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Abstract

Machine learning systems’ effectiveness de-001
pends on their training data, yet dataset col-002
lection remains critically under-examined. Us-003
ing hate speech detection as a case study, we004
present a systematic evaluation pipeline ex-005
amining how dataset characteristics influence006
three key model desiderata: robustness against007
distribution shift, satisfaction of fairness cri-008
teria, and explainability. Through analysis of009
21 different corpora, we uncover crucial inter-010
dependencies between these dimensions that011
are often overlooked when studied in isola-012
tion. We report significant cross-corpus gener-013
alization failures and quantify pervasive demo-014
graphic biases, with 85.7% of datasets generat-015
ing models exhibiting Group Membership Bias016
scores near random chance. Our experiments017
demonstrate that post-hoc explanations exhibit018
substantial volatility to changes in training dis-019
tributions, independently from the choice of020
feature attribution method or model architec-021
ture. These explanations also produce incon-022
sistent and contradictory responses when eval-023
uated under distribution shift. Our findings024
reveal critical though underestimated synergies025
between training distributions and model be-026
havior, demonstrating that without careful ex-027
amination of training data characteristics, we028
risk deploying systems that perpetuate the very029
harm they are designed to address.030

1 Introduction031

Data, more than computing advances, has sparked032

the AI breakthrough. A canonical example lies in033

facial detection systems; the breakthrough perfor-034

mance barriers were transcended not through the035

perceived computational progress in deep learning,036

but through the availability of vast training data037

that enabled more robust feature learning (Torralba038

and Efros, 2011). This fundamental dependency039

on data presents several open challenges: How040

do we know what is different between datasets041

in the same domain? The question surrounding 042

data collection and comparison are of paramount 043

importance, arising in scenarios such as dataset 044

augmentation, multi-source data integration, and 045

distribution shift detection (Babbar et al., 2024). 046

Despite this, dataset collection remains the most 047

under-scrutinized component of the machine learn- 048

ing pipeline, with an estimated 92% of machine 049

learning practitioners encountering data cascades, 050

or downstream problems resulting from poor data 051

quality (Sambasivan et al., 2021). 052

This study examines how training distributions 053

manifest as differences in downstream model be- 054

havior under three key desiderata: robustness 055

against distribution shift, fairness, and explainabil- 056

ity. To the best of our knowledge, this represents 057

one of the first investigations into how, learned 058

representations shape the reliability of post-hoc ex- 059

plainability methods when evaluated in-distribution 060

and out-of-distribution. Robustness against distri- 061

bution shift, fairness across demographic groups, 062

and post-hoc explainability have become essen- 063

tial desiderata for machine learning deployments 064

in critical domains. Yet our understanding of 065

how dataset properties influence these qualities 066

remains fragmented, with evaluation approaches 067

typically examining each dimension in isolation. 068

Our methodology provides a structured approach 069

to evaluate datasets through multiple quality crite- 070

ria, helping practitioners assess whether a dataset 071

is suitable for their specific application and under- 072

stand potential downstream limitations. 073

We use 21 hate-speech detection corpora as a 074

case study because they provide an ideal testbed for 075

this investigation. Hate speech detection, while cru- 076

cial for online safety, faces fundamental challenges 077

in supervised learning approaches. These sys- 078

tems exhibit poor cross-corpus generalization de- 079

spite operating in shared semantic spaces, demon- 080

strate systematic performance disparities across 081

demographic groups, and employ opaque decision 082
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boundaries that often resist interpretation (Arango083

