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ABSTRACT

Learning with multiple modalities has recently demonstrated significant gains in
many domains by maximizing the shared information across modalities. How-
ever, the current approaches strongly rely on high-quality paired datasets, which
allow co-training from the paired labels from different modalities. In this context,
we raise a pivotal question: Can a model with one modality synergize the train-
ing of other models with the different modalities, even without the paired multi-
modal supervision? Our answer is ‘Yes’. As a figurative description, we argue
that a writer, i.e., a language model, can promote the training of a painter, i.e., a
visual model, even without the paired ground truth of text and image. We theoret-
ically show that a superior representation can be achieved by the synergy between
two different modalities, without paired supervision. As proofs of concept, we
broadly confirm the considerable gains from the synergy across visual, language,
and audio models. From a theoretical viewpoint, we first establish a mathemati-
cal foundation of the synergy between two different modality models, where each
one is trained with its own modality. From a practical viewpoint, our work aims
to broaden the scope of multimodal learning to encompass the synergistic usage
of single-modality models, relieving a strong limitation of paired supervision.

1 INTRODUCTION

In recent years, multimodal learning, which aims to train the joint information across different
modalities, is changing the paradigm of cutting-edge deep models from the conventional one modal-
ity training to the joint training of multiple modalities. Based on the recent success of large mod-
els, such as residual architectures (He et al., 2016), Transformers (Vaswani et al., 2017; Devlin
et al., 2018; Liu et al., 2019) and Vision Transformers (ViT) (Dosovitskiy et al., 2021; Steiner et al.,
2022), has spurred the emergence of numerous multimodal learning methods, mainly focusing on
the vision-language domain.

Notable practices include CLIP (Radford et al., 2021) and ALBEF (Li et al., 2021), which pursue to
align the representations from the vision and language modalities. Also, as another branch, CoOp
(Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) are based on adjustments of the prompt tokens
of pretrained vision-language models. More recently, ViT+LLaMA (Pang et al., 2024) attempt to
concatenate the pretrained language models with vision models, hypothesizing that the language
models would filter significant information from the features extracted by the vision encoder.

This practical success relies on the presumption that the correlated modalities create a synergy when
jointly trained on multimodal data samples, e.g., a synergy of the visual information and the textual
description of an image, or a synergy of the RGB-based camera images and the LIDAR-based sens-
ing signals of autonomous vehicles. As a theoretical foundation of the practices, researchers claim
the existence of the true latent representations, which are able to encompass multiple modalities
(Huang et al., 2021; Huh et al., 2024). This implies that when a paired supervision from multiple
modalities is given, a model has the potential to more accurately represent the shared semantics by
incorporating additional information from other modality models.

We want to raise a critical limitation of the prior works in both practical and theoretical sides. First,
the existing multimodal learning methods mainly require the perfectly paired datasets, leading to the
immense efforts in building multimodal datasets of high quality and restricting the usage of descent
single-modality models in unleashing the synergy between modalities. Second, the current theory
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only explains how multiple modalities promote better representations when paired labels across
modalities are given.

In this context, we start by raising a pivotal question: Can one modality model synergize training
of other modality model, even without matched supervisions across modalities? As an informal de-
scription of the question: Can a writer without true visual supervision (a language model), promote
the training of a painter without true textual supervision, (a visual model)? Our answer is ‘Yes’.

(a) [V] (Acc: 96.01) (b) [L→V] (Acc: 97.09)
Figure 1: t-SNE visualizations between single
(left) and multimodality (right) on CIFAR-10

To showcase how one modality model pro-
motes the training of the other models, we
here provide a preliminary experiment, which
is simple yet intuitive. We consider a case that
a language model [L] synergizes the training of
a visual model [V]; denoting it as [L→V] case.
Specifically, a pretrained BERT model is used
to promote the training of a ResNet model for
the CIFAR-10 classification task (Krizhevsky
et al., 2009). We used the text prompt "This
is about Class #.", providing imper-
fect supervision loosely associated with the im-
age. Herein, # indicates the Arabic class index, which does not provide semantic information of a
given image. When utilizing this imperfect textual representation in training of the visual model, we
surprisingly observe meaningful performance gains. As shown in Figure 1, when compared with
the single-modality [V] case, our case [L→V] shows the well-clustered feature representations and
accuracy gain1. Noteworthy, it demonstrates that language models help visual models, even with
imperfect prompts, i.e., a writer indeed helps a painter. Our work aims to provide a theoretical
foundation for understanding how it happens, and further proof-of-concepts in variety modalities,
architectures, and tasks.

