
Early Weight Averaging meets High Learning Rates
for LLM Pre-training

Sunny Sanyal∗

UT Austin
Atula Neerkaje∗

UT Austin
Jean Kaddour

UCL

Abhishek Kumar
Google DeepMind

Sujay Sanghavi
UT Austin

Abstract

Training Large Language Models (LLMs) incurs significant cost; hence, any
strategy that accelerates model convergence is helpful. In this paper, we investigate
the ability of a simple idea – checkpoint averaging along the trajectory of a training
run – to improve both convergence and generalization quite early during training.
Here we show that models trained with high learning rates observe higher gains due
to checkpoint averaging. Furthermore, these gains are amplified when checkpoints
are sampled with considerable spacing in training steps. Our training recipe
outperforms conventional training and popular checkpoint averaging baselines such
as exponential moving average (EMA) and stochastic moving average (SWA). We
evaluate our training recipe by pre-training LLMs, where high learning rates are
inherently preferred due to extremely large batch sizes. Specifically, we pre-trained
nanoGPT-2 models of varying sizes—small (125M), medium (335M), and large
(770M)—on the OpenWebText dataset, comprised of 9B tokens. Additionally,
we present results for publicly available Pythia LLMs, ranging from 1B to 12B,
which were trained on the PILE-deduped dataset containing 207B tokens. Code is
available at https://github.com/sanyalsunny111/Early_Weight_Avg.

1 Introduction

Large Language Models (LLMs) have made a significant leap from billion to trillion scale, both in
terms of parameters [5, 31] and pre-training data size [11] [37, 38]. This surge in both data and model
size has rendered LLM pre-training increasingly slow and resource-intensive. For instance, a Llama 2
70B model trained with 2T tokens took 1720K GPU hours to train. To accelerate the training process,
it is a popular practice in LLM pre-training [3, 37] to utilize exceptionally large batch sizes, thereby
ensuring maximal GPU utilization. The usage of large batch sizes requires scaling the learning rates
proportional to it’s batchsize [9], [18] for SGD or proportional to the square root of it’s batch size for
adaptive gradient methods [24]. Overall, high learning rates are preferred when utilizing large batch
sizes.

In this paper, our goal is to improve the test generalization (log perplexity) of LLM pre-training while
reducing the number of training steps, all without increasing the compute budget. To achieve this, we
first demonstrate that: (a) models trained with higher learning rates exhibit greater improvements
when averaged along the training trajectory, and (b) averaging distant model weights from a single
training trajectory further amplifies these gains. We integrate these two insights to adapt LAWA

∗These authors contributed equally to this work. Correspondence to sanyal.sunny@utexas.edu

Workshop on Advancing Neural Network Training at 37th Conference on Neural Information Processing Systems
(WANT@NeurIPS 2023).

https://github.com/sanyalsunny111/Early_Weight_Avg

10000 20000 30000 40000 50000 60000 70000
Training steps (K)

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

3.25

Va
lid

at
io

n
Lo

ss 75
%

 tr
ai

ni
ng

(a) GPT-2 small (125M)

Original
EMA
SWA
LAWA (Ours)
LAWA (Ours) =1k

(a)

10000 20000 30000 40000 50000 60000 70000
Training steps (K)

2.8

2.9

3.0

3.1

3.2

3.3

Va
lid

at
io

n
Lo

ss 75
%

 tr
ai

ni
ng

(b) GPT-2 medium (355M)

Original
EMA
SWA
LAWA (Ours)
LAWA (Ours) =1k

(b)

10000 20000 30000 40000 50000 60000 70000
Training steps (K)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss

75
%

 tr
ai

ni
ng

(c) GPT-2 large (770M)

Original
EMA
SWA
LAWA (Ours)
LAWA (Ours) =1k

(c)

Figure 1: Across all model sizes, LAWA achieves faster convergence and generalizes better in
comparison to original pretraining run and other baseline averaging schemes. Validation loss on
OpenWebText with 70K training steps; (a) GPT2-small (125M) with Original is 2.963, EMA is
2.949, SWA is 2.952 and LAWA (ours-best) is 2.917, (b) GPT2-medium (355M) with Original is
2.855, EMA is 2.845, SWA is 2.837 and LAWA (ours-best) is 2.819, and (c) GPT2-large (770M)
with Original is 2.977, EMA is 2.968, SWA is 2.961 and LAWA (ours-best) is 2.908.

(LAtest Weight Averaging) [14]—a technique that performs checkpoint averaging throughout a
training trajectory using a sliding window—for pre-training LLMs.

We evaluate our methodology by pre-training nanoGPT-2 models of various scales, specifically 125M
(small), 355M (medium), and 770M (large), using the OpenWebText dataset, which comprises 9B
tokens. The experiments with nanoGPT-2 are conducted in a controlled environment to gain a deeper
understanding of our training recipe. Furthermore, we extend our evaluation to publicly available
Pythia LLMs [3], which include model sizes of 1B, 2.8B, 6.9B, and 12B, trained using 207B tokens.
Our experiments with Pythia LLMs aim to demonstrate the impact of our work on real-world LLMs.

Main Contributions. In summary, our findings are as follows,

1. We empirically show that models trained with high learning rate (LR) show pronounced
gains over original training on performing checkpoint averaging very early on during training
(Figure 2). This gain further amplifies when we sample distant checkpoints in the training
run (Figure 1). We provide a intuitive explanation of this phenomenon in Section 2.

2. We observe that the training trajectory of LAWA closely mimics that of a model being
trained with a low LR. The primary advantage of LAWA is that it allows LLMs to be trained
with high LR without compromising generalization (Section 4).

3. We show that LAWA improves test generalization with fewer training steps compared to
original training starting very early on during training; for both nanoGPT-2 and Pythia LLMs
(Figure 1 and Figures 5-8). LAWA also improves zero-shot performance for nanoGPT-2 and
Pythia LLMs, as shown in Table 2, 3.

