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ABSTRACT

Training stability is a critical challenge in the pre-training of large language mod-
els (LLMs), particularly for architectures like Post-Norm Transformers prone to
gradient explosion and dissipation. In this paper, we introduce Scale-Distribution
Decoupling (SDD), a novel approach designed to enhance training stability by
explicitly decoupling the scale and distribution of the weight matrix within fully-
connected layers. SDD employs a normalization mechanism to regulate activation
magnitudes and a learnable scaling vector to maintain well-conditioned gradients,
thereby effectively preventing gradient explosion and dissipation and ensuring
stable gradient propagation. This principled separation improves optimization ef-
ficiency, especially in deep networks. Extensive experiments across various LLM
architectures (dense and MoE) demonstrate that SDD consistently achieves faster
convergence and superior performance compared to existing normalization tech-
niques. Furthermore, SDD is lightweight and seamlessly compatible with current
frameworks, offering a practical and effective solution for robust LLM training.

1 INTRODUCTION

2.1X

Figure 1: Training/validation loss with downstream performance on MMLU, HellaSwag and PIQA
for 7B dense models trained with 4T tokens: SDD-7B (Post-Norm) achieves superior convergence
(2.1×) and generalization over OLMo2-7B (Pre-Norm).

Large Language Models (LLMs) have demonstrated remarkable success in various natural language
processing tasks (Li et al., 2024b; Zhu et al., 2024; Huang et al., 2025), fueled by advances in model
architectures, large-scale datasets, and computational resources. However, the training stability of
LLMs remains a critical challenge, especially as model size and complexity continue to grow. By
“training stability”, we refer to the ability of models to converge robustly without suffering from
issues such as significant loss spikes, gradient explosion, or vanishing gradients, which often lead to
optimization stagnation or divergence. Although Pre-Norm Transformer (Xiong et al., 2020; Zhuo
et al., 2025) architectures exhibit greater stability during training, they are susceptible to feature
collapse (Wang et al., 2024a; Xie et al., 2023), where representations across different layers become
increasingly similar as depth increases, potentially hindering scalability. Post-Norm configurations,
despite often yielding better final performance, remain significantly more difficult to train due to se-
vere gradient explosion or vanishing issues, making stable optimization in such settings a persistent
research challenge in LLM development (Zeng et al., 2022).

A fundamental source of these optimization challenges (Salimans & Kingma, 2016) lies in the in-
herent difficulty of effectively controlling the properties of weight matrices, particularly in deep,
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high-dimensional networks. As models scale, the magnitude and distribution of weight parameters
become increasingly coupled and difficult to manage during the optimization process. Although
existing strategies, such as sophisticated initialization schemes (Zhang et al., 2019) and various
normalization techniques applied to activations or weights (Ding et al., 2021; Xiong et al., 2020),
offer valuable partial mitigation, they often do not directly address this core underlying issue: the
tight entanglement between the weight matrix’s overall scale and its internal directional components
(distribution). This coupling forces gradient updates to simultaneously adjust both the magnitude
and directional properties of weights, creating complex and volatile loss landscapes that contribute
significantly to gradient instabilities like explosion or vanishing, slow convergence, and increased
sensitivity to hyperparameters.

To tackle these challenges, we introduce Scale-Distribution Decoupling (SDD), a novel and prin-
cipled approach that fundamentally restructures fully-connected layers. At its core, SDD explicitly
separates the optimization of weight matrix scale and distribution. This is achieved by applying a
normalization step to standardize input activations, ensuring the subsequent weight transformation
primarily focuses on learning the desired distribution, while a simple, learnable scaling vector is
introduced to precisely control the overall magnitude of the layer’s output activation. This direct
decoupling mechanism contrasts with conventional layer formulations and existing normalization
techniques that typically address activations or implicitly influence weight properties. By isolating
scale and distribution optimization, this explicit strategy leads to more stable gradient propagation
and simplified optimization dynamics. As a result, SDD substantially enhances training efficiency
and stability, vividly illustrated by the significant performance gains and 2.1× faster convergence
observed in the 7B dense model training results shown in Figure 1.

SDD is lightweight, requires minimal architectural modifications, introducing only a small number
of additional parameters (a scaling vector per layer), and seamlessly integrates with a wide range of
model configurations. Empirical evaluations demonstrate that SDD consistently improves training
stability across diverse LLM architectures, including notoriously unstable Post-Norm Transformers,
and also enhances resistance to feature collapse in Pre-Norm models (as discussed further in Section
4). Furthermore, SDD accelerates convergence, improves generalization, and enables more efficient
large-scale pre-training, making it a practical and effective solution for developing robust LLMs.
The main contributions of this paper can be summarized as follows:

1. We introduce Scale-Distribution Decoupling (SDD), a novel and principled design that
explicitly separates the scale and distribution of weight matrices. This approach addresses
a fundamental limitation in LLM optimization by simplifying the learning dynamics and
enhancing gradient stability.

2. We empirically demonstrate that SDD significantly stabilizes training across diverse LLM
architectures, including both Pre-Norm and Post-Norm, effectively mitigating issues such
as gradient explosion, dissipation, and improving resistance to feature collapse.

3. We provide extensive empirical evidence showing that our method consistently improves
both convergence speed and training efficiency, illustrated by achieving similar training
loss levels approximately 2.1× faster in 7B models. This makes SDD highly applicable to
large-scale pre-training tasks, and ultimately leads to superior downstream performance.