In this paper, we establish a theory that makes us envision how one modality promotes others with-
out paired supervision. The key of this claim is that there exists an interpolated representation of two
single-modality representations that outperforms the two (referred to Theorem 1). Furthermore, it
can be well-approximated without paired supervisions from the given modalities (referred to Theo-
rem 2). As the proof of concepts of our claim, we select the most widely-used modalities, i.e., vision
[V], language [L], and audio [A], to empirically evaluate the synergies between the three modalities.
When using notation, [Mi → Mj], indicates that modality Mi promotes the training of modality
Mj , we mainly confirm that language models promote the training of visual models, i.e., [L→V].
Moreover, we find that visual models or language models aid the training of audio models, and vice
versa, i.e., [V→A], [A→V], [L→A] and [A→L]. Noteworthy, our theoretical claim is not limited to
particular modalities, which broadens the fundamental understanding of the synergy between differ-
ent modalities. Also, our work offers the opportunity to utilize the descent single-modality models
to enhance other modality models, which strongly relieves the crucial demands of paired supervision
of the current multimodal learning.

2 RELATED WORKS

2.1 VISION-LANGUAGE MODEL

Vision and Language are among the most common modalities in deep learning, driving advance-
ments in both empirical and theoretical perspectives. These developments led to foundation models
like Transformers for language (Vaswani et al., 2017; Devlin et al., 2018; Liu et al., 2019) and Vision
Transformer (ViT) for vision (Dosovitskiy et al., 2021; Steiner et al., 2022), enabling co-training
with aligned datasets. A key example is CLIP (Radford et al., 2021), which contrastively learns
latent features by maximizing similarity between matching vision-Language pairs while increasing
separation for non-matching pairs. Building on this, methods have emerged that incorporate label
spaces (Yang et al., 2022) or hard negative samples (Robinson et al., 2021; Li et al., 2021) to improve
representation learning. However, these approaches require high-quality, perfectly aligned datasets.

1Full training details are described in Section 4
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Our work overcomes this limitation by showing that even simplified or loosely aligned information
can significantly enhance performance.

2.2 TRANSLATION OF LANGUAGE INTO VISION MODALITY

Recent advancements in vision-language foundation models have extended their applications across
modalities. Large Language Models (LLMs), such as GPT-3 (Brown et al., 2020), and the LLaMA
series (Touvron et al., 2023a;b; Dubey et al., 2024), have achieved state-of-the-art results in tasks
like reasoning (Talmor et al., 2018) and knowledge retrieval (Kwiatkowski et al., 2019), primarily
through prompt engineering. Building on this, several approaches have employed LLMs trained
solely on language data to assist in vision tasks (Sharma et al., 2024), using their capabilities to
generate new prompts or serve as auxiliary tools. Conversely, our approach focuses on utilizing
latent features derived from language modality, even when imperfect data, without relying on the
extensive capabilities of LLMs to perform vision-related tasks. This enables a more targeted and
efficient use of cross-modal guidance.

2.3 MULTIMODAL LEARNING

Several approaches have moved beyond vision-language paradigms to address a wider range of
multimodal tasks, both empirically and theoretically. On the practical side, methods like MFAS
and Multibench (Liang et al., 2021; Pérez-Rúa et al., 2019) employ fusion networks (Zadeh et al.,
2017; Tsai et al., 2019) to combine inputs or latent features from multiple modalities, enhancing
multimodal learning. Additionally, related research has explored approaches for handling missing
or unpaired sets in multimodal learning (Girdhar et al., 2023; Mizrahi et al., 2024). These methods
include training separate classifiers for each modality (Kim & Kim, 2025), training prompts (Lee
et al., 2023), or utilizing a shared encoder (Wang et al., 2023) to address missing modalities.

However, prior works also contain a few key limitation. Recent methods in fully supervised or
unpaired settings often aim to improve multimodal model performance, typically by training or fine-
tuning both modalities (Shukor et al., 2023). In contrast, our approach utilizes latent representations
from a well-trained modality model to enhance the training of another modality model from scratch.
Moreover, synergy between modality models remains simultaneously underexplored from both em-
pirical and theoretical sight. Thus, our approach addresses this gap by enabling single-modality
models to support the training of others empirically, and provide theoretical framework based on
interpolated representations to explain their synergy.

3 THEORATICAL PERSPECTIVE AND METHODS

3.1 BASIC NOTATIONS AND A SKETCH OF MATHEMATICAL CLAIMS

Let us denote Mi and Mj as two different modalities. For inputs, let xi and xj indicate the paired
inputs from modalties Mi and Mj respectively. In additon, gi : X i → Zi and gj : X j → Zj are
two representation models that map an input to latent space, for the respective modalities. Also,
hi : Zi → Y and hj : Zj → Y are hypotheses from embedding space to the label space Y for
the respective modaltiy. Here, representations and hypotheses are independently trained on each
modaltiy, without joint training.