4. We compare our recipe with conventional training and popular baselines such as Exponential
Moving Average - EMA [35] and Stochastic Weight Averaging - SWA [12]. These baselines
were not originally proposed or evaluated for LLM pre-training, but we adapt them to set
meaningful baselines. Our training recipe outperforms conventional pre-training, EMA, and
SWA.

5. Additionally, we perform a preliminary investigation of early weight averaging for a diffusion
model for image generation (specifically, a 422M sized UNet model trained with the standard
DDPM objective [10]). We observe thematically similar improvements (evaluated by the
FID metric) as shown in Figure 9.

Paper outline. The structure of the remainder of this paper is as follows: Initially, we introduce the
problem with a simple example and explain the intuition behind our approach in Section 2. This is
followed by a detailed description of our experimental setup in Section 3, and the presentation of our
main findings in Section 4. Subsequently, we compare our work with previous studies in Section 5.
The paper concludes with a summary of our key findings and suggests possible avenues for future
research.

2

0 10000 20000 30000 40000 50000
Training steps (K)

2.9

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

Orig 6e-3
Orig 6e-4
LAWA 6e-3
LAWA 6e-4

(a)

0 10000 20000 30000 40000 50000
Training steps (K)

2.9

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

Orig 6e-3
Orig 6e-4

(b)

0 10000 20000 30000 40000 50000
Training steps (K)

2.9

3.0

3.1

3.2

3.3

3.4

Va
lid

at
io

n
Lo

ss

Orig 6e-3
Orig 6e-4
LAWA 6e-3

(c)

Figure 2: We compare two independently trained nanoGPT-2 (125M) models with LR =
[6× 10−3, 6× 10−4] on OpenWebText data. (a) Pre-training curve with and without LAWA. LLMs
trained with higher LR observes higher gain due to LAWA. (b) The model trained with a high LR
generalizes poorly compared to its counterpart trained with low/tuned LR. (c) The generalization gap
caused by the high LR is effectively mitigated by LAWA.

2 Intuition and Method

2.1 Toy Setting

23 1

Interval

Figure 3: LAWA illustration: Given weights
W1,W2, ...Wk from a high LR trajectory separated
by k-stepsize (ν, Algorithm 1), LAWA computes
Wavg at a given step.2

We explain the setting using a simple toy prob-
lem of minimizing a two-dimensional loss func-
tion, represented as L(w1, w2), where w1 and
w2 are the parameters of the model. In this sce-
nario, there exists an optimal batch size, B0, and
an optimal learning rate, η0, that minimizes the
loss function. Assuming, for reasons outlined in
Section 1, we are compelled to use a batch size,
B, and a learning rate, η, such that both are sig-
nificantly larger than their optimal counterparts,
i.e., B ≫ B0 and η ≫ η0 respectively. Suppose
also that the loss function L(w1, w2) exhibits a
much higher curvature along w1, as compared to
w2. It is widely known that the updates from the
AdamW optimizer are mostly uniform across
all weight dimensions [23]. When η ≫ η0 the
weight updates of w2 will be accelerated, how-
ever this will cause oscillations along w1 which
in a long run adversely affects the convergence
of w1. A naive approach to mitigate this prob-
lem is to use a smaller LR or decay LR to 0,
which might hinder progress in flatter regions.
It is conceivable that a LLM might exhibit extremely heterogeneous curvatures exacerbating this
issue during pre-training.

2.2 Intuition of Our Approach

Optimization Viewpoint. We propose performing checkpoint averaging of model weights relatively
early during training with high learning rates (η). The rationale behind this step stems from the
fact that checkpoint averaging serves as a surrogate to LR decay, as demonstrated by Sandler et al.
[33]. However, this surrogate LR decay is decoupled from the weight update during optimization,
as checkpoint averaging is conducted in a post-hoc manner. Employing this simple technique, we
mitigate the oscillations in w1 while swiftly traversing through w2, achieving enhanced generalization
in fewer training steps as illustrated in Figure 3.

2Note that W refers to the set of weights {w1, w2, ...}.

3

Diversity Viewpoint. The practice of averaging the weights of model checkpoints is broadly
recognized as being functionally analogous to ensembling [12, 40]. In model ensembling literature it
is well established that diverse models improve the performance of the ensemble [19]. Therefore, it
is fair to assume that this principle also applies to model averaging as well. In our context, we define
the diversity of a model at two distinct training steps, 1

N

∑N
i=1 1

[
yW1
i ̸= yW2

i

]
which calculates

the number of disagreements between the two checkpoints. This equation computes the number
of samples from the same held-out set where the checkpoint W1 disagrees with checkpoint W2. A
recent study by Athiwaratkun et al. has demonstrated that a higher LR can result in the generation of
diverse model checkpoints. We observed (Figure 1) that this phenomenon can be further amplified by
sampling far apart checkpoints in terms of training step. We combine both these insights to induce
diversity in our checkpoints.

2.3 LAWA: LAtest Weight Averaging

We explain the Latest Weight Averaging (LAWA) algorithm below along with a python-style pseudo
code (Algorithm 1). As shown in Figure 3, LAWA maintains a first in first out (FIFO) queue of
periodically sampled checkpoints with a large number of intervening steps (ν) in between two
succesive samples. We adapt LAWA for our setting with minor modifications. Specifically, we
introduce k_stepsize (ν), and decoupled interval and k to effectively sample distant checkpoints in
the training run. The original LAWA algorithm [14] assumes interval = k.

LAWA runs a moving window at a predetermined interval to collect k latest checkpoints
on sequence of saved checkpoints θt. The LAWA derived checkpoints are computed as
θLAWA
t := 1

k

∑t
s=t−k θs where θt the original checkpoints are sampled several training steps

apart in the training process.