et al., 2019; Davidson et al., 2019). Fundamen-084

tal machine learning challenges persist across the085

modeling spectrum, from traditional approaches to086

Large Language Models (LLMs). The latter still087

require substantial annotated examples and lack088

accurate confidence estimation mechanisms. One089

of the most pressing problems in artificial intel-090

ligence (AI) research today (Yao et al., 2024) is091

hallucinations which affects LLMs in particular.092

In providing a direction to investigate how a093

natural language dataset can be evaluated under094

the lens of model behavior, we make the following095

contributions:096

1. We provide empirical of pervasive distribu-097

tional misalignment in hate speech detection098

datasets through cross-dataset generalization099

experiments. The experiments quantify signif-100

icant performance degradation during out-of-101

domain evaluation, even among datasets with102

shared objectives and data sources.103

2. We quantify the extent of demographic bias in104

hate speech detection systems, revealing that105

85.7% of evaluated datasets produce models106

with Group Membership Bias scores approxi-107

mating random guessing (0.5).108

3. We demonstrate that faithfulness of post-hoc109

explanations may be significantly influenced110

by training data distribution, independent of111

model architecture and feature attribution112

methods. We challenge common assumptions113

about the relationship between model perfor-114

mance and faithfulness of post-hoc explana-115

tions; the inherent explainability of simple116

models compared to more complex ones; and117

the reliability of post-hoc explainability meth-118

ods under distribution shift.119

We excluded LLMs from our analysis as this120

would dilute our focus on data-centric issues and121

complicate fair comparisons with more conven-122

tional model architectures because their massive123

pre-training datasets and transfer learning dynam-124

ics introduce confounding variables that would ob-125

scure direct dataset comparisons. Nevertheless, our126

findings about dataset characteristics and their im-127

pact on model behavior may offer valuable insights128

for selecting and curating fine-tuning datasets for129

LLMs.130

2 Background 131

The landscape of machine learning research has 132

undergone a fundamental shift, with increasing at- 133

tention paid to data itself as a key driver of model 134

performance. This spans both theoretical work ex- 135

amining how data distributions affect learning and 136

generalization (Adebayo et al., 2018; Arpit et al., 137

2017; Badjatiya et al., 2017; Jiang et al., 2019; 138

Yang et al., 2022, 2024), and their influence on 139

model fairness and bias (Dwork et al., 2012; Feld- 140

man et al., 2015; Hardt et al., 2016; Romei and 141

Ruggieri, 2014; Zliobaite, 2015). In post-hoc ex- 142

plainability research, Ribeiro et al. (2021) remains 143

the only work investigating the role of data in post- 144

hoc explainability. This increased focus on data 145

has catalyzed practical advances in data-centric 146

machine learning methodologies (DMLR, 2024), 147

with multiple research threads emerging around 148

dataset construction (Almohaimeed et al., 2023; 149

Mosquera Gómez et al., 2023; Pingle et al., 2023; 150

Shinde et al., 2024) and the application of these ap- 151

proaches to new domains (Arnaiz-Rodriguez and 152

Oliver, 2024; Deng and Ma, 2024; Kohli et al., 153

2024; Vysogorets and Kempe, 2024; Zhao et al., 154

2024). Simultaneously, it has prompted crucial 155

discussions around ethical frameworks governing 156

AI development and data usage (Janssen et al., 157

2020). While these dimensions - generalization, 158

fairness, and explainability - have each received 159

significant attention individually, no prior work has 160

examined all three aspects across a broad range of 161

NLP datasets within a single domain. Our work 162

addresses this gap by providing the first compre- 163

hensive analysis examining generalization, fairness, 164

and explainability in conjunction across a diverse 165

range of NLP datasets, offering insights that bridge 166

these traditionally siloed research directions. 167

3 Methodology 168

We use 21 hate speech datasets from MetaHate: A 169

Dataset for Unifying Efforts on Hate Speech De- 170

tection (Piot et al., 2024). Access to this dataset 171

was obtained through an authorised term of use 172

agreement. To address the heterogeneous annota- 173

tion schemes across datasets, the authors in Meta- 174

Hate have standardised the labeling by converting 175

all annotations into a binary classification prob- 176

lem: hate speech (positive) and non-hate speech 177

(negative). Table 1 presents a description of each 178

dataset used in the study, along with the source, 179

the original annotation scheme, and the size. We 180
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Table 1: Summary of Datasets Used

Dataset Size Description Original Annotation Source References

Binary Classification

Hateval 2019 12,747 Hate speech against
women and immigrants

Hate, Non-hate Twitter Basile et al., 2019

OLID 2019 14,052 Hierarchical offensive
language

Hate, Non-hate Twitter Zampieri et al., 2019

US 2020 Elections 2,999 Political hate speech Hate, Non-hate Twitter Grimminger and Klinger,
2021

