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ABSTRACT

Reinforcement learning (RL) is emerging as a powerful paradigm for enabling
large language models (LLMs) to perform complex reasoning tasks. Recent ad-
vances indicate that integrating RL with retrieval-augmented generation (RAG)
allows LLMs to dynamically incorporate external knowledge, leading to more in-
formed and robust decision making. However, we identify a critical challenge dur-
ing policy-driven trajectory sampling: LLMs are frequently trapped in unproduc-
tive reasoning paths, which we refer to as “dead ends”, committing to overconfi-
dent yet incorrect conclusions. This severely hampers exploration and undermines
effective policy optimization. To address this challenge, we propose REX-RAG
(Reasoning Exploration with Policy Correction in Retrieval-Augmented Gener-
ation), a novel framework that explores alternative reasoning paths while main-
taining rigorous policy learning through principled distributional corrections. Our
approach introduces two symbiotic innovations: (1) Mixed Sampling Strategy,
which combines a novel probe sampling method with exploratory prompts to
escape dead ends; and (2) Policy Correction Mechanism, which is essential for
correcting the distributional shifts introduced by exploration. REX-RAG demon-
strates that effective exploration is only viable when paired with such a rigorous
correction. We evaluate it on seven question-answering benchmarks, and the ex-
perimental results show that REX-RAG achieves average performance gains of
5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demon-
strating competitive results across multiple datasets. Anonymous repository is
provided on https://anonymous.4open.science/r/REX-RAG.

1 INTRODUCTION

Recent advances have shown that reinforcement learning (RL) offers a promising avenue for training
large language models (LLMs) to perform complex reasoning tasks (Ouyang et al., 2022; Chen et al.,
2025b). By integrating multi-step reasoning with retrieval-augmented generation (RAG), RL-trained
LLMs can dynamically leverage external knowledge sources—essentially allowing them to “think
while searching” (Chen et al., 2025a; Jin et al., 2025b). This paradigm holds particular promise for
multi-hop question answering, where models must iteratively gather and synthesize evidence across
multiple queries to arrive at well-founded conclusions (Jin et al., 2025a).

Despite this potential, we observe a critical challenge that substantially hinders policy optimization
in such settings. During RL training, LLMs frequently become trapped in what we term “dead ends”
, which is defined as a state in the reasoning process where all sampled trajectories consistently fail
to reach a correct final answer. This phenomenon often stems from premature or overconfident
conclusions drawn despite insufficient supporting information, effectively terminating exploration
along potentially fruitful reasoning paths (Yue et al., 2025; Wen et al., 2025; Liu et al., 2025).

Addressing this challenge requires mechanisms that can proactively explore alternative reasoning
paths when initial trajectories prove unproductive. A straightforward solution is self-reflection (Guo
et al., 2025; Jin et al., 2025b), which attempts to revise failed reasoning chains to generate alternative
ones. However, we observe that these revised trajectories are often merely slight perturbations of the
original paths, offering limited novelty and insufficient deviation to meaningfully explore alternative
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(b) Training Dynamics: REX-RAG (red) consis-
tently achieves a higher success rate and a lower
dead-end rate compared to the self-reflection
baseline (blue) throughout training. The shaded
areas correspond to the variance.

Figure 1: REX-RAG addresses the challenge of “dead ends” in RL-based RAG. Subfigure (a) illus-
trates how self-reflection fails to escape incorrect reasoning paths, while REX-RAG’s guided explo-
ration opens up new possibilities. Subfigure (b) provides empirical evidence, showing REX-RAG’s
superior performance in success rate and its effectiveness in reducing dead ends during training.

solutions. Consequently, it struggles to escapee from dead-end paths, as illustrated in Fig. 1(a). In
our experiments with Qwen2.5-3B model on multiple datasets, self-reflection consistently results in
a high incidence of “dead ends”. This phenomenon surpasses 85% in the early phases (nearly first
50 epochs) of RL training and significantly impedes effective policy learning, as shown in Fig. 1(b).