3 Experimental Setup

Algorithm 1 LAWA: Pytorch-style pseudocode

def LAWA(ckpts, interval, k, k_stepsize):
ckpts: list of checkpoints
k: number of checkpoints to average
k_stepsize: distance in training steps

between checkpoints
averaged_ckpts = []
for i in range(0, len(ckpts), interval):

start_idx = i - k
end_idx = i - 1
select last k checkpoints
with k_stepsize between each

checkpoint.
selected_ckpts = ckpts[end_idx-k+1:

end_idx+1:k_stepsize]
avg = average(selected_ckpts)
averaged_ckpts.append(avg)

return averaged_ckpts

NanoGPT-2 Experiments. We conduct
all our experiments utilizing autoregres-
sive decoder-style Large Language Mod-
els (LLMs), specifically nanoGPT-2 and
Pythia LLMs. We utilize three distinct
sizes of nanoGPT-2 models: small (125M),
medium (355M), and large (770M). We
train nanoGPT-2 models from scratch us-
ing the OpenWebText dataset, which in-
cludes 9 billion training tokens and 4.4
million validation tokens. Throughout the
experiments, we maintain a consistent se-
quence length of 1024 and a fixed batch
size of 131K tokens per batch, the latter
being the maximum batch size accommo-
dated by our GPUs. The configurations for
the model and pre-training were adapted
from Sophia’s [23] AdamW baseline, with
adjustments made to the learning rate and
batch size to align with our specific needs.
Notably, we trained all the models with learning rates that were ten times higher and batch sizes
that were twice as large compared to the configurations in [23], where the learning rate was tuned
through a grid search. We compare LAWA with the original pre-training recipe, EMA [35], and SWA
[12], which we adapt for LLMs. For EMA, we set the decay to 0.9 as per [14] and update the EMA
model at every step, which is a standard practice. For SWA, we adhere to the original pre-training
procedure until 75% completion, after which SWA training is initiated with a new SWA scheduler
(cosine annealing). We compute the SWA uniform average every 10 steps.

4

Model Size Layers Hidden Size Heads Learning Rate Equivalent Models

125M 12 12 768 6.0× 10−3 nanoGPT-2 (small)
335M 24 1024 16 3.0× 10−3 nanoGPT-2 (medium)
770 M 36 1280 20 2.0× 10−3 nanoGPT-2 (large)
1.0 B 16 2048 8 3.0× 10−4 —
2.8 B 32 2560 32 1.6× 10−4 GPT-Neo 2.7B, OPT-2.7B
6.9 B 32 4096 32 1.2× 10−4 OPT-6.7B
12 B 36 5120 40 1.2× 10−4 —

Table 1: Overview of models and their architecture from the nanoGPT-2 suite and Pythia suite [3]
used in our experiments. The model nomenclature for Pythia LLMs is pythia-xx with model size.
Models marked as “equivalent” have the same architecture and number of non-embedding parameters.

Pythia Experiments. The Pythia LLMs are publicly available in the Pythia suite [3]. We report
results on Pythia-1B, Pythia-2.8B, Pythia-6.9B, and Pythia-12B; Table.1 summarizes the details
of these models. For our experiments, we use intermediate model checkpoints; saved after every
1000 update steps. The models are trained by Biderman et al. [3] on the PILE dataset [8], a publicly
available, curated collection of English text corpus of size 800GB. The original PILE dataset is
curated using 5 different genres of data namely, academia, internet, prose, dialogue and miscellaneous.
The PILE dataset contains 300 billion tokens prior to deduplication, and this number reduces to
207 billion tokens after the deduplication process. Our experiments use Pythia models trained with
PILE-deduped dataset, as such models tend to memorize less [21]. The batch size for all the Pythia
models was set at 2.09 million tokens and the learning rate was scaled following [44].

10% 5% 3% 2% 1%
% increase in perplexity compared to final model perplexity

0

500

1000

1500

2000

2500

3000

3500

4000

G
PU

 h
ou

rs
 s

av
ed

Pythia-1B
Pythia-2.8B
Pythia-6.9B
Pythia-12B

Figure 4: LAWA saves significant amount of GPU
hours compared to original training. We compare
the savings in GPU hours as a function of increase
in final perplexity, i.e. perplexity achieved at 141K
training step by the original checkpoint. This plot
is created using a held out set from the training
subset PILE-philosophy papers.

Evaluation We evaluate the language mod-
elling performance of nanoGPT-2 models pre-
trained for 70K steps using log perplexity (per-
plexity and loss used interchangeably) on the
held-out/val set. For nanoGPT-2 we use the
moving window interval = 1K, k = 5 and we
sample checkpoints interval = 200,1K apart for
LAWA. Next we analyze the original training
trajectories of Pythia LLMs and demonstrate the
improvements achieved in test generalization
using LAWA. We also present zero-shot eval-
uation results on Lambada OpenAI [27], SciQ
[39], AI2 Reasoning Challenge-easy (ARC-e)
[6], and Wikitext [25]. We evaluate 4 Pythia
LLMs using the intermediate model checkpoints
on a subset of the test and validation dataset fol-
lowing the methodology prescribed by [42]. For
the purpose of evaluation we use the open source
library lm-evaluation harness3. We select
representative subsets from the diverse genres encompassed by the full PILE validation and test
dataset. This subset comprises PILE-philosophy papers, PILE-bookcorpus2, and PILE-YouTube
subtitles datasets.