𝒵𝒵𝑖𝑖

𝑧𝑧𝑖𝑖

𝒵𝒵𝑗𝑗

“This is a 
dog image 
that is 

domesticated 
mammals,…”

“This is about Class 4”

𝑧̂𝑧𝑗𝑗
𝑧𝑧𝑗𝑗

𝒵𝒵⋆

𝒵̂𝒵𝑘𝑘

∆𝑖𝑖 ∆𝑗𝑗
�∆𝑘𝑘

Figure 2: A conceptual sketch of our claims
in [L→V] case

In the context of multimodal learning, it is widely
accepted to assume the existence of true latent space
Z⋆, which is the optimal representation across both
modalities Mi and Mj (Huang et al., 2021). As
a brief sketch, we show that there exists an inter-
polated latent representation space Zk that shows
smaller distance to Z⋆, leading to outperform the
two single-modality representations, i.e., Zi and Zj

(referred to Theorem 1). It implies that we can find
a better representation by interpolating two represen-
tations from different modalities. However, the first
claim is limited in assuming correctly-paired inputs
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xi and xj , which draws extensive costs in annotations of multimodal learning. To this end, we argue
that even given with an imperfect or restricted embedding ẑj ∈ Ẑj (not correctly-paired with zi),
there exists an interpolated representation Ẑk between Zi and Ẑj , which is closer to the true rep-
resentation, leading to surpass the two, i.e., Zi and Zj (referred to Theorem 2). Fig. 2 illustrates
a brief sketch of our claims. It means that imperfect samples from modality Mj can promote the
training of the superior representation that promotes the performance of modality Mi; enabling the
[Mj →Mi] case. In the following part, we provide the formal description.

3.2 HOW ONE MODALITY MODEL SYNERGIZE THE TRAINING OF OTHERS?

We begin by introducing the distance metric between two distributions P1 and P2 as follows:

Definition 1 (2-Wasserstein Distance (Villani et al., 2009)). 2-Wasserstein distance between 2 dis-
tribution P1 and P2 is defined as:

W2(P1,P2) = inf
γ∈Γ(P1,P2)

(∫
Z1×Z2

d(z1, z2)
2dγ(z1, z2)

)1/2

(1)

where Γ(P1,P2) is all set of joint distribution (couplings) of P1 and P2.

We use 2-Wasserstein Distance to represent the distance between the probability density functions
of the extracted features from different representations, as described below:

Definition 2. Let zi ∈ Zi, zj ∈ Zj , and z⋆ ∈ Z⋆ denote the latent spaces of the i,j-modality, and
the true latent space, where z⋆ represents the optimal representation across both modalities. zi and
zj are assumed to be correctly-paired, which means that they represent the same underlying concept
but in different modalities (e.g., i for image and j for text). Furthermore, let Pi, Pj , and P⋆ are their
corresponding distributions, i.e., zi ∼ Pi(z

i|xi), zj ∼ Pj(z
j |xj), and z⋆ ∼ P⋆(z

⋆). The distances
between the distributions are then defined as follows:

∆i := W2(P⋆,Pi), ∆j := W2(P⋆,Pj) and ∆ij := W2(Pi,Pj), (2)

where ∆i, ∆j , and ∆ij are positive real numbers.

Let us define an interpolated representation between the representations of two different modalities:

Definition 3. Let latent space zk ∈ Zk is an interpolated representation between the latent repre-
sentation spaces of the i,j-modalities with interpolation coefficient α ∈ [0, 1], as follows:

Zk := {zk = (1− α)zi + αzj | zi ∈ Zi, zj ∈ Zj}. (3)

In addition, let Pk denote the distribution of zk, and 2-Wasserstein distance between Pk and P⋆ is
∆k := W2(P⋆,Pk).

Assumption 1. Let ∆ij not converge to 0, i.e., ∆ij ≫ 0.

Assumption 1 implies that even if modalities Mi and Mj are similarly distant from the true latent
space, the distance between Mi and Mj remains significant. Intuitively, while two modalities may
represent similar information in certain contexts, their overall representations can differ markedly.
Furthermore, they may contain distinct information. For example, modality [L] can effectively
convey representations about “questions,” whereas modality [V] may hard to provide such represen-
tations. Thus, assuming that ∆ij ≫ 0 is a reasonable and justifiable consideration.

In the following theorem, we present the closed form solution of the interpolation coefficient α∗,
which makes Zk be closest to Z⋆.

Theorem 1. The optimal α∗ that minimizes ∆k is formulated as follows:

α∗ =
∆2

i −∆2
j +∆2

ij

2∆2
ij

(4)

Moreover, the resulting interpolated representation satisfies ∆k ≤ ∆i and ∆k ≤ ∆j .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Corollary 1.1. The optimal α∗ is bounded as follows:

α∗ =



[
∆i

∆i +∆j
, 1

]
if ∆i > ∆j

[
0,

∆i

∆i +∆j

]
otherwise

(5)

For the proofs of Theorem 1 and Corollary 1.1, please see Appendix A.2.