2 SCALE-DISTRIBUTION DECOUPLING

2.1 MOTIVATION

The training stability of large language models (LLMs) is frequently undermined by the challenges
of optimizing high-dimensional weight matrices. Specifically, the scale of weight parameters has
a profound impact on model outputs and gradient magnitudes, but is inherently difficult to learn
effectively (Rybakov et al., 2024). Existing techniques, such as advanced initialization schemes
and normalization strategies, provide partial mitigation but fail to address a fundamental issue: the
entanglement of the weight matrix’s scale and distribution. This entanglement introduces unneces-
sary complexity to the optimization process, especially in Post-Norm transformers, which are more
susceptible to instability.

2
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Figure 2: Comparison of vanilla and SDD-based Self-Attention and FFN Architectures. From left
to right: the standard self-attention module, the self-attention module with SDD, the standard feed-
forward network (FFN), and the SDD-based FFN. In these figures, “FC” represents a standard fully-
connected layer, and “SDD” denotes the proposed Scale-Distribution Decoupled fully-connected
layer, formally defined in Eqn. 2. Labels beneath “FC” and “SDD” indicate their learnable pa-
rameters. Notably, the additional parameter α in “SDD” is a one-dimensional vector per layer,
contributing negligible overhead.

To address this issue, we propose Scale-Distribution Decoupling (SDD), which disentangles the
scale and distribution of weights in fully-connected layers. By isolating these two components, SDD
not only simplifies the learning dynamics but also notably improves the training stability.

2.2 METHOD

In conventional fully-connected layers, the output is computed as:

y = Wx, (1)

where W ∈ Rn×n represents the learnable weight matrix and x ∈ Rn is the input vector. The SDD
formulation modifies this operation to explicitly decouple the learning of scale and distribution:

y = α⊙ norm(V x), (2)

where V ∈ Rn×n is a learnable weight matrix responsible for the primary transformation, and ⊙
denotes the element-wise multiplication, defined for vectors a, b ∈ Rn as (a⊙ b)i = aibi. norm(·)
is a normalization function applied to the vector z = V x that removes the scale information while
preserving its distribution. Following the normalization commonly used in Layer Normalization
(LN) (Ba, 2016; Wang et al., 2022), we use Root Mean Square (RMS) normalization, defined as:

norm(z) =
z

∥z∥RMS
, where ∥z∥RMS =

√√√√ 1

n

n∑
i=1

z2i . (3)

α ∈ Rn is a learnable scaling vector to stabilize training during early stages and control the output
magnitude (Figure 2).

This reformulation explicitly separates the roles of the weight parameters: V is dedicated to learning
the directional transformation, while α independently governs the output scale. Such a decoupling
has two key advantages. First, it simplifies optimization by disentangling scale and distribution,
reducing complex parameter interactions that hinder learning. Second, the combination of normal-
ization and the learned scaling vector ensures controlled and bounded outputs, which inherently
helps mitigate gradient-related issues such as explosion or vanishing. These properties make SDD
particularly effective for training deep and wide models, improving stability in training.

SDD introduces minimal computational and memory overhead compared to standard fully-
connected layers. The additional FLOPs for SDD per layer are approximately 6BSH , where B
is the batch size, S is the sequence length, and H is the hidden size (assuming input/output di-
mensions are H). This accounts for about 3BSH for the RMS normalization and 3BSH for the
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element-wise multiplication. Compared to the O(BSH2) FLOPs of the matrix multiplication V x,
this overhead is negligible, approximately 6/H for the layer. Across all feed-forward layers in a
Transformer, this contributes only about 3/H of the total model FLOPs. The parameter overhead is
similarly negligible, adding just n (or H) parameters from the scaling vector α per layer, contribut-
ing O(H) compared to O(H2) in the V matrix, or O(L · H) globally where L is the number of
layers, a tiny fraction of the total model parameters. Given that H > 1024 in typical settings, both
FLOPs and parameter overheads are negligible (< 0.29%). Furthermore, SDD’s additional memory
cost during training can be effectively eliminated through gradient checkpointing.

3 THEORETICAL ANALYSIS

The SDD method is supported by a theoretical foundation that demonstrates its validity and advan-
tages under common assumptions. To begin, we show that the proposed decoupling is equivalent to
the standard fully-connected operation under Gaussian assumptions.

3.1 EXPRESSIVENESS OF STANDARD AND SDD-BASED LAYERS

Let x ∈ Rn be sampled from a standard Gaussian distribution N (0, I), and each element of W ∈
Rn×n be i.i.d. Gaussian random variables with mean 0 and variance σ2/n. For any fully-connected
layer y = Wx, there exists an approximate representation y = α ⊙ norm(V x), where α ∈ Rn

is a vector and V ∈ Rn×n is an matrix derived from W . Conversely, any output of the form
y = α⊙ norm(V x) can be approximately represented in the form y = Wx.

Its proof, demonstrating the approximate expressiveness between standard and SDD-based layers, is
provided in Appendix D. The expectation symbol E is omitted for brevity. This equivalence encapsu-
lates the fundamental principle of Scale-Distribution Decoupling (SDD): disentangling the scale and
distribution of the weight matrix W . SDD achieves this by introducing a learnable scaling vector α
to regulate magnitude, while norm(V x) preserves the distributional structure of the transformed in-
put. By explicitly decoupling these components, SDD streamlines optimization, obviating the need
to simultaneously learn both scale and distribution. This separation enhances numerical stability, as
α facilitates precise control over output magnitudes, while normalization ensures a well-conditioned
distribution. Furthermore, SDD exhibits strong adaptability, seamlessly accommodating both or-
thogonal and general weight matrices V , making it a versatile and robust solution across diverse
neural architectures.

3.2 GRADIENT ANALYSIS: STANDARD VS. SDD LAYERS

The gradients with respect to α, V , and x in the SDD-based formulation y = α⊙ norm(V x) differ
significantly from those in the standard fully-connected layer y = Wx:

1. The gradient with respect to α is well-conditioned and bounded, enabling faster and more
stable optimization of the scale parameter.

