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Abstract

Machine learning systems’ effectiveness de-
pends on their training data, yet dataset col-
lection remains critically under-examined. Us-
ing hate speech detection as a case study, we
present a systematic evaluation pipeline ex-
amining how dataset characteristics influence
three key model desiderata: robustness against
distribution shift, satisfaction of fairness cri-
teria, and explainability. Through analysis of
21 different corpora, we uncover crucial inter-
dependencies between these dimensions that
are often overlooked when studied in isola-
tion. We report significant cross-corpus gener-
alization failures and quantify pervasive demo-
graphic biases, with 85.7% of datasets generat-
ing models exhibiting Group Membership Bias
scores near random chance. Our experiments
demonstrate that post-hoc explanations exhibit
substantial volatility to changes in training dis-
tributions, independently from the choice of
feature attribution method or model architec-
ture. These explanations also produce incon-
sistent and contradictory responses when eval-
vated under distribution shift. Our findings
reveal critical though underestimated synergies
between training distributions and model be-
havior, demonstrating that without careful ex-
amination of training data characteristics, we
risk deploying systems that perpetuate the very
harm they are designed to address.

1 Introduction

Data, more than computing advances, has sparked
the Al breakthrough. A canonical example lies in
facial detection systems; the breakthrough perfor-
mance barriers were transcended not through the
perceived computational progress in deep learning,
but through the availability of vast training data
that enabled more robust feature learning (Torralba
and Efros, 2011). This fundamental dependency
on data presents several open challenges: How
do we know what is different between datasets

in the same domain? The question surrounding
data collection and comparison are of paramount
importance, arising in scenarios such as dataset
augmentation, multi-source data integration, and
distribution shift detection (Babbar et al., 2024).
Despite this, dataset collection remains the most
under-scrutinized component of the machine learn-
ing pipeline, with an estimated 92% of machine
learning practitioners encountering data cascades,
or downstream problems resulting from poor data
quality (Sambasivan et al., 2021).

This study examines how training distributions
manifest as differences in downstream model be-
havior under three key desiderata: robustness
against distribution shift, fairness, and explainabil-
ity. To the best of our knowledge, this represents
one of the first investigations into how, learned
representations shape the reliability of post-hoc ex-
plainability methods when evaluated in-distribution
and out-of-distribution. Robustness against distri-
bution shift, fairness across demographic groups,
and post-hoc explainability have become essen-
tial desiderata for machine learning deployments
in critical domains. Yet our understanding of
how dataset properties influence these qualities
remains fragmented, with evaluation approaches
typically examining each dimension in isolation.
Our methodology provides a structured approach
to evaluate datasets through multiple quality crite-
ria, helping practitioners assess whether a dataset
is suitable for their specific application and under-
stand potential downstream limitations.

We use 21 hate-speech detection corpora as a
case study because they provide an ideal testbed for
this investigation. Hate speech detection, while cru-
cial for online safety, faces fundamental challenges
in supervised learning approaches. These sys-
tems exhibit poor cross-corpus generalization de-
spite operating in shared semantic spaces, demon-
strate systematic performance disparities across
demographic groups, and employ opaque decision



boundaries that often resist interpretation (Arango
et al., 2019; Davidson et al., 2019). Fundamen-
tal machine learning challenges persist across the
modeling spectrum, from traditional approaches to
Large Language Models (LLMs). The latter still
require substantial annotated examples and lack
accurate confidence estimation mechanisms. One
of the most pressing problems in artificial intel-
ligence (AI) research today (Yao et al., 2024) is
hallucinations which affects LLMs in particular.

In providing a direction to investigate how a
natural language dataset can be evaluated under
the lens of model behavior, we make the following
contributions:

1. We provide empirical of pervasive distribu-
tional misalignment in hate speech detection
datasets through cross-dataset generalization
experiments. The experiments quantify signif-
icant performance degradation during out-of-
domain evaluation, even among datasets with
shared objectives and data sources.

2. We quantify the extent of demographic bias in
hate speech detection systems, revealing that
85.7% of evaluated datasets produce models
with Group Membership Bias scores approxi-
mating random guessing (0.5).

3. We demonstrate that faithfulness of post-hoc
explanations may be significantly influenced
by training data distribution, independent of
model architecture and feature attribution
methods. We challenge common assumptions
about the relationship between model perfor-
mance and faithfulness of post-hoc explana-
tions; the inherent explainability of simple
models compared to more complex ones; and
the reliability of post-hoc explainability meth-
ods under distribution shift.

