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Abstract

Large Language Models (LLMs) have shown001
their impressive capabilities, while also raising002
concerns about the data contamination prob-003
lems due to privacy issues and leakage of bench-004
mark datasets in the pre-training phase. There-005
fore, it is vital to detect the contamination by006
checking whether an LLM has been pre-trained007
on the target texts. Recent studies focus on008
the generated texts and compute perplexities,009
which are superficial features and not reliable.010
In this study, we propose to utilize the prob-011
ing technique for pre-training data detection012
by examining the model’s internal activations.013
Our method is simple and effective and leads to014
more trustworthy pre-training data detection.015
Additionally, we propose ArxivMIA, a new016
challenging benchmark comprising arxiv ab-017
stracts from Computer Science and Mathemat-018
ics categories. Our experiments demonstrate019
that our method outperforms all baselines, and020
achieves state-of-the-art performance on both021
WikiMIA and ArxivMIA, with additional ex-022
periments confirming its efficacy1.023

1 Introduction024

Large language models (LLMs) trained on massive025

corpora of texts demonstrate extraordinary abili-026

ties to understand, reason, and generate following027

natural language instructions (Brown et al., 2020;028

Anil et al., 2023). Meanwhile, the open-source029

of LLMs has significantly contributed to the ad-030

vancement and collaborative development within031

the LLM community (Zhang et al., 2022; Touvron032

et al., 2023b; Biderman et al., 2023; Bai et al.,033

2023; Team, 2023). Despite this progress, the lack034

of transparency raises ethical and legal questions,035

particularly about the use of potentially private data036

sourced from the internet, and threatens the relia-037

bility of benchmark evaluations due to the risk of038

1Our code and dataset are available at https://github.
com/xxxxxx

leaking test data. Therefore, determining if certain 039

texts have been utilized in the pre-training of LLMs 040

becomes a critical task. 041

Recent efforts to detect pre-training data in 042

LLMs have attracted significant attention. Several 043

studies have been proposed to investigate dataset 044

contamination, including prompting LLMs to gen- 045

erate data-specific examples or using statistical 046

methods to detect contamination in test sets (Sainz 047

et al., 2023; Golchin and Surdeanu, 2023; Oren 048

et al., 2023). Concurrently, Membership Inference 049

Attacks (MIAs) in Natural Language Processing 050

have been extensively explored for their potential 051

to discern whether specific data was used in LLMs’ 052

pre-training (Carlini et al., 2021; Mireshghallah 053

et al., 2022; Mattern et al., 2023; Shi et al., 2023). 054

The above solutions have achieved a certain suc- 055

cess. However, we argue that using superficial 056

features, like generated texts or loss metrics, is sub- 057

optimal since such information may not always be 058

reliable. 059

Different from these conventional approaches, 060

we propose a simple and effective pre-training data 061

detection method that utilizes the probing tech- 062

nique to examine the model’s internal activations. 063

This approach is based on the assumption: Texts 064

that have been seen during the model’s pre-training 065

phase are represented differently in the model’s in- 066

ternal activations compared to texts that have not 067

been seen, so we could train a linear probe classifier 068

to distinguish them. 069

As illustrated in Figure 1, our method consists 070

of three main steps: (1) We initiate our process by 071

gathering a training dataset that the LLM has not 072

previously been trained on, splitting the data into 073

member and non-member subsets. We then inject 074

the member data into the target model through a 075

fine-tuning process on the member data alone. This 076

step enables us to create a proxy model that retains 077

the memory of the member data from the train- 078

ing dataset. (2) Subsequently, we input the data 079
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Figure 1: An overview of our method. Member data from the training dataset is first used to fine-tune the target
model into a proxy model, from which activations are derived for training the probe classifier. The probe classifier
then evaluates the target text to determine whether it was included in the model’s pre-training data.

