high-value region, while smaller ones contribute near zero.

A.2.1 LLAMA-3 8B

We include further results for LLaMA-3 8B, specifically from layer 1 and layer 32, as well as from
the Key projection in the Attention module and the second dense layer in the Feed-Forward Network
(FFN).

Figure 16: Analysis of weight, activation, and gradient matrices (layer 1, Attention Key), showing
that singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide
ranges arise from dominant components amplified by large singular values.

Figure 17: Analysis of weight, activation, and gradient matrices (layer 1, FFN dense2), showing that
singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide ranges
arise from dominant components amplified by large singular values.
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Figure 18: Analysis of weight, activation, and gradient matrices (layer 32, Attention Key), showing
that singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide
ranges arise from dominant components amplified by large singular values.

Figure 19: Analysis of weight, activation, and gradient matrices (layer 32, FFN dense2), showing that
singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide ranges
arise from dominant components amplified by large singular values.

A.2.2 GPT-2 1.1B

We include further results for GPT-2 1.1B, specifically from layer 1 and layer 32, as well as from the
Key projection in the Attention module and the second dense layer in the Feed-Forward Network
(FFN).

Figure 20: Analysis of weight, activation, and gradient matrices (layer 1, Attention Key), showing
that singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide
ranges arise from dominant components amplified by large singular values.
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Figure 21: Analysis of weight, activation, and gradient matrices (layer 1, FFN dense2), showing that
singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide ranges
arise from dominant components amplified by large singular values.

Figure 22: Analysis of weight, activation, and gradient matrices (layer 32, Attention Key), showing
that singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide
ranges arise from dominant components amplified by large singular values.

Figure 23: Analysis of weight, activation, and gradient matrices (layer 32, FFN dense2), showing that
singular vectors are narrow and residuals 1–2 orders of magnitude smaller, confirming wide ranges
arise from dominant components amplified by large singular values.

A.3 NUMERICAL DISTRIBUTION COMPARISON OF HADAMARD AND METIS

We compare the effects of Hadamard transforms and Metis in the element space. As shown in Fig. 24,
the Hadamard transform redistributes only a small fraction of outliers, modestly smoothing the tails
but leaving the overall distribution wide and still misaligned with FP4’s narrow representable range.
In contrast, Metis applies spectral decomposition to separate dominant singular directions and values;
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the residual matrix after removing these components exhibits a substantially narrower distribution,
inherently more compatible with low-bit quantization.

Figure 24: Element-wise distributions under different preprocessing strategies: (i) original tensor, (ii)
Hadamard transform, and (iii) Metis spectral decomposition. Hadamard smooths a few outliers but
leaves a wide spread, while Metis isolates dominant components and produces a narrower residual
distribution well suited for FP4 quantization.

B METHOD

B.1 SPARSE RANDOM SAMPLING SUBSPACE APPROXIMATION

This section provides results on additional modules, further supporting the findings in the Methods
section and showing that the dominant subspace of a large batch can be efficiently approximated
using only a subset of samples.

(a) (b)

Figure 25: Subspace alignment between the dominant subspace of the full batch and that of randomly
sampled subsets of sequences. (a) The input activation of Wk module of layer 32. (b) The input
activation of FFN module of layer 32. Alignment quickly saturates as the sample ratio increases, with
just 1% of sequences achieving nearly 0.9 alignment with the full-batch subspace.
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C EXPERIMENTS

C.1 IMPLEMENTATION OF NVFP4 AND NVIDIA’S RECIPE

In our implementation, the NVFP4 format is simulated by explicitly casting tensors to FP4 before
invoking low-precision operators and subsequently restoring them to higher precision when passing
results to subsequent high-precision operators. Concretely, the quantization function maps the
scaled values of each block into the discrete representable set ±{0, 0.5, 1, 1.5, 2, 3, 4, 6}. This
process ensures that the simulated tensor values adhere to the constraints of the FP4 e2m1 format,
thereby capturing the representational limitations of the hardware specification. By alternating
between quantized (FP4) and restored (higher-precision) states, the simulation reproduces the effective
numerical behavior of NVFP4 operators while remaining compatible with standard high-precision
computational routines.

Rationale The soundness of this simulation stems from the design of FP4 hardware multiply
units, which typically retain extra exponent headroom when computing intermediate products. This
architectural property guarantees that low-precision multiplication does not incur overflow, even
though the operands are quantized. Consequently, performing multiplications in higher precision
faithfully reflects the outcome of true FP4 multipliers, since no additional rounding error or overflow
is introduced in the product stage. Following the multiplication, accumulation is conducted in
bfloat16 (bf16) precision, which aligns with hardware practice and preserves numerical consistency
with higher-precision accumulation. Taken together, these considerations indicate that the proposed
simulation of NVFP4 matrix multiplications is both practical and theoretically well-justified.

C.2 SENSITIVITY ANALYSIS OF RANK

Sensitivity analysis of spectral decomposition rank ranging from 1.5% to 12.5%. The curves for 1.5%
and 12.5% closely match, indicating that a rank of 1.5% is sufficient to maintain performance.

Figure 26: Training loss curves of GPT-2 1.1B using different ranks in spectral decomposition,
showing that a rank of 1.5% is sufficient to maintain performance.

C.3 ISOTROPY OF THE RESIDUAL BRANCH

We inspect the singular spectrum of a residual matrix from GPT-2 trained with Metis to examine
whether anisotropy re-emerges, using a baseline-trained matrix for comparison. As shown below,
the baseline matrix exhibits strong anisotropy, with a few singular values dominating the spectrum,
whereas the residual shows a much flatter distribution, indicating that anisotropy is effectively
addressed by the low-rank branch in Metis.
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(a)
Figure 27: Inspection of residual anisotropy in Metis compared with a baseline-trained matrix (layer
16, FFN dense1, GPT-2 1.1B). While the baseline matrix exhibits strong anisotropy, the residual
spectrum shows a much flatter distribution, indicating that anisotropy is effectively addressed by the
low-rank branch in Metis.
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