We excluded LLMs from our analysis as this
would dilute our focus on data-centric issues and
complicate fair comparisons with more conven-
tional model architectures because their massive
pre-training datasets and transfer learning dynam-
ics introduce confounding variables that would ob-
scure direct dataset comparisons. Nevertheless, our
findings about dataset characteristics and their im-
pact on model behavior may offer valuable insights
for selecting and curating fine-tuning datasets for
LLMs.

2 Background

The landscape of machine learning research has
undergone a fundamental shift, with increasing at-
tention paid to data itself as a key driver of model
performance. This spans both theoretical work ex-
amining how data distributions affect learning and
generalization (Adebayo et al., 2018; Arpit et al.,
2017; Badjatiya et al., 2017; Jiang et al., 2019;
Yang et al., 2022, 2024), and their influence on
model fairness and bias (Dwork et al., 2012; Feld-
man et al., 2015; Hardt et al., 2016; Romei and
Ruggieri, 2014; Zliobaite, 2015). In post-hoc ex-
plainability research, Ribeiro et al. (2021) remains
the only work investigating the role of data in post-
hoc explainability. This increased focus on data
has catalyzed practical advances in data-centric
machine learning methodologies (DMLR, 2024),
with multiple research threads emerging around
dataset construction (Almohaimeed et al., 2023;
Mosquera Gémez et al., 2023; Pingle et al., 2023;
Shinde et al., 2024) and the application of these ap-
proaches to new domains (Arnaiz-Rodriguez and
Oliver, 2024; Deng and Ma, 2024; Kohli et al.,
2024; Vysogorets and Kempe, 2024; Zhao et al.,
2024). Simultaneously, it has prompted crucial
discussions around ethical frameworks governing
Al development and data usage (Janssen et al.,
2020). While these dimensions - generalization,
fairness, and explainability - have each received
significant attention individually, no prior work has
examined all three aspects across a broad range of
NLP datasets within a single domain. Our work
addresses this gap by providing the first compre-
hensive analysis examining generalization, fairness,
and explainability in conjunction across a diverse
range of NLP datasets, offering insights that bridge
these traditionally siloed research directions.

3 Methodology

We use 21 hate speech datasets from MetaHate: A
Dataset for Unifying Efforts on Hate Speech De-
tection (Piot et al., 2024). Access to this dataset
was obtained through an authorised term of use
agreement. To address the heterogeneous annota-
tion schemes across datasets, the authors in Meta-
Hate have standardised the labeling by converting
all annotations into a binary classification prob-
lem: hate speech (positive) and non-hate speech
(negative). Table 1 presents a description of each
dataset used in the study, along with the source,
the original annotation scheme, and the size. We



Table 1: Summary of Datasets Used

Dataset Size  Description Original Annotation Source References
Binary Classification
Hateval 2019 12,747 Hate speech against Hate, Non-hate Twitter Basile et al., 2019
women and immigrants
OLID 2019 14,052 Hierarchical offensive Hate, Non-hate Twitter Zampieri et al., 2019
language
US 2020 Elections 2,999 Political hate speech Hate, Non-hate Twitter Grimminger and Klinger,
2021
BullyDetect 2018 6,562 Cyberbullying Cyberbullying, No cy- Reddit Bin Abdur Rakib and
berbullying Soon, 2018
Intervene Hate 2019 45,170 Counter-speech and hate Hate, Non-hate Reddit, Gab Qian et al., 2019
speech
Hate in Online News 3,214 News comments Hate, Non-hate Facebook Salminen et al., 2018
Supremacist 2018 10,534 White supremacist con- Hate, Non-hate Stormfront de Gibert et al., 2018
tent
Gab Hate Corpus 27,434 Hate speech Assault on Human Gab Kennedy et al., 2022
Dignity / No
HateComments 2023 2,070 Hate speech Hate, Non-hate YouTube Gupta et al., 2023
Ex Machina 2016 115,705 Toxicity detection Attack, No Attack Wikipedia Wulczyn et al., 2016
Context Toxicity 2020 19,842 Context-aware toxicity =~ Toxic, No Toxic Wikipedia Pavlopoulos et al., 2020
Multi-class / Multi-label Classification
Hate Offensive 2017 24,783 Offensive language Hate Speech, Offen- Twitter Davidson et al., 2017
sive, Neither
ENCASE 2018 91,950 Cyberbullying and hate Abusive, Normal, Twitter Founta et al., 2018
speech Spam, Hateful
MLMA 2019 5,593 Multilingual hate speech Multiple abuse cate- Twitter Ousidhoum et al., 2019
gories
HateXplain 2020 20,109 Explainable hate speech Hate, Offensive, Nor- Twitter, Gab  Mathew et al., 2020
mal
Slur Corpus 2020 39,960 Slur-based hate speech ~ Multiple slur cate- Reddit Kurrek et al., 2020
gories
CAD 2021 23,060 Contextual abuse Multiple abuse types  Reddit Vidgen et al., 2021
Severity Scale
Measuring Hate 2020- 39,565 Linear hate speech scale Severity scale Twitter, Red- Kennedy et al., 2020;
22 dit, YouTube  Sachdeva et al., 2022
ETHOS 2020 998 Multi-target hate speech ~ Severity scale Reddit, Mollas et al., 2022
YouTube
Span-level Annotation
Toxic Spans 2021 10,621 Token-level toxicity Span-level annotation Comments Pavlopoulos et al., 2021