We conduct zero-shot evaluation on the Pythia LLMs. For zero-shot evaluation we provide a natural
language description of the downstream task, along with a textual example. The models then generate
responses that are either open-ended or discriminatively select a proposed answer. This evaluation
setup serves as a robust academic benchmark, as it assesses Pythia models of various scales on
reasonably large PILE subsets and downstream datasets, both in terms of test performance and
zero-shot. For both the test generalization and zero-shot experiments, we evaluate model checkpoints
starting 21K steps to 141K steps (recall that subsequent checkpoints are 1K steps apart). Moreover, we
choose to slide the averaging window at 3K steps (i.e. interval = 3K) and average last k intermediate

3https://github.com/EleutherAI/lm-evaluation-harness

5

Models Steps Lambada openai ARC-easy SciQ BoolQ Average

LAWA Original LAWA Original LAWA Original LAWA Original LAWA Original

nanoGPT-2(125M) 50 K 33.77 27.65 44.65 44.07 74.10 71.60 52.08 48.26 51.15 47.89
70 K 35.57 33.57 44.65 44.36 75.8 74.6 54.31 54.43 52.5 51.74

nanoGPT-2(335M) 50 K 35.88 30.95 44.74 44.28 75.8 72.9 50.76 50.49 49.72 51.72
70 K 36.95 33.59 45.96 45.33 75.2 74.2 52.94 51.62 52.76 51.18

nanoGPT-2(770M) 50 K 31.28 28.08 42.21 40.99 65.2 65.1 58.17 51.1 49.21 46.31
70 K 33.51 29.92 43.6 42.72 68.2 67.7 56.39 52.6 50.42 48.23

Table 2: The zero-shot performance of nanoGPT-2 LLMs on academic question answering and
knowledge assessment downstream tasks is improved by LAWA. The checkpoints derived using our
recipe require fewer steps to reach higher zero-shot performance than the checkpoints derived using
original training.

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

60

65

70

75

80

85

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

120K 140K

(a) Philpapers

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

38

40

42

44

46

48

50

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(b) Bookcorpus2

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

80

100

120

140

160

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(c) Youtube Subtitles
Figure 5: LAWA speeds up convergence for Pythia-1B on subset of tasks from the original
pretraining dataset i.e. PILE. We present the original and the LAWA training trajectories for 3
different tasks from PILE namely philpapers, bookcorpus2 and youtube subtitles.

checkpoints as discussed in LAWA algorithm (Algorithm 1). Our selection of LAWA parameters
such as k = 5 and start step = 21K are based on the experiments discussed in Section B.1.

4 Results

4.1 Exploring LLM pre-training with nanoGPT-2 at small scale

LLMs trained with higher LRs observe higher gains with LAWA. We ran controlled experiments
to better understand the correlation between LR and gains due to checkpoint averaging. Initially
we train nanoGPT-2 small with two different LRs (6× 10−3, 6× 10−4), keeping batch size and all
relevant hyperparameters the same. 6× 10−4 is the assumed optimal LR computed using a grid
search reported in [23]. Subsequently, we pre-trained the same model using an LR of 6× 10−3,
which is tenfold higher in magnitude than the former. As shown in Figure 2(a), models trained with
higher LR observe higher gains compared to its counterpart trained with lower LR due to post hoc
checkpoint averaging in LAWA. From Figure 2(b) we observe that the model trained with a higher LR
converges faster but compromises on generalization, a phenomenon also observed by [16]. The gap
in generalization is effectively mitigated by checkpoint averaging through LAWA, as shown in Figure
2(c). Interestingly, we note that the training trajectory of LAWA approximates that of a model trained
with a lower LR. This is an important insight: checkpoint averaging acts as a surrogate for LR decay,
thereby enabling the model to be trained with a higher LR. In practical LLM pre-training scenarios,
where conducting a grid search is challenging due to the model’s size, adopting our proposed training
recipe could be advantageous. One might select a higher LR (that doesn’t cause divergence) and train
an LLM faster without compromising much generalization compared to conventional pre-training
strategy.

LAWA improves test generalization in fewer training steps compared to original pre-training
and relevant baselines. LAWA clearly outperforms the original pre-training run starting very early
on during training, as shown in Figure 1. Since we employed a reasonably high LRs for all the
nanoGPT-2 LLMs, we observe higher gains in the early-mid stages of pre-training, and the gains start
diminishing towards the final stages due to the LR scheduler that continuously decays the weight
throughout the training cycle. Additionally LAWA also outperforms important baselines such as EMA
and SWA. LAWA clearly has an edge over EMA throughout all training phases. Our experiments

6

Models Steps Lambada openai SciQ WikiText(↓) ARC-easy

LAWA Original LAWA Original LAWA Original LAWA Original

Pythia-1B

48 K 50.32 46.85 84.6 84.3 18.34 19.33 54.50 54.25
60 K 50.77 47.00 84.6 84.4 17.91 18.82 55.18 54.50

105 K 57.84 56.39 86.1 86.3 16.83 17.12 56.77 56.27
141 K 58.99 58.68 86.7 87.6 16.50 16.71 58.33 58.16

Pythia-2.8B

48 K 63.5 61.9 86.5 85.6 14.60 15.37 61.4 60.6
60 K 64.3 63.8 86.8 86.3 14.17 14.87 62.7 62.1

105 K 64.77 63.14 87.7 87.4 12.91 13.08 63.67 63.04
141 K 65.47 65.26 88.8 88.6 12.59 12.70 64.68 64.56

Pythia-6.9B

48 K 65.8 62.3 88.7 88.0 13.55 14.25 63.7 62.9
60 K 67.1 64.6 88.6 89.0 13.04 13.61 64.1 62.9

105 K 68.05 67.78 91.1 91.2 11.92 12.07 67.88 67.08
141 K 69.08 68.85 92.0 91.7 11.61 11.70 68.13 67.80

Pythia-12B

48 K 66.8 65.4 89.7 88.8 13.09 13.35 66.4 65.1
60 K 67.8 66.2 90.3 90.5 12.54 12.76 67.3 60.1

105 K 71.06 70.65 91.6 91.9 11.17 11.33 69.78 69.31
141 K 71.56 71.00 92.8 92.3 10.84 10.91 70.58 70.74

Table 3: LAWA improves zero shot performance of Pythia LLMs on academic question answering
and knowledge assessment downstream tasks starting very early on in the training. The checkpoints
derived using LAWA requires less steps to reach higher zero-shot performance than the checkpoints
derived using original training. We indicate the scores in bold font when the performance of LAWA
surpasses the final score (at 141K steps) obtained using the original training or achieves comparable
performance significantly earlier, specifically at 105K steps.

