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Abstract

In many machine learning tasks, data is inherently sequential. Most existing al-
gorithms learn from sequential data in an auto-regressive manner, which predicts
the next unseen data point based on the observed sequence, implicitly assuming
the presence of an evolving pattern embedded in the data that can be leveraged.
However, identifying and assessing evolving patterns in learning tasks heavily
relies on human expertise, and lacks a standardized quantitative measure. In this
paper, we show that such a measure enables us to determine the suitability of
employing sequential models, measure the temporal order of time series data, and
conduct feature/data selections, which can be beneficial to a variety of learning
tasks: time-series forecastings, classification tasks with temporal distribution shift,
video predictions, etc. Specifically, we introduce the EVOLVING RATE (EVORATE),
which quantifies the evolving patterns in the data by approximating mutual infor-
mation between the next data point and the observed sequence. To address cases
where the correspondence between data points at different timestamps is absent, we
develop EVORATEW , a simple and efficient implementation that leverages optimal
transport to construct the correspondence and estimate the first-order EVORATE.
Experiments on synthetic and real-world datasets including images and tabular
data validate the efficacy of our EVORATE method.

1 Introduction

Sequential data is ubiquitous across various machine learning tasks, including multivariate time
series [33, 38, 44], video streams in computer vision [18, 52, 54], textual data in natural language
processing [9, 17, 34], and state-action trajectories in reinforcement learning [5, 45, 56]. Learning
with sequential data usually involves predicting future data points, fostering the development of
auto-regressive techniques that learn to forecast the subsequent unseen entries in a sequence. Despite
the progress in this field, one fundamental challenge persists: the identification of underlying evolving
patterns often depends heavily on the subjective interpretations and prior knowledge of human experts.
This reliance on subjective judgment lacks a robust quantitative method to assess the evolving patterns
over the high-dimensional data in deep learning. For example, when designing a recommendation
system, certain products such as clothing are highly dependent on temporal factors (e.g., seasons,
fashion trends), while others, like computers, are more influenced by individual customer preferences.
Therefore, it is critical to identify and quantify the underlying evolving patterns for different products
and integrate this information into the algorithmic design.
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Specifically, the following questions are essential but unresolved yet in literature: i) How can the
existence of evolving patterns in data sequences be determined? Determining the existence
of evolving patterns in data is a critical task. It is possible that the data points of a sequence are
entirely independent and no evolving patterns exist. For instance, consider the scenario of a person
repeatedly tossing a coin. In this case, historical information does not influence the outcome of the
next toss. ii) Can one determine the historical span that significantly influences the current time
point? For example, how do we determine the order (the optimal number of past observations) of
an autoregressive model in a principled way? iii) How can we determine if the collected features
are sufficient to reveal evolving patterns? For instance, to achieve better weather forecasting, how
can one determine the essential features, such as altitude, humidity, and geographic location, for
gathering a comprehensive set of information for forecasting.

In this work, we address these questions through a unified framework by introducing EVORATE
(EVOLVING RATE), a novel approach designed to quantify the evolving patterns of data sequences.
EVORATE leverages mutual information as a measure of the existence of the evolving patterns in
the data. Notably, while there is a rich history of mutual information estimation in the existing
literature [8, 1, 27, 10, 29], existing works ignore the underlying temporal dependency between the
data points, and therefore are not well-designed for sequential data. EVORATE tackles this issue by
estimating mutual information in an autoregressive manner when learning the compressed embedding
from the observed sequence, thereby addressing the aforementioned questions: i) it can serve as an
indicator to show that learning a sequential model is not feasible to learn the provided sequential
dataset. ii) EVORATE can provide a quantitative measure of the temporal dependency of a sequence,
allowing us to control the trade-off between computational complexity and learning performance.
iii) EVORATE can also guide us in selecting the most informative features for model training for
sequential data.

However, EVORATE is difficult to estimate when dealing with temporal data characterized by
snapshots captured at disparate timestamps without clear correspondence between them [30, 48,
42], as we do not track the same data point over different timestamps and thus lack access to its
corresponding sample. This scenario hinders the estimation of EvoRate, due to the absence of
the correspondence. To mitigate this issue, we propose an enhanced version of our methodology,
EVORATEW , which is specifically designed to establish correspondence among data points across
different timestamps utilizing optimal transport within the Wasserstein distance metric, thereby
facilitating the estimation of the first-order EVORATE. In all, the benefits of EVORATE to be
highlighted include:

• EVORATE enables quantitatively measuring the evolving patterns existing in high-dimensional
sequential data by utilizing the neural mutual information estimator. Furthermore, it can be
applied to assess temporal order and conduct feature selections in sequential data.

• We further proposed EVORATEW to leverage optimal transport to build the correspondence
between snapshots at the different timestamps, and hence allow the MI approximations.

• We motivate through analysis the use of mutual information as indicators of evolving patterns
and show optimal transport can mitigate the without correspondence issue.

• Synthetic and real-world datasets verify that EVORATE can be a good indicator for evolving
patterns, supporting our claim of its benefits. We also design an EDG algorithm based on the
insight of EVORATEW and verify its performance.

2 Related Works

Sequential Data The analysis and processing of sequential data is driven by diverse applications
ranging from video predictions to time series forecasting [25, 50, 9, 16, 33]. Pioneering works
such as Long Short-Term Memory (LSTM) [25] networks have established foundational principles
for handling long-range dependencies in sequence data. Building on this, the Transformer [50]
introduced a revolutionary approach through self-attention mechanisms, enhancing flexibility in
handling sequence dependencies. The versatility of Transformers has been further demonstrated in
models such as GPT-3 [9] and BERT [16]. Beyond text, sequential data analysis in machine learning
also extends to time-series forecasting [33]. Moreover, the application of Graph Neural Networks in
capturing dependencies in irregular sequences underscores the breadth of methodologies exploring
the complexities of sequential data [7]. However, a qualitative method for measuring the intensity of
evolving patterns remains lacking in the literature.
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Mutual Information (MI) Estimation has become a pivotal tool in machine learning [39, 8, 1, 27,
10, 29], enabling insights into dependencies that extend beyond traditional correlation measures.
In feature selection, MI offers a data-driven approach to identify relevant features without strong
assumptions about data distributions [39]. Mutual Information Neural Estimation (MINE) [8] applies
deep learning to estimate MI in high-dimensional settings, providing a new methodology for analyzing
neural network training dynamics. MI’s application in variational inference, especially in the training
of variational autoencoders (VAEs) [1]. In reinforcement learning, MI has been used to enhance
exploration strategies by quantifying information gain [27]. MI also improves the performance of
generative adversarial networks (GANs) [10]. Furthermore, in unsupervised and semi-supervised
learning, MI maximization has been shown to effectively leverage unlabeled data [29]. However,
none of them employ MI as an indicator for evolving patterns of sequential data.

Optimal Transport (OT) has emerged as a powerful framework in machine learning [51, 3, 31, 13,
41], offering a principled approach to compare probability distributions. Optimal transport theory has
been leveraged for applications ranging from domain adaptation to generative modeling [51]. Recent
advances include the integration of OT with deep learning architectures; Wasserstein GAN (WGAN)
utilizes the Wasserstein distance to improve the stability of training GANs [3]. Furthermore, optimal
transport has been applied effectively in NLP [31]. The computational aspect of OT has also seen
significant developments, Sinkhorn [13] as a scalable method approximates transport plans efficiently.
More recently, researchers have explored the differential properties of transport plans in dynamic
environments [41]. EVORATE employs OT to recover the correspondence between two consecutive
timestamps, facilitating approximations of mutual information.