Note: Datasets are grouped by classification type. For a comprehensive description of each dataset, please refer to Piot et al.,
2024. While the original Toxic Spans 2021 dataset (Pavlopoulos et al., 2021) identified specific text segments indicating toxicity,
in MetaHate (Piot et al., 2024) the authors have standardized its format to match other datasets, providing binary classifications
of whether comments contain hate speech or not. For MLMA 2019, they (Piot et al., 2024) have selected only text in English.

use a Logistic Regression (LR) model with Term
Frequency-Inverse Document Frequency (TF-IDF)
(Robertson, 2004) and a DistilBert (DB) model
(Sanh, 2019), enabling analysis across both inter-
pretable and black-box approaches. LR employs
five-fold cross-validation with stratified sampling
to maintain consistent class distributions. For DB,
we fine-tune the base-uncased weights from Hug-
gingFace (Wolf, 2019) using the AdamW optimizer
(Loshchilov et al., 2017) for 3 epochs. In both ar-

chitectures, we use an 80/20 train-test split. For
each dataset, we examine the following: distri-
butional robustness against covariate shift, demo-
graphic subgroup performance invariance, and im-
pact on post-hoc explainability. While we expect
we could improve predictive performance by ex-
perimenting other classifiers, we aim to investigate
variations as a function of the training distribution
rather than the choice of the classifier. Note, our
objective is not to present an exhaustive analytical



framework, as the methodological possibilities for
dataset comparison are limitless and could prove
counterproductive to navigate. Instead, we have
curated a minimal yet robust set of analytical tools
that demonstrate high utility across diverse com-
parative scenarios. Table 1 reports a description
of each dataset used in the study, along with the
source, the original annotation scheme, and the
size. Our experiments were conducted using both
local machines (personal workstations) and a Linux
server with 40 processing cores and 125GB RAM.

3.1 Robustness against distribution shift

Machine learning models operate under the closed-
world assumptions that the training and inference
regimes align. This premise rarely holds in deploy-
ment environments, where annotation processes are
inherently constrained by incomplete domain ex-
pertise, systematic sampling biases, and finite cov-
erage of the target distribution’s support (Paullada
et al., 2021). Curating datasets often involves mul-
tiple degrees of freedom (e.g. source selection,
linguistic constraints, perspective samplings, and
annotation demographics). Each of them can in-
troduce model degradation: source selection can
lead to domain mismatch, linguistic constraints
may create artificial patterns that do not generalize,
perspective sampling can embed unwanted corre-
lations, and annotation demographics may encode
biases in the ground truth. Hence, despite aiming to
capture real-world phenomena, datasets inevitably
become constrained snapshots that oversimplify
critical complexities of the represented field.

The datasets selected in this study, albeit with
different nuances, all aim to represent hate-speech.
We aim to measure how well they are designed to
do so. For each source training distribution, we
compute two complementary metrics (a) the mean
cross-domain performance, measured as the av-
erage model AUC across all test sets, excluding
the test set corresponding to the source training
distribution, and (b) the generalization delta, calcu-
lated as the difference between in-distribution test
performance and mean cross-domain performance.
In doing so, we quantify for each source training
distribution, both the absolute cross-domain gen-
eralization capacity and the relative performance
degradation under distribution shift.