On the other hand, more aggressively enforcing exploration, such as introducing additional
agents (Xiong et al., 2025; Nguyen et al., 2025), makes end-to-end optimization challenging due
to the complexity of jointly training multiple components. This challenge underscores the need
for principled strategies that can foster sufficiently diverse and informative exploration while en-
suring stable and unbiased policy optimization without compromising the end-to-end learning
paradigm (Feng et al., 2025). This creates a fundamental exploration-optimization dilemma.

To address this challenge, we propose REX-RAG (Reasoning EXploration with Policy Correction
in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths
while maintaining rigorous policy learning through principled distributional corrections. Our frame-
work incorporates an exploratory probe policy that collaborates with the standard policy to escape
from the “dead ends”, as shown in Fig. 1 (a).

For exploration, REX-RAG introduces Mixed Sampling Strategy. Unlike self-reflection methods
that result in minor variations of failed path, this strategy is designed to induce diverse reasoning
trajectories. Specifically, when the policy encounters “dead end”, it surgically injects a curated
reasoning prompt, fundamentally altering the generation context. This forces the model to break
from its failing logic and explore new solution paths, rather than merely re-attempting similarly.

Such an exploration strategy is only viable if its impact on policy optimization can be rigorously
managed. This is achieved by Policy Correction Mechanism, which makes exploration stable and
trainable. This mechanism unifies two distinct trajectories from the origin policy and the probe
policy under a single, low-bias optimization objective. By leveraging importance sampling to pre-
cisely re-weight the contributions of each component in the trajectory, it corrects for the inherent
distribution shift introduced by exploration (Yan et al., 2025; Tan et al., 2025).

Extensive experiments on multi-hop question answering benchmarks demonstrate that REX-RAG
significantly outperforms existing methods, achieving substantial improvements in both answer ac-
curacy and reasoning quality. On average, it outperforms strong baselines by 5.1% on Qwen2.5-3B
and 3.6% on Qwen2.5-7B. Furthermore, as shown in Fig. 1(b), our analysis reveals that the frame-
work successfully escapes dead ends while maintaining stable policy learning, with consistently
higher success rates and lower dead end rates compared to self-reflection approaches, validating the
effectiveness of our principled exploration strategy.
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The main contribution can be concluded that: (1) We identify and formalize the “dead end” problem
in RL-based RAG training, demonstrating its significant impact on policy optimization, posing a
substantial obstacle to effective policy learning. (2) We propose REX-RAG, whose innovation
lies in a symbiotic design that resolves the exploration-optimization dilemma in RL-based RAG.
Policy Correction Mechanism underpins the principled exploration of Mixed Sampling Strategy by
correcting the distributional shifts inherent, providing a stable, end-to-end solution that harmonizes
these competing objectives. (3) We achieve substantial improvements over strong baselines (5.1%
on Qwen2.5-3B and 3.6% on Qwen2.5-7B) on multiple open-domain QA benchmarks.

2 RELATED WORK

Retrieval-Augmented Generation. RAG (Lewis et al., 2020) has fundamentally transformed how
language models access and utilize external knowledge. The RAG framework combines search en-
gines with LLMs, enabling them to ground responses in retrieved documents (Arslan et al., 2024).
This paradigm has proven particularly effective for knowledge-intensive tasks where parametric
knowledge alone is insufficient (Mallen et al., 2023). For multi-hop reasoning tasks, several ap-
proaches have emerged (Asai et al., 2024; Gao et al., 2025), for example, IRCoT (Trivedi et al.,
2023) interleaves retrieval with chain-of-thought reasoning, allowing models to iteratively gather
evidence across multiple steps. These pioneering RAG methods have laid a strong foundation for
subsequent RL-based approaches, which deeply integrate the retrieval and reasoning processes.