Patterns estimation for sequential data has only one related work in the literature ForeCA [24],
which proposes a similar concept, "forecastibility", which measures the uncertainty of the entropy
of the spectral density. However, ForeCA has two drawbacks. Firstly, ForeCA can not be used in
deep learning as an unacceptable huge computational consumption for real-world high-dimensional
data (audio, videos, etc.). In contrast, EVORATE shows the prediction power by relying on mutual
information, which tells the ability to predict another variable based on known observed variables.
Secondly, while temporal patterns can include trends, cycles, irregular fluctuations, and more complex
behaviors, ForeCA can only detect cycled patterns. Instead, EVORATE relies on the neural mutual
information estimator, which is known as a good measurement for various patterns as a result of the
strong fitting power of neural nets [8, 11, 37, 46].

3 Preliminary

3.1 Variational mutual information estimation

The mutual information between two random variables X and Y is defined as the KL divergence
DKL between their joint distribution and the product of their marginal distributions:

I(X;Y ) = DKL(P (X,Y )||P (X)P (Y )), (1)

where we aim to estimate this using samples from P (X,Y ); in some cases, the density of the
marginals such as P (X) may be known. A wide range of variational methods are designed to
estimate variational mutual information [8, 11, 46, 36, 37]. We then use the below estimator to
estimate mutual information:

Î(X;Y ) := EP (X,Y )[m(x, y)]− logEP (X)P (Y )[e
m(x,y)], (2)

where X is the random variable, x is a realization of X (as is the case with Y and y), and m(x, y) is
a critic function to quantify the similarity between X and Y , usually realized by a neural network [8,
11, 46, 36, 37]. We show that MI is highly related to the evolving patterns of the sequential data in
Section 4.2.

3.2 Optimal transport

A rich class of divergences between probability distributions is induced by the optimal transport (OT)
problem [51]. Kantorovich’s formulation of the problem is given by

Wc(P (X), P (Y )) = inf
π∈Π(P (X),P (Y ))

E(X,Y )∼π[c(X,Y )], (3)
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where c(x, y) : X × Y → R+ is any measurable cost function and Π(P (X), P (Y )) is the set of all
the joint distributions π(X,Y ) whose marginals are P (X) and P (Y ) respectively. The Wasserstein
distance Wc is then the “cost” of the optimal transport plan.

4 Measure evolving patterns via MI

4.1 EvoRate

Consider a sequence zT1 : {zt}Tt=1, a collection of sequential data points from time 1 to T , where each
zt ∈ RD denotes a state or observation at the discrete time step t with total T steps. In practice, the
sequence zT1 can represent time series data, video, textual, audio, or any other ordered data stream.

We propose the use of the mutual information (MI) between the next observation and historical data
over the past k steps I(Zt

t−k+1;Zt+1) to measure the evolving pattern within a time window of
length k. In the literature, the mutual information is empirically estimated through equation 2, which
involves learning the critic function m [8, 11, 46, 36, 37]. However, one critical issue with existing
works is that they ignore the temporal dependency of the data, and therefore the critic function m can
have a high bias for sequential data (shown in Figure 1a, 1b).

To take the temporal dependency into account when estimating I(Zt
t−k+1;Zt+1), instead of learning

the critic function m, we propose learning the autoregressive function f , which summarizes the
historical information embedded in Zt

t−k+1, and measuring its distance to Zt+1 via the squared error
metric. Specifically, we introduce EvoRate to estimate the empirical sequential MI Î(Zt

t−k+1;Zt+1)

by defining m : Rk×D × RD → R, m(xk
1 , y) = −∥f(g(x1), .., g(xk))− g(y)∥22 in equation 2:

EvoRate : = Î(Zt
t−k+1;Zt+1) = Ezt+1

t−k+1
∼P (Zt−k+1,...,Zt+1)

− ||f(g(zt−k+1), . . . , g(zt))− g(zt+1)||22

− logEzt
t−k+1

∼P (Zt−k+1,...,Zt),zt+1∼P (Zt+1)
e−||f(g(zt−k+1),...,g(zt))−g(zt+1)||22 , (4)

where g : RD → Rd is an encoder. By selecting a different d, we can make a trade-off between
computational cost and MI estimation accuracy. With d ≪ D, EVORATE is a more computationally
efficient method for approximating sequential MI than learning an autoregressive model in the original
data space. However, due to the Data-processing inequality [12], this results in lower MI estimates.
As g is employed as an identity function, MI is estimated in the original space, thereby enhancing
estimation correctness at the expense of increased computational consumption.

4.2 Discussion

In this section, we justify the validity of EVORATE as a metric of evolving patterns through the lens of
a k-th order autoregression. Specifically, we define the Maximum likelihood estimation (MLE) loss
as Lmle = −EP (Zt+1,Zt

t−k+1)
logQ(Zt+1|Zt

t−k+1), where Q is the probability distribution learned
by the autoregressive model F trained with a supervised loss (MLE, MSE) on sequential data. Note
that the MLE loss can also be viewed as the expected risk of autoregressive prediction tasks [44].

The following proposition establishes the connection between the expected risk of a k-th order
autoregression task and the mutual information I(Zt

t−k+1;Zt+1):

Proposition 1. Let H denote the entropy. For autoregression tasks, the expected MLE loss satisfy:

Lmle = DKL(P (Zt+1|Zt
t−k+1), Q(Zt+1|Zt

t−k+1))︸ ︷︷ ︸
(i) Model related

+H(Zt+1)− I(Zt+1;Zt
t−k+1)︸ ︷︷ ︸

(ii) Data related

(5)

A proof of the proposition is provided in Appendix A. Proposition 1 provides novel insights into
learning a predictive model for an autoregression task from an information-theoretic perspective:

1. The expected risk can be decomposed into two orthogonal factors, where (i) measures the
distance between the learned distribution Q and true distribution P , and therefore is determined
by the predictive model F . (ii) quantifies the inherent temporal dependency of the sequence.
Notably, it is independent of F .

2. More importantly, due to the nature of mutual information, I(Zt+1;Zt
t−k+1) ≤ H(Zt+1)

and (i) attains a minimum of zero when the observed sequence Zt
t−k+1 encapsulates all the
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information of Zt+1. Conversely, Proposition 1 reveals that even if F can properly learn the
true probability P (i.e., (i) is small), its expected risk remains high when there is no temporal
dependency that can be leveraged (i.e., I is small).

Consequently, EvoRate, as an empirical estimate of I(Zt+1;Zt
t−k+1), can play an important role

in indicating the success of learning from sequential data and therefore is adopted to quantify the
evolving pattern in this work.