3.2 Classification parity

The decision boundary of a machine learning sys-
tem is fundamentally shaped by both its positive

and negative training observations, where the nega-
tive implicitly defines “the rest of the world” (Tor-
ralba and Efros, 2011). While datasets must em-
ploy compressed representations of this vast in-
stance space, non-representative sampling leads to
overconfident classifiers with poor discriminative
power. This sampling bias can be particularly prob-
lematic when it results in unfair treatment of differ-
ent demographic groups. We therefore investigate
how different training distributions affect model
performance across demographic groups. For each
source training distribution, we evaluate the result-
ing trained model using the comprehensive AUC-
based metric suite developed by Borkan et al. 2019.
The evaluation framework quantifies classification
parity through: Subgroup AUC, Background Posi-
tive Subgroup Negative (BPSN) AUC, Background
Negative Subgroup Positive (BNSP) AUC, Gener-
alized Mean of Bias AUCs (GMB). The models
will be evaluated on the grounds of how much they
are able to reduce the unintended bias towards a
target community. We conduct our evaluation us-
ing the training set of the Jigsaw Unintended Bias
in Toxicity Classification competition dataset, be-
cause it provides explicit identity labels for demo-
graphic groups mentioned in each comment. The
GMB metric was introduced by the Google Con-
versation Al Team as part of their Kaggle competi-
tion. A detailed description of these metrics can be
found in the competition documentation. We use a
p(powermean) = —5 as in the competition. |

3.3 Post-hoc explainability

Recent studies have highlighted that post-hoc ex-
plainability methods can be unstable or contradic-
tory, either because vulnerable to input perturba-
tions or sensitive to noise or imperceptible artifacts
(Ghorbani et al., 2019; Noppel and Wressnegger,
2024; Slack et al., 2020; Dombrowski et al., 2019;
Adebayo et al., 2018; Alvarez-Melis and Jaakkola,
2018; Lee et al., 2019). To evaluate and address
these stability concerns, researchers need ways to
assess the correctness of estimated feature rele-
vances. Assessing the correctness of estimated
feature relevances requires a reference “true” in-
fluence to compare against. Since this is rarely
available, a common approach to measuring the
faithfulness of relevance scores with respect to the
model they are explaining relies on a proxy notion
of importance: observing the effect of removing

1https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification
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Figure 1: LR Cross-Dataset generalization. AUC classification Figure 2: DB Cross-Dataset generalization. AUC
performance when training on one dataset (rows) and testing on classification performance when training on one dataset (rows)

another (columns).

features on the model’s prediction.

We aim to examine how dataset characteristics
influence the correctness of post-hoc explainability
methods by evaluating feature importance expla-
nations for individual data points using test-time
input ablations. The influence of training data on
post-hoc explanation faithfulness remains in fact
understudied despite its crucial role in model rep-
resentations, while there is extensive research on
model architectures and attribution methods.

Our evaluation focuses on two key metrics from
the ERASER framework: Sufficiency and Compre-
hensiveness. Sufficiency measures whether expla-
nations identify a subset of features which, when
kept, lead the model to remain confident in its orig-
inal prediction for a data point. Comprehensive-
ness, meanwhile, measures whether an explana-
tion identifies all of the features that contribute
to a model’s confidence in its prediction, such
that removing these features from the input low-
ers the model’s confidence. We keep (for suffi-
ciency) or mask (for comprehensiveness) the top
30% of tokens extracted by the feature importance
method as in Sithakoul et al. 2024. We employ
these metrics to evaluate explanations generated by
SHAP (KernelSHAP, Lundberg, 2017) and LIME
(Ribeiro et al., 2016) on both in-distribution sam-
ples and out-of-distribution samples from HateX-
plain (n=500) with SHAP (Mathew et al., 2020).

We hypothesize that increased data complexity,
particularly in terms of feature interaction density,
leads to reduced faithfulness in LIME explanations
due to their local linearity constraints. It impacts

and testing on another (columns).

SHAP explanations differently through its marginal
contribution framework, thus revealing distinct fail-
ure modes between the two methods when handling
complex linguistic patterns.

4 Results

In this section, we present and analyze the findings
from our experiments.