Remark 1.1. (The behavior of α∗) α∗ is strongly influenced by the quality of modalities. For
an instance, let us discuss what happens when ∆j changes while fixing ∆i. Specifically, 1) when
∆i > ∆j , i.e., modaltiy Mj is superior to modality Mi, the optimal α∗ will be greater than 0.5,
i.e., α∗ > 0.5, implying that Pk tends to be closer to Pj . Conversely, 2) if ∆i < ∆j , α∗ < 0.5,
indicating that Pk shifts closer to Pi. Finally, 3) when ∆i = ∆j , the optimal α∗ equals to 0.5. It is
convincing that the behavior of α∗ shows that the superior interpolated representation forms near
to the better modality. Further discussions are provided at Appendix A.2.

Remark 1.2. (The condition of the synergy) For a scenario of utilizing Mj in training Mi, it is
crucial to judge how beneficial Mj is in promoting the training of the Mi. If modality Mj does not
bear information on the true latent space, where ∆j ≫ ∆i, this suggests that the Mj is much far
from both the true latent space and the Mi. Thus, leveraging Mj is not effective in training Mi, and
it makes to α∗ close to 0, which leads to the single-modality training of Mi. Thus, Assumption 1 is
critical to ensure that information from the Mj can be effectively utilized.

As aforementioned, obtaining exactly paired datasets in real-world scenarios is challenging. Theo-
rem 1 assumes the perfectly matched pairing of zi and zj with a common concept. Let us draws a
setting of ‘imperfect’ or ‘restricted’ pairing between modalities into our theoretical framework.

Definition 4. Let ẑj ∈ Ẑj be the imperfect latent space of the j-modality, with P̂j as its correspond-
ing distribution. The gap δ between zj and ẑj is defined as:

δ := W2(Pj , P̂j). (6)

Additionally, the distance from P̂j to the true latent space P⋆ and Pi are denoted as respectively:

∆̂j := W2(P⋆, P̂j) and ∆̂ij := W2(Pi, P̂j). (7)

Based on Definition 3 of imperfect representation, we rephrase the Theorem 1 to provide the fol-
lowing theorem:

Theorem 2. Let ẑk ∈ Ẑk be the interpolated latent space between the Mi and the restricted Mj ,
defined by the interpolation coefficient α as: Ẑk = {ẑk = (1 − α)zi + αẑj | zi ∈ Zi, ẑj ∈ Ẑj},
where P̂k represents its distribution. Let the 2-Wasserstein distance between P̂k and P⋆ be denoted
as W2(P⋆, P̂k) = ∆̂k. Then the optimal α̂∗ that minimizes ∆̂k is formulated as follows: ∆̂k:

α̂∗ =
∆2

i − ∆̂2
j + ∆̂2

ij

2∆̂2
ij

(8)

Moreover, the resulting interpolated representation satisfies ∆̂k ≤ ∆i and ∆̂k ≤ ∆̂j .

Corollary 2.1. The optimal α̂∗ is bounded as follows:

α̂∗ =



[
∆i

∆i +∆j + δ
, 1

]
if ∆i > ∆̂j

[
0,

∆i

∆i +∆j

]
otherwise

(9)

For the proofs of Theorem 2 and Corollary 2.1, please see Appendix A.3.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Remark 2.1. (δ does not hinder the synergy) Although ẑj ∼ P̂j deviates from Pj , it still represents
the latent space of the Mj . We can extract an imperfect feature representation from Pj by giving
imperfect input to the modality Mj . This allows ẑj exist in the distribution Pj

2. Consequently, ẑj
is closer to or part of the latent space of the Mj than to that of the Mi or the true latent space.
Therefore, additional gap δ in Equation 6 is unlikely to significantly impact the determination of the
optimal α̂∗, as δ will be generally much smaller than both ∆i and ∆j . It stems for δ does not hinder
the synergy between two modalities, i.e., the modality Mj can promote the training of Mi, even with
an imperfect representation.
Remark 2.2. (Mj indeed helps the training of Mi) In training Mj , we can find a superior repre-
sentation Ẑk by utilizing imperfect feature representation from Mj . When revisiting the conceptual
sketch in Fig. 2 and the preliminary experiments on CIFAR-10 shown in the Introduction, an imper-
fect textual description, i.e., "This is about Class #." works as ẑj promotes the training
of visual models by finding the interpolated representation.

3.3 METHODOLOGY: TRAINING MODALITY Mi BY LEVERAGING MODALITY Mj

Based on our theory, we thus propose a training method for one modality Mi by leveraging modality
Mj with sampling imperfect ẑj from the representation space of Mj . Let us consider the scenario
for training modality Mi by leveraging modality Mj , i.e., [Mj →Mi], without loss of generality.