BullyDetect 2018 6,562 Cyberbullying Cyberbullying, No cy-
berbullying

Reddit Bin Abdur Rakib and
Soon, 2018

Intervene Hate 2019 45,170 Counter-speech and hate
speech

Hate, Non-hate Reddit, Gab Qian et al., 2019

Hate in Online News 3,214 News comments Hate, Non-hate Facebook Salminen et al., 2018
Supremacist 2018 10,534 White supremacist con-

tent
Hate, Non-hate Stormfront de Gibert et al., 2018

Gab Hate Corpus 27,434 Hate speech Assault on Human
Dignity / No

Gab Kennedy et al., 2022

HateComments 2023 2,070 Hate speech Hate, Non-hate YouTube Gupta et al., 2023
Ex Machina 2016 115,705 Toxicity detection Attack, No Attack Wikipedia Wulczyn et al., 2016
Context Toxicity 2020 19,842 Context-aware toxicity Toxic, No Toxic Wikipedia Pavlopoulos et al., 2020

Multi-class / Multi-label Classification

Hate Offensive 2017 24,783 Offensive language Hate Speech, Offen-
sive, Neither

Twitter Davidson et al., 2017

ENCASE 2018 91,950 Cyberbullying and hate
speech

Abusive, Normal,
Spam, Hateful

Twitter Founta et al., 2018

MLMA 2019 5,593 Multilingual hate speech Multiple abuse cate-
gories

Twitter Ousidhoum et al., 2019

HateXplain 2020 20,109 Explainable hate speech Hate, Offensive, Nor-
mal

Twitter, Gab Mathew et al., 2020

Slur Corpus 2020 39,960 Slur-based hate speech Multiple slur cate-
gories

Reddit Kurrek et al., 2020

CAD 2021 23,060 Contextual abuse Multiple abuse types Reddit Vidgen et al., 2021

Severity Scale

Measuring Hate 2020-
22

39,565 Linear hate speech scale Severity scale Twitter, Red-
dit, YouTube

Kennedy et al., 2020;
Sachdeva et al., 2022

ETHOS 2020 998 Multi-target hate speech Severity scale Reddit,
YouTube

Mollas et al., 2022

Span-level Annotation

Toxic Spans 2021 10,621 Token-level toxicity Span-level annotation Comments Pavlopoulos et al., 2021

Note: Datasets are grouped by classification type. For a comprehensive description of each dataset, please refer to Piot et al.,
2024. While the original Toxic Spans 2021 dataset (Pavlopoulos et al., 2021) identified specific text segments indicating toxicity,
in MetaHate (Piot et al., 2024) the authors have standardized its format to match other datasets, providing binary classifications
of whether comments contain hate speech or not. For MLMA 2019, they (Piot et al., 2024) have selected only text in English.