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

45

50

55

60

65

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

120K 140K

(a) Philpapers

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

30

32

34

36

38

40

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(b) BookCorpus2

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

50

60

70

80

90

100

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(c) Youtube Subtitles
Figure 6: LAWA speeds up convergence for Pythia-2.8B on subset of tasks from the original
pretraining dataset i.e. PILE.. We present the original and the LAWA training trajectories for 3
different tasks from PILE namely philpapers, bookcorpus2 and youtube subtitles.

also reveal that applying SWA during the early stages of training leads to divergence (Figure 11).
Consequently, LAWA outshines SWA in both performance and ease of implementation.

The gains due to LAWA amplifies with far checkpoint averaging. As shown in Figure 1, LAWA
with higher k_stepsize (ν) performs better particularly for larger models. Intuitively, we believe that
the diversity between nearby checkpoints might be very low given that larger models learn faster [22].
Hence, one needs to sample more distant checkpoints for larger models. This observation is also
consistent with billion-parameter Pythia LLMs, as shown in Figure 10.

4.2 Scaling to Billion parameter Pythia LLMs

Figures 5 and 6 illustrate that the checkpoints derived using LAWA demonstrate better test generaliza-
tion than the checkpoints saved during original training for the Pythia-1B and Pythia-2.8B models i.e.
(moderate size LLMs). In Figures 7 and 8, we observe significant improvements in test generalization
during early-mid training regime and minor improvements towards the end for both Pythia-6.9B
and Pythia-12B models. All the LAWA LLMs achieve lower perplexity with lesser training steps
compared to the original training trajectory, thereby saving significant amount of GPU hours (Figure
4), subsequent training costs and ingested training data. The savings are computed based on Table 4

7

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

40

45

50

55

60

65

70

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

120K 140K

(a) Philpapers

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

30

35

40

45

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(b) BookCorpus2

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

40

50

60

70

80

90

100

110

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(c) Youtube Subtitles
Figure 7: LAWA speeds up convergence for Pythia-6.9B on subset of tasks from the original
pretraining dataset i.e. PILE. We present the original and the LAWA training trajectories for 3
different tasks from PILE namely philpapers, bookcorpus2 and youtube subtitles.

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

35

40

45

50

55

60

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

120K 140K

(a) Philpapers

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

26

28

30

32

34

36

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(b) BookCorpus2

20K 40K 60K 80K 100K 120K 140K
Training Steps(K)

40

50

60

70

80

90

W
or

d
Pe

rp
le

xi
ty

LAWA
Original

(c) Youtube Subtitles
Figure 8: LAWA speeds up convergence for Pythia-12B on subset of tasks from the original
pretraining dataset i.e. PILE. We present the original and the LAWA training trajectories for 3
different tasks from PILE namely philpapers, bookcorpus2 and youtube subtitles.

in the appendix. Additionally, LAWA proves beneficial in situations where training similar models
from scratch is necessary but can only be conducted over a limited number of training steps due to
strict compute budgets.

To analyze the phenomenon wherein moderate size LLMs exibit higher gains compared to their larger
counterparts in test performance across both early-mid and final training trajectories, we delve into
the Pythia suite’s training methodologies. The authors of Pythia suite [3] report that they have used an
exceptionally large batch size (2M tokens) and learning rate for Pythia-1B and Pythia-2.8B models to
expedite the convergence. For the larger Pythia models, such as Pythia-6.9B and Pythia-12B, learning
rates are reduced to 1.2× 10−4 while maintaining the batch sizes to 2M tokens, in line with prior
work. Overall we observe thematically similar trends with the nanoGPT-2 experiments.

Recent work [15, 44, 37, 7, 41] report loss spikes– brief degradations in the performance along a
training trajectory when scaling up the model size, batch size, and learning rate. In our evaluations,
we observe two perplexity spikes (Figure 7). Interestingly, we find that LAWA mitigates the spikes
during evaluation quite effectively. This can be intuitively explained by the smoothing effect –
average out the outliers to fit the trend – resulting from averaging checkpoint weights over a range
of steps that are far apart. Note that since we have sampled the checkpoints at an interval of 3K for
LAWA, we may have inadvertently overlooked some checkpoints exhibiting loss spikes in models
other than Pythia-6.9B. 7

4.3 Improved Zero-shot performance

LAWA enhances the zero-shot performance of both nanoGPT-2 and Pythia LLMs (Table 2). In
the nanoGPT-2 models, we assess zero-shot performance at 50K and 70K steps, revealing that the
checkpoints generated using LAWA at 50K consistently outperform original checkpoints—derived
from conventional at 50K training steps (always) and also at 70K training (in the majority of
instances).

For Pythia LLMs LAWA improves the zero-shot performance in several ways. First, we observe
that zero-shot performance of early-mid checkpoints (48K, 60K) achieves higher performance
almost consistently, regardless of the scale as shown in Table 3. For instance, the LAWA Pythia-1B
checkpoint evaluated at 24K steps on the Lambada OpenAI task achieves higher accuracy than the
original checkpoint evaluated at the 48K step. We note that the checkpoints derived using LAWA also
exhibit improvements in the later stages of training (105K,141K) on the majority of tasks, highlighted
by the bolded numbers in Table 3. Moreover, we consistently witness gains until 105K steps across all

8

models, which constitutes approximately 75% of the total training steps. Therefore our recipe proves
to be beneficial in a compute optimal LLM training scenario where early stopping is employed at 75%
of total training. Additionally, we find that our LAWA derived checkpoints of Pythia-6.9B reach the
final accuracy/perplexity on multiple downstream tasks considerably earlier, specifically at the 105K
step mark. Intuitively, we know that higher zero-shot performance on various different downstream
tasks is associated with low perplexity in language modelling during training, a correlation that is
mathematically substantiated [34]. Therefore, all the observations we made in Section 4.1 naturally
apply to zero-shot performance as well.