We extend our notation by introducing an uppercase superscript to denote the data modality. Specifi-
cally, let Si = {(xi

m, yim)}Mm=1, representing the dataset for the Mi to be learned, where xi
m denotes

the input data and yim its corresponding label, where M is the number of data points sampled. Sim-
ilarly, let Sj = {x̂j

m}Mm=1 represent the sampled set of imperfect samples of the Mj . This yields
the latent vectors ẑjm = gj(x̂

j
m) ∈ Ẑj , as introduced in Definition 4, where gj(·) is the pretrained

model function associated with the Mj . Si and Sj are sampled subsets from their respective full
modality datasets, Di and Dj . In last, the primary objective is to minimize risk through Empiri-
cal Risk Minimization (ERM). We then define two associated empirical risks by the following loss
functions:

Classification Loss: Lcls = E
(xi

m,yi
m)∼Si

[
LCE(h ◦ g(xi

m), yim)
]

Latent Loss: Lz = E
(xi

m,yi
m,ẑj

m)∼Si×Ẑj

[
1

2
||g(xi

m)− ẑjm||2
]

In this approach, the classification loss Lcls is utilized to optimize the learning of the Mi while latent
loss Lz is treated as regularization term, enforcing alignment of features from the Mj . We scaled Lz

by a factor of 1/2, to facilitate g(xi
m) in following ẑjm, thereby eliminating additional multiplication

term at the front of Lz during backpropagation.

We here propose a straightforward loss formulation, which allows to find the interpolated repre-
sentations between two modalities. We linearly combine the classification and latent lose terms:
Ltotal = (1−α)Lcls+αLz . A pseudocode of the learning procedures is given in Appendix B.2. In
the following section, we describe how to obtain imperfect feature ẑj for each modality, including
vision, language, and audio.

4 EXPERIMENTAL RESULTS

In this section, we provide an overview of the experimental results, along with detailed descriptions
of the datasets, models and additional experimental settings.

4.1 EXPERIMENTAL SETTINGS

Datasets For the main experiments, we test on the ImageNet-1K dataset (Krizhevsky et al., 2012)
for visual tasks as the case of [L→V]. For further experiments in the multimodal setting, we employ
the IEMOCAP (Busso et al., 2008) and AVMNIST (Liang et al., 2021; Li et al., 2023) datasets.

2We fully describe how it can be done in the empirical testing in Section 4 and Appendix B.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Classification results on ImageNet-1K and evaluation benchmarks (OOD and robustness)

Model [L→V] IN V2 Rend. Sketch A Style. C (↓)

ResNet-50 (reproduced) 74.97 63.06 36.28 24.35 3.99 8.11 70.96
+ BERT (Devlin et al., 2018) 76.25 65.03 38.27 26.47 5.27 9.4 68.84
+ RoBERTa (Liu et al., 2019) 76.90 65.89 38.75 26.70 5.36 10.11 67.35

ViT-B/32 (reproduced) 72.39 58.07 35.51 23.12 7.24 13.39 59.82
+ BERT (Devlin et al., 2018) 74.33 60.99 36.47 25.21 8.13 14.83 57.33
+ RoBERTa (Liu et al., 2019) 74.92 61.76 37.93 25.91 9.10 15.27 56.66

ViT-B/16 (reproduced) 77.98 65.57 37.62 25.66 15.20 13.93 57.22
+ BERT (Devlin et al., 2018) 79.22 66.72 38.25 26.74 17.32 15.04 55.52
+ RoBERTa (Liu et al., 2019) 79.58 67.90 39.15 27.91 19.73 15.44 54.55

Table 2: Classification results on IEMOCAP and AVMNIST datasets on each cases of [Mj →Mi].

Datasets Model [L→A] Accuracy Model [A→L] Accuracy

IEMOCAP††
Wav2Vec2† (Ravanelli et al., 2021) 59.46 BERT (Devlin et al., 2018) 55.81

+ BERT-B (Devlin et al., 2018) 60.44 + Wav2Vec2-B (Baevski et al., 2020) 56.49
+ BERT-L (Devlin et al., 2018) 61.20 + Wav2Vec2-L (Baevski et al., 2020) 56.05

Datasets Model [V→A] Accuracy Model [A→V]∗ Accuracy

AVMNIST
Audio Model (Li et al., 2023) 41.28 Vision Model (Li et al., 2023) 65.18

+ ResNet-18 (He et al., 2016) 42.08 + Wav2Vec2-B (Baevski et al., 2020) 66.37
+ ResNet-34 (He et al., 2016) 42.44 + Wav2Vec2-L (Baevski et al., 2020) 66.69

†: SpeechBrain (Ravanelli et al., 2021) experimented with 4 out of 6 labels; we used the all labels.
††: Since transformer-style model requires numerous data, we fine-tuned the pretrained model.
∗: Since the audio data in AVMNIST is based on spectrograms, we use the original raw audio data prior to its
conversion into spectrogram.