Subsequently, we demonstrate that MSE loss defined as Lmse = EP (Zt+1,Zt
t−k+1)

||F (ztt−k+1) −
zt+1||22 can be interpreted as a variant of MLE loss, hence MI can be applied to a wide range of
sequential data tasks that utilize MSE loss.
Proposition 2. Assume that the predicted conditional probability density Q learned by the predic-
tion model follows Q(Zt+1|Zt

t−k+1) = N (Zt+1|F (Zt
t−k+1), ID), where N (·) denotes a Gaussian

distribution with mean F (Zt
t−k+1) and identity covariance matrix ID. Then, the following holds

Lmle = Lmse + const, (6)

where Lmse is the MSE loss and const is a constant term.

5 Measure evolving patterns without correspondences

5.1 Estimate joint distribution

In many real-world applications, instead of processing many data point observations at different
timestamps as data sequences, one needs to handle a data set at each timestamp: {zt,i}nt

i=1 collected
from multiple timestamps t = {1, . . . , T} [48, 42], where i is the sample index and nt is the number
of samples collected at timestamp t. The distribution P (Zt) associated with these data sets evolves
over time t ∈ R. For example, consider a supervised learning problem involving medical data
zt,i = (xt,i, yt,i) collected from multiple patients at different ages [42, 6]. In this scenario, we do not
track the same patient across different ages, resulting in a lack of correspondence between timestamps
and our objective extends to characterizing the evolving patterns of {Zt}Tt=1 across these discrete
timestamps. However, EVORATE proposed in subsection 4.1 cannot be applied to this context due to
the absence of the correspondences.

Estimating the mutual information from two data sets requires the pairwise correspondences between
the sample of two data sets, which are assumed as given in existing works [8, 1, 27, 10, 29]. The
correspondence between Zt and Zt+1 reflects their joint distribution as it encapsulates how the values
of Zt and Zt+1 co-occur. This structured relationship indicates the interdependence of Zt and Zt+1,
which the joint distribution quantifies. Since the absence of the correspondence (i.e., an object
observed at time t is not at time t+ 1), we can not access the joint probability distribution of the past
states and the next state. To tackle this issue, we estimate the joint distribution through the optimal
transport plan of the Wasserstein Distance. Specifically, we define the distance loss according to a
joint distribution measurement π

Lt
W(π, f) = E(zt,zt+1)∼π||f(g(zt))− g(zt+1)||22 (7)

where g is fixed from updated gradients computed from Lt
W . Empirically, allowing g to update

during model training leads to the undesirable outcome of all representations collapsing into a single
point as a result of minimizing the Wasserstein distance loss. To avoid this and preserve maximal
information within the representations, g is trained separately using an auto-encoder architecture with
a reconstruction MSE loss.

Then, we compute the optimal transport plan π∗ to approximate the real joint distribution

π∗(Zt, Zt+1) = argmin
π ∈ Π(P (Zt), P (Zt+1))

Lt
W(π, f), ∀t ∈ {1, . . . , T − 1}, (8)

and f is updated in an alternating optimization manner with fixed π∗ to minimize Lt
W(π∗, f). When

the original dimension D is low, g can be an identity function for precise MI estimation. Conversely,
when D is high, directly learning f from Zt to Zt+1 requires more accurate information and precise
correspondence. This is because f must be a considerably more complex and larger model to facilitate
mapping from one high-dimensional space to another. As a result, the hypothesis space F for f
expands, requiring more information to ensure the model converges to an optimal state. The absence
of correspondence therefore presents a challenge as it leads to an information-insufficient situation
and it becomes more suitable to set a smaller representation dimension d.
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It is noted that when the correspondences between two consecutive timestamps exist, they can be
inferred by minimizing the Wasserstein distance. When such correspondences do not exist, one can
still establish correspondences by identifying a proxy of zt,i in the succeeding timestamp that exhibits
similar dynamics and shares the latent evolving patterns.

5.2 EVORATEW

We hence use π∗(Zt, Zt+1) to estimate joint distribution P , and then obtain the following estimator
with π∗(Zt, Zt+1)

EvoRateW = E(zt,zt+1)∼π∗(Zt,Zt+1) − ||f(g(zt)))− g(zt+1)||22

− logEzt∼P (Zt),zt+1∼P (Zt+1)e
−||f(g(zt))−g(zt+1)||22 (9)

Here k can be regarded to set to 1 compared to equation 4, indicating that EVORATEW focuses on the
first-order evolving patterns. It is possible to extend this approach to estimate higher-order k-order
sequences by iteratively leveraging outcomes from first-order through to k-order sequential modeling.

5.3 Discussion

The following remark argues that there exists an optimal function that precisely captures the underly-
ing dynamics of evolving data.
Remark 1. (Realization) In machine learning prediction tasks, there exists a function f∗ ∈ F : Z →
Z where the conditional distribution of Zt+1 given Zt satisfies

Zt+1 ∼ N (f∗(Zt), σ
2I) = P (Zt+1|Zt) (10)

The following lemma demonstrates that when f reaches the optimal predictive model f∗, the estimated
optimal transport plan equals the real joint distribution. In this context, we consider g to be the
identity function.
Lemma 1. Let P (Zt, Zt+1) be the ground truth joint distribution. If f attains f∗, then

π∗(Zt, Zt+1) = P (Zt, Zt+1) (11)

Below, we give an illustrative example. As T ≫ 1, the function f will converge to f∗ by minimizing
Lt
W(π∗, f). It demonstrates that for a dynamic system without correspondences, the number of

timestamps must be greater than 1 to learn the optimal autoregressive model effectively.

Example Consider data collected from multiple time steps where each sample is a vector Zt ∈ RD.
Specifically, the initial data points at the first timestamp is modeled as a Gaussian variable Z1 ∼
N (µ1,Σ1). The temporal evolution of the data is governed by a transition function

zt+1 = f∗(Zt) = A∗zt + b∗, t ∈ {1, . . . , T}

and each Zt follows a Gaussian distribution Zt ∼ N (µt,Σt) where A∗ ∈ RD×D, b∗ ∈ RD. Solving
the optimizing problem Lt

W(π∗, f), t ∈ {1, . . . , T − 1} can lead to the solutions reaching optimal
mapping f∗ with t ≫ 1. (Experiment results shown in Figure 1c,1d)

6 Experiment

6.1 Multivariate Gaussians with tractable MI

Sequential data with known correspondence We sample data sequences {zt}Tt=1, t ∈ {1, . . . , T},

zT = ρ
∑T−1

t=1 zt
T−1 +

√
1− ρ2ϵ, with correlation ρ ∈ [−1, 1], ϵ ∼ N (0, I), Zt ∼ N (0, I), t ∈

{1, . . . , T − 1}. Given the correlation coefficient ρ and dimensionality D = 128, we can compute
the ground truth MI as EvoRate(ZT−1

1 ;ZT ) = −(D/2) ln(1− ρ2). The optimal MI estimation can
be achieved when sequential model f equals the ground truth model f∗ = Avg, where Avg(·) is
an average operation. In Figure 1a and 1b, we increase ρ over training steps to show the estimator
behavior depends on the true mutual information. Additionally, we experiment with two forms of
architecture: separable and joint. Separable architectures independently map the representations
of history states f(ZT−1

1 ) and the future state ZT to an embedding space with neural nets ϕ1 and
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Figure 1: (a-b) Performance of (a) EVORATE / (b) concat and separate critic on mutual information estimation
on sequential data with correspondence. (c-d) Performance of EVORATEW on mutual information estimation on
two consecutive time steps without correspondence, where g is (c) an identity function / (d) neural nets.
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Figure 2: (a) k-order EVORATE estimation. (b) EVORATE estimation on a different number of features. (c)
EVORATE estimation of the video prediction tasks with a different corruption rate.