use a Logistic Regression (LR) model with Term181

Frequency-Inverse Document Frequency (TF-IDF)182

(Robertson, 2004) and a DistilBert (DB) model183

(Sanh, 2019), enabling analysis across both inter-184

pretable and black-box approaches. LR employs185

five-fold cross-validation with stratified sampling186

to maintain consistent class distributions. For DB,187

we fine-tune the base-uncased weights from Hug-188

gingFace (Wolf, 2019) using the AdamW optimizer189

(Loshchilov et al., 2017) for 3 epochs. In both ar-190

chitectures, we use an 80/20 train-test split. For 191

each dataset, we examine the following: distri- 192

butional robustness against covariate shift, demo- 193

graphic subgroup performance invariance, and im- 194

pact on post-hoc explainability. While we expect 195

we could improve predictive performance by ex- 196

perimenting other classifiers, we aim to investigate 197

variations as a function of the training distribution 198

rather than the choice of the classifier. Note, our 199

objective is not to present an exhaustive analytical 200

3



framework, as the methodological possibilities for201

dataset comparison are limitless and could prove202

counterproductive to navigate. Instead, we have203

curated a minimal yet robust set of analytical tools204

that demonstrate high utility across diverse com-205

parative scenarios. Table 1 reports a description206

of each dataset used in the study, along with the207

source, the original annotation scheme, and the208

size. Our experiments were conducted using both209

local machines (personal workstations) and a Linux210

server with 40 processing cores and 125GB RAM.211

3.1 Robustness against distribution shift212

Machine learning models operate under the closed-213

world assumptions that the training and inference214

regimes align. This premise rarely holds in deploy-215

ment environments, where annotation processes are216

inherently constrained by incomplete domain ex-217

pertise, systematic sampling biases, and finite cov-218

erage of the target distribution’s support (Paullada219

et al., 2021). Curating datasets often involves mul-220

tiple degrees of freedom (e.g. source selection,221

linguistic constraints, perspective samplings, and222

annotation demographics). Each of them can in-223

troduce model degradation: source selection can224

lead to domain mismatch, linguistic constraints225

may create artificial patterns that do not generalize,226

perspective sampling can embed unwanted corre-227

lations, and annotation demographics may encode228

biases in the ground truth. Hence, despite aiming to229

capture real-world phenomena, datasets inevitably230

become constrained snapshots that oversimplify231

critical complexities of the represented field.232

The datasets selected in this study, albeit with233

different nuances, all aim to represent hate-speech.234

We aim to measure how well they are designed to235

do so. For each source training distribution, we236

compute two complementary metrics (a) the mean237

cross-domain performance, measured as the av-238

erage model AUC across all test sets, excluding239

the test set corresponding to the source training240

distribution, and (b) the generalization delta, calcu-241

lated as the difference between in-distribution test242

performance and mean cross-domain performance.243

In doing so, we quantify for each source training244

distribution, both the absolute cross-domain gen-245

eralization capacity and the relative performance246

degradation under distribution shift.247

3.2 Classification parity248

The decision boundary of a machine learning sys-249

tem is fundamentally shaped by both its positive250

and negative training observations, where the nega- 251

tive implicitly defines “the rest of the world” (Tor- 252

ralba and Efros, 2011). While datasets must em- 253

ploy compressed representations of this vast in- 254

stance space, non-representative sampling leads to 255

overconfident classifiers with poor discriminative 256

power. This sampling bias can be particularly prob- 257

lematic when it results in unfair treatment of differ- 258

ent demographic groups. We therefore investigate 259

how different training distributions affect model 260

performance across demographic groups. For each 261

source training distribution, we evaluate the result- 262

ing trained model using the comprehensive AUC- 263

based metric suite developed by Borkan et al. 2019. 264

The evaluation framework quantifies classification 265

parity through: Subgroup AUC, Background Posi- 266

tive Subgroup Negative (BPSN) AUC, Background 267

Negative Subgroup Positive (BNSP) AUC, Gener- 268

alized Mean of Bias AUCs (GMB). The models 269

will be evaluated on the grounds of how much they 270

are able to reduce the unintended bias towards a 271

target community. We conduct our evaluation us- 272

ing the training set of the Jigsaw Unintended Bias 273

in Toxicity Classification competition dataset, be- 274

cause it provides explicit identity labels for demo- 275

graphic groups mentioned in each comment. The 276

GMB metric was introduced by the Google Con- 277

versation AI Team as part of their Kaggle competi- 278

tion. A detailed description of these metrics can be 279

found in the competition documentation. We use a 280

p(powermean) = −5 as in the competition. 1 281

3.3 Post-hoc explainability 282

Recent studies have highlighted that post-hoc ex- 283

plainability methods can be unstable or contradic- 284

tory, either because vulnerable to input perturba- 285

tions or sensitive to noise or imperceptible artifacts 286

(Ghorbani et al., 2019; Noppel and Wressnegger, 287

2024; Slack et al., 2020; Dombrowski et al., 2019; 288

Adebayo et al., 2018; Alvarez-Melis and Jaakkola, 289

2018; Lee et al., 2019). To evaluate and address 290

these stability concerns, researchers need ways to 291

assess the correctness of estimated feature rele- 292

vances. Assessing the correctness of estimated 293

feature relevances requires a reference “true” in- 294

fluence to compare against. Since this is rarely 295

available, a common approach to measuring the 296

faithfulness of relevance scores with respect to the 297

model they are explaining relies on a proxy notion 298

of importance: observing the effect of removing 299

1https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification
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Figure 1: LR Cross-Dataset generalization. AUC classification
performance when training on one dataset (rows) and testing on
another (columns).

Figure 2: DB Cross-Dataset generalization. AUC
classification performance when training on one dataset (rows)
and testing on another (columns).