4.4 Diffusion models

300K 400K 500K 600K 700K 800K
Training steps

8

9

10

11

12

13

14

FI
D

sc
or

e
(e

va
l)

Original
LAWA K=2, =20k
LAWA K=3, =20k

Figure 9: LAWA speeds up the convergence for
Image diffusion model, measured in terms of FID
on the evaluation set for ImageNet-128x128.

We also experiment with image diffusion mod-
els to gauge the effectiveness of LAWA on gen-
erative models beyond language. The underly-
ing model is a 422M parameter UNet [32, 10]
trained with ϵ-prediction objective and stan-
dard cosine schedule [10] on ImageNet 128x128
dataset. The model was trained with the Adam
[17] optimizer using a learning rate of 1e-4. Fig-
ure 9 shows the FID on the evaluation set for the
baseline checkpoints and LAWA averaging over
the baseline checkpoints. Note that the baseline
checkpoints themselves are obtained using the
Exponential Moving Average (EMA) with de-
cay rate of 0.9999 over the training trajectory,
following the standard practice in training diffu-
sion models. It is noteworthy that LAWA checkpoint averaging improves the FID over the already
EMA’ed checkpoints. We defer a more thorough empirical investigation of LAWA for the family of
diffusion models to future work.

5 Related work

Weight Averaging (WA) has been studied and employed since the 1960s, predominantly in
simple linear [20] and convex settings [28, 26]. Recent WA approaches in deep learning can be
broadly classified into two categories; First, approaches that simultaneously trains multiple models
with different initialization and hyper-parameters [40, 30, 13, 29] to later average them for better
generalization. Second, approaches that focus on improving generalization of the final model or
models close to convergence [36, 12, 2, 43, 4]. Stochastic WA (SWA) [12] employs a similar
technique of averaging checkpoints along training trajectories but only works in the later stages of
training (i.e. post 75% of the training run) with a new LR scheduler. This unsual halting and restarting
the training with SWA with a new schedular limits its integration. We also show that SWA when
applied early on during training diverges (Section B.2). Our recipe focuses on getting early gains
through early averaging and can be generally applied to a wide range of training regimes. We expand
the key differences of our work with SWA in Appendix A.

6 Conclusion and Future Work

In this paper we investigated a LLM pre-training setting where the LR is significantly higher than
what is conventionally used. This scenario is particularly practical as LLMs are often trained using
numerous GPUs in parallel, necessitating higher batch sizes for optimal GPU utilization. Here we
introduce early weight averaging throughout the training trajectory utilizing LAWA. Our findings
indicate that this strategy enables LLMs to generalize more effectively in fewer steps compared to
the original pre-training scheme, and key baselines as demonstrated using nanoGPT-2 and Pythia
models. Looking forward we see several extensions of our work in the realm of federated fine-tuning
and continual training of intermediate checkpoints.

9

References
[1] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and A. Wilson. There are many consistent

explanations of unlabeled data: Why you should average. International Conference on Learning
Representations, 2018.

[2] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. Improv-
ing consistency-based semi-supervised learning with weight averaging. arXiv preprint
arXiv:1806.05594, 2(9):11, 2018.

[3] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
language models across training and scaling. arXiv preprint arXiv: Arxiv-2304.01373, 2023.

[4] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural
Information Processing Systems, 34:22405–22418, 2021.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways. GOOGLE, 2022.

[6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018.

[7] Nolan Dey, Gurpreet Gosal, Zhiming, Chen, Hemant Khachane, William Marshall, Ribhu
Pathria, Marvin Tom, and Joel Hestness. Cerebras-gpt: Open compute-optimal language models
trained on the cerebras wafer-scale cluster. arXiv preprint arXiv: Arxiv-2304.03208, 2023.

[8] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv: Arxiv-2101.00027,
2020.

[9] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv: Arxiv-1706.02677, 2017.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[11] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[12] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In Amir Globerson
and Ricardo Silva (eds.), Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pp. 876–885.
AUAI Press, 2018. URL http://auai.org/uai2018/proceedings/papers/313.pdf.

10

http://auai.org/uai2018/proceedings/papers/313.pdf

[13] Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien.
Population parameter averaging (papa). arXiv preprint arXiv: Arxiv-2304.03094, 2023.

[14] Jean Kaddour. Stop wasting my time! saving days of imagenet and bert training with latest
weight averaging. arXiv preprint arXiv:2209.14981, 2022.

[15] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[16] Simran Kaur, Jérémy E. Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue
and generalization. ICBINB, 2022. doi: 10.48550/arXiv.2206.10654.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv: 1404.5997, 2014.

[19] Balaji Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. NIPS, 2016.

[20] Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation:
How far does constant step-size and iterate averaging go? In International Conference on
Artificial Intelligence and Statistics, pp. 1347–1355. PMLR, 2018.

[21] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris
Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language models
better. arXiv preprint arXiv: Arxiv-2107.06499, 2021.

[22] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, K. Keutzer, D. Klein, and Joseph Gonzalez.
Train large, then compress: Rethinking model size for efficient training and inference of
transformers. International Conference On Machine Learning, 2020.

[23] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv: 2305.14342,
2023.

[24] Sadhika Malladi, Kaifeng Lyu, A. Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Neural Information Processing Systems, 2022. doi:
10.48550/arXiv.2205.10287.

[25] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

[26] Gergely Neu and Lorenzo Rosasco. Iterate averaging as regularization for stochastic gradient
descent. In Conference On Learning Theory, pp. 3222–3242. PMLR, 2018.

[27] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Q. N. Pham, R. Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and R. Fernández. The lambada dataset: Word
prediction requiring a broad discourse context. Annual Meeting Of The Association For
Computational Linguistics, 2016. doi: 10.18653/v1/P16-1144.

[28] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

[29] Alexandre Rame, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Leon Bottou, and David Lopez-
Paz. Model ratatouille: Recycling diverse models for out-of-distribution generalization.

[30] Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, patrick gal-
linari, and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
tq_J_MqB3UB.