IEMOCAP includes [A+L+Video] modalities, where we specifically focus on the [A+L] subset
for our experiments. We performed experiemnts on both direction, [L→A] and [A→L]. For AVM-
NIST, which contains [A+V] modalities, we followed the preprocessing steps outlined in CentralNet
(Vielzeuf et al., 2018), transforming raw audio into 112 × 112 spectrograms and utilizing 28 × 28
PCA-projected MNIST images. Similar to IEMOCAP datasets, we conducted experiments in both
directions, [V→A] and [A→V].

Models For the [L→V] case with the ImageNet-1K dataset, we employed modern architectures,
including ResNet50 (He et al., 2016), ViT-B/32, and ViT-B/16 for [V] modality. To incorporate
additional information from text prompts, we utilized pretrained BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), two extensively used transformer encoders for embedding the [L]
modality. We use the “large” size versions on both encoders. For the [L→A] and [A→L] cases
with IEMOCAP datasets, we employed a Wav2Vec2 (Baevski et al., 2020) model with SpeechBrain
(Ravanelli et al., 2021) configurations for [A] modality, alongside pretrained BERT-B and BERT-L
for the [L] modality. For the [V→A] case with AVMNIST experiments, we used the audio encoder
from AGM (Li et al., 2023), enhanced with an additional classification layer for the [A] modality,
and a pretrained ResNet-18 for the [V] modality. In addition, for the [A→V] case with AVMNIST,
we used the original pretrained Wav2Vec2-B/L model for the [A] modality. Especially, in Table 2,
“-B” refers to “base” size of model, while “-L” refers to “large” size configuration. For [Mj →Mi],
all model parameters of Mj modality are frozen.

Additional Settings (how to get ẑj) For the [L→V] case with the ImageNet-1K dataset, we ob-
tain ẑj by employing simple prompt engineering that provides imperfect and restricted information
for the language modality. Specifically, prompts like "This is about Class #." are used,
where # is a random number unrelated to the actual class label, ensuring imperfect supervision
for the language modality. For the [L→A] case with IEMOCAP, ẑj is generated using prompts
like "This is about Emotion #.", where # is also a random number unrelated to actual
labels, helping audio classification on the IEMOCAP dataset. We exclude the paired [L] modality
data in IEMOCAP. In the [A→L] case with IEMOCAP, we added Gaussian noise to audio data and
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IEMO. [L→A] WD

W2(PA, P̂k) 0.494

W2(PL, P̂k) 0.141

W2(PA,PL) 0.977

IEMO. [A→L] WD

W2(PL, P̂k) 0.965

W2(PA, P̂k) 0.460

W2(PL,PA) 1.005

AVMN. [V→A] WD

W2(PA, P̂k) 0.025

W2(PV , P̂k) 0.754

W2(PA,PV ) 0.790

AVMN. [A→V] WD

W2(PV , P̂k) 0.908

W2(PA, P̂k) 0.502

W2(PV ,PA) 0.954

Figure 3: t-SNE visualizations and Wasserstein Distances (WD) across multimodal datasets

randomly shuffle to represent ẑj , thereby promoting sentiment classification in the [L] modality. For
the [V→A] case with AVMNIST, we use randomly shuffled images from AVMNIST as ẑj in audio
classification tasks. For the [A→V] case in AVMNIST, ẑj is generated by adding Gaussian noise
to the audio data and apply shuffling, similar to the [A→L] case, to assist the classification task on
PCA-projected MNIST images. Detail description of implementing ẑj is provided on Table 5.

Implementation For the [L→V] case in ImageNet-1K classification task, we followed hyperpa-
rameter settings from the AugReg-ViT (Steiner et al., 2022) in training ResNet50, ViT-B/32, and
ViT-B/16. For multimodal datasets, i.e., IEMOCAP and AVMNIST, particularly in the cases of
[L→A], [A→L], [V→A] and [A→V], we employed customized hyperparameter settings for each
case. We consistently used 30 training epochs with Adam optimizer (Kingma & Ba, 2015). We
omitted any data augmentations. Lastly, we applied α = 0.5 for the [L→V] case, and α = 0.3 for
the other cases. Additional details, including learning rates, augmentations, schedulers and other
relevant hyperparameters, are provided in Appendix B.

Details of the descriptions of the overall experiments are provided in Appendix B.

4.2 RESULTS

Main Results Our main results are two parts: Table 1 with ImageNet-1K and Table 2 with multi-
modal datasets, i.e., IEMOCAP and AVMNIST.