features on the model’s prediction.300

We aim to examine how dataset characteristics301

influence the correctness of post-hoc explainability302

methods by evaluating feature importance expla-303

nations for individual data points using test-time304

input ablations. The influence of training data on305

post-hoc explanation faithfulness remains in fact306

understudied despite its crucial role in model rep-307

resentations, while there is extensive research on308

model architectures and attribution methods.309

Our evaluation focuses on two key metrics from310

the ERASER framework: Sufficiency and Compre-311

hensiveness. Sufficiency measures whether expla-312

nations identify a subset of features which, when313

kept, lead the model to remain confident in its orig-314

inal prediction for a data point. Comprehensive-315

ness, meanwhile, measures whether an explana-316

tion identifies all of the features that contribute317

to a model’s confidence in its prediction, such318

that removing these features from the input low-319

ers the model’s confidence. We keep (for suffi-320

ciency) or mask (for comprehensiveness) the top321

30% of tokens extracted by the feature importance322

method as in Sithakoul et al. 2024. We employ323

these metrics to evaluate explanations generated by324

SHAP (KernelSHAP, Lundberg, 2017) and LIME325

(Ribeiro et al., 2016) on both in-distribution sam-326

ples and out-of-distribution samples from HateX-327

plain (n=500) with SHAP (Mathew et al., 2020).328

We hypothesize that increased data complexity,329

particularly in terms of feature interaction density,330

leads to reduced faithfulness in LIME explanations331

due to their local linearity constraints. It impacts332

SHAP explanations differently through its marginal 333

contribution framework, thus revealing distinct fail- 334

ure modes between the two methods when handling 335

complex linguistic patterns. 336

4 Results 337

In this section, we present and analyze the findings 338

from our experiments. 339

4.1 Robustness against distribution shift 340

We evaluate how well a model trained on one 341

dataset generalizes on a representative set of other 342

datasets, compared with its performance on the 343

test set originating from its training distribution. 344

Figures 1 and 2 present the cross-dataset gener- 345

alization performance for the LR and DB models, 346

respectively. The difference in cross-domain perfor- 347

mance makes LR a more reliable probe of dataset 348

limitations, as it lacks DB transfer learning advan- 349

tages. Each row corresponds to training on one 350

dataset and testing on all the others. As expected, 351

both architectures achieve peak performance dur- 352

ing in-distribution evaluation. While LR and DB 353

achieve comparable in-domain performance, the 354

LR’s learned representations report significantly 355

limited cross-dataset generalization. In LR, ex- 356

machina_2016 demonstrates the best generaliza- 357

tion capability with the highest mean AUC of 0.71, 358

despite its performance drop of 0.24, followed by 359

measuring_hate_speech_2020_2022 (mean AUC 360

0.70, drop 0.14), making exmachina_2016, the 361

strongest choice for cross-dataset hate speech de- 362

tection. There is a prevailing notion in the literature 363
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that increasing the size of the training set might lead364

to improved model robustness to shift. The LR’s365

marginal improvement with increased training data366

(Figure 3) suggests that out-of-domain generaliza-367

tion is primarily determined by training-test distri-368

butional alignment rather than dataset scale. The369

performance comparison between LR and DB on370

individual datasets is reported in Appendix A.371

Figure 3: Mean AUC scores by dataset size, comparing LR
(green) and DB (red) models.

4.2 Classification parity372

We evaluate model bias across demographic groups373

using Borkan et al.’s AUC-based metrics suite.374

Figure 4 presents the GMB score of each result-375

ing trained model. Our analysis reveals consis-376

tently low GMB values (0.5-0.7) across all training377

sets, regardless of their temporal origin, collection378

methodology, or annotation protocol. This finding379

has two critical implications. First, traditional clas-380

sification metrics may obscure significant demo-381

graphic bias. Models achieving strong predictive382

performance (AUC > 0.85) simultaneously demon-383

strate GMB scores approximating random chance384

(≈ 0.5). Second, this pattern’s prevalence across385

85.7% of datasets suggests a systematic failure in386

current dataset construction methods to capture de-387

mographic variation in hate speech. Notably, even388

DB, despite its large-scale pre-training, exhibits389

similar GMB degradation patterns.390

Figure 4: Comparison of GMB scores and AUC performance
across datasets for DB and LR. The bars represent the GMB
scores, while the lines correspond to AUC performance.