from the training dataset into the proxy model and080

extract the model’s internal activations. These acti-081

vations are employed to train a probe classifier that082

can distinguish between member and non-member083

data. (3) Finally, given a target text, we can input it084

to the target model, extract the internal activations,085

and let the probe classifier infer whether the text is086

member data. In other words, the probe classifier087

could assess whether the target text has been seen088

during the pre-training phase.089

In order to evaluate various pre-training data de-090

tection methods in a more challenging scenario,091

we introduce ArxivMIA, a difficult benchmark092

in the academic domain. In contrast to the ex-093

isting WikiMIA (Shi et al., 2023) benchmark,094

which primarily utilizes event data from Wikipedia095

pages—thus prone to a higher duplication rate in096

pre-training datasets—ArxivMIA presents a more097

challenging scenario. The academic abstracts098

within ArxivMIA are rarer on the internet com-099

pared to Wikipedia content, naturally resulting in a100

lower duplication rate. Furthermore, the inherent101

complexity of texts targeted at researchers adds an-102

other layer of difficulty for model memorization.103

This combination of rarity and complexity makes it104

exceedingly challenging for large models to mem-105

orize such content during the pre-training process,106

making its detection through conventional methods107

markedly tougher. Therefore, ArxivMIA stands108

as an especially rigorous benchmark, highlighting109

the need for more sophisticated pre-training data110

detection methods.111

Our contributions can be summarized as follows:112

• We propose a novel pre-training data detection 113

method that utilizes the probing technique. To 114

the best of our knowledge, this is the first 115

work to examine LLMs’ internal activations to 116

determine whether a given text was included 117

in the pre-training data. 118

• We propose ArxivMIA, a new benchmark in 119

the academic domain to assess pre-training 120

data detection methods. With a low duplica- 121

tion rate and the inherent complexity of texts, 122

ArxivMIA presents a more challenging sce- 123

nario and highlights the need for more sophis- 124

ticated pre-training data detection methods. 125

• We conduct extensive experiments on 126

WikiMIA and ArxivMIA benchmarks. In 127

addition, we also evaluate various detection 128

methods on a downstream task datasets 129

contamination challenge. Through compre- 130

hensive experimentation, we demonstrate 131

that our proposed method outperforms 132

all baselines, and achieves state-of-the-art 133

performance. 134

2 Related Work 135

Related work involves membership inference at- 136

tacks in NLP and dataset contamination. 137

Membership Inference Attacks in NLP. Mem- 138

bership Inference Attacks (MIAs) are designed to 139

identify if a particular data sample was included in 140

the training dataset of a machine learning model 141

(Shokri et al., 2017; Yeom et al., 2018; Hu et al., 142
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2022). Most MIAs take a black-box setting, as-143