11

https://arxiv.org/abs/1609.07843
https://openreview.net/forum?id=tq_J_MqB3UB
https://openreview.net/forum?id=tq_J_MqB3UB

[31] Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei
Li, Xiaoda Zhang, A. V. Podolskiy, G. Arshinov, A. Bout, Irina Piontkovskaya, Jiansheng Wei,
Xin Jiang, Teng Su, Qun Liu, and Jun Yao. Pangu-Σ: Towards trillion parameter language model
with sparse heterogeneous computing. ARXIV.ORG, 2023. doi: 10.48550/arXiv.2303.10845.

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18, pp. 234–241. Springer, 2015.

[33] Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, and Nolan Miller. Training trajectories,
mini-batch losses and the curious role of the learning rate. arXiv preprint arXiv:2301.02312,
2023.

[34] Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why
language models help solve downstream tasks. International Conference On Learning Repre-
sentations, 2020.

[35] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. Computer Vision And Pattern Recognition, 2015.
doi: 10.1109/CVPR.2016.308.

[36] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30, 2017.

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ARXIV, 2023.

[38] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv: 2307.09288, 2023.

[39] Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. ArXiv, abs/1707.06209, 2017.

[40] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

[41] Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. arXiv
preprint arXiv: Arxiv-2304.13013, 2023.

[42] M. Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen,
Luke Zettlemoyer, and V. Stoyanov. Training trajectories of language models across scales.
ARXIV.ORG, 2022. doi: 10.48550/arXiv.2212.09803.

12

[43] Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, and
Chris De Sa. Swalp: Stochastic weight averaging in low precision training. In International
Conference on Machine Learning, pp. 7015–7024. PMLR, 2019.

[44] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open pre-trained transformer language models. ARXIV.ORG, 2022.

13

Supplementary Materials: Appendix

Contents

• A: Additional Related Work.

• B: Supplementary Experiments and Results.

• C: Compute Details.

A Additional Related Work

This section serves as a supplement to the main related work detailed in Section 5. Here we further
elaborate on a prior work-SWA, and highlight the key differences of LAWA in the backdrop of
training LLMs. SWA [12] is a checkpoint averaging scheme similar to LAWA but is extensively
used in vision settings. In this paper we adapt SWA (also EMA) for LLM pre-training setting and
presented it as a key baseline. The major differences of our recipe and SWA are listed below.

• In the SWA approach the checkpoints are averaged post 75% of regular training, i.e. close
to convergence. This phase of training is termed as SWA training. Moreover the gain in
generalization through SWA method is achieved at the end of training. In contrast, LAWA
averages checkpoints very early on during training (post 10-15% of training) and achieves
gains in test and zero-shot generalization with fewer training steps (less than 100% TB).
SWA when applied early on during training performs poorly due to divergence of the training
curve as shown in Figure 11.

• SWA modifies the learning rate scheduler mid-training and requires different learning rate
schedulers for different architectures. Additionally, for models employing batch normaliza-
tion, it necessitates a full pass over the entire dataset to update batch normalization statistics.
LAWA is free from these constraints and is simpler to implement for large scale training.

B Supplementary Experiments and Results

40 60 80 100 120
Training Steps(K)

38

40

42

44

46

48

W
or

d
Pe

rp
le

xi
ty

Original
k=2
k=5
k=10

(a)

40 60 80 100 120
Training Steps(K)

38

40

42

44

46

48

W
or

d
Pe

rp
le

xi
ty

Original
k=2, =1K
k=2, =2K
k=2, =5K
k=2, =10K
k=5, =1K
k=5, =2K
k=5, =5K
k=5, =10K

(b)
Figure 10: Ablations studying test performance as a function of (a) number of checkpoints to be aver-
aged k = {2, 5, 10} at ν = 1K, (b) distance of checkpoints to be averaged ν = {1K, 2K, 5K, 10K}
at k = {2, 5}. The checkpoints used for ablations is Pythia-1B.

B.1 Ablations

We perform ablations to better understand the interplay between the performance of number of
checkpoints to be averaged θLAWA

t with varying k and distance between averaged checkpoints ν in
training. We study the Pythia-1B model with held-out subset of PILE-bookcorpus2. Additionally, we
also provide training trajectory of Pythia-1B model on a subset of PILE datasets much earlier than
21K steps (refer Section B).

14

0 10000 20000 30000 40000 50000 60000 70000
Training steps (K)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss

75
%

 tr
ai

ni
ng

(a) GPT-2 small (125M)

Original
SWA Early
SWA Late

(a)

0 10000 20000 30000 40000 50000 60000 70000
Training steps (K)

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss 75
%

 tr
ai

ni
ng

(a) GPT-2 medium (355M)

Original
SWA Early
SWA Late

(b)

0 10000 20000 30000 40000 50000 60000 70000
Training steps (K)

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
Lo

ss

75
%

 tr
ai

ni
ng

(a) GPT-2 large (770M)

Original
SWA Early
SWA Late

(c)

Figure 11: Across all model sizes (125M, 355M, 770M), we observe that the early version of
stochastic weight averaging diverges, in contrast to the originally proposed late version.

Test Performance with varying k and fixed ν = 1K. We investigate the impact of varying k on
the model’s test performance, while keeping ν constant at 1K. Our aim is to determine the optimal
number of checkpoints to include in the average when selecting the latest k checkpoints following the
LAWA approach. As outlined in Section 3, the Pythia checkpoints are saved at a frequency of 1K, so
we have maintained ν at 1K for this analysis. From Figure 10(a), it is apparent that a smaller k could
be detrimental, but performance remains fairly stable for reasonably large k values. Consequently, for
our LLM experiments, we opted for k = 5 since k = 10 tends to occupy a substantial amount of disk
space, especially for larger models such as Pythia-12B.