4.3 Post-hoc explainability 391

In-domain faithfulness of post-hoc explanations. 392

Figure 5 presents a comparative analysis of SHAP 393

and LIME explanations through sufficiency and 394

comprehensiveness metrics. In line with the liter- 395

ature, we find that linear models tend to achieve 396

better faithfulness metrics compared to transformer- 397

based architectures, with this disparity being par- 398

ticularly pronounced in sufficiency scores. We find 399

that post-hoc explanations do not necessarily have 400

high sufficiency and high comprehensiveness. The 401

most extreme case is DB trained on ENCASE_2018, 402

intervene_hate_2019, or slur_corpus_2020, which 403

reports good comprehensiveness but poor suffi- 404

ciency on the same post-hoc explainability method. 405

This discrepancy suggests that the model relies on 406

complex feature interactions rather than indepen- 407

dent feature contributions, where removing iden- 408

tified features significantly impacts model confi- 409

dence but preserving only these features fails to 410

maintain the original prediction. 411

We observe significant variations in faithful- 412

ness across training distributions, independent 413

of the model architecture. Specifically, when 414

controlling for both the architecture and the 415

post-hoc explanation method, the comprehensive- 416

ness scores for intervene_hate_2019 are consis- 417

tently higher than those for supremacist_2018 and 418

us_2020_elections_datasets. We observe varia- 419

tions in faithfulness which persist even in cases 420

where models demonstrate comparable predictive 421

performance across their respective training envi- 422

ronments. LR models trained on jigsaw_toxic and 423

intervene_hate_2019 achieve similar AUC scores 424

(0.95 and 0.93) yet exhibit a more than five-fold dif- 425

ference in comprehensiveness scores (0.12 versus 426

0.92). 427

Figure 5: SHAP and LIME faithfulness performance per
model choice and training environment.

Out-domain faithfulness of post-hoc explana- 428

tions. We evaluate all models on a common out- 429

of-distribution test set (HateXplain) using SHAP 430
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attributions, which demonstrated superior faithful-431

ness to model architectures in our previous analysis.432

This setup provides a controlled comparison where433

all models face identical test conditions, allowing434

us to isolate how different training environments af-435

fect explanations faithfulness. Figures 6 and 7 com-436

pare the in-domain and out-domain SHAP compre-437

hensiveness and sufficiency scores, respectively,438

against predictive performance for both the LR and439

the DB models. To enable fair comparison between440

metrics, both sufficiency and comprehensiveness441

scores are normalised by dividing each value by442

its maximum absolute value, which preserves the443

directionality of both metrics (negative values for444

sufficiency where lower is better, and positive val-445

ues for comprehensiveness where higher is better).446

We hypothesize that when a model’s predictive447

performance drops in out-of-domain settings, com-448

prehensiveness and sufficiency scores should cor-449

respondingly decrease, as these metrics are based450

on predictive likelihood which should lower for451

well-calibrated models (Desai and Durrett, 2020).452

Out-of-domain evaluation provides a natural set-453

ting where model performance degrades, allowing454

us to test whether faithfulness scores might follow455

this performance degradation or vary independently456

when controlling for both the feature attribution457

method and model architecture.458

Contrary to our hypothesis, we find that459

sufficiency and comprehensiveness are in many460

cases higher in out-domain test-sets compared461

to in-domain. For instance, we observe signif-462

icantly higher out-domain sufficiency scores463

for gab_hate_corpus_2022 (−1 vs −0.57),464

hate_offensive_2017 (−0.73 vs −0.23), and465

jigsaw_toxic (−0.65 vs −0.11) trained with LR,466

as well as improved comprehensiveness scores for467

ex_machina_2016 for both LR (0.79 vs 0.35) and468

DB (0.71 vs 0.28) and CAD_2021 for DB (0.45 vs469

0.12).470

Statistical analysis reveals distinct patterns in471

how models trained on different source datasets472

maintain explanation faithfulness under domain473

shift. Wilcoxon signed-rank tests show that LR474

exhibits significant degradation in both sufficiency475

scores (∆ = −0.0220, p < 0.001, d = 0.31)476

and performance (∆ = −0.2276, p < 0.001,477

d = 0.89). In contrast, DB maintains consistent478

sufficiency scores (∆ = 0.0000, p = 1.000) de-479

spite comparable performance degradation (∆ =480

−0.2062, p < 0.001, d = 0.84). Comprehensive-481

ness remains stable across domain shifts for both482

architectures (LR: ∆ = −0.0052, p = 0.610; DB: 483

∆ = −0.0019, p = 0.856). Notably, we observe 484

no significant correlation between performance 485

drops and metric changes (ρ = 0.12, p = 0.341), 486

indicating that faithfulness of explanations under 487

domain shift might operate independently from 488

model predictive power. The observed decoupling 489

between performance degradation and explanation 490

faithfulness metrics, might suggest that the under- 491

lying learned feature representations might mediate 492

the faithfulness of post-hoc explanations, indepen- 493

dent of model performance. An example is reported 494

in Appendix B. 495

5 Discussion 496

We analyzed how learned representations in hate 497

speech detection models are shaped by 21 different 498

training datasets, examining robustness to distribu- 499

tion shifts, demographic representation, and post- 500

hoc explainability. Our findings aim to help practi- 501

tioners assess dataset suitability for their specific 502

applications and understand potential downstream 503

limitations of their model. 504

Observation 1: Training distributions ex-
hibit inherent divergence from one another, as
evidenced by consistent performance degra-
dation in cross-domain evaluation, despite
shared semantics and annotation frameworks.