Reinforcement Learning with Verifiable Rewards (RLVR). The integration of RLVR and RAG
has opened new avenues for training LLMs to perform complex reasoning tasks, and yielded im-
pressive results (Zheng et al., 2025; Mei et al., 2025; Qian & Liu, 2025). Recent advances include
reasoning-oriented models that employ RL to improve step-by-step reasoning capabilities (Sun et al.,
2025; Wu et al., 2025; Li et al., 2025c). In the context of RAG, Search-R1 (Jin et al., 2025b) rep-
resents a pioneering and excellent effort to apply RL for training LLMs to dynamically interact
with search engines. However, as noted in empirical studies (Jin et al., 2025a), existing RL ap-
proaches (Song et al., 2025) for reasoning-search interleaved agents face challenges in exploration
efficiency and training stability.

3 METHOD

3.1 PRELIMINARY

RAG Task Formulation RAG addresses this limitation of LLMs when answering complex ques-
tions that require external knowledge beyond their training data. Formally, given a question q and
a golden answer a from a dataset D = {(qi, ai)}ni=1, the LLM alternates between generation and
retrieval. At each step, it generates reasoning text or a search query, which is used to retrieve
documents d = {d1, d2, . . . , dk} from an external knowledge source R (e.g., a search engine or
database), and produces a final answer.

RLVR Enhanced RAG RLVR extends the RAG framework by integrating retrieval and reasoning
into a reinforcement learning loop (Li et al., 2025b). The learning process is guided by a verifiable
reward signal based on an objective correctness criterion, such as exact match. Formally, for each
question-answer pair (q, y), the reward signal r(q, y) provides feedback indicating whether the gen-
erated answer satisfies predefined verification criteria.

GRPO Algorithm GRPO (Shao et al., 2024) is an emerging RL algorithm for training LLM poli-
cies. Formally, GRPO trains a target policy LLM πθ using trajectories collected from a previous
policy πθold . The goal is to maximize the expected reward while keeping the learned policy close to
a fixed reference policy πref (e.g., the pre-trained LLM prior to RL fine-tuning), ensuring training
stability. For a given query q, GRPO generates multiple trajectories through rollouts and computes
a normalized reward as the advantage. Moreover, for readability, the descriptions related to GRPO
in the main text do not distinguish between πθold and πθ.
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Figure 2: Overview of REX-RAG. (a) Overall framework architecture; (b) Mixed Sampling Strategy
in Rollout Phase that combines policy and probe sampling; (c) Policy Correction Mechanism in
Update Phase that corrects distribution shift.

3.2 REX-RAG FRAMEWORK

In this work, we propose REX-RAG, a novel framework that addresses the exploration challenge in
RLVR-based RAG through two key innovations. As illustrated in Fig.2, during the Rollout Phase
(Fig. 2 (b)), a Mixed Sampling Strategy generates diverse trajectories by combining actions from
both the target policy πθ and the probe policy πε to escape “dead ends”. In the subsequent Update
Phase (Fig. 2 (c)), a Policy Correction Mechanism applies importance sampling to correct distri-
bution shifts introduced by mixed sampling, ensuring stable policy learning while incorporating
insights from exploratory rollouts.

Framework Details REX-RAG is implemented using GRPO (Sec. 3.1) as the underlying rein-
forcement learning algorithm. Regarding the prompt format, we follow the Search-R1 protocol (Jin
et al., 2025b), which uses specialized tokens to define actions like searching and answering. This
allows the model to autonomously interact with the search engine. The specific actions are detailed
in the Appendix F. The reward function is a rule-based exact match, assigning a reward of 1 if the
model’s answer exactly matches the ground truth, and 0 otherwise.

3.3 MIXED SAMPLING STRATEGY

The Mixed Sampling Strategy enhances exploration by employing a mixed behavior policy that
combines trajectories from both the current policy πθ and the probe policy πε, thus, the mixed
behavior policy can be formulated as:

µ = {πθ, πε}. (1)

Specifically, the strategy adaptively samples from both policies to maintain exploration diversity.
It operates through a two-stages process: first sampling trajectories from the LLM policy, then
adaptively performing probe sampling based on the proportion of incorrect paths.

Adaptive Probe Re-sampling To effectively balance exploration and exploitation, REX-RAG in-
troduces an adaptive probe re-sampling mechanism that dynamically adjusts the degree of explo-
ration based on the observed performance of the current policy.