suming that the adversary only has access to the144

model confidence or loss scores (Yeom et al., 2018;145

Sablayrolles et al., 2019; Jayaraman et al., 2021;146

Watson et al., 2021). Unlike it, similar to Leino147

and Fredrikson (2020), we consider a white-box148

setting where the adversary has access to the model149

weights and activations. Specifically in NLP, a150

lot of studies have been proposed (Carlini et al.,151

2021; Mireshghallah et al., 2022; Mattern et al.,152

2023; Shi et al., 2023). Carlini et al. (2021) and153

Mireshghallah et al. (2022) separately investigated154

Likelihood Ratio Attacks for causal language mod-155

els and masked language models. Mattern et al.156

(2023) proposed a neighbor attack that compares157

model loss for a given sample to losses of synthet-158

ically generated neighbor texts. Shi et al. (2023)159

measured the likelihood of outlier words in a given160

text, thereby assessing whether the text was likely161

part of a model’s pre-training corpora. Similar to162

Shi et al. (2023), we aim to detect pre-training data163

in LLMs. However, different from existing attacks164

that rely on the model’s superficial features, we165

focus on the LLMs’ internal activations, and the166

experiments show that our method outperforms ex-167

isting attacks.168

Dataset Contamination. The dataset contamina-169

tion in LLMs has been widely studied since bench-170

mark datasets are intentionally or unintentionally171

included in pre-training corpora. The n-gram based172

overlap comparison methods not only require ac-173

cess to training corpora but take a long time to174

compute (Gao et al., 2020; Brown et al., 2020;175

Dodge et al., 2021; Chowdhery et al., 2023; Anil176

et al., 2023; Touvron et al., 2023a,b). Without ac-177

cess to pre-training corpora, there are also some178

methods to detect dataset contamination. Sainz179

et al. (2023) prompted LLMs to generate verba-180

tim examples of a dataset split. Golchin and Sur-181

deanu (2023) proposed the ’Data Contamination182

Quiz’, which employs a multiple-choice format183

to assess a model’s ability to recognize original184

dataset instances among perturbed versions. Oren185

et al. (2023) presented a statistical test to demon-186

strate test set contamination in language models,187

leveraging the concept of exchangeability in bench-188

mark datasets and comparing model log probabili-189

ties against shuffled dataset permutations.190

3 Methodology 191

3.1 Overview 192

Different from conventional detection methods in 193

MIA that rely on the model’s superficial features, 194

we directly analyze the model’s internal activations, 195

providing a deeper insight into its pre-training his- 196

tory. Our method employs the probe technique 197

originally proposed by Alain and Bengio (2016). 198

This technique hypothesizes that the internal rep- 199

resentations of a model inherently contain specific 200

encoded properties, so we could train a linear probe 201

classifier with logistic regression for the detection 202

of these properties. In our context, we are inter- 203

ested in determining whether a text sample was 204

included in the model’s pre-training dataset. The 205

framework of our method is illustrated in Figure 1. 206

3.2 Task Definition 207

The task of pre-training data detection follows a
white-box setting of MIAs where the adversary has
access to the model M’s architecture and weights,
but not the pre-training data. The adversary aims to
determine whether a sample s was included in the
pre-training data of the model M with an attack
method A: AM(s) → {0, 1}, where 1 represents
member (seen) data, 0 denotes non-member (un-
seen) data. Usually, we have a scoring function
f , then can get the confidence score f(s) ∈ [0, 1],
which represents the probability of the sample be-
ing a part of the pre-training dataset. Then we can
classify the sample as a member or non-member
based on a threshold γ :

AM(s) = 1 [f(s) < γ]