4.1 Robustness against distribution shift

We evaluate how well a model trained on one
dataset generalizes on a representative set of other
datasets, compared with its performance on the
test set originating from its training distribution.
Figures 1 and 2 present the cross-dataset gener-
alization performance for the LR and DB models,
respectively. The difference in cross-domain perfor-
mance makes LR a more reliable probe of dataset
limitations, as it lacks DB transfer learning advan-
tages. Each row corresponds to training on one
dataset and testing on all the others. As expected,
both architectures achieve peak performance dur-
ing in-distribution evaluation. While LR and DB
achieve comparable in-domain performance, the
LR’s learned representations report significantly
limited cross-dataset generalization. In LR, ex-
machina_2016 demonstrates the best generaliza-
tion capability with the highest mean AUC of 0.71,
despite its performance drop of 0.24, followed by
measuring_hate_speech_2020_2022 (mean AUC
0.70, drop 0.14), making exmachina_2016, the
strongest choice for cross-dataset hate speech de-
tection. There is a prevailing notion in the literature



that increasing the size of the training set might lead
to improved model robustness to shift. The LR’s
marginal improvement with increased training data
(Figure 3) suggests that out-of-domain generaliza-
tion is primarily determined by training-test distri-
butional alignment rather than dataset scale. The
performance comparison between LR and DB on
individual datasets is reported in Appendix A.

Figure 3: Mean AUC scores by dataset size, comparing LR
(green) and DB (red) models.

Dataset Size =@= DB Mean AUC == LR Mean AUC

4.2 Classification parity

We evaluate model bias across demographic groups
using Borkan et al.’s AUC-based metrics suite.
Figure 4 presents the GMB score of each result-
ing trained model. Our analysis reveals consis-
tently low GMB values (0.5-0.7) across all training
sets, regardless of their temporal origin, collection
methodology, or annotation protocol. This finding
has two critical implications. First, traditional clas-
sification metrics may obscure significant demo-
graphic bias. Models achieving strong predictive
performance (AUC > 0.85) simultaneously demon-
strate GMB scores approximating random chance
(= 0.5). Second, this pattern’s prevalence across
85.7% of datasets suggests a systematic failure in
current dataset construction methods to capture de-
mographic variation in hate speech. Notably, even
DB, despite its large-scale pre-training, exhibits
similar GMB degradation patterns.

Figure 4: Comparison of GMB scores and AUC performance
across datasets for DB and LR. The bars represent the GMB
scores, while the lines correspond to AUC performance.

GMB score
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4.3 Post-hoc explainability

In-domain faithfulness of post-hoc explanations.
Figure 5 presents a comparative analysis of SHAP
and LIME explanations through sufficiency and
comprehensiveness metrics. In line with the liter-
ature, we find that linear models tend to achieve
better faithfulness metrics compared to transformer-
based architectures, with this disparity being par-
ticularly pronounced in sufficiency scores. We find
that post-hoc explanations do not necessarily have
high sufficiency and high comprehensiveness. The
most extreme case is DB trained on ENCASE_2018,
intervene_hate_2019, or slur_corpus_2020, which
reports good comprehensiveness but poor suffi-
ciency on the same post-hoc explainability method.
This discrepancy suggests that the model relies on
complex feature interactions rather than indepen-
dent feature contributions, where removing iden-
tified features significantly impacts model confi-
dence but preserving only these features fails to
maintain the original prediction.

We observe significant variations in faithful-
ness across training distributions, independent
of the model architecture. Specifically, when
controlling for both the architecture and the
post-hoc explanation method, the comprehensive-
ness scores for intervene_hate_2019 are consis-
tently higher than those for supremacist_2018 and
us_2020_elections_datasets. We observe varia-
tions in faithfulness which persist even in cases
where models demonstrate comparable predictive
performance across their respective training envi-
ronments. LR models trained on jigsaw_toxic and
intervene_hate_2019 achieve similar AUC scores
(0.95 and 0.93) yet exhibit a more than five-fold dif-
ference in comprehensiveness scores (0.12 versus
0.92).

Figure 5: SHAP and LIME faithfulness performance per
model choice and training environment.