The exploration process begins by sampling n trajectories for each question. After collecting the
corresponding rewards {r1, r2, . . . , rn}, where each ri ∈ [0, 1], additional exploratory trajecto-
ries are sampled in an adaptive manner. Specifically, each trajectory is resampled with probability
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p(1 − ri), where p ∈ [0, 1] is a hyperparameter that controls sampling ratio. This adaptive mecha-
nism encourages more exploration when the policy underperforms and less when it performs well.
Consequently, for each question, the expected number of resampled trajectories is given by:

m = p

n∑
i=1

(1− ri). (2)

Construction of Probe Policy To enable effective exploration, the probe policy πε is constructed
using a simple prompt-guided augmentation strategy, which generates exploratory trajectories by
injecting exploratory guidance into the original reasoning process.

Each exploratory trajectory o′ is composed by concatenating three components:

o′ = o′origin ⊕ o′prompt ⊕ o′probe, (3)

where⊕ denotes sequence concatenation. As formulated in the equation, each exploratory trajectory
o′ consists of three parts: o′origin, which is the original model rollout up to the point where it produces
an incorrect or premature answer, preserving the initial reasoning context; o′prompt, an exploration
prompt sampled from a curated prompt pool P designed to inject alternative reasoning directions;
and o′probe, a new continuation generated by the target model πθ conditioned on the modified context.

The prompt pool P is constructed by rephrasing a comprehensive reflection prompt into k diverse
fragments using GPT-4.5 (OpenAI, 2025). Each fragment represents a distinct reasoning strategy or
question reformulation, designed to stimulate exploration and diversify model behavior. The full list
of base prompts and their derived fragments, as well as an empirical analysis of prompt impact, are
provided in Appendix G and A.2.

3.4 POLICY CORRECTION MECHANISM

Distribution Shift Chanllenge If the mismatch between the behavior policy µ = {πθ, πε} and the
target policy πθ introduced by the mixed sampling strategy is not addressed, model-generated sam-
ples are systematically underweighted, whereas tokens from exploration prompts are overweighted.
As a result, tokens in inserted spans with negative advantages may be excessively penalized, poten-
tially falling outside πθ’s support, whereas regions with positive advantages risk entropy collapse
due to overly concentrated probabilities. Although GRPO’s clipping trick partially addresses these
issues, it does not apply during the first update in each training step, leaving the problem unresolved.
Fundamentally, using an on-policy estimator in an off-policy setting introduces estimation bias and
instability. For detailed mathematical analysis, refer to Appendix B.2. To mitigate this, we propose
a Policy Correction Mechanism (Fig. 2 (c)), which reduces distribution shift and gradient bias via
two steps: (i) Trajectory Filtering, and (ii) Distribution Realignment.

Trajectory Filtering A trajectory filtering mechanism is first introduced to preferentially select
rollouts from the probe policy that closely approximate the target policy, thereby mitigating insta-
bility and bias. Specifically, trajectories o′ are filtered according to their log-likelihood under the
current policy πθ, retaining those consistent enough with it. The retention ratio is controlled by a
hyperparameter α. After filtering, for each question t, the retained trajectories are combined with
those generated from the target policy:

Ot =
{
oi | oi ∼ πθ

}G

i=1
∪

{
o′j | o′j ∼ πε

}αG

j=1
. (4)

Distribution Realignment Despite the trajectory filtering, a significant distributional mismatch
still exists between the mixed behavior policy µ and the target policy πθ. Specifically, we first define
the distribution of the Probe Policy through a principled realignment mechanism. Then, leveraging
the theory of multiple importance sampling, we derive a custom optimization objective.