2. The gradient with respect to V is constrained by the normalization operation, ensuring
bounded updates and avoiding gradient explosion or vanishing.

3. The gradient norm with respect to x is moderated by the normalization operation, prevent-
ing gradient explosion or vanishing.

The key gradient formulas for standard and SDD layers are summarized below. Let z = V x.

Standard Fully-Connected Layer (y = Wx): The gradient with respect to the weight matrix W
is sensitive to the scales of W and x, potentially leading to instability:

∂L
∂W

=
∂L
∂y

x⊤,
∂L
∂x

= W⊤ ∂L
∂y

. (4)

Their magnitudes are highly sensitive to the scale and condition of W and the scale of x, often
causing gradient instability (explosion or vanishing) in deep networks.
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SDD-Based Layer (y = α⊙norm(V x)): Gradient with Respect to α: The gradient for the learnable
scaling vector α is well-conditioned due to the boundedness of norm(V x):

∂L
∂α

=
∂L
∂y

⊙ norm(V x). (5)

Approximate Gradient with Respect to V : The approximate gradient with respect to the transforma-
tion matrix V is given by a form involving the Frobenius norm of V , ∥V ∥F =

√∑
i,j V

2
i,j . This

form is influenced by the normalization operation, aiming to facilitate bounded updates for V :

∂L
∂V

≈ α

∥V ∥F
⊙ ∂L

∂y
·
(
I − zz⊤

n∥z∥2RMS

)
· x⊤

∥x∥RMS
. (6)

Approximate Gradient with Respect to x: The approximate gradient propagated backward through
the layer with respect to the input x is moderated by the normalization operation, hypothesized to
contribute to stable gradient flow. Under certain conditions and approximations, the norm of this
gradient is expected to be approximately preserved:

∂L
∂x

≈ α

∥x∥RMS
⊙ ∂L

∂y
·
(
I − zz⊤

n∥z∥2RMS

)
V

∥V ∥F
. (7)

This leads to the approximate gradient norm preservation property:

∥∂L
∂x

∥RMS ≈ ∥∂L
∂y

∥RMS . (8)

The detailed derivations for these gradient formulas and a more extensive discussion on their prop-
erties, including how the learning process of α helps mitigate the risk of vanishing gradients, are
provided in Appendix E.

SDD enhances training stability by disentangling the scale and distributional components of the
weight matrix. By introducing normalization into all fully-connected layers, SDD ensures gradi-
ents remain bounded, mitigating gradient explosion and dissipation. The learnable scaling vector
α independently controls the scale, while the normalized transformation norm(V x) isolates the
distribution, improving the conditioning of V . These properties simplify optimization, enabling
more robust and efficient training, especially in architectures prone to instability such as Post-Norm
Transformers or high-dimensional layers. By addressing core challenges in large-scale neural net-
work training, SDD provides a versatile and effective framework for stability and scalability.

4 EXPERIMENTS

We evaluate SDD on both dense and MoE models, measuring training stability, convergence speed,
and downstream performance. Our experiments include large-scale benchmarks, ablation studies,
and robustness tests. Results show that SDD consistently improves training efficiency, mitigates
instability, and outperforms existing normalization techniques across various architectures and tasks.

4.1 EXPERIMENTAL SETUP

Backbones. We evaluate SDD on three Transformer architectures: two dense models (1B and 7B
parameters) and an MoE model with 588M active parameters (3.4B in total). All baseline models
are based on the OLMo2 (OLMo et al., 2024) and OLMoE (Muennighoff et al., 2024) frameworks,
which utilize a Pre-Norm configuration. 1B dense model follows the OLMo2-1B architecture with
16 layers, dmodel = 2048, 32 attention heads, and Grouped-Query Attention (GQA, 8 groups).
7B dense model utilizes an architecture with 32 layers, dmodel = 4096, 32 attention heads, and
Grouped-Query Attention (GQA, 8 groups). MoE model is based on the OLMoE architecture with
32 layers, dmodel = 1024, 16 attention heads, and 64 experts (with 8 experts active per token). For
fair comparison, all models are trained from scratch. Architectural details are summarized in Table 3
and full configurations provided in Appendix F. All models are trained on the OLMoE Mix dataset
(Muennighoff et al., 2024). We compare SDD against several established normalization baselines:
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Figure 3: Training and validation loss on C4 for
1B dense models trained with 200B tokens.

Figure 4: Training and Validation Loss on C4
for MoE Models with 250B Tokens.

Table 1: Performance comparison of the 1B dense models. This table compares training loss,
perplexity and downstream accuracy (%). “ARC-E” and “ARC-C” denote ARC-Easy and ARC-
Challenge. The best results are in bold, and “Avg.” represents average accuracy across tasks. SDD-
1B achieves the best performance, demonstrating superior efficiency and generalization.

Model Loss ↓ Perplexity ↓ MMLU HellaSwag ARC-C ARC-E Winogrande Openbook QA COPA Avg. ↑
OLMo2-1B 2.70 14.88 34.06 56.98 34.11 66.90 58.25 35.80 78.00 52.01
PostNorm-1B 2.69 14.73 32.94 57.78 32.66 65.96 58.22 37.33 79.33 52.03
DeepNorm-1B 2.72 15.18 33.06 55.73 31.77 65.09 55.99 35.67 79.67 51.00
Mix-LN 2.68 14.59 34.03 57.63 33.18 67.58 59.10 35.48 76.80 51.97
nGPT-1B 2.71 15.03 33.02 55.81 32.41 65.50 57.52 36.21 79.35 51.40
SDD-1B 2.65 14.15 34.71 59.65 37.57 69.65 59.06 37.33 80.33 54.04

Pre-Norm (the default OLMo/OLMoE configuration), Post-Norm (Vaswani et al., 2017), DeepNorm
(Wang et al., 2024a) and nGPT (Loshchilov et al., 2024) .