3.3 Training Proxy Model 208

Training a probe classifier needs a dataset 209

{⟨xi, yi⟩}, where xi represents the sample’s activa- 210

tion, and yi is a binary label indicating whether the 211

sample is a member or non-member data. However, 212

the absence of pre-training data makes it impos- 213

sible to obtain the activations of the member or 214

non-member samples. Therefore, we first gather 215

a training dataset that the LLM has not previously 216

been trained on, splitting the data into member and 217

non-member subsets, and inject the member data 218

into the proxy model to simulate data contamina- 219

tion, as detailed in subsection 4.2. The training 220

dataset is D = {⟨si, yi⟩}, where si represents the 221

sample, and yi is a binary label indicating whether 222

the sample is a member or non-member. 223

3



Prompt Template for sample. Each sample of224

D is processed using a prompt template. This225

prompt template is crucial for standardizing the in-226

put for consistency. In the subsequent experiments,227

we use the following prompt template: "Here is a228

statement: [SAMPLE] \n Is the above statement229

correct? Answer:".230

Training Proxy Model. Next we need231

to inject the member samples Dmember =232

{si | ⟨si, yi⟩ ∈ D, yi = 1} into the model M to233

let it memorize the member data. This injection234

is accomplished by fine-tuning the model on235

Dmember. This step aims to make the model M236

memorize the member data, and the fine-tuning237

process is used to simulate the pre-training process.238

After this, we can get the proxy model M′, which239

retains the memory of Dmember. The proxy model240

M′ is then used to generate the member and241

non-member sample activations x for the dataset242

D.243

3.4 Training Probe Classifier244

The probe classifier takes the form Pθ(x) =245

σ(Wx), where σ denotes the sigmoid function and246

W represents the trainable weights. After obtain-247

ing the proxy model M′, we construct the training248

dataset with D for the probe.249

In the paper, we focus on causal language mod-250

els, which are trained to predict the next word given251

the previous words. In order to capture the repre-252

sentation of the sample, for each sample ⟨si, yi⟩ in253

D, we extract the activation xl from the final token254

of the input in layer l of the model M′. Finally, we255

get the dataset {⟨xli, yi⟩}, which is used to train the256

probe Pθ with logistic regression.257

3.5 Pre-training Data Detection with Probe258

Classifier259

Given a benchmark, we already trained a probe Pθ,
which can be used to detect whether a sample is
included in the pre-training data. For a sample s,
we preprocess it with the above prompt template,
then feed it into the model M to get the activation
xl. Finally, we can get the confidence score Pθ(x

l),
which represents the probability of the sample be-
ing a part of the pre-training dataset. This score is
then utilized to classify the sample as a member or
non-member based on a threshold γ :

AM(s) = 1
[
Pθ(x

l) < γ
]

4 Data Construction 260

4.1 ArxivMIA 261

To evaluate various pre-training data detection 262

methods in a more challenging scenario, we in- 263

troduce ArxivMIA, a new benchmark comprising 264

abstracts from the fields of Computer Science (CS) 265

and Mathematics (Math) sourced from Arxiv. In 266

contrast to the existing WikiMIA (Shi et al., 2023) 267

benchmark, which primarily utilizes event data 268

from Wikipedia pages—thus prone to higher du- 269

plication rates in pre-training datasets—ArxivMIA 270

presents a more challenging scenario. The aca- 271

demic abstracts within ArxivMIA are rarer on the 272

internet compared to Wikipedia content, naturally 273

resulting in a lower duplication rate. Furthermore, 274

the inherent complexity of texts targeted at re- 275

searchers adds another layer of difficulty for model 276

memorization. 277

For dataset construction, abstracts published 278

post-2024 are designated as non-member data, 279

while member data are derived from the Arxiv sub- 280

set of the RedPajama dataset (Computer, 2023). 281

The RedPajama dataset is the reproduction of the 282

LLaMA (Touvron et al., 2023a) training dataset 283

and is extensively utilized in pre-training LLMs 284

(Zhang et al., 2024; Geng and Liu, 2023). This 285

makes ArxivMIA particularly suited for testing 286

LLMs pre-trained on the RedPajama dataset. De- 287

tailed information about ArxivMIA is presented in 288

Table 1. In summary, ArxivMIA has three distinc- 289

tive features: Firstly, it is a larger dataset with a 290

total of 2000 samples. Secondly, it covers multiple 291

fields, including CS and Math. Lastly, it features 292

a longer average sentence length, with an average 293

of 143.1 tokens per sample. These characteristics 294

make ArxivMIA a more challenging benchmark 295

for evaluating pre-training data detection method- 296

ologies. 297

4.2 Training Dataset Collection 298

Our method needs to construct a training dataset 299

D = {⟨si, yi⟩} similar to the target benchmark, 300

where si represents the sample, and yi is a binary 301

label indicating whether the sample is a member 302

or non-member. This dataset is pivotal for training 303

the probe to accurately evaluate the likelihood of 304

a sample being included in the pre-training data. 305

However, the construction of a training dataset for 306

the probe is challenging due to the lack of access to 307

the pre-training data. To address this, we propose a 308

heuristic method: 309
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Dataset Avg. Tokens Members Non-Members Total Real Synthetic

WikiMIA 32.0 387 289 676 100* 100
ArxivMIA 143.1 1,000 1,000 2,000 200 200
├ ArxivMIA-CS 181.8 400 400 800 80 80
└ ArxivMIA-Math 117.2 600 600 1,200 120 120

Table 1: Information of Datasets. Real denote the number of collected real training data, and Synthetic denote the
number of synthetic training data. * For convenience, we directly segregated a subset of 100 non-member data from
WikiMIA as real data