ϕ2 separably, and then take the inner product, i.e. ϕ1(f(ZT−1
1 ))Tϕ2(ZT ) as in [37]. Joint critics

concatenate each f(ZT−1
1 ), ZT pair before feeding it into the network, i.e. ϕ([f(ZT−1

1 );ZT ]) as
in [8]. In this experiment, g is set to an identity function, and the sequential model f is set to an
LSTM [25]. All networks are fully-connected networks with ReLU activations. Figure 1a shows the
estimated mutual information by EVORATE over the number of iterations, and square error metric
can let f converge to f∗ such that the EVORATEW converges to ground truth mutual information.
Figure 1b verifies that the square error metric has a lower bias compared to trainable concat critic and
separable critic.

Sequential data without known correspondence We sample data sequence {zt}Tt=1, t ∈
{1, . . . , T − 1}, zt+1 = ρ(A∗zt + b∗) +

√
1− ρ2ϵ, where A∗ ∈ RD×D is a rotation matrix,

b∗ ∈ RD is a translation vector, correlation of ρ ∈ [−1, 1], ϵ ∼ N (0, I), and Z1 ∼ N (0, I). Given
the correlation coefficient ρ and dimensionality D = 128, we can compute the ground truth MI
value EvoRate(Zt;Zt+1) = −(D/2) ln(1− ρ2). The optimal MI estimation can be achieved when
sequential model f equals the ground truth model f∗ = A∗zt + b∗. In this experiment, it is actually
very difficult to estimate mutual information without correspondence. As a result, the estimations
by joint and separable critic do not converge and fail in the case without correspondence, which
further shows the square error metric shows better performance than the trainable neural nets critic. In
Figure 1c,1d, g being an identity function estimates a higher value than g being a neural-nets encoder.
It is noted that EVORATEW is the only method able to estimate the mutual information without the
correspondence between timestamps, achieving a reasonable performance to estimate MI.

6.2 Sequential data’s order approximation and feature selection

Order Approximation We sample data with 5-order (k = 5), and dimensionality D = 5, which
means Zt+1 is determined by Zt

t−4. More specifically, the data is generated by the dynamic function
Zt+1 = A∗vec(Zt

t−4) + b∗, where in this experiment, vec(·) is a vectorized operation, A∗ ∈ R5×25

and b∗ ∈ R5. We vary k ∈ {1, 3, 5, 12, 24} to measure the EVORATE between Zt
t−k+1 and Zt+1.

Figure 2a shows that k = 5 has the maximal EVORATE value. In another experiment, the time series
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forecasting task is used to verify the effectiveness of EVORATE. Time series forecasting performance
is evaluated with the sMAPE metric [35], measured as the mean absolute error scaled by the magnitude
of the predictions and target. The performance shown in Table 1 is the SOTA method [53] and they
set the model with order k = 45. The order is set as k ∈ {10, 25, 45, 90, 180, 270}. Although
k = 270 achieves the highest EvoRate, the difference between k = 270 and k = 90 is only 0.03,
and the performances over average (AVG) sMAPE have the same prediction error. For M4-Weekly,
EVORATE shows order set as k = 90 can achieve a good performance. Although EVORATE is
slightly higher for k = 270 than k = 90, it sacrifices three times more computation consumptions
compared to only a +0.03 EVORATE gain if the model time complexity is O(k). Forecastability
(ForeCA) fails in this experiment, as shown in Table 1, since the longer time series shows smaller
forecastability but it achieves smaller sMAPE and a better performance. Longer sequence can have
more evolving patterns in different frequencies combined and result in a smaller forecastability, but it
may be more easily predictable once the patterns are learned by the model. Therefore, we conclude
that the entropy used by ForeCA is not a good indicator of the capability of predictions while MI used
by EVORATE is. In addition, randomness is a critical factor for the capability of the predictions of the
sequential data. Since one of the evolving patterns is learned by sequential models, the performance
only relies on the randomness of the data, which can be regarded as unwanted noises or unobserved
factors.

Table 1: Time series forecasting (TSF) tasks: M4-Weekly The values of EVORATE and time series forecasting
performance below are experiments on dataset M4-Weekly. Here, short, medium, long, Avg stands for short-
horizon sMAPE, medium-horizon sMAPE, long-horizon sMAPE, and the whole average sMAPE.

ORDER:K SHORT MEDIUM LONG AVG EVORATE FORECA

10 8.28 10.13 11.44 10.06 1.98 0.50
25 5.78 9.82 10.85 8.97 2.07 0.39
45 5.69 8.80 8.52 7.74 2.11 0.33
90 5.48 5.92 7.22 6.28 2.55 0.27

180 5.40 6.41 7.39 6.47 2.56 0.22
270 5.47 6.39 6.84 6.28 2.58 0.19

Feature Selections For autoregressive tasks, poor predictions may due to the lack of the features.
Some features may be redundant and some may be unrelated to predictions. Others may be related to
the task but are not put as input fed into the prediction model. The synthetic data has 5 dimensions,
where the first 3 are useful, the fourth is redundant and the fifth is unrelated (Details in Appendix B.4).
Figure 2b shows the EVORATE of the data sequence with the first n features. The results show that i)
EVORATE achieves the highest value with the first three features, ii) the first four features containing
one redundant feature sees a minor performance drop, and iii) using all five features sees a larger
drop.

6.3 EvoRate as a criterion for existence of evolving patterns

In some problems, data is sampled independently from the history observations [49, 2]. In this
case, we suggest directly learning a model using ERM [49] for i.i.d (independent and identically
distributed) or IRM [2] for data sampled independently but with distribution shifts. In many machine
learning applications, data is predicted in an autoregressive manner by training sequential models [50,
9, 16, 33]. Whether to use ERM/IRM or sequential models directly depends on the existence of
the evolving patterns. Therefore, we take EVORATE as the criterion for the existence of evolving
patterns.

Multivariate time series In Table 2, EVORATE can achieve better estimates of the evolving patterns
compared to ForeCA, where stronger evolving patterns indicate smaller regression errors using
sequential models. Specifically, for M4-Monthly and M4-daily, ForeCA shows equal values but
EVORATE shows higher values for M4-Daily, consistent with experimental results in which M4-Daily
achieves lower sMAPE.

Evolving Domain Generalization (EDG) follows our setting in Section 5.1, where the correspon-
dence is intractable and we aim to learn the evolving patterns to predict yt,i conditioned on input xt,i

for every sample zt,i = {xt,i, yt,i} [42, 57]. In Table 3, we show the performance of EVORATEW
and SOTA performance for invariant learning [2] and evolving learning [42, 57, 59]. Although,
performance of the evolving representation learning not only depends on the existence of the evolving
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Table 2: Time series forecasting (TSF) tasks: The estimated mutual information for the sequential data
for different datasets. RMSE (Crypto, Player Traj.)/sMAPE (M4-Monthly, M4-Weekly, M4-Daily) is the
performance of one SOTA TSF method [53].