Training Setup. All models are trained using the AdamW optimizer (β1 = 0.9, β2 = 0.95) on
sequences of 4096 tokens. Initialization for baseline models follows the schemes used in OLMo2
(Groeneveld et al., 2024) and OLMoE (Muennighoff et al., 2024), combining truncated normal
(Groeneveld et al., 2024) and DS-Init (Zhang et al., 2019). For SDD, the learnable scaling vec-
tor α is initialized specifically: 1/

√
number of layers for the output projection mappings in atten-

tion and feed-forward networks (FFNs), and 1 for other projection layers (query, key, value, gat-
ing). The remaining weight parameters (V matrices) are initialized using a normal distribution
N (0, 1/

√
2.5 · dmodel), a strategy designed to align the initial output distributions with the base-

lines and promote stable training start. The learning rate schedule follows a cosine decay: the dense
model uses a peak learning rate of 3e−4 decaying to 1.5e−5, while the MoE model uses 4e−4 de-
caying similarly. Training is conducted on NVIDIA H800 80GB GPUs with a global batch size
of 1024 and a micro-batch size of 4 per device, optimizing the next-token prediction Negative Log
Likelihood (NLL) loss. Gradient clipping (max norm 1.0) and BF16 mixed precision are used across
all experiments to ensure stable and efficient training.

Evaluation. We evaluate SDD across benchmarks covering reasoning, commonsense understand-
ing, and question answering. Reasoning tasks include ARC-Easy, ARC-Challenge (Clark et al.,
2018), PIQA (Bisk et al., 2020), and MMLU (Hendrycks et al., 2021). Commonsense understand-
ing is assessed via HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), SocialIQA
(Sap et al., 2019), and CSQA (Talmor et al., 2019). For question answering, we use SciQ (Welbl
et al., 2017), CoQA (Reddy et al., 2019), BoolQ (Clark et al., 2019), COPA (Gordon et al., 2012),
and OBQA (Mihaylov et al., 2018).

4.2 RESULTS ON DENSE MODEL

This section presents our experimental evaluation of SDD on dense Transformer models at both the
1B and 7B parameter scales. At the 1B scale, we compare SDD-1B (Post-Norm) against several nor-
malization baselines, including OLMo2-1B (Pre-Norm), PostNorm-1B (Post-Norm), DeepNorm-1B
(Post-Norm), Mix-LN (Li et al., 2024a), and nGPT-1B (Post-Norm). These models were trained up
to 200 billion tokens, with longer runs for OLMo2-1B and SDD-1B extending to 2 trillion tokens.
At the 7B scale, we evaluate SDD-7B (Post-Norm) against the OLMo2-7B (Pre-Norm) baseline
trained on 4 trillion tokens. These experiments are designed to assess the impact of SDD on training
stability, convergence speed, and downstream performance across different model sizes and training
durations. Detailed results for the 1B and 7B models are presented in the following statement.
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Figure 5: Downstream performance on MMLU, HellaSwag, ARC-Challenge, and OpenbookQA
for dense models trained on 200B tokens. SDD-1B consistently outperforms others, showcasing
superior generalization.

Figure 6: Downstream performance on MMLU, HellaSwag, ARC-Challenge, and Commonsense
for MoE models with 250 billion training tokens.

Training Dynamics of 1B Dense Model. Figure 3 shows the training and validation loss on
C4 for 1B dense models trained with 200B tokens. Among OLMo2-1B (Pre-Norm), PostNorm-
1B, DeepNorm-1B (both Post-Norm), nGPT-1B (Post-Norm) and SDD-1B (Post-Norm), SDD-1B
converges faster and reaches the lowest loss. It achieves 2.65, outperforming OLMo2-1B (2.70),
PostNorm-1B (2.69), DeepNorm-1B (2.72) and nGPT-1B (2.71), demonstrating superior stability
and efficiency. These highlight SDD’s ability to improve optimization by decoupling scale and
distribution.

Downstream Evaluation of 1B Dense Model. Table 1 and Figure 5 summarize downstream re-
sults across MMLU, HellaSwag, ARC-Challenge, ARC-Easy, Winogrande, Openbook QA, and
COPA. SDD-1B consistently outperforms its counterparts, achieving the highest average accuracy
of 54.04%, surpassing OLMo2-1B (52.01%), PostNorm-1B (52.03%), DeepNorm-1B (51.00%) and
nGPT-1B (51.40). Notable gains include a 3.46% and 2.67% improvement over the second-best
model on ARC-Challenge (37.57%) and HellaSwag (59.65%), respectively. These results rein-
force SDD-1B’s effectiveness in capturing complex linguistic patterns and improving generalization
across diverse benchmarks.

Scaling on 7B Dense Model. We also evaluate SDD on a larger 7B dense model scale, comparing
SDD-7B (Post-Norm) against the OLMo2-7B (Pre-Norm) baseline trained on 4T tokens, as shown
in Figure 1. SDD-7B demonstrates significantly faster convergence in training loss, reaching a
similar loss level approximately 2.1× faster than the OLMo2-7B baseline. Furthermore, SDD-7B
consistently achieves higher downstream performance on MMLU, HellaSwag, and PIQA throughout
the training process. These results indicate that the benefits of SDD scale effectively to larger dense
models and longer training durations.