Probe Policy Definition is nontrivial because the probe policy constructs trajectories by augmenting
original rollouts with injected prompts and subsequent continuations. To model πε accurately, tra-
jectories are decomposed into segments, each modeled individually under πε. Specifically, the prefix
segment is treated as sampled from a truncated version of πθ conditioned on failure, where z repre-
sents the empirical failure rate. The prompt segment is deterministically selected and modeled by an
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empirical probability mass function (PMF) over the prompt pool. Finally, the continuation segment
is sampled directly from πθ and thus requires no correction. The probe policy is thus defined as:

πε(o
′
i,t | qi, o′i<t) =



πθ(o
′
i,t | qi, o′i<t)

z1/|o
′
origin|

, if o′i,t ∈ o′origin

PMF(o′i<t, o
′
i,t), if o′i,t ∈ o′prompt

πθ(o
′
i,t | qi, o′i<t), if o′i,t ∈ o′probe

. (5)

The specific design details and the construction method of the probability mass function based on
frequency distribution are provided in the Appendix B.3.

Multiple Importance Sampling is then further employed to correct the distributional mismatch
between the mixed behavior policy µ, from which data is collected, and the target policy πθ, under
which the model is optimized. The importance ratio for action oi,t at time step t within trajectory i
is computed according to the balance heuristic (Veach and Guibas, 1995) as:

ωi,t =
(1 + α)πθ(oi,t | qi, oi,<t)

πθ(oi,t | qi, oi,<t) + απε(oi,t | qi, oi,<t)
. (6)

The policy is then optimized with the GRPO objective:

JGRPO(θ) = E q∼D
{oi}∼µ(·|q)

 1

|O|

|O|∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ωi,tÂi,t, clip(ωi,t, ε)Âi,t

)
− β DKL(πθ ∥πref)

 ,

(7)

where the behavior policy is updated to a mixture µ, the advantage is scaled by the importance ratio
from Eq. (6), and the group size is set to | O |.
Inference Behavior. During the inference phase, the exploration mechanisms, including the Mixed
Sampling Strategy and Policy Correction Mechanism, are deactivated. The model directly utilizes
the learned policy to generate answers without any exploratory prompts or trajectory modifications,
ensuring a deterministic and efficient generation process based on its training.

4 EXPERIMENT

We conduct extensive evaluations of REX-RAG on seven QA benchmarks, including performance
improvement, ablation studies and generalizability analysis. Additional analysis in Appendix A
further explores the impact of hyper-parameters and exploration prompts. The results on resam-
pling parameter p highlight sample efficiency, where a modest increase in trajectory sampling yields
significant performance gains. Moreover, performance improves with a larger set of exploration
prompts. Significance tests validate the statistical reliability of our findings.

4.1 EXPERIMENTAL SETUP

Datasets We evaluate REX-RAG on seven QA benchmarks: three general QA datasets
NQ (Kwiatkowski et al., 2019), TrivialQA (Joshi et al., 2017), and PopQA (Mallen et al., 2023),
together with four Multi-Hop QA datasets HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho
et al., 2020), Musique (Trivedi et al., 2022), and Bamboogle (Press et al., 2023). In line with earlier
studies (Jin et al., 2025b;a), we merge the NQ and HotpotQA training sets for REX-RAG training.
The test splits of NQ and HotpotQA are treated as in-domain evaluations, and the remaining are
used for out-of-domain evaluation. For detailed information, please refer to Appendix C.2.

Baselines To evaluate the effectiveness of REX-RAG, we compare it with several baselines, cat-
egorized into two groups: (1) non-fine-tuned methods, including Naive RAG (Lewis et al., 2020),
IRCOT (Trivedi et al., 2023), and Search-o1 (Li et al., 2025a); and (2) fine-tuned methods, including
R1-like (Guo et al., 2025) training using PPO (Schulman et al., 2017) without retrieval and those
with retrieval (Jin et al., 2025b) using GRPO (Shao et al., 2024).
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Table 1: Main experimental results on seven QA benchmarks. Best performance is highlighted in
bold; the second best is underlined. ♡ denotes in-domain datasets (trained on), ♢ denotes out-of-
domain datasets. All results are Exact Match Accuracy (%)

. Additional statistical analysis and significance testing are detailed in the Appendix A.3.