Data Collection. Firstly, we need to collect a310

dataset D = {si}, and make sure they are not311

included in the pre-training data. There are two312

ways to accomplish it: (1). Real data: We col-313

lect the data published after the model release date.314

(2). Synthetic data: We can also use ChatGPT315

(Achiam et al., 2023) to synthesize similar data316

according to the data to be detected. The detailed317

process is described in Appendix A.318

Dataset Split. Next, we randomly label half of319

the data in D as non-member data, and the other320

half as member data. Then we get the dataset D =321

{⟨si, yi⟩}.322

We constructed both real and synthetic train-323

ing datasets for each benchmark respectively, with324

specifics outlined in Table 1. Notably, for con-325

venience, we directly segregated a subset of 100326

non-member data from WikiMIA as real data, and327

the remaining part will be used in subsequent ex-328

periments.329

5 Experiments330

We evaluate the performance of our method and331

other baselines against open-source language mod-332

els trained to predict the next word, including333

Pythia-2.8B (Biderman et al., 2023), OPT-6.7B334

(Zhang et al., 2022), TinyLLaMA-1.1B (Zhang335

et al., 2024) and OpenLLaMA-13B (Geng and Liu,336

2023).337

5.1 Datasets338

WikiMIA proposed by Shi et al. (2023), a dy-339

namic benchmark designed to periodically and340

automatically evaluate detection methods on any341

newly released pre-trained LLMs. We use the342

WikiMIA-32 split in this work, which contains 776343

samples with a max length of 32 tokens.344

ArxivMIA proposed in this work, a more com-345

plex benchmark comprising abstracts in the fields346

of Computer Science and Mathematics from Arxiv. 347

The details refer to subsection 4.1. 348

We split each dataset into a validation set and a 349

test set in a ratio of 2:8. The validation set is used 350

to select the best hyperparameters, and the test set 351

is used to evaluate the performance of the detection 352

methods. 353

5.2 Evaluation Metrics 354

Following Shi et al. (2023); Carlini et al. (2022); 355

Mattern et al. (2023), we assess the effectiveness 356

of detection methods using these metrics: 357

Area Under the ROC Curve (AUC). The ROC 358

curve plots the true positive rate (power) against 359

the false positive rate (error) across various thresh- 360

olds γ, which captures the trade-off between power 361

and error. Therefore, the area under the ROC curve 362

(AUC) serves as a singular, threshold-independent 363

measure to evaluate the effectiveness of the detec- 364

tion method. 365

True Positive Rate (TPR) under low False Posi- 366

tive Rates (FPR). We report TPR under low FPR 367

by adjusting the threshold value γ. Concretely, we 368

set 5% as the target FPRs, and report the corre- 369

sponding TPRs. 370

5.3 Baselines 371

To compare the performance of Probe Attack, we 372

consider the following reference-free methods: 373

Loss Attack proposed by Yeom et al. (2018), 374

which assesses the membership of the target sample 375

based on the loss of the target model. 376

Neighbor Attack proposed by Mattern et al. 377

(2023), which compares model loss for the tar- 378

get sample to losses of synthetically generated 379

neighbor texts. We construct 100 neighbors for 380

each sample using one-word replacement with the 381

RoBERTa-base model (Liu et al., 2019). 382
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Min-K% Prob proposed by Shi et al. (2023), be-383