4.3 RESULTS ON MOE MODEL

We evaluate SDD on OLMoE-588M-3B, an MoE model with 588M active parameters out of 3.4B
total (Muennighoff et al., 2024). Due to computational constraints, we compare it to the baseline
OLMoE-588M-3B with identical hyperparameters. SDD introduces only a 0.1% increase in param-
eters due to the scaling vector α, ensuring a fair comparison without modifying training settings.

Training dynamics of MoE model. Figure 4 presents the training and validation loss curves
for MoE models trained on 250B tokens. SDD-588M-3B consistently achieves lower losses than
OLMoE-588M-3B, demonstrating improved convergence and stability. This suggests that SDD not
only accelerates training but also mitigates optimization challenges common in large-scale MoE.

Downstream Evaluation. Figure 6 shows that SDD-588M-3B outperforms OLMoE-588M-3B
across all benchmarks, particularly in MMLU, which evaluates multi-domain reasoning. More met-
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Figure 7: Comparison of Gradient Norms Across Layers. We compare four methods: OLMo2-1B
(Pre-Norm), PostNorm-1B, DeepNorm-1B, and SDD-1B (all Post-Norm). “att proj” refers to the
query/key/value projection, “attn out” to the attention output projection, “ff proj” to the gating and
first FC layer in the feed-forward network (FFN), and “ff out” to the second FC layer in the FFN.

Figure 8: Training and downstream performance of SDD-588M-3B with Pre-Norm and Post-Norm
compared to OLMoE-588M-3B (Pre-Norm). Models trained on 250 billion tokens show that SDD
improves convergence speed and downstream accuracy in the Pre-Norm setting. Switching to Post-
Norm with SDD yields even greater performance gains.

Figure 9: Layer-Wise Feature Similarity Across Normalization Methods. This figure compares
feature similarity across layers in OLMo2-1B, PostNorm-1B, DeepNorm-1B, and SDD-1B. SDD-
1B achieves the highest inter-layer similarity, indicating more stable feature propagation.

rics are available in Appendix H. These improvements underscore SDD’s capacity to enhance gen-
eralization and capture intricate linguistic patterns. Overall, SDD boosts both training efficiency
and downstream performance in MoE architectures, providing a robust and scalable solution for
large-scale model optimization.

4.4 ABLATION STUDY

Gradient Visualization. Figure 7 compares gradient norms across layers for OLMo2-1B (Pre-
Norm), PostNorm-1B, DeepNorm-1B (both Post-Norm), and SDD-1B (Post-Norm). SDD-1B main-
tains significantly more stable gradient norms, mitigating gradient explosion and vanishing, which
commonly affect Post-Norm variants. This stability improves optimization and training robustness,
especially in deep networks, making SDD particularly effective for large-scale models.

SDD on Pre-Norm. Figure 8 evaluates SDD-588M-3B under both Pre-Norm and Post-Norm set-
tings. When applied to Pre-Norm, SDD accelerates convergence and enhances downstream accu-
racy. Further gains are observed when transitioning from Pre-Norm to Post-Norm, highlighting
SDD’s adaptability and effectiveness in improving training stability and generalization.

Layer-wise Similarity. Figure 9 illustrates inter-layer feature similarity across normalization meth-
ods. SDD-1B exhibits the lowest similarity, indicating reduced feature redundancy and effectively
mitigating feature collapse. This suggests that SDD promotes more diverse representations across
layers, contributing to better optimization and enhanced generalization.

8
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Table 2: Impact of Hyperparameter Perturbations on Model Performance. “−” indicates non-
convergence. All models are trained on 200B tokens. “lr∗5” refers to a 5x increase in learning
rate, “Initstd∗0.1” scales the initialization standard deviation by 0.1, and “wo Warmup” denotes the
removal of the warmup phase.

Model lr∗5 Initstd∗0.1 wo WarmUp Loss ↓ Perplexity ↓
OLMo2-581M ✗ ✗ ✗ 2.85 17.29
OLMo2-581M ✓ ✗ ✗ 2.84 17.12
OLMo2-581M ✗ ✓ ✗ 2.86 17.46
OLMo2-581M ✗ ✗ ✓ 2.85 17.29

PostNorm-581M ✗ ✗ ✗ 2.84 17.12
PostNorm-581M ✓ ✗ ✗ − −
PostNorm-581M ✗ ✓ ✗ − −
PostNorm-581M ✗ ✗ ✓ − −
DeepNorm-581M ✗ ✗ ✗ 2.84 17.12
DeepNorm-581M ✓ ✗ ✗ − −
DeepNorm-581M ✗ ✓ ✗ − −
DeepNorm-581M ✗ ✗ ✓ 2.87 17.64

SDD-581M ✗ ✗ ✗ 2.83 16.95
SDD-581M ✓ ✗ ✗ 2.81 16.61
SDD-581M ✗ ✓ ✗ 2.82 16.78
SDD-581M ✗ ✗ ✓ 2.83 16.95

Figure 10: Scaling with model depth: OLMo2-1B
(Pre-Norm) vs. SDD-1B (Post-Norm). All mod-
els are trained on 200 billion tokens, with only the
number of layers varied. Notably, SDD-1B (Post-
Norm) exhibits a clearly superior scaling law as
the number of layers increases.

Robustness on Hyperparameter Perturba-
tions. Table 2 assesses model robustness under
hyperparameter variations, including increased
learning rates, reduced initialization scale, and
removal of warmup. While PostNorm-581M
and DeepNorm-581M fail to converge under
certain conditions, SDD-581M consistently sta-
bilizes training and achieves lower loss, demon-
strating resilience to hyperparameter changes.