Methods General QA Multi-Hop QA Avg.
NQ♡ TriviaQA♦ PopQA♦ HotpotQA♡ 2wiki♦ Musique♦ Bamboogle♦

Qwen2.5-3B-Base/Instruct
RAG 34.8 54.4 38.7 25.5 22.6 4.7 0.8 27.0
IRCoT 11.1 31.2 20.0 16.4 17.1 6.7 24.0 18.1
Search-o1 23.8 47.2 26.2 22.1 21.8 5.4 32.0 25.5
R1-base 22.6 45.5 17.3 20.1 26.8 5.5 22.4 22.9
R1-instruct 21.0 44.9 17.1 20.8 27.5 6.0 19.2 22.4
Search-R1-base 42.1 58.3 41.3 29.7 27.4 6.6 12.8 31.2
Search-R1-instruct 39.7 56.6 39.1 33.1 31.0 12.4 23.2 33.6
REX-RAG (Ours) 43.9 60.4 44.2 37.4 39.7 14.5 31.2 38.7

Qwen2.5-7B-Base/Instruct
RAG 34.9 58.5 39.2 29.9 23.5 5.8 20.8 30.4
IRCoT 22.4 47.8 30.1 13.3 14.9 7.2 22.4 23.9
Search-o1 15.1 44.3 13.1 18.7 17.6 5.8 29.6 20.6
R1-base 29.7 53.9 20.2 24.2 27.3 8.3 29.6 27.6
R1-instruct 27.0 53.7 19.9 23.7 29.2 7.2 29.3 27.1
Search-R1-base 39.5 56.0 38.8 32.6 27.0 12.5 36.0 35.0
Search-R1-instruct 42.9 62.3 42.7 38.6 34.6 16.2 40.0 39.6
REX-RAG (Ours) 45.5 62.6 44.3 42.2 43.7 19.7 44.8 43.2

Implementation Details For external search engines, we utilize the December 2018 Wikipedia
dump (Karpukhin et al., 2020) as our primary data source and employ the E5-base-v2 model (Wang
et al., 2022) as the retriever. During each retrieval step, the top-3 documents returned by the retriever
are provided as additional context. For REX-RAG, we adopt Qwen2.5-3B and Qwen2.5-7B as base
models (Team, 2024), using GRPO as the default RL algorithm. The hyperparameters α and p are
set to default values of 0.12 and 0.2. For further details on experimental settings, please refer to the
Appendix C. For evaluation, we mainly rely on the exact match. Additionally, most of the baseline
results in Table 1 are taken from Search-R1 (Jin et al., 2025b;a).

4.2 OVERALL PERFORMANCE

Table 1 presents main results across seven QA benchmarks. REX-RAG demonstrates consistent and
substantial improvements over all baseline methods across both model sizes and dataset types.

Performance Gains REX-RAG achieves significant performance improvements over the
strongest baseline (Search-R1-instruct): +5.1% average improvement on Qwen2.5-3B (38.7% vs
33.6%) and +3.6% on Qwen2.5-7B (43.2% vs 39.6%). These gains are particularly pronounced on
multi-hop reasoning tasks, where REX-RAG shows +8.7% improvement on 2Wiki and +4.3% on
HotpotQA for the 3B model. These gains are especially high on multi-hop questions because their
complex reasoning spaces demand effective exploration, and REX-RAG’s probe policy excels at
navigating this complexity to find optimal paths.

Out-of-Domain Generalization REX-RAG also exhibits strong generalization capabilities across
out-of-domain datasets. On TriviaQA, PopQA, 2Wiki, MuSiQue, and Bamboogle—none of which
were seen during training—REX-RAG consistently outperforms baselines by substantial margins.
This suggests that the mixed sampling strategy successfully learns generalizable reasoning patterns
rather than overfitting to specific dataset characteristics.

4.3 ABLATION STUDIES

4.3.1 ABLATION ON KEY COMPONENTS

Component Analysis Table 2 presents ablation studies examining the contribution of each com-
ponent in REX-RAG. We systematically remove or modify key components to understand their in-
dividual impact. (1) Full REX-RAG: Our complete method achieving 38.7% average performance.
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Table 2: Ablation study over key components in REX-RAG (Qwen2.5-3B, GRPO).