gins by calculating the probability of each token384

in the target sample, then selects the k% of tokens385

with the lowest probabilities to compute their aver-386

age log-likelihood. A high average log-likelihood387

suggests that the text is likely part of the pretraining388

data.389

Following Carlini et al. (2021) and Shi et al.390

(2023), we also consider reference-based methods,391

which calibrate difficulty by quantifying the intrin-392

sic complexity of a target sample:393

Comparing to Zlib Compression. We compute394

the zlib entropy of the sample, which is the entropy395

in bits when the sequence is compressed using zlib2.396

The detection score is then determined by the ratio397

of the model’s perplexity to the zlib entropy.398

Comparing to Lowercased Text. We compute399

the ratio of the perplexity of the sample before and400

after converting it to lowercase.401

Comparing to Smaller Model. We compute the402

sample perplexity ratio of the target model to a403

smaller model pre-trained on the same data.404

5.4 Implementation Details405

For WikiMIA, we employ Pythia-2.8B (Biderman406

et al., 2023) and OPT-6.7B (Zhang et al., 2022) as407

the target model following Shi et al. (2023). For408

ArxivMIA, we employ TinyLLaMA-1.1B (Zhang409

et al., 2024) and OpenLLaMA-13B(Geng and Liu,410

2023) pre-trained on RedPajama (Computer, 2023)411

as the target model.412

For comparing to smaller model baseline set-413

ting, we take Pythia-70M for Pythia-2.8B, OPT-414

350M for OPT-6.7B, and OpenLLaMA-3B for415

OpenLLaMA-13B. Because there is no smaller416

model for TinyLLaMA, we leave this baseline out417

for TinyLLaMA.418

For the training of the proxy model, we con-419

ducted a grid search super-parameters on a held-420

out validation set in order to better inject member421

data into the model. Based on the performance,422

the best choice is to put all the data to be injected423

into one batch and train for 2 epochs. For different424

models and datasets, we set the best learning rate425

and activation extraction model layer according to426

the performance of the validation set.427

2https://github.com/madler/zlib

6 Results and Analyses 428

In this section, we report our main result and con- 429

duct ablation studies to analyze the impact of model 430

size and training data number for our method. We 431

also compare the performance of various detec- 432

tion methods on PubMedQA (Jin et al., 2019) and 433

CommonsenseQA (Talmor et al., 2019) in the con- 434

tamination detection challenge proposed by Oren 435

et al. (2023). 436

6.1 Main Results 437

We present the main results of our experiments in 438

Table 2 and Table 3, where the former shows AUC 439

values and the latter shows true positive rates at 440

5% false positive rates. The results show that our 441

method consistently outperforms all baselines on 442

both WikiMIA and ArxivMIA benchmarks, achiev- 443

ing state-of-the-art AUC values. We also achieve 444

the state-of-the-art average true positive rates at 5% 445

false positive rates across all detection methods on 446

both benchmarks. We can further observe that: 447

• The average performance across all detection 448

methods is notably lower on ArxivMIA com- 449

pared to WikiMIA. This disparity underscores 450

the increased complexity of ArxivMIA as a 451

benchmark. In addition to our method, the 452

Neighbor Attack method exhibits a relatively 453

competent AUC value. 454

• The performance gap between various de- 455

tection methods across the two fields of 456

ArxivMIA is notable. Specifically, in the 457

ArxivMIA-CS, the average AUC value is com- 458

paratively higher, with our method achieving 459

its best results above 60. In contrast, in the 460

ArxivMIA-Math, the values are only above 50, 461

differing by approximately 10 points. This 462

discrepancy may suggest that mathematical 463

content in academic papers is more challeng- 464

ing for Large Language Models (LLMs) to 465

memorize, and consequently, harder for our 466

method to detect. 467

• As shown in Table 2, we separately test 468

our method with real and synthetic data. 469

On WikiMIA, the utilization of real data 470

marginally outperforms synthetic data, while 471

the opposite is observed on ArxivMIA. De- 472

spite a slight difference, the performance of 473

our method is far superior to other baselines 474

with both real and synthetic data. 475

6

https://github.com/madler/zlib


Method WikiMIA ArxivMIA ArxivMIA-CS ArxivMIA-Math
Pythia OPT TinyL. OpenL. TinyL. OpenL. TinyL. OpenL.