Scaling law for model depth. Figure 10 com-
pares OLMo2-1B (Pre-Norm) and SDD-1B
(Post-Norm) across varying depths. SDD en-
ables deeper models to scale effectively, over-
coming training instability that typically lim-
its Post-Norm architectures. This is particu-
larly evident as the depth increases, where SDD
maintains stability and ensures smooth optimization. These results further validate SDD’s ability to
improve convergence and performance in large-scale Transformer models, making it a promising
solution for very deep architectures.

5 CONCLUSION

We propose Scale-Distribution Decoupling (SDD), a method that stabilizes Transformer training by
explicitly separating the scale and distribution of fully connected layer parameters. Our theoretical
analysis establishes its expressivity and training benefits, while gradient analysis confirms improved
stability, reducing the risk of gradient explosion or vanishing. Extensive experiments on both dense
and MoE models demonstrate that SDD accelerates convergence, improves generalization, and en-
hances robustness to hyperparameter perturbations. It further delivers up to 2.1× faster convergence
and higher accuracy, with superior depth scaling validated across dense and MoE LLMs under bud-
gets up to 200B–4T tokens. Additionally, SDD exhibits superior scalability with depth and fosters
more consistent inter-layer representations. By addressing key training challenges, SDD provides a
principled approach for improving the efficiency and stability of LLMs.

9
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A RELATED WORK

Normalization Techniques in Transformers. Normalization is essential for stabilizing deep Trans-
former training (Wang et al., 2024b; 2022), with Layer Normalization (LN) (Ba, 2016; Wang et al.,
2022) being the standard. Pre-Norm (Xiong et al., 2020) improves stability but often reduces ex-
pressivity, while Post-Norm (Vaswani et al., 2017) enhances generative performance but is prone
to gradient explosion in deep networks. Approaches like DeepNorm (Wang et al., 2024a) and
Sandwich-LN (Ding et al., 2021) aim to address these challenges by balancing stability and ex-
pressivity. Our method, Scale-Distribution Decoupling (SDD), builds on these efforts by explicitly
disentangling the scale and distribution of the weight matrix, preserving stability while enhancing
expressivity and optimizing training.

Mixture of Experts and Large-Scale Model Training. The adoption of Mixture of Experts (MoE)
architectures (Shazeer et al., 2017; Fedus et al., 2022) has allowed for more efficient computation
by activating subsets of parameters per forward pass. However, MoE introduces instability in ex-
pert selection and training divergence. OLMoE (Muennighoff et al., 2024) and architectures like
Switch Transformers (Fedus et al., 2022) mitigate these issues with improved routing and load bal-
ancing. SDD complements these approaches by enhancing convergence and robustness, ensuring
MoE models remain stable even under varying hyperparameter settings.

Scaling and Stability in Large Language Models. Training stability becomes more difficult as
Transformer depth increases, with gradient-related issues like vanishing or exploding gradients.
Techniques such as T-Fixup (Huang et al., 2020) and GradNorm (Chen et al., 2018) focus on bal-
ancing gradient magnitudes, while DS-Init (Zhang et al., 2019) improves initialization. However,
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these methods primarily address stability from a weight-scaling perspective, rather than tackling op-
timization dynamics directly. SDD addresses these challenges by improving depth scalability and
maintaining stable feature representations across layers, reducing redundancy, and mitigating feature
collapse. These advantages make SDD a robust solution for training large-scale Transformers.

By addressing both stability and expressivity, SDD offers a scalable and efficient solution that en-
hances training stability while preserving the model’s capacity to capture complex patterns. This
decoupling of scale and distribution ensures robust optimization, enabling effective training of mod-
ern Transformer architectures, even in deep or high-dimensional networks, while maintaining model
performance.

B BROADER IMPACTS AND LIMITATIONS

B.1 BROADER IMPACTS

This paper proposes Scale-Distribution Decoupling (SDD), a novel technique that improves the
training stability, convergence speed, and performance of large language models (LLMs), particu-
larly Transformer architectures. By addressing fundamental optimization challenges like gradient
instability and enabling more robust training, SDD has the potential to assist the LLM research and
development community in building and training more reliable, efficient, and capable models. This
advancement could facilitate progress in developing more powerful AI systems for various bene-
ficial applications. While, like any significant advancement in AI technology, our work may have
broader societal implications, we do not identify any specific negative impacts inherent to SDD itself
that must be particularly highlighted here, beyond those generally associated with the development
and deployment of powerful LLMs.

B.2 LIMITATIONS

Although our theoretical analysis demonstrates how SDD’s decoupling mechanism can lead to im-
proved gradient stability and simplified optimization dynamics under specific assumptions, these
theoretical findings do not directly guarantee superior overall model performance or generalization
on all complex downstream tasks compared to all possible alternative architectural modifications or
normalization methods. Empirical evaluation remains the ultimate arbiter of overall effectiveness.

C DISCLOSURE OF LLM USAGE

In accordance with the ICLR 2026 policy on the disclosure of large language model (LLM) usage,
we hereby state the following:

We used LLMs only to aid in language polishing and grammar refinement. All conceptualization,
methodological design, experiments, and analyses were carried out solely by the authors.

D PROOF OF EXPRESSIVENESS EQUIVALENCE

Proof. (1) y = Wx =⇒ y = α⊙ norm(V x).