Comprehensiveness

Out-domain faithfulness of post-hoc explana-
tions. We evaluate all models on a common out-
of-distribution test set (HateXplain) using SHAP



attributions, which demonstrated superior faithful-
ness to model architectures in our previous analysis.
This setup provides a controlled comparison where
all models face identical test conditions, allowing
us to isolate how different training environments af-
fect explanations faithfulness. Figures 6 and 7 com-
pare the in-domain and out-domain SHAP compre-
hensiveness and sufficiency scores, respectively,
against predictive performance for both the LR and
the DB models. To enable fair comparison between
metrics, both sufficiency and comprehensiveness
scores are normalised by dividing each value by
its maximum absolute value, which preserves the
directionality of both metrics (negative values for
sufficiency where lower is better, and positive val-
ues for comprehensiveness where higher is better).
We hypothesize that when a model’s predictive
performance drops in out-of-domain settings, com-
prehensiveness and sufficiency scores should cor-
respondingly decrease, as these metrics are based
on predictive likelihood which should lower for
well-calibrated models (Desai and Durrett, 2020).
Out-of-domain evaluation provides a natural set-
ting where model performance degrades, allowing
us to test whether faithfulness scores might follow
this performance degradation or vary independently
when controlling for both the feature attribution
method and model architecture.

Contrary to our hypothesis, we find that
sufficiency and comprehensiveness are in many
cases higher in out-domain test-sets compared
to in-domain. For instance, we observe signif-
icantly higher out-domain sufficiency scores
for gab_hate_corpus_2022 (—1 vs —0.57),
hate_offensive_2017 (—0.73 vs —0.23), and
Jjigsaw_toxic (—0.65 vs —0.11) trained with LR,
as well as improved comprehensiveness scores for
ex_machina_2016 for both LR (0.79 vs 0.35) and
DB (0.71 vs 0.28) and CAD_2021 for DB (0.45 vs
0.12).

Statistical analysis reveals distinct patterns in
how models trained on different source datasets
maintain explanation faithfulness under domain
shift. Wilcoxon signed-rank tests show that LR
exhibits significant degradation in both sufficiency
scores (A = —0.0220, p < 0.001, d = 0.31)
and performance (A = —0.2276, p < 0.001,
d = 0.89). In contrast, DB maintains consistent
sufficiency scores (A = 0.0000, p = 1.000) de-
spite comparable performance degradation (A =
—0.2062, p < 0.001, d = 0.84). Comprehensive-
ness remains stable across domain shifts for both

architectures (LR: A = —0.0052, p = 0.610; DB:
A = —0.0019, p = 0.856). Notably, we observe
no significant correlation between performance
drops and metric changes (p = 0.12, p = 0.341),
indicating that faithfulness of explanations under
domain shift might operate independently from
model predictive power. The observed decoupling
between performance degradation and explanation
faithfulness metrics, might suggest that the under-
lying learned feature representations might mediate
the faithfulness of post-hoc explanations, indepen-
dent of model performance. An example is reported
in Appendix B.

5 Discussion

We analyzed how learned representations in hate
speech detection models are shaped by 21 different
training datasets, examining robustness to distribu-
tion shifts, demographic representation, and post-
hoc explainability. Our findings aim to help practi-
tioners assess dataset suitability for their specific
applications and understand potential downstream
limitations of their model.

Observation 1: Training distributions ex-
hibit inherent divergence from one another, as
evidenced by consistent performance degra-
dation in cross-domain evaluation, despite
shared semantics and annotation frameworks.

Machine learning models operate under the as-
sumption of distributional alignment between train-
ing and test distributions - an assumption our cross-
domain experiments systematically invalidate. We
demonstrate substantial distributional heterogene-
ity, manifesting in significant performance degrada-
tion when models are evaluated on distributions dif-
ferent from their training data. This heterogeneity
persists even among datasets sharing the same do-
main objectives and annotation frameworks, high-
lighting fundamental limitations in dataset cura-
tion.

Observation 2: The simultaneous optimi-
sation of distribution robustness and demo-
graphic fairness remains elusive.

Our empirical evaluation demonstrates that
85.7% of datasets exhibit GMB performance at
random chance (0.5), with models failing to simul-
taneously achieve predictive accuracy and demo-
graphic fairness. This pattern manifests in two
distinct outcomes: models either maintain predic-
tive accuracy while violating fairness criteria, or



Figure 6: Comparison of in-domain and out-domain SHAP comprehensiveness scores against AUC performance for DB and

LR.
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fail at both metrics. While this could suggest rep-
resentation gaps in training data (covariate shift),
the observed performance patterns might equally
stem from systematic label bias (concept drift) in
cross-cultural interpretation.