CRYPTO PLAYER TRAJ. M4- MONTHLY M4- WEEKLY M4- DAILY

RMSE/SMAPE 6.91 ± 0.01 1.16 ± 0.01 11.93 7.25 2.99
FORECA 0.35 0.49 0.44 0.43 0.44
EVORATE 2.80 4.67 1.58 2.25 2.26

patterns (shown by values of EVORATEW ), EVORATEW is still a critical factor in deciding whether
to use sequential models. For example, PORTRAITS hahs the lowest EVORATEW 0.25 and show the
smallest improvement 3.7% of the performance of evolving learning than invariant learning, and
RGaussian has the highest EVORATEW 1.58 and show the largest improvement of the performance
as 50.2%.

Table 3: The estimated mutual information for the evolving domains for different datasets. The reported results
are the average accuracy of the multiple target domains.

RGAUSSIAN CIRCLE SINE RMNIST PORTRAITS CALTRAN POWERSUPPLY

INVARIANT (ACC:%) 47.5 51.3 63.2 39.0 85.4 64.1 70.8
EVOLVING (ACC:%) 97.7 73.8 71.4 46.4 89.1 70.6 75.7
ACCEVO - ACCINV (%) 50.2 22.5 8.2 7.4 3.7 6.5 4.9

EVORATEW 1.58 0.58 0.54 0.95 0.25 0.28 0.46

6.4 Control randomness to corrupt evolving patterns

Corrupt by 

swap the frame

…
…

…
…

Figure 3: Illustration of corrupting the video’s evolving
patterns by randomly swapping the frame.

Video prediction aims to predict future video
frames from the current ones. In this exper-
iment, we evaluate EVORATE on the KITTI
dataset [20], which contains 28 driving videos
with a resolution of 375×1242. 24 videos in
KITTI dataset are used for training. We ver-
ify the performance of EVORATE by shuffling
the index of the sequential data with a certain
corrupt probability, and this randomness will
decrease the evolving patterns (Figure 3).

Figure 2c shows that by increasing the corrup-
tion rate to the video sequence, EVORATE ex-
hibits a lower value. This is consistent with our
intuition, which is that the continuous video stream shows higher patterns compared to the disordered
video clips.

6.5 Algorithms to improve performance on EDG tasks

From the intuition that LW can estimate the joint distribution, we apply this loss to learn a transition
model based on the estimated joint distribution between two consecutive domains. Table 5 shows
this is an efficient method and achieves improved performance on EDG tasks. Our method shows an
11.7% higher average accuracy than the second-best baselines.

Table 4: The comparison of the classification accuracy (%) between our and baseline methods across the
synthetic and real-world datasets. The reported results are the average accuracy of the multiple target domains.

ALGORITHM MIXUP [55] IRM [2] CORAL [47] DIVA [28] LSSAE [43] DRAIN [6] OUR METHOD

RMNIST 44.9 39.0 44.5 42.7 46.4 43.8 48.5
RGAUSSIAN 55.4 47.5 53.0 56.6 48.7 61.0 91.2

POWERSUPPLY 70.8 70.8 71.0 70.8 71.1 71.0 71.3
AVG 57.0 52.4 56.2 56.7 55.4 58.6 70.3
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7 Conclusion

In this work, we propose EVORATE to qualitatively estimate the evolving patterns for the data
sequences and the data snapshots from multiple consecutive timestamps without correspondences.
We show the square error metric can be both a better critic for mutual information estimation, and a
well-designed loss to help the optimal transport plan converge to the real joint distribution and the
sequential model converge to the latent dynamic governing function. EVORATE reflects the complex
patterns for high-dimensional data and is more computationally efficient than directly evaluating the
performance of sequential data predictions. Experiments show EVORATE is an effective measure for
evolving patterns and has the potential for many applications in the machine learning area.
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A Proof of Theories

Proposition 1. Assume that the model’s probability density follows Q(Zt+1|Zt
t−k+1) =

N (Zt+1;F (Zt
t−k+1), ID)

Lmle = Lmse + const (12)

Proof.

Lmle = −EP logQ = ||F (ztt−k+1)− zt+1||22 +
D

2
log(2π) = Lmse + const (13)

Proposition 2. For autoregression tasks, the expected risk satisfy:

Lmle = −I(Zt+1;Zt
t−k+1) +H(Zt+1) +DKL(P (Zt+1|Zt

t−k+1), Q(Zt+1|Zt
t−k+1)) (14)

Proof.

Lmle = −Ezt+1
t−k+1

∼P (Zt−k+1,...,Zt+1)
logQ(Zt+1|Zt

t−k+1) (15)

= −Ezt+1
t−k+1

∼P (Zt−k+1,...,Zt+1)
log

Q(Zt+1|Zt
t−k+1)

P (Zt+1|Zt
t−k+1)

− Ezt+1
t−k+1

∼P (Zt−k+1,...,Zt+1)
logP (Zt+1|Zt

t−k+1) (16)

= DKL(P (Zt+1|Zt
t−k+1), Q(Zt+1|Zt

t−k+1))− Ezt+1
t−k+1

∼P (Zt−k+1,...,Zt+1)
log

P (Zt+1|Zt
t−k+1)

P (Zt+1)

− Ezt+1
t−k+1

∼P (Zt−k+1,...,Zt+1)
logP (Zt+1) (17)

= DKL(P (Zt+1|Zt
t−k+1), Q(Zt+1|Zt

t−k+1))− I(Zt+1;Zt
t−k+1) +H(Zt+1) (18)

β-mixing is a measure of the degree of dependence between random variables in a sequence over
time, which is closely related to MI and furthermore upper bounded by MI:
Remark 1. s ∈ N, β-mixing coefficients defined in below satisfy:

β(s) = sup
s

EZt
−∞

[
||P∞

t+s(·|Z
t
−∞)− P∞

t+s||TV

]
≤ sup

s

[√
2I(Z∞

t+s;Zt
−∞)

]
(19)

where || · ||TV is the maximum total variation distance.

Proof.

β(s) = sup
s

EZt
−∞

[
||P∞

t+s(·|Z
t
−∞)− P∞

t+s||TV

]
≤ sup

s
EZt

−∞

[√
2DKL(P (Z∞

t+s|Z
t
−∞)||P (Z∞

t+s))

]
(20)

≤ sup
s

[√
2EZt

−∞
DKL(P (Z∞

t+s|Z
t
−∞)||P (Z∞

t+s))

]
= sup

s

[√
2I(Z∞

t+s;Zt
−∞)

]
(21)

where the first inequality follows Pinsker’s inequality; the second inequality follows Jensen’s Inequal-
ity.

Lemma 1. P (X,Y ) is the real underlying distribution, and π(X,Y ) is the optimal transport plan
that satisfies both margins comply with P (X) and P (Y ). We first define:

IP (X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dx dy (22)

Iπ(X;Y ) =

∫
π(x, y) log

π(x, y)

p(x)p(y)
dx dy (23)
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Then, we have
Ip(X;Y )− Iπ(X;Y ) = Hπ(X,Y )−Hp(X,Y ) = Hπ(Y |X)−Hp(Y |X) (24)

Therefore, we can get IP (Zt;Zt+1)− Iπ(Zt;Zt+1) = Hπ(Zt;Zt+1)−HP (Zt;Zt+1).