Methods General QA Multi-Hop QA Avg.
NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle

REX-RAG 43.9 60.4 44.2 37.4 39.7 14.5 31.2 38.7
Coarse PPD 45.4 60.9 44.1 35.4 35.1 10.7 23.2 36.4
w/o IS 45.4 61.8 43.9 32.5 28.8 8.1 13.6 33.4
w/o TF 39.7 54.2 36.6 26.0 26.4 5.5 9.6 28.2
w/o IS&TF 39.5 56.1 41.5 26.6 26.0 5.3 8.8 29.1

(2) Coarse PPD: Uses a simplified probe policy definition where the first token of inserted prompts
are assigned probability 1/k, while remaining prompt tokens are assigned probability 1. This leads
to a 2.3% performance drop. (3) w/o IS: Removes importance sampling, treating all trajectories
equally during training. This results in a 5.3% performance degradation. (4) w/o TF: Eliminates tra-
jectory filtering, including all probe-generated trajectories regardless of quality. Performance drops
by 10.5%. (5) w/o IS&TF: Removes the entire Policy Correction Mechanism, including IS and TS,
essentially reducing to naive trajectory augmentation. This causes a 9.6% performance drop.

Key Insights The ablation results reveal several important insights: First, the Policy Correction
Mechanism is a critical component, with its removal causing a large performance degradation. Sec-
ond, trajectory filtering is essential for maintaining training stability. Without it, noisy exploratory
trajectories significantly harm performance. Third, even coarse probability estimation provides sub-
stantial benefits over no correction, though precise modeling yields optimal results. These findings
validate the effectiveness of our framework and design choices.

4.3.2 ALGORITHM GENERALIZABILITY

Table 3 demonstrates that REX-RAG’s benefits generalize across different reinforcement learning
algorithms. When trained with DAPO (Yu et al., 2025) instead of GRPO, REX-RAG maintains
substantial improvements over Search-R1 (38.4% vs 34.8% average performance), though gains
are slightly smaller than with GRPO. This suggests that REX-RAG is algorithm-agnostic and can
be integrated with various RL frameworks. Interestingly, DAPO shows stronger performance on
general QA tasks for Search-R1, while GRPO excels on multi-hop reasoning. REX-RAG benefits
from both algorithms but shows more consistent improvements with GRPO, likely due to GRPO’s
group-based advantage estimation being more compatible with our mixed sampling strategy.

Table 3: Algorithm generalizability analysis comparing GRPO and DAPO frameworks on Qwen2.5-
3B. Scores represent Exact Match Accuracy (%) averaged across General QA and Multi-Hop QA.

Methods General QA Multi-Hop QA Avg.

GRPO
Search-R1 47.2 19.1 31.2
REX-RAG 49.5 30.7 38.7

DAPO
Search-R1 50.9 22.7 34.8
REX-RAG 48.4 30.9 38.4

4.4 CASE STUDIES AND VISUALIZATION

Fig. 3 presents a visualization analysis comparing reasoning trajectories of original Qwen2.5-7B
against the same model enhanced with REX-RAG, using uncertainty quantification method from
LogTokU (Ma et al., 2025). Following the framework, we analyze Aleatoric Uncertainty (AU)
representing inherent data randomness and Epistemic Uncertainty (EU) capturing model knowl-
edge gaps through token-level confidence scoring. The visualization demonstrates that REX-RAG
achieves universally higher reliability scores for reasoning tokens, with values frequently falling in
the 0.6-0.8 range, whereas the baseline exhibits lower reliability (typically in the 0.2-0.4 range). This
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Question: Who died in the plane crash greys anatomy?