Let W ∈ Rn×n be the weight matrix of a fully-connected layer, where each element of W is sampled
from an independent Gaussian distribution N (0, σ2/n). Using singular value decomposition (SVD),
W can be written as:

W = UΣV ′⊤, (9)

where U ∈ Rn×n and V ′ ∈ Rn×n are orthogonal matrices, and Σ ∈ Rn×n is a diagonal matrix
containing the singular values σ1, σ2, . . . , σn of W . Substituting W into y = Wx, we can rewrite
the output as:

y = Wx = UΣV ′⊤x. (10)

Let z = V ′⊤x. Since x ∼ N (0, I), the orthogonal transformation V ′⊤x preserves the Gaussian
distribution of x, meaning z ∼ N (0, I). According to Theorem 3.1.1 (Vershynin, 2018), ∥x∥RMS
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is approximately equal to 1. So for simplicity, we set ∥z∥RMS = 1. The term Σz scales the
components of z along the singular directions, where:

Σz = [σ1z1, σ2z2, . . . , σnzn]
⊤, (11)

The orthogonal matrix U then rotates the scaled vector Σz:
y = UΣz. (12)

Next, we normalize y, effectively removing the rotational effect of U :

norm(y) = norm(UΣz) =
UΣz

∥UΣz∥RMS
=

UΣz

∥Σz∥RMS
= U · norm(Σz). (13)

where ∥Σz∥RMS denotes the norm of the diagonal matrix Σz. Thus, U can always be absorbed into
subsequent layers’ mappings in a neural network without affecting the overall output, regardless of
whether normalization is applied between U and the subsequent layers. For example, in Transformer
models, U can propagate through the value, output projection of attention, and feed-forward network
(FFN) mappings, making its explicit presence inconsequential. In other words, y′ = ΣV ′⊤x is
equivalent in expressiveness to y = Wx in Transformer models. Therefore, we make no distinction
between y′ and y.

After absorbing U , and noting that ∥z∥RMS = 1 implies norm(z) = z, the output can be reformu-
lated as:

y = α⊙ V ′⊤x = α⊙ norm(V ′⊤x), (14)
where α = diag(Σ) = [σ1, σ2, . . . , σn]

⊤ captures the scale information of W . Let V = V ′⊤, then
the output y = Wx can be equivalently expressed in the form y = α⊙ norm(V x).

(2) y = α⊙ norm(V x) =⇒ y = Wx.

Consider the representation y = α ⊙ norm(V x), where α ∈ Rn is a vector, and V ∈ Rn×n

is a general matrix that may not necessarily be orthogonal. To demonstrate that this output can be
equivalently expressed as y = Wx, the matrix V is decomposed using singular value decomposition
(SVD). Specifically, let:

V = PΛQ⊤, (15)
where P ∈ Rn×n and Q ∈ Rn×n are orthogonal matrices, and Λ ∈ Rn×n is a diagonal matrix
containing the singular values of V , denoted as γ1, γ2, · · · , γn.

Substituting the decomposition of V into the given equation, the output becomes:

y = α⊙ norm(V x) = α⊙ norm(PΛQ⊤x). (16)
Define z = Q⊤x. Since x ∼ N (0, I), and by Theorem 3.1.1 (Vershynin, 2018), ∥x∥RMS is
approximately 1. For brevity, we assume ∥x∥RMS = 1. The orthogonality of Q guarantees that
∥z∥RMS = 1. Therefore, the expression for y can now be written as:

y = α⊙ norm(PΛz). (17)
To simplify further, note that the normalization operation satisfies:

norm(PΛz) = P · norm(Λz). (18)
For a diagonal matrix Λ, the normalization of Λz can be approximately expressed as:

norm(Λz) =
Λz

∥Λz∥RMS
≈ Λz

∥Λ∥RMS
. (19)

Here, ∥Λ∥RMS =
√
(γ2

1 + γ2
2 + · · ·+ γ2

n)/n. Substituting this result, the output becomes:

y = α⊙ P
Λz

∥Λ∥RMS
. (20)

By substituting back z = Q⊤x, we have:

y = α⊙ P
Λ

∥Λ∥RMS
Q⊤x. (21)

The equivalence to y = Wx is now established by defining:

W = α⊙ P
Λ

∥Λ∥RMS
Q⊤. (22)

Thus, W ∈ Rn×n is a valid weight matrix that satisfies y = Wx for any x, completing the proof of
reverse equivalence.
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E DETAILED GRADIENT DERIVATIONS

Proof. For the standard fully-connected layer y = Wx, the gradient with respect to W , which
encodes both scale and distributional properties, is:

∂L
∂W

=
∂L
∂y

· x⊤, (23)

where ∂L
∂y is the backpropagated gradient. The magnitude of ∂L

∂W is highly sensitive to the ini-
tialization of both W and x. Poorly scaled W or x can lead to gradient explosion or vanishing,
complicating optimization. In contrast, the SDD-based formulation y = α ⊙ norm(V x) decouples
these components, leading to the following gradient properties:

Gradient with Respect to α: The scale parameter α, is explicitly learned in the SDD formulation,
with its gradient given by:

∂L
∂α

=
∂L
∂y

⊙ norm(V x). (24)

Since norm(V x) is bounded due to the normalization operation, ∂L
∂α remains stable and well-

conditioned throughout training. Unlike the standard formulation, where scale and distribution are
entangled in W , the decoupling in SDD allows α to be optimized independently. This results in
consistently larger and more stable gradient updates for α, enabling faster convergence of the scale
parameter.