Proof.

Ip(X;Y )− Iπ(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dx dy −

∫
π(x, y) log

π(x, y)

p(x)p(y)
dx dy (25)

=

∫
p(x, y) log p(x, y)dx dy −

∫
π(x, y) log π(x, y)dx dy −

∫
p(x, y) log p(x)dx dy

−
∫

p(x, y) log p(y)dx dy +

∫
π(x, y) log p(x)dx dy +

∫
π(x, y) log p(y)dx dy (26)

=

∫
p(x, y) log p(x, y)dx dy −

∫
π(x, y) log π(x, y)dx dy −

∫
p(x) log p(x)dx dy

−
∫

p(y) log p(y)dx dy +

∫
p(x) log p(x)dx dy +

∫
p(y) log p(y)dx dy (27)

= Hπ(X,Y )−Hp(X,Y ) (28)
= Hπ(X|Y )−Hp(X|Y ) = Hπ(Y |X)−Hp(Y |X) (29)

26 to 27 is due to p(x, y) and π(x, y) have the same margins p(x) and p(y) and we integral over x or
y first.

Lemma 2. Let P (Zt, Zt+1) be the ground truth joint distribution. If f attains f∗, then
π∗(Zt, Zt+1) = P (Zt, Zt+1) (30)

Proof. To finish the proof, we first assume (zt, z
′
t+1) ∼ π(Zt, Zt+1), (zt, zt+1) ∼ π(Zt, Zt+1) and

ϵ ∼ N (0, σ2I), then,

inf
π ∈ Π(P (Zt), P (Zt+1))

Lt
W(π, f) = inf

π ∈ Π(P (Zt), P (Zt+1))
E(zt,z′

t+1)∼π||f(zt)− z′t+1)||22

= inf
π ∈ Π(P (Zt), P (Zt+1))

E(zt,z′
t+1)∼π||(zt+1 − ϵ)− z′t+1)||22

= inf
π ∈ Π(P (Zt), P (Zt+1))

[∫
||z′t+1 − zt+1||22 dπ(Zt, Zt+1) (31)

−
∫

2ϵT (z′t+1 − zt+1) dπ(Zt, Zt+1) +

∫
||ϵ||22 dπ(Zt, Zt+1)

]
= inf

π ∈ Π(P (Zt), P (Zt+1))

[∫
||z′t+1 − zt+1||22 dπ(Zt, Zt+1) (32)

−
∫

2ϵT (z′t+1 − f∗(zt) + ϵ) dπ(Zt, Zt+1) (33)

+

∫
||ϵ||22 dπ(Zt, Zt+1)

]
= inf

π ∈ Π(P (Zt), P (Zt+1))

[∫
||z′t+1 − zt+1||22 dπ(Zt, Zt+1) (34)

−
∫

2ϵT (z′t+1 − f∗(zt)) dπ(Zt, Zt+1)−
∫

||ϵ||22 dπ(Zt, Zt+1)

]
.

Since ϵ ⊥⊥
(
z′t+1 − f∗(zt)

)
inf

π ∈ Π(P (Zt), P (Zt+1))
Lt
W(π, f) = inf

π ∈ Π(P (Zt), P (Zt+1))

∫
||z′t+1 − zt+1||22 dπ(Zt, Zt+1)

+ const

To achieve infimum of Lt
W(π, f), Z ′

t+1 = Zt+1 should satisfy and hence π∗(Zt+1|Zt) =
P (Zt+1|Zt) and π∗(Zt+1, Zt) = P (Zt+1, Zt) with a feasible solution.
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Example We consider data collected from multiple time steps where each sample is a vector
Zt ∈ RD. Specifically, the initial data points at the first timestamp is modeled as a Gaussian variable
Z1 ∼ N (µ1,Σ1). The temporal evolution of the data is governed by a transition function:

zt+1 = f∗(Zt) = A∗zt + b∗, t ∈ {1, . . . , T},
and each Zt follows a Gaussian distribution, Zt ∼ N (µt,Σt), where A∗ ∈ RD×D, b∗ ∈ RD.
Solving the optimizing problem Lt

W(π, f), t ∈ {1, . . . , T − 1} can lead to the solutions reaching
optimal mapping f∗ with t ≫ 1.

Proof. Assume the linear transition function has parameters (A, b) as zt+1 = f(Zt) = Azt + b, it
can be inferred that Zt+1 ∼ N (Aµt + b, AΣtA

T ).

For each pair of data from two consecutive timestamp data, the Wasserstein distance loss can be
expressed as follows, according to [21]

Wasserstein Distance loss = inf
π

LW(t) = ||µt − (Aµt−1 + b)||22+

Tr

(
AΣt−1A

T +Σt − 2
(
Σ

1
2
t AΣt−1A

TΣ
1
2
t

) 1
2

)
Then, we can have

inf
π

LW(t) = ||µt − (Aµt−1 + b)||22 + Tr

(
AΣt−1A

T +Σt

)
−

(
2Tr

(
Σ

1
2
t AΣt−1A

TΣ
1
2
t

) 1
2

)

= ||µt − (Aµt−1 + b)||22 + Tr

(
AΣt−1A

T +Σt

)
−

(
2Tr

(
ATΣtAΣt−1

) 1
2

)

= ||µt − (Aµt−1 + b)||22 + Tr

(
AΣt−1A

T +Σt − 2
(
ATΣtAΣt−1

) 1
2

)

= ||µt − (Aµt−1 + b)||22 + Tr

(
AΣt−1A

T +Σt

)
−

(
2Tr

(
ATΣtAΣt−1

) 1
2

)

= ||µt − (Aµt−1 + b)||22 + Tr

(
AΣt−1A

T +Σt − 2
(
ATΣtAΣt−1

) 1
2

)

= ||µt − (Aµt−1 + b)||22 + Tr

(
(ATΣtA− Σt−1)(A

TΣtA− Σt−1)
T

)
= ||µt − (Aµt−1 + b)||22 + ||ATΣtA− Σt−1||F

where || · ||F is Frobenius norm. infπ LW(t) = 0, and the infimum is attained when{
Aµt−1 + b = µt

ATΣt−1A = Σt
,∀ t = {2, . . . , T} (35)

We are dealing with a system where the matrix A and b together comprise n × (n + 1) unknown
variables. At each time step t, the system is described by n × n quadratic equations and n linear
equations. Typically, these quadratic equations yield two possible sets of solutions. To refine our
estimates and converge towards the optimal parameters (A∗, b∗), employing a large number of time
steps (t ≫ 1) allows us to formulate an overdetermined system of equations.