Observation 3: Post-hoc explanation faith-
fulness demonstrates complex, non-trivial de-
pendencies on learned representations, model
architectures and attribution methods, while
remarkably maintaining or improving despite
significant performance degradation in out-
of-domain settings.

Post-hoc explainability methods, when evaluated
on models trained and tested on the same distri-
bution (in-domain), exhibit volatility independent
of feature attribution methods and model architec-
tures. This instability manifests even across mod-
els with comparable predictive performance. In
cross-distribution evaluation (out-domain), where
multiple models trained on different datasets are
tested against a common distribution, we observe
that while predictive performance degrades pre-
dictably, explanation faithfulness metrics show in-

Logistic Regression

0

measuring_hate_speech_

consistent and often contradictory responses. The
absence of correlation between faithfulness metric
changes and performance degradation suggests that
the learned feature representations might mediate
the faithfulness of post-hoc explanations, indepen-
dent of the model predictive power. This crucial
disconnect challenges the methods reliability in
practical applications presenting distribution shifts.

6 Conclusion

Rather than advocating for larger and enhanced
datasets - an approach that reinforces the field’s
fixation on scale — we aimed to foster a deeper re-
flection on the impact of dataset selection under
the lens of model behavior. While achieving high
AUC on individual hate speech benchmarks might
suggest progress, our analysis of learned represen-
tations across 21 datasets reveals: pervasive dis-
tributional divergence evidenced by cross-domain
performance degradation, the inability to simultane-
ously ensure robustness and demographic fairness,
and complex dependencies with post-hoc explain-
ability faithfulness.
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8 Limitations

Our study has several limitations worth noting.
While numerous metrics exist for evaluating model
behavior, we deliberately restricted our focus to
a core set that are both widely validated in litera-
ture and directly relevant to our research objectives.
The sufficiency and comprehensiveness metrics em-
ploy a fixed threshold for feature masking, which
may not be optimal across all cases and warrants
exploration of additional thresholds. These met-
rics also require producing counterfactual inputs
that are inherently out-of-distribution to models.
Our concerns about this methodological constraint
echo those raised in prior work (Hase et al., 2021).
Finally, our model selection was limited to tradi-
tional classifiers and pre-trained transformers like
DB, deliberately excluding LLMs, as their billion-
scale parameter spaces and large-scale pre-training
would have confounded our primary objective of
isolating dataset-specific effects on model behav-
ior.

8.1 Ethical Considerations

This study examines variations across publicly
available hate speech datasets through three model
criteria. We acknowledge that performance dif-
ferences often reflect legitimate contextual distinc-
tions rather than methodological inadequacies. All
examples are presented without identifying meta-
data, and this research was conducted with institu-
tional ethics approval.
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A Performance comparison of LR and DB across different hate speech datasets

Dataset F1 AUROC Precision Recall Accuracy Bal. Acc
LR DB LR DB LR DB LR DB LR DB LR DB

MLMA 2019 0.433 0433 | 0.534 0.512 | 0.000 0.000 | 0.000 0.000 | 0.763 0.765 | 0.499 0.500

HatEval 2019 0.724 0.760 | 0.819 0.854 | 0.719 0.734 | 0.610 0.696 | 0.739 0.769 | 0.720 0.759

News Media 2018 0.848 0.886 | 0.938 0.960 | 0.937 0.941 | 0.878 0.928 | 0.871 0.907 | 0.865 0.890
Hate Speech 2020-22 | 0.698 0.744 | 0.844 0.870 | 0.718 0.716 | 0.407 0.523 | 0.802 0.820 | 0.675 0.725

Offensive 2017 0.566 0.537 | 0.881 0.875 | 0.684 0.640 | 0.091 0.056 | 0.945 0.944 | 0.544 0.527
Toxic Spans 2021 0479 0479 | 0596 0.623 | 0918 0918 | 1.000 1.000 | 0.918 0.918 | 0.500 0.500
CAD 2021 0.574 0.691 | 0.769 0.830 | 0.791 0.758 | 0.144 0.336 | 0.831 0.854 | 0.568 0.656