Machine learning models operate under the as- 505

sumption of distributional alignment between train- 506

ing and test distributions - an assumption our cross- 507

domain experiments systematically invalidate. We 508

demonstrate substantial distributional heterogene- 509

ity, manifesting in significant performance degrada- 510

tion when models are evaluated on distributions dif- 511

ferent from their training data. This heterogeneity 512

persists even among datasets sharing the same do- 513

main objectives and annotation frameworks, high- 514

lighting fundamental limitations in dataset cura- 515

tion. 516

Observation 2: The simultaneous optimi-
sation of distribution robustness and demo-
graphic fairness remains elusive.

Our empirical evaluation demonstrates that 517

85.7% of datasets exhibit GMB performance at 518

random chance (0.5), with models failing to simul- 519

taneously achieve predictive accuracy and demo- 520

graphic fairness. This pattern manifests in two 521

distinct outcomes: models either maintain predic- 522

tive accuracy while violating fairness criteria, or 523
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Figure 6: Comparison of in-domain and out-domain SHAP comprehensiveness scores against AUC performance for DB and
LR.

Figure 7: Comparison of in-domain and out-domain SHAP sufficiency scores against AUC performance for DB and LR.

fail at both metrics. While this could suggest rep-524

resentation gaps in training data (covariate shift),525

the observed performance patterns might equally526

stem from systematic label bias (concept drift) in527

cross-cultural interpretation.528

Observation 3: Post-hoc explanation faith-
fulness demonstrates complex, non-trivial de-
pendencies on learned representations, model
architectures and attribution methods, while
remarkably maintaining or improving despite
significant performance degradation in out-
of-domain settings.

Post-hoc explainability methods, when evaluated529

on models trained and tested on the same distri-530

bution (in-domain), exhibit volatility independent531

of feature attribution methods and model architec-532

tures. This instability manifests even across mod-533

els with comparable predictive performance. In534

cross-distribution evaluation (out-domain), where535

multiple models trained on different datasets are536

tested against a common distribution, we observe537

that while predictive performance degrades pre-538

dictably, explanation faithfulness metrics show in-539

consistent and often contradictory responses. The 540

absence of correlation between faithfulness metric 541

changes and performance degradation suggests that 542

the learned feature representations might mediate 543

the faithfulness of post-hoc explanations, indepen- 544

dent of the model predictive power. This crucial 545

disconnect challenges the methods reliability in 546

practical applications presenting distribution shifts. 547

6 Conclusion 548

Rather than advocating for larger and enhanced 549

datasets - an approach that reinforces the field’s 550

fixation on scale – we aimed to foster a deeper re- 551

flection on the impact of dataset selection under 552

the lens of model behavior. While achieving high 553

AUC on individual hate speech benchmarks might 554

suggest progress, our analysis of learned represen- 555

tations across 21 datasets reveals: pervasive dis- 556

tributional divergence evidenced by cross-domain 557

performance degradation, the inability to simultane- 558

ously ensure robustness and demographic fairness, 559

and complex dependencies with post-hoc explain- 560

ability faithfulness. 561
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7 Acknowledgments562

We used AI language models for proofreading por-563

tions of the paper to improve grammatical accuracy564

and clarity.565

8 Limitations566

Our study has several limitations worth noting.567

While numerous metrics exist for evaluating model568

behavior, we deliberately restricted our focus to569

a core set that are both widely validated in litera-570

ture and directly relevant to our research objectives.571

The sufficiency and comprehensiveness metrics em-572

ploy a fixed threshold for feature masking, which573

may not be optimal across all cases and warrants574

exploration of additional thresholds. These met-575

rics also require producing counterfactual inputs576

that are inherently out-of-distribution to models.577

Our concerns about this methodological constraint578

echo those raised in prior work (Hase et al., 2021).579

Finally, our model selection was limited to tradi-580

tional classifiers and pre-trained transformers like581

DB, deliberately excluding LLMs, as their billion-582

scale parameter spaces and large-scale pre-training583

would have confounded our primary objective of584

isolating dataset-specific effects on model behav-585

ior.586

8.1 Ethical Considerations587

This study examines variations across publicly588

available hate speech datasets through three model589

criteria. We acknowledge that performance dif-590

ferences often reflect legitimate contextual distinc-591

tions rather than methodological inadequacies. All592

examples are presented without identifying meta-593

data, and this research was conducted with institu-594

tional ethics approval.595
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A Performance comparison of LR and DB across different hate speech datasets995