B Datasets

B.1 Multivariate Gaussians: sequential data with known correspondence

We sample data sequence {zt}Tt=1, t ∈ {1, . . . , T}, zT = ρ
∑T−1

t=1 zt
T−1 +

√
1− ρ2ϵ, where correlation

of ρ ∈ [−1, 1], ϵ ∼ N (0, I), Zt ∼ N (0, I), t ∈ {1, . . . , T − 1}. Given the correlation coefficient ρ
and dimensionality D = 128, we can compute the ground truth MI value EvoRate(ZT−1

1 ;ZT ) =
−(D/2) ln(1− ρ2).
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B.2 Multivariate Gaussians: sequential data without known correspondence

We sample data sequence {zt}Tt=1, t ∈ {1, . . . , T − 1}, zt+1 = ρ(A∗zt + b∗) +
√

1− ρ2ϵ, where
A∗ ∈ RD×D is a rotation matrix, b∗ ∈ RD is a translation vector, correlation of ρ ∈ [−1, 1],
ϵ ∼ N (0, I), and Z1 ∼ N (0, I). Given the correlation coefficient ρ and dimensionality D = 128,
we can compute the ground truth MI value EvoRate(Zt;Zt+1) = −(D/2) ln(1− ρ2).

B.3 Synthetic data for order approximation

We sample data with 5-order (k = 5), and dimensionality D = 5, which means Zt+1 is determined
by Zt

t−4. More specifically, the data is generated by the dynamic function Zt+1 = A∗vec(Zt
t−4)+b∗,

where in this experiment, vec(·) is a vectorized operation, A∗ ∈ R5×25, and b∗ ∈ R5. In this
experiment, we set k to {1, 3, 5, 12, 24} to measure the EVORATE between Zt

t−k+1 and Zt+1.

B.4 Synthetic data for feature selection

In this experiment, We sample data with 5-order (k = 5), and dimensionality D = 5. Only first
three features are decided by the past states: Zt+1[: 3] = A∗vec(Zt

t−4[:, : 3]) + b∗, where in this
experiment, vec(·) is a vectorized operation, A∗ ∈ R3×15, and b∗ ∈ R3. The fourth feature is a linear
combination of the first three dimension features, as a redundant feature. The fifth feature is purely
noise following the normal distribution.

B.5 Time-series forecastings

M4 [35] contains 10000 highly nonstationary univariate time series with different frequencies from
hourly to yearly and different categories from financials to demographics. The forecasting horizon
varies across different frequencies.

Crypto [4] This multivariate dataset contains 8 features on historical trades, such as open and
close prices, for 14 cryptocurrencies. The original challenge is to predict 3-step ahead 15-minute
relative future returns. Since we focus on long-term forecasting, we train all models to make 15-step
predictions of 15-minute relative future returns. We use the original training set from the competition
and do an 80%-10%-10% training-validation-test split.

Player Trajectory [32] contains basketball player movement trajectories from NBA games in 2016.
We randomly sample 300 player trajectories for training and validation and 50 trajectories for testing.
All models are trained to yield 30-step ahead predictions

B.6 Evolving domain generalization

Rotated Gaussian [58] consists of 30 domains generated by the same Gaussian distribution, but
the decision boundary rotates from 0◦ to 338◦ with an interval of 12◦. We split the domains into
source domains (1-22 domains), intermediate domains (22-25 domains), and target domains (26-30
domains). The intermediate domains are utilized as the validation set.

Circle [40] contains evolving 30 domains where the instance are sampled from 30 2D Gaussian
distributions. The label is assigned using a half-circle curve as the decision boundary. (15 source
domains, 5 validation domains, and 10 target domains)

Sine In Sine [40] each data owns two attributes (x1, x2). The label is assigned using a sine curve
as the decision boundary. We rearrange this dataset by extending it to 24 evolving domains. Each
domain covers 1

24 the period of the sinusoid. (12 source domains, 4 validation domains, and 8 target
domains)

Rotated MNIST (RMNIST) [22] is an adaptation of the popular MNIST digit dataset [15], composed
of MNIST digits of various rotations. The task is to classify a digit from 0 to 9 given an image of the
digit. We follow [43] and extend it to 19 evolving domains via applying the rotations with degree of
{0◦, 15◦, 30◦, . . . , 180◦} in order. (10 source domains, 3 validation domains, and 6 target domains).

Portraits [23] is a real-world dataset that comprises photographs of American high school seniors
collected over a period of 108 years (1905-2013) across 26 states. The objective is to accurately
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classify the gender for each photograph. The dataset is divided into 34 domains based on a fixed
interval over time. (19 source domains, 5 validation domains, and 10 target domains)

Caltran [26] consists of real-world images captured by a fixed traffic camera deployed in an inter-
section over time. Frames were updated at 3-minute intervals each with a resolution 320× 320. We
divide it into 34 domains by time. The task of Caltran is to classify scenes to identify the presence
of one or more vehicles in or approaching the intersection. The challenge mainly raise from the
continually evolving domain shift as changes include time, illumination, weather, etc. (19 source
domains, 5 validation domains, and 10 target domains)

PowerSupply [14] is a dataset designed for the task of time-section prediction of current power
supply based on hourly records obtained from an Italian electricity company. The dataset consists
of 30 domains formed according to days. Each data point is assigned a binary class label indicating
whether the current power supply belongs to the morning or the afternoon. Domain shifts may arise
due to variations in season, weather, price, or the differences between working days and weekends.
(15 source domains, 5 validation domains, and 10 target domains)

C Full experiments on EDG tasks

In this section, we present complete experimental results to validate the efficacy of our proposed
evolving domain generalization task.

Table 5: RMNIST. We show the results on each target domain by domain index.

ALGORITHM 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ AVG

MIXUP [55] 61.3 ± 0.7 47.4 ± 0.8 39.1 ± 0.7 38.3 ± 0.7 40.5 ± 0.8 42.8 ± 0.9 44.9
IRM [2] 47.7 ± 0.9 38.5 ± 0.7 34.1 ± 0.7 35.7 ± 0.8 37.8 ± 0.8 40.3 ± 0.8 39.0

CORAL [47] 58.8 ± 0.9 46.2 ± 0.8 38.9 ± 0.7 38.5 ± 0.8 41.3 ± 0.8 43.5 ± 0.8 44.5
DIVA [28] 58.3 ± 0.8 45.0 ± 0.8 37.6 ± 0.8 36.9 ± 0.7 38.1 ± 0.8 40.1 ± 0.8 42.7

LSSAE [43] 64.1 ± 0.8 51.6 ± 0.8 43.4 ± 0.8 38.6 ± 0.7 40.3 ± 0.8 40.4 ± 0.8 46.4
DRAIN [6] 59.5 ± 0.8 45.4 ± 0.8 40.2 ± 0.7 37.2 ± 0.7 39.6 ± 0.8 41.0 ± 0.7 43.8

OUR METHOD 65.5 ± 0.6 55.9 ± 0.8 47.3 ± 0.8 41.8 ± 0.9 40.1 ± 0.9 40.3 ± 0.8 48.5

Table 6: Rotated Gaussian. We show the results on each target domain by domain index.