According to Table 1, the results for the multimodal learning case, especially [L→V] case, high-
lights the outstanding performance of our approach on ImageNet-1K (IN). where it achieved im-
provements between +1.5% and +2.5%. Notably, our approach also demonstrates significant
improvements across additional evaluation datasets, including ImageNet-V2, out-of-distribution
(OOD) datasets such as ImageNet-Rend. (Hendrycks et al., 2020), ImageNet-Sketch (Wang et al.,
2019), and ImageNet-Style. (Geirhos et al., 2019), achieving performance gains between +1.5%
and +2.4%. Furthermore, our approach also excels in robustness benchmarks, achieving improve-
ments of +1.5% to +4.5% on adversarial examples from ImageNet-A (Hendrycks et al., 2020) and
corrupted images from ImageNet-C (Hendrycks & Dietterich, 2019). Surprisingly, language mod-
els clearly promote the training of visual models, i.e., writers indeed help painters. Noteworthy, the
synergy shows consistent gains even in OOD, adversarial, and corrupted samples. It emphasizes that
language models also facilitate visual models to acquire representations, which are well-generalized
on a wide range of visual data distributions.

For more cases with IEMOCAP and AVMNIST in Table 2, our approach also leads to clear per-
formance gains across various tests. In the IEMOCAP experiment, it shows a considerable gain
of approximately +1.6% in the [L→A] case and +0.6% gain in the [A→L] case. For the AVM-
NIST testing, the performance improvement is around +1.2% in the [A→L] case and +1.4% in
the [A→L] case. Importantly, we confirm that three modalities, i.e., V, L, and A, are shown to pro-
mote each other’s training, which is not easily anticipated. It highlights the wide applicability of our
claims in handling various kinds of modalities.

In addition, we emphasize that our claims are validated in many existing deep model architectures
across modalities, which indicates the model-agnostic advantages of our claims.
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Figure 4: Validation Latent loss Lz across the entire datasets

Table 3: Evaluation across the different value of α

Datasets Accuracy
α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7

IEMOCAP [L→A] 59.46 60.34 61.20 59.87 59.93

IEMOCAP [A→L] 55.81 55.51 56.49 54.19 55.90

AVMNIST [V→A] 41.28 42.03 42.44 41.77 41.79

AVMNIST [A→V] 65.18 65.03 66.69 64.77 64.76

Table 4: Comparison: ẑj vs. zj

Model [L→V] ẑj zj

ResNet-50 76.90 76.95 (+0.05)+ RoBERTa

ViT-B/32 74.92 75.03 (+0.11)+ RoBERTa

ViT-B/16 79.58 79.81 (+0.22)+ RoBERTa

5 ANALYSIS

5.1 ANALYSIS AND REPRESENTATION VISUALIZATIONS

Wasserstein Distance between Modalities Our hypothesis suggests that the Wasserstein distance
between the latent feature distributions of individual modalities should exceed that of an adaptively
trained distribution, P̂k, which ideally lies between the latent spaces of the given modalities. Figure
3 illustrates this concept. In the test of [Mj →Mi] scenario, the aaa denote latent vectors zi from
the Mi modality, aaa represent {ẑkm}Mm=1, and aaa represent Mj modality latent vectors zj . As
expected, t-SNE visualizations largely represent that ẑkm resides between the latent spaces of Mi

and Mj , with asmaller Wasserstein distance to each modality (see W2(·, P̂k) terms), while individ-
ual modalities are shown to be distant to each other. These findings visually illustrate our hypothesis,
coinciding with the claim of ‘interpolated’ representations. It further confirms that our Ltotal em-
pirically serves as an adequate objective function to acquire the superior interpolate representation
in between individual modalities.

The Convergence of Latent Loss We here show how the latent loss, i.e., Lz , which reflects how
much the interpolated representation moves close to the modality Mj , behaves during the training.
As shown in Figure 4, the loss consistently decreases throughout all cases. This result highlights the
narrowing gap between the latent vectors from modality Mj and the representation vectors derived
from the input data. By minimizing this gap, the model successfully exploits simplified yet infor-
mative latent features ẑj , thereby improving overall performance. Since MSE loss is employed, the
magnitude of the gap may vary across experiments due to the dimensions of representation vectors.
To account for this, we applied normalized latent loss to observe a clear convergence. Despite some
fluctuations of some cases, it is well-observed that losses consistently decrease and converge toward
almost zero.

5.2 ABLATION STUDIES

The Effect of α Since α plays a crucial role in finding optimal latent space, we evaluated
how variations in α influence performance on multimodal datasets. We tested various values of
α = {0.0, 0.1, 0.3, 0.5, 0.7}, and the corresponding results are shown in Table 3. We observe clear
performance degradation when a biased α with too small or large values is used. It demonstrates
that the biased cases, which tend to strongly rely on one single modality, do not show a synergy.
Among candidates, α = 0.3 consistently shows the best accuracies, highlighting the importance of
balancing the contribution of each modality. When reminding t-SNE visualizations in Figure 3, α
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with a moderate value coincides with the spatial position of the representation at the middle of two
individual representations.