Reference-free Methods
Loss Attack 63.9 63.0 45.1 49.1 45.3 51.4 44.9 47.4
Neighbor Attack 62.1 58.5 54.8 55.4 59.3 59.3 53.4 54.1
Min-K% Prob 62.7 63.2 45.5 49.2 45.0 50.2 45.8 48.5

Reference-based Methods
Zlib Compression 63.8 62.9 42.9 43.8 38.0 40.4 44.0 44.7
Lowercased Text 64.7 61.6 46.8 50.2 43.8 47.8 48.4 50.8
Smaller Model 65.5 65.8 - 55.9 - 54.9 - 56.7

Our Method
Probe w. Real Data 69.8 68.1 57.1 60.0 63.7 67.2 56.1 56.9
Probe w. Synthetic Data 69.4 66.2 59.2 60.3 64.3 67.3 56.7 57.4

Table 2: AUC values of different methods on WikiMIA and ArxivMIA. TinyL. denotes TinyLLaMA, OpenL.
denotes OpenLLaMA. We highlight the best results in bold.

Method WikiMIA ArxivMIA Avg.
Pythia OPT TinyL. OpenL.

Reference-free Methods
Loss Attack 13.7 11.4 5.1 5.6 9.0
Neighbor Attack 14.0 13.4 6.5 7.3 10.3
Min-K% Prob 16.9 15.0 4.5 5.1 10.4

Reference-based Methods
Zlib Compression 17.3 14.4 2.5 3.5 9.4
Lowercased Text 10.1 9.1 4.3 6.3 7.5
Smaller Model 14.0 10.5 - 8.5 11.0

Our Method
Probe w. Real Data 16.7 15.4 7.5 7.4 11.8
Probe w. Synthetic Data 19.6 10.5 8.6 6.8 11.4

Table 3: True positive rates for different methods at 5% positive rates on WikiMIA and ArxivMIA datasets. TinyL.
denotes TinyLLaMA, OpenL. denotes OpenLLaMA. Best results are highlighted in bold.

6.2 Ablation Studies476

We further investigate the impact of model size and477

training data number for our method:478

Model Size. We evaluate our method and neigh-479

bor attack on ArxivMIA with different OpenL-480

LaMA sizes (3B/7B/13B). As shown in Figure 2,481

the AUC values of our method increase with the482

model size, while the change of neighbor attack483

is not significant. This result indicates that our484

method benefits from larger models.485

Number of Training Data. We also evaluate486

our method with different synthetic training data487

sizes (50, 100, 200, 500 and 1000). We conduct the488
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Figure 2: Comparison of AUC Values Across Different
Model Sizes (best viewed in color).

7



50 100 200 500 1000
Number of Training Data for Our Method

44

46

48

50

52

54

56

58

60
A

U
C

 V
al

ue

Probe w. Synthetic
Loss
Neighbor
Min-K% Prob
Zlib Compression
Lowercased Text

Figure 3: Comparison of AUC Values with Different
Training Data Sizes (best viewed in color).

comparison experiment on ArxivMIA with TinyL-489

LaMA. As illustrated in Figure 3, our method ex-490

hibits optimal performance with 200 training data491

samples. Increasing the number of training data be-492

yond this point results in a slight decline in perfor-493

mance, yet it remains superior to various baselines.494

This indicates that our method is data efficient.495

6.3 Downstream Task Datasets496

Contamination Detection Challenge497

Method PMQA CQA

Reference-free Methods
Loss Attack 48.0 49.9
Neighbor Attack 53.0 50.0
Min-K% Prob 47.5 49.6

Reference-based Methods
Zlib Compression 46.1 48.8
Lowercased Text 50.7 49.2
Smaller Model 49.5 49.5

Our Method
Probe w. Synthetic Data 54.0 51.9

Table 4: AUC values of various pre-training data detec-
tion methods on PubMedQA and CommonsenseQA in
contamination detection challenge. PMQA denotes Pub-
MedQA, CQA denotes CommonsenseQA. We highlight
the best results in bold.