ALGORITHM 26 27 28 29 30 AVG

MIXUP 56.2 ± 1.5 63.4 ± 3.0 56.8 ± 1.4 49.4 ± 1.5 41.4 ± 2.0 55.4
IRM 56.8 ± 1.9 55.8 ± 3.1 51.8 ± 2.3 41.6 ± 1.6 31.4 ± 2.1 47.5

CORAL 54.8 ± 1.6 54.0 ± 0.6 53.8 ± 1.0 52.0 ± 0.8 50.6 ± 1.6 53.0
DIVA 59.0 ± 1.5 55.8 ± 0.9 53.6 ± 0.7 59.2 ± 1.3 55.6 ± 1.5 56.6

LSSAE 50.6 ± 0.9 50.8 ± 2.3 43.4 ± 1.4 48.4 ± 2.4 50.4 ± 2.1 48.7
DRAIN 73.2 ± 2.9 70.0 ± 1.7 63.8 ± 2.4 53.2 ± 2.2 45.0 ± 1.2 61.0

OUR METHOD 98.0 ± 0.6 94.6 ± 0.9 98.0 ± 0.6 92.4 ± 0.9 73.2 ± 0.8 91.2

Table 7: PowerSupply. We show the results on each target domain by domain index.

ALGORITHM 21 22 23 24 25 26 27 28 29 30 AVG

MIXUP 69.6 ± 1.4 69.5 ± 1.5 68.3 ± 1.5 64.3 ± 1.5 87.1 ± 1.0 76.6 ± 1.3 70.1 ± 1.4 69.2 ± 1.3 68.1 ± 1.5 65.0 ± 1.6 70.8
IRM 69.8 ± 1.4 69.5 ± 1.4 68.3 ± 1.4 64.1 ± 1.4 87.2 ± 0.9 76.5 ± 1.3 70.0 ± 1.5 69.1 ± 1.5 68.2 ± 1.3 65.0 ± 1.4 70.8

CORAL 69.9 ± 1.4 69.7 ± 1.4 68.9 ± 1.4 64.6 ± 1.4 86.1 ± 1.0 76.3 ± 1.3 70.0 ± 1.5 69.5 ± 1.5 68.8 ± 1.3 65.7 ± 1.5 71.0
DIVA 69.7 ± 1.4 69.5 ± 1.3 68.2 ± 1.4 63.9 ± 1.5 87.5 ± 1.0 76.5 ± 1.3 69.9 ± 1.5 69.1 ± 1.5 68.1 ± 1.3 64.7 ± 1.5 70.7

LSSAE 70.0 ± 1.4 69.8 ± 1.4 69.0 ± 1.5 65.4 ± 1.4 85.1 ± 1.1 76.0 ± 1.4 70.1 ± 1.7 69.9 ± 1.3 69.0 ± 1.6 66.3 ± 1.4 71.1
DRAIN 70.1 ± 1.3 70.0 ± 1.0 69.3 ± 1.1 65.5 ± 1.5 83.6 ± 1.0 75.8 ± 1.7 70.3 ± 1.3 69.8 ± 1.5 68.9 ± 1.9 66.4 ± 1.2 71.0

OUR METHOD 69.4 ± 1.3 69.3 ± 1.7 68.2 ± 1.3 64.1 ± 1.5 86.2 ± 1.0 75.8 ± 1.4 70.3 ± 1.2 70.8 ± 1.4 70.0 ± 1.5 68.6 ± 1.0 71.3
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D Computational Cost

All experiments are carried out on 498G memory, 2 x AMD Milan 7413 @ 2.65 GHz 128M cache
L3, and 2 x NVidia A100SXM4 (40 GB memory). The algorithm’s computational cost is the cost
of OT (using package [19]) O(B3) and the cost of estimation of MI O(B2d), where B is the batch
size in an iteration, and d is the representation dimension. In all, the total computational cost is
O(B2d+B3) (not counting the encoder g and decoder h).

E Algorithms Training Procedures

Algorithm 1 EVORATE: Data is sampled in a sequential manner with correspondence

1: for each training iteration do
2: Sample

{
{zt,i}Tt=1

}B
i=1

from p(zTt=1), where B is the batch size per training iteration
3: Compute EvoRate of i-th sample at timestamp t according to Eq (4), k < t:

EvoRatet,i :=− ||f(g(zt−k+1,i), . . . , g(zt,i))− g(zt+1,i)||22

− log
1

B

B∑
j=1

e−||f(g(zt−k+1,i),...,g(zt,i))−g(zt+1,j)||22

4: Update f and g by maximize 1
B(T−k)

∑T−1
t=k

∑B
i=1 EvoRatet,i

5: end for

Algorithm 2 EVORATEW : Data is sampled from different timestamps but without correspondence

1: for each training iteration do
2: Sample

{
{zt,i}Bi=1

}T
t=1

from p(zTt=1), where B is the batch size per training iteration
3: Compute the optimal transport plan π∗, where Lt

W(π, f) defined in Eq (7)

π∗(Zt, Zt+1) = argmin
π ∈ Π(P (Zt), P (Zt+1))

Lt
W(π, f), ∀t ∈ {1, . . . , T − 1},

4: Compute EvoRateW of i-th sample at timestamp t according to Eq (9), especially (zt,i, zt+1,i)
is sampled from π∗:

(EvoRateW)t,i : = −||f(g(zt,i))− g(zt+1,i)||22 − log
1

B

B∑
j=1

e−||f(g(zt,i))−g(zt+1,j)||22

5: Update f by maximize 1
B(T−1)

∑T−1
t=1

∑B
i=1(EvoRateW)t,i

6: end for

F Comparisons with Traditional time-series statistic indicators

There are traditional statistic indicators for time series, but they have significant limitations: a)
System sensitivity, measured by Lyapunov Exponents (LEs) [2] measures how sensitive a dynamic
system is to initial conditions, b) Trend is the slope of a linear regression fitted to sequential data,
and c) Seasonality, measured by the ACF test [3], assesses linear correlations between observations
at different time lags. These methods are not designed to measure evolving patterns and struggle to
handle high-dimensional data. Each method measures only one aspect of evolving patterns: system
sensitivity, trend, or seasonality. Together, they determine the overall evolving patterns. We present a
comparison of these metrics with our method below:

In the above table, a larger EvoRate consistently indicates a smaller potential prediction error
(RMSE/sMAPE) for the dataset. In contrast, LEs, trend, and seasonality show little impact on the
prediction errors. Another significant drawback of these methods is their inability to be directly
applied to high-dimensional data, such as images, videos, and NLP datasets.
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Table 8: Comparison of Different Metrics Across Various Datasets
Crypto Player Traj. M4-Monthly M4-Weekly M4-Daily

RMSE/sMAPE 6.91 1.16 11.93 7.25 2.99
LEs 0.026 0.052 0.011 0.013 0.020

Trend 0.02 0.01 0.48 0.13 0.05
Seasonality 0.00% 0.00% 66.34% 0.00% 0.00%

EvoRate 2.80 4.67 1.58 2.25 2.26

G Limitations

Due to computational resource limitations, we have not included experiments involving Natural
Language Processing (NLP) tasks on Large Language Models (LLMs) in our study. These models
typically require extensive processing power and substantial memory, which exceed our current
hardware capabilities. Additionally, the high costs associated with running these models make them
impractical for our budget. Instead, we focused on alternative datasets and models that align with
our available resources. We believe that our chosen datasets still provide valuable insights while
remaining within our operational constraints. Future work could explore LLMs as our computational
capacity expands.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims are in the abstract and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see section G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: see section A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See the experiment section and dataset section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See dataset section and supplementary files of codes.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the experiment section and dataset section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: see the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work is not an application, but foundational research on machine learning.
Hence, there is no negative social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All related works are mentioned in related works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets are documented in the experiment and dataset sections.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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