Dataset F1 AUROC Precision Recall Accuracy Bal. Acc
LR DB LR DB LR DB LR DB LR DB LR DB

MLMA 2019 0.433 0.433 0.534 0.512 0.000 0.000 0.000 0.000 0.763 0.765 0.499 0.500
HatEval 2019 0.724 0.760 0.819 0.854 0.719 0.734 0.610 0.696 0.739 0.769 0.720 0.759
News Media 2018 0.848 0.886 0.938 0.960 0.937 0.941 0.878 0.928 0.871 0.907 0.865 0.890
Hate Speech 2020-22 0.698 0.744 0.844 0.870 0.718 0.716 0.407 0.523 0.802 0.820 0.675 0.725
Offensive 2017 0.566 0.537 0.881 0.875 0.684 0.640 0.091 0.056 0.945 0.944 0.544 0.527
Toxic Spans 2021 0.479 0.479 0.596 0.623 0.918 0.918 1.000 1.000 0.918 0.918 0.500 0.500
CAD 2021 0.574 0.691 0.769 0.830 0.791 0.758 0.144 0.336 0.831 0.854 0.568 0.656
HateComments 2023 0.725 0.782 0.830 0.856 0.688 0.805 0.759 0.718 0.725 0.785 0.727 0.781
Supremacist 2018 0.535 0.637 0.842 0.897 0.727 0.762 0.069 0.207 0.895 0.906 0.533 0.599
Slur Corpus 2020 0.805 0.882 0.880 0.946 0.806 0.894 0.816 0.874 0.805 0.882 0.805 0.882
HateXplain 2020 0.792 0.795 0.860 0.881 0.772 0.859 0.739 0.653 0.798 0.809 0.790 0.787
ExMachina 2016 0.826 0.868 0.950 0.973 0.880 0.920 0.568 0.657 0.932 0.947 0.778 0.824
Context Toxic 2020 0.497 0.497 0.678 0.711 0.000 0.000 0.000 0.000 0.988 0.988 0.500 0.500
ENCASE 2018 0.920 0.927 0.964 0.975 0.891 0.886 0.875 0.905 0.937 0.942 0.918 0.930
ETHOS 2022 0.624 0.736 0.693 0.837 0.500 0.620 0.515 0.721 0.660 0.755 0.625 0.747
US Elections 2020 0.469 0.762 0.667 0.922 0.000 0.811 0.000 0.435 0.885 0.923 0.500 0.711
Jigsaw Toxic 0.767 0.835 0.959 0.975 0.857 0.743 0.408 0.641 0.962 0.967 0.702 0.814
OLID 2019 0.672 0.764 0.774 0.860 0.775 0.756 0.378 0.604 0.753 0.800 0.661 0.752
BullyDetect 2018 0.758 0.839 0.893 0.940 0.855 0.736 0.489 0.815 0.834 0.867 0.728 0.851
Gab Hate 2022 0.559 0.666 0.847 0.885 0.737 0.688 0.090 0.255 0.920 0.927 0.543 0.622
Intervene 2019 0.888 0.904 0.930 0.943 0.909 0.899 0.825 0.874 0.893 0.907 0.883 0.902

B Impact of source training data on features attribution.996

Figure 8: SHAP explanation of the LR model trained on bullydetect_2018 (above) and ENCASE_2018 (below) and
tested on the same out of distribution sentence. The scores relate to the predicted probability of the positive class
(hate), namely, PP = 1 (above) and PP = 0.99 (below)

Figure 9: SHAP explanation of the LR model trained on OLID_2019 (above) and ethos_2022 (below) and tested
on the same out of distribution sentence. The scores relate to the predicted probability of the positive class (hate),
namely, PP = 0.96 (above) and PP = 0.94 (below)
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