Gradient with Respect to V : The distributional characteristics of the input are controlled by V in the
SDD formulation. Given z = V x, the gradient of the loss function L with respect to V is expressed
as:

∂L
∂V

=
∂L
∂y

· ∂y

∂V
. (25)

Since y = α⊙ norm(z), we have:

∂y

∂V
= α⊙ ∂norm(z)

∂V
. (26)

The chain rule gives:
∂norm(z)

∂V
=

∂norm(z)

∂z
· ∂z

∂V
. (27)

Using the formula for the gradient of the normalized vector:

∂norm(z)

∂z
=

1

∥z∥RMS

(
I − zz⊤

n∥z∥2RMS

)
, (28)

and ∂z
∂V = x⊤. Substituting this into the gradient of L with respect to V :

∂L
∂V

=
α

∥z∥RMS
⊙ ∂L

∂y
·
(
I − zz⊤

n∥z∥2RMS

)
· x⊤. (29)

Next, assuming that V and x are i.i.d. with elements following a standard normal distribution
N (0, σ2), we further simplify the expression. Let ∥V ∥F denote the Frobenius norm of V , which is
defined as:

∥V ∥F =

√∑
i,j

V 2
i,j . (30)

Incorporating this definition, the gradient becomes:

∂L
∂V

≈ α

∥V ∥F
⊙ ∂L

∂y
·
(
I − zz⊤

n∥z∥2RMS

)
· x⊤

∥x∥RMS
. (31)

A key observation is that ∂L
∂y remains stable across layers, with its magnitude exhibiting minimal

fluctuations as it propagates through the network. This stability will be formally demonstrated in the
subsequent gradient analysis with respect to x. Consequently, the gradient norm of ∂L

∂V is primarily
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determined by ∥V ∥F , ensuring robustness during training. Furthermore, this stability enables pre-
cise control over ∂L

∂V via adjusting the standard deviation (std) of V . By simply initializing V with
small values, we can enhance convergence speed and improve overall training efficiency.

Gradient with Respect to x: In the standard fully-connected layer, the gradient of the loss L toward
the input x is:

∂L
∂x

= W⊤ · ∂L
∂y

. (32)

The gradient depends entirely on the transpose of the weight matrix W and the backpropagated
gradient ∂L

∂y . In this formulation, the gradient magnitude is sensitive to the scale and condition
of W , meaning poorly scaled or ill-conditioned weight matrices can lead to gradient explosion or
dissipation. Large singular values in W amplify the gradient norm, resulting in unstable optimization
due to gradient explosion, while small singular values reduce the gradient norm, leading to gradient
dissipation and slowed convergence.

The SDD formulation y = α⊙norm(V x) incorporates a normalization step for V x, fundamentally
altering the gradient behavior. For the gradient with respect to x :

∂L
∂x

≈ α

∥x∥RMS
⊙ ∂L

∂y
·
(
I − zz⊤

n∥z∥2RMS

)
V

∥V ∥F
, (33)

Due to the SDD network design, hidden embedding x typically follows a standard normal distribu-
tion N (0, 1). According to Theorem 3.1.1 (Vershynin, 2018), ∥x∥RMS lies within a small neighbor-
hood of 1, i.e., ∥x∥RMS ≈ 1. For simplicity, we set ∥x∥RMS = 1 by default. Hence, the gradient
norm becomes:

∥∂L
∂x

∥RMS ≈ ∥∂L
∂y

∥RMS . (34)

This equality implies that the gradient magnitude is preserved during backpropagation, neither ex-
ploding nor vanishing. The combination of normalization and initialization ensures that the network
maintains stable gradients, regardless of the depth or dimensionality of the layers.

F ARCHITECTURAL CONFIGURATION

Table 3 presents the architectural specifications of the evaluated models, including the OLMo2-
1B and OLMo2-581M dense models, as well as the OLMoE-588M-3B Mixture of Experts (MoE)
model. Key attributes such as parameter counts, hidden dimensions, attention configurations, and
expert routing details are provided for comparison.

Table 3: Architectural Configurations of the Dense Model and MoE Model.

Property OLMo2-581M OLMo2-1B OLMo2-7B OLMoE-588M-3B

Activate Params 581M 1B 7B 588M
Total Params 581M 1B 7B 3.4B
Hidden Size 2048 2048 4096 1024
Intermediate Size 8192 8192 22016 512
GQA Groups 8 8 8 1
Attention Heads 32 32 32 16
Hidden Layers 8 16 32 32
Experts − − − 64
Topk Experts − − − 8
Context Length 4096 4096 4096 4096
Vocabulary Size 100278 100278 100278 50280

G ADDITIONAL RESULTS ON DENSE MODELS

Figure 11 presents validation loss and downstream evaluation results for dense models under differ-
ent training regimes. It compares SDD-1B and OLMo2-1B trained on 2T tokens with PostNorm-1B
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and DeepNorm-1B trained on 200B tokens. SDD-1B consistently achieves lower validation loss
and outperforms all baselines across multiple downstream tasks, highlighting its superior conver-
gence and generalization capabilities. These results further demonstrate the advantages of Scale-
Distribution Decoupling (SDD) in stabilizing optimization and improving performance in large-
scale language model training.

H ADDITIONAL RESULTS ON MOE MODELS

Figure 12 presents the validation loss and downstream task performance of MoE models trained
with 250B tokens, comparing SDD-588M-3B and OLMoE-588M-3B. SDD-588M-3B consistently
achieves lower validation loss, indicating improved training stability and efficiency. Additionally,
it outperforms OLMoE-588M-3B across multiple benchmarks, demonstrating superior generaliza-
tion. These results highlight the benefits of Scale-Distribution Decoupling (SDD) in enhancing
MoE model optimization, leading to more stable convergence and improved downstream task per-
formance.
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Figure 11: Training and Downstream Performance of 1B Dense Models. This figure compares
validation loss and downstream task performance for SDD-1B and OLMo2-1B trained on 2T tokens,
alongside PostNorm-1B and DeepNorm-1B trained on 200B tokens. SDD-1B exhibits lower loss
and superior generalization, demonstrating its effectiveness in large-scale training.
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Figure 12: Training and Downstream Performance of MoE Models with 250B Tokens. This figure
compares the validation loss and downstream task performance of SDD-588M-3B and OLMoE-
588M-3B. SDD-588M-3B demonstrates lower loss and superior generalization across benchmarks,
highlighting its effectiveness in MoE training.
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