To support the development of further work on498

detecting pretraining data contamination, Oren et al.499

(2023) pre-trained a 1.4 billion parameter GPT-2500

model (Radford et al., 2019), Contam-1.4b, with501

intentional downstream task datasets contamina-502

tion 3. We evaluate various detection methods 503

on PubMedQA (Jin et al., 2019) and Common- 504

senseQA (Talmor et al., 2019) from this challenge. 505

PubMedQA and CommonsenseQA have different 506

duplication counts (how often the dataset was in- 507

jected into the pre-training data) with 1 and 2, and 508

detection at this low duplication level is extremely 509

difficult (Oren et al., 2023). 510

Experimental Setup. We sampled 1000 exam- 511

ples from the contaminated training data as member 512

data for each task and then sampled 1000 examples 513

from their standard dataset as non-member data. 514

Similar to subsection 5.1, we split each dataset into 515

a validation set and a test set. The validation set 516

will be used to select the best hyperparameters, and 517

the test set for evaluation. For our method, we col- 518

lected 200 synthetic training data for each task. For 519

comparing to smaller model baseline setting, we 520

choose Contam-Small (124M Params) pre-trained 521

on the same dataset for Contam-1.4b. 522

Results. The results are shown in Table 4. We ob- 523

serve that our method outperforms other baselines, 524

which demonstrate the effectiveness of our method. 525

Nonetheless, we acknowledge that the overall de- 526

tection efficacy is unsatisfactory at an extremely 527

low duplication count (1 and 2), corroborating the 528

findings of Oren et al. (2023). 529

7 Conclusion 530

In summary, this paper investigates the pre-training 531

data detection problem in large language models. 532

We propose a simple and effective approach that 533

determines whether a target text has been included 534

in a model’s pre-training dataset by analyzing the 535

internal activations using the probe technique. Ad- 536

ditionally, we introduce a more challenging bench- 537

mark, ArxivMIA. The experiments demonstrate 538

that our method outperforms all baselines across 539

various benchmarks, achieving SOTA performance. 540

We further analyze the impact of target model size 541

and the number of training data on our method. 542

Additionally, we validate the effectiveness of our 543

approach through a downstream task datasets con- 544

tamination detection challenge. Future work could 545

extend our methods to larger model scales or apply 546

them to multi-modal models. 547

3https://github.com/tatsu-lab/test_set_
contamination
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Limitations548

Generalization. One limitation of our study549

stems from the generalizability of the probe clas-550

sifier, which necessitates domain-specific training551

data. This characteristic implies that the training552

data are not universally applicable across different553

domains/benchmarks. Consequently, to detect data554

from varied fields, it becomes imperative to collect555

distinct sets of training data for each domain.556

Computational Resource Requirements.557

While our method demonstrates superior per-558

formance, it necessitates a certain amount of559

computational resources due to the requirement to560

train both a proxy model and a probe classifier.561
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A Data Synthesis with ChatGPT757

Given a target dataset D0, our goal is to uti-758

lize ChatGPT to generate a new, similar, domain-759

specific dataset D. To achieve this, we employ a760

templated prompt to guide ChatGPT in generating761

data points that are stylistically and structurally762

similar to D0, yet unique in content. The prompt763

template used is shown in Table 5.764

To initiate this process, we randomly select 5765

examples from D0 and insert them into the prompt.766

This prompt is then provided to ChatGPT, which767

generates a specified number of new data points.768

By iterating through this procedure multiple rounds,769

we can get a dataset D that is similar to and within770

the same domain as D0.771
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I am creating a dataset and need to generate data that is similar but not identical to the following
examples. Here are 5 examples from my dataset:
1. [Example 1]
2. [Example 2]
3. [Example 3]
4. [Example 4]
5. [Example 5]

Please generate [Specified Number] new data points that are similar in style and structure to
these examples but are unique in content. Format the responses as a numbered list, starting from
6 onwards. Each data point should start on a new line and be prefixed with its corresponding
number followed by a period and a space.
For example:
6. [New Data Point 1]
7. [New Data Point 2]
...

Table 5: Data Generation Template
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