Test Performance with varying ν for k = {2, 5}. Memory requirements remain a key bottleneck
in saving model checkpoints throughout the training trajectory particularly for extremely large
billion parameter models. Therefore, it is very interesting to know how far away checkpoints in a
training trajectory can be averaged? We investigate this question with far checkpoint averaging at
ν = {1K, 2K, 5K, 10K} training steps apart for k = {2, 5}. As shown in Figure 10(b), we observe
for both k = 2 and k = 5, we find that averaging more recent checkpoints (keeping ν small) works
better than averaging stale weights (higher ν). For instance LAWA using k = 5 and ν = {1K, 2K}
consistently performed better than against LAWA with other parameters. Overall, we empirically find
that a moderate number of checkpoints (k = 5) saved in smaller frequencies (ν = 1K) works best.

B.2 Early-SWA Experiments

Stochastic Weight Averaging [12] has previously shown gains for smaller models, particularly in
late stages of training (typically > 75%). We experimented with initializing SWA in early stages of
training. As shown in Figure 11, we observe that it diverges quickly - showing that SWA does not
provide any gains earlier in training.

10 20 30 40 50 60
Training Steps(K)

40

50

60

70

80

W
or

d
Pe

rp
le

xi
ty Phase transition

Original
LAWA

(a) BookCorpus2

10 20 30 40 50 60
Training Steps(K)

60

80

100

120

140

160

180

200

W
or

d
Pe

rp
le

xi
ty

Phase transition

Original
LAWA

(b) Enron Emails

Figure 12: Early weight averaging doesn’t work at the very beginning of the training but works
reasonably early during the training process. Here we compare original and LAWA early training
trajectories for Pythia-1B model on 2 different tasks namely bookcorpus2 and enron emails using
held out set.

15

Algorithm 2 Pytorch-style pseudocode of EMA/SWA

def EMA_SWA(ckpt , alpha , step_size , init_point):
"""
ckpt: list of data points (could be checkpoints or any data series)
alpha: smoothing factor , 0 < alpha <= 1. If alpha < 0, enables SWA.
step_size: How often to calculate average. Typically set to 1 for EMA.
init_point: Step after which to start averaging. Typically 0 for EMA.
"""
Initialize the series with the first data point
series = [ckpt [0]]
n_models = 1
for i in range(1, len(ckpt)):

Calculate EMA/SWA
if i%step_size ==0 and i>init_point:

if alpha < 0:
factor = n_models /(n_models + 1)
value = (1 - factor) * series[i-1] + factor * ckpt[i]
n_models += 1

else:
value = (1 - alpha) * series[i-1] + alpha * ckpt[i]

series.append(value)

return series

Model 2k 0.2 0.4 0.6 0.8 Model 20k
Alpha

50

60

70

80

90

100

110

120

W
or

d
Pe

rp
le

xi
ty

Word perplexity

(a)

Model 10k 0.2 0.4 0.6 0.8 Model 30k
Alpha

46

48

50

52

54

56

W
or

d
Pe

rp
le

xi
ty

Word perplexity
trendline

(b)

Model 80k 0.2 0.4 0.6 0.8 Model 140k
Alpha

38.0

38.5

39.0

39.5

40.0

40.5

41.0

W
or

d
Pe

rp
le

xi
ty

Word perplexity
trendline

(c)

Figure 13: The model checkpoints attains linear mode connectivity quite early but not at the
very beginning of the training process. We plot word perplexity as a function of the model derived
from the convex combination of 2 different checkpoints i.e. θLMC at α = {0, 0.2, 0.4, 0.6, 0.8, 1}.
In (a) we see an error barrier that means model checkpoint at 2K and 20K are not linear mode
connected, whereas both (b) and (c) shows the checkpoints under consideration are linear model
connected.

B.3 Phase Transition and Linear Mode Connectivity

Averaging very initially i.e. before 8K steps during training may not always yield beneficial results
(Figure 12). However, the technique does start showing efficacy fairly early in the training process.
We highlight this phenomenon by presenting experimental results with the Pythia-1B model using
a held-out set of PILE-bookcorpus2 and PILE-enron emails. We observe that LAWA trajectory
undergoes a phase transition at the 8K training step. Beyond this transition, significant improvements
in test performance can be seen. Such a phase transition may not occur for all Pythia LLMs. Following
this phenomenon we presented our results starting 21K steps in Figures 5-8. We further examine this
phenomenon through the lens of linear mode connectivity.

To better comprehend the linear model connectivity of checkpoints, we perform a convex combination
of model checkpoints at different training stages. For instance, a model checkpoint at 2K and 20K
can be combined in this manner: α× θ2k + (1− α)× θ20k. In Fig. 10, we plot word perplexity as a
function of α using PILE-bookcorpus2. Here we observe that initially the model checkpoints are
not linear mode connected. However, based on the evaluated checkpoints shown in Figure 13, we
posit that the model checkpoint attains linear mode connectivity (LMC) quite early and maintains
this property until the end of training.

16

C Amount of Compute

We compute the savings in GPU hours based on the Table. 6 of Pythia suite [3] as shown below.

Model Size GPU Count Total GPU hours required

1.0 B 64 4,830
2.8 B 64 14,240
6.9 B 128 33,500
12 B 256 72,300

Total 136,070

Table 4: Table from [3]. Model sizes in the Pythia suite, number of GPUs used during training, and
the total number of GPU hours, calculated as (iteration time (s) × number of iterations × number of
GPUs ÷ 3600 s/hour). All GPUs are A100s with 40GB of memory.

17

	Introduction
	Intuition and Method
	Toy Setting
	Intuition of Our Approach
	LAWA: LAtest Weight Averaging

	Experimental Setup
	Results
	Exploring LLM pre-training with nanoGPT-2 at small scale
	Scaling to Billion parameter Pythia LLMs
	Improved Zero-shot performance
	Diffusion models

	Related work
	Conclusion and Future Work
	Additional Related Work
	Supplementary Experiments and Results
	Ablations
	Early-SWA Experiments
	Phase Transition and Linear Mode Connectivity

	Amount of Compute