HateComments 2023 | 0.725 0.782 | 0.830 0.856 | 0.688 0.805 | 0.759 0.718 | 0.725 0.785 | 0.727 0.781
Supremacist 2018 0.535 0.637 | 0.842 0.897 | 0.727 0.762 | 0.069 0.207 | 0.895 0.906 | 0.533 0.599
Slur Corpus 2020 0.805 0.882 | 0.880 0.946 | 0.806 0.894 | 0.816 0.874 | 0.805 0.882 | 0.805 0.882

HateXplain 2020 0.792 0.795 | 0.860 0.881 | 0.772 0.859 | 0.739 0.653 | 0.798 0.809 | 0.790 0.787
ExMachina 2016 0.826 0.868 | 0.950 0.973 | 0.880 0.920 | 0.568 0.657 | 0.932 0.947 | 0.778 0.824
Context Toxic 2020 0.497 0.497 | 0.678 0.711 | 0.000 0.000 | 0.000 0.000 | 0.988 0.988 | 0.500 0.500
ENCASE 2018 0.920 0.927 | 0.964 0.975 | 0.891 0.886 | 0.875 0.905 | 0.937 0.942 | 0.918 0.930
ETHOS 2022 0.624 0.736 | 0.693 0.837 | 0.500 0.620 | 0.515 0.721 | 0.660 0.755 | 0.625 0.747
US Elections 2020 0.469 0.762 | 0.667 0.922 | 0.000 0.811 | 0.000 0.435 | 0.885 0.923 | 0.500 0.711
Jigsaw Toxic 0.767 0.835 | 0.959 0.975 | 0.857 0.743 | 0.408 0.641 | 0.962 0.967 | 0.702 0.814
OLID 2019 0.672 0.764 | 0.774 0.860 | 0.775 0.756 | 0.378 0.604 | 0.753 0.800 | 0.661 0.752
BullyDetect 2018 0.758 0.839 | 0.893 0.940 | 0.855 0.736 | 0.489 0.815 | 0.834 0.867 | 0.728 0.851
Gab Hate 2022 0.559 0.666 | 0.847 0.885 | 0.737 0.688 | 0.090 0.255 | 0.920 0.927 | 0.543 0.622
Intervene 2019 0.888 0.904 | 0.930 0.943 | 0.909 0.899 | 0.825 0.874 | 0.893 0.907 | 0.883 0.902

B Impact of source training data on features attribution.

Figure 8: SHAP explanation of the LR model trained on bullydetect_2018 (above) and ENCASE_2018 (below) and
tested on the same out of distribution sentence. The scores relate to the predicted probability of the positive class
(hate), namely, PP = 1 (above) and PP = 0.99 (below)

inputs
¥8Ware murdering feckless SCUM. ¥8lilmother would slap you for being the piece of shit that -are. | hope you!die in enormous pain from cancer in yourasshole that
makes you cry from the pain every time you shit you fucking subhuman scum......Fuck you. | would gladly cut your fucking balls off in a minute....go suck cock you piece of
shit! Fuck you and your mother you sorry fuckin swill
inputs
You are murdering feckless SCUM. Your mother would slap you for being the piece of §ilithat you are. | hope you die'in enormous pain from cancer in your asshole that
makes you cry from the pain every time you shit you fucking subhuman scum......Fuek you. | would gladly cut your fucking balls off in a minute....go suck cock you piece of
shit! Fuck you and your mother you sorry fuckin swill

Figure 9: SHAP explanation of the LR model trained on OLID_2019 (above) and ethos_2022 (below) and tested
on the same out of distribution sentence. The scores relate to the predicted probability of the positive class (hate),
namely, PP = 0.96 (above) and PP = 0.94 (below)

inputs
The righteous ALT LEFT will eradicate fascist inbred redneck white supremacists like cockroaches. We will hunt them down like pigs and lynch them in our town squares
and cities. We will gut them as they emerge from their backwoods swamps. Be warned white supremacist/nationalist scum. We will illyou and burn down your homes and
destroy'you and your families. The righteous ALT LEFT will utlyour filthy throats in your homes in fort of your children
inputs
The righteous ALT LEFT will eradicate f@88i8Binbred redneck white supremacists like cockroaches. We will hunt them down like pigs and lynch them in our town squares
and cities. We will gut them as they emerge from their backwoods swamps. Be warned white supremacist/nationalist scum. We will kill you and burn down your homes and
destroy you and your families. The righteous ALT LEFT will cut your filthy throats in your homes in fort of your children
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