(a) Qwen2.5-7B (b) Qwen2.5-7B with REX-RAG

Figure 3: Uncertainty quantification visualization comparing Qwen2.5-7B (left) and Qwen2.5-7B
with REX-RAG (right). Color intensity represents uncertainty levels; Blue bars represent Aleatoric
Uncertainty (AU) and orange bars represent Epistemic Uncertainty (EU). REX-RAG demonstrates
coherent reasoning with reduced epistemic uncertainty and higher reliability scores.

indicates REX-RAG exhibits superior confidence calibration and more reliable decision-making
throughout the reasoning process.

The uncertainty analysis reveals that REX-RAG exhibits high AU combined with low EU, providing
evidence that REX-RAG is more exploratory precisely when it possesses relevant knowledge. This
behavior demonstrates that REX-RAG’s probe policy effectively identifies situations where multiple
valid reasoning paths exist (high AU) while maintaining confidence in its knowledge base (low EU),
leading to more thorough exploration of the solution space. In contrast, the baseline model shows
the opposite pattern with low AU and high EU, indicating overconfidence in limited reasoning paths
while lacking awareness of knowledge gaps.

Beyond uncertainty patterns, the visualization shows that REX-RAG produces significantly more
standardized and coherent output formats compared to the baseline’s fragmented and irregular re-
sponse structures. This highlights that REX-RAG offers more reliable confidence estimation, coher-
ent reasoning, and overall robustness in RAG reasoning.

While the quantitative results and uncertainty visualizations highlight REX-RAG’s strengths, un-
derstanding the model’s limitations is crucial. To offer deeper insights for future progress of RAG
reasoning, we delve into the anatomy of failure through a detailed error case analysis in Appendix D.

5 LIMITATION

We discuss main limitations of our current approach; further details are provided in the Appendix E.

Limited Exploration Strategy Our method relies on fixed-pool prompt insertion, which, though
effective, can be improved. Future work could include model-generated prompts, backtracking-
based search, or full-path restructuring for more comprehensive exploration.

Computational Overhead The mixed sampling strategy introduces introduces a training-only over-
head of p additional trajectories. Though more efficient than uniform oversampling, difficulty-
predictive sampling could reduce this overhead but remains challenging.

6 CONCLUSION

This work addresses the “dead end” problem in reinforcement learning-based retrieval-augmented
generation, where models become trapped in unproductive reasoning paths during policy optimiza-
tion. Our REX-RAG framework introduces the Mixed Sampling Strategy and the Policy Correction
Mechanism to enable systematic exploration while maintaining training stability. Comprehensive
experiments demonstrate consistent improvements over strong baselines, with particularly notable
gains on multi-hop reasoning tasks. Our key contribution lies in providing a principled approach
to exploration in LLM reasoning systems through importance sampling-based distributional cor-
rection. This insight may offer a practical solution for improving retrieval-augmented generation
systems and provides a new exploration perspective for LLM reinforcement learning.
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7 ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work aims to enhance the reliability of LLMs
by improving their factual grounding and reasoning capabilities in RAG, which can help mitigate
the potential risks of misinformation and ”hallucination,” thereby creating a positive societal impact.
We acknowledge that, like all models trained on large-scale data, the pretrained models (Qwen2.5)
and data sources (e.g., Wikipedia) we use may contain existing societal biases. The outcomes of
this research should therefore be used with an awareness of these inherent limitations. We intend
for this work, which aims to build more accurate and dependable AI systems, to be applied in fields
beneficial to society.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work and will release all associated code
and models publicly upon publication. As stated in the introduction, an anonymous repository has
already been provided for review. To further facilitate replication, we have provided extensive exper-
imental details throughout the paper and appendix. Specifically, we have detailed the seven public
benchmarks used for evaluation and our implementation specifics (Sec. 4.1, Appendix C). More-
over, the appendices offer a complete description of the computational environment and infrastruc-
ture (Appendix C.3), a full table of hyperparameter configurations ( C.4), the instruction prompt for
RL training (Appendix F.2) and the entire set of 30 exploration prompts used in our experiments
(Appendix G), so that other researchers can reproduce our results.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, pp. 1601–1611, 2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing, pp. 6769–6781. Association for Computational
Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.550.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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