The Usage of Paired supervision Zj vs. Ẑ
j
: Rather than using imperfect ẑj , we investigate how

much gains would be further achieved when using the perfectly matched zj . In Table 4, we tested
the ImageNet-1K (IN) cases, where the column with ‘ẑj’ refers to the numbers in Table 1 of the
main experiments, and the column with ‘zj’ is done with perfectly matched supervision in the [L]
modality.3 As shown in Table 4, although the performance slightly improves, the gains are mini-
mal. This result aligns with our hypothesis, indicating that δ from Theorem 2 has a limited effect
on performance, supporting our hypothesis. Also, the result emphasizes that our approach signifi-
cantly relieves the cost of pairing perfectly matched supervision across modalities while achieving
a comparative performance with the ideal case with paired supervision.

6 FURTHER DISCUSSIONS

Innovating Multimodal Learning: In prior works, many multimodal learning methods have re-
lied on paired-datasets for training. This contrasts with human learning, which often occurs without
the need for precisely paired object from different modality. Similar to human’s perspective, our
work seek to overcome this limitation, demonstrating that minimal or even imperfect supervision
from different modalities can still enhance learning in the primary modality. Consequently, our ap-
proach suggest further advancements in technical perspective, enabling the effective utilization of
multimodal settings even when only a single modality is available.

Discovery of unexpected synergy between modalities: It is commonly assumed that not every
modality can effectively assist another. The prevailing notion is that unrelated modalities may not
provide meaningful assistance to one another. However, our experiments on [V→A] and [A→V]
reveal that cross-modality interactions, even between seemingly unrelated domains, can lead to sig-
nificant performance improvements. These results demonstrate that integrating seemingly unrelated
modalities can still yield benefits, uncovering hidden correlations and unexpected synergies between
them. This approach opens new possibilities for exploring multimodal combinations that were pre-
viously considered non-beneficial, such as integrating language with signal-based sensory data. Ex-
panding the scope of multimodal learning may reveal hidden synergies between multiple modalities,
leading to improved overall performance.

Broad Impacts on Wide Range of Tasks: Recent works has focused on addressing the general-
ization problem, such as out-of-distribution (OOD), adverserial, and robustness. We validated that
our method not only achieves strong performance on the ImageNet-1K but also shows significant
improvements in OOD, adversarial, and robustness scenarios, as shown in Table 1. These find-
ings suggest that our approach could be extended to further tackle the generalization problem by
incorporating additional guidance from imperfect data across other modalities.

Limitations: While our experiments demonstrate the effectiveness of the proposed approach, we
acknowledge a key limitation in the scalability of our method. Due to computational resource con-
straints, we were unable to evaluate the performance on larger models. This remains an empirical
challenge and has been left as future work. Yet, our theoretical framework is not inherently depen-
dent on model scalability and is expected to generalize to larger models.

7 CONCLUSIONS

We presented both theoretical and empirical evidence demonstrating that a modality with imperfect
representation can still enhance learning in another modality. Our results and extensive analyses
validate the proposed hypothesis and reinforce the theoretical foundations of this approach. Notably,
we showed that paired supervision between datasets is unnecessary, as weakly related supervision
or even mismatched setting across modalities can still lead to improvements. Finally, we propose
future research to explore more complex multimodal settings, such as leveraging more than two
modalities to assist another, which may drive significant advancements in this field.

3Additional details providing more precise information are included in the Appendix. B.
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Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11(5-6):355–607, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cornell, Loren Lugosch,
Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba, Jianyuan Zhong, Ju-Chieh Chou, Sung-
Lin Yeh, Szu-Wei Fu, Chien-Feng Liao, Elena Rastorgueva, François Grondin, William Aris,
Hwidong Na, Yan Gao, Renato De Mori, and Yoshua Bengio. SpeechBrain: A general-purpose
speech toolkit, 2021. arXiv:2106.04624.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning
with hard negative samples. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=CR1XOQ0UTh-.

Pratyusha Sharma, Tamar Rott Shaham, Manel Baradad, Stephanie Fu, Adrian Rodriguez-Munoz,
Shivam Duggal, Phillip Isola, and Antonio Torralba. A vision check-up for language models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14410–14419, 2024.

Mustafa Shukor, Corentin Dancette, Alexandre Rame, and Matthieu Cord. UnIVAL: Unified model
for image, video, audio and language tasks. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=4uflhObpcp.

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision
transformers. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=4nPswr1KcP.

13

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=t0FI3Q66K5
https://openreview.net/forum?id=CR1XOQ0UTh-
https://openreview.net/forum?id=4uflhObpcp
https://openreview.net/forum?id=4nPswr1KcP


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Samarth Tripathi, Sarthak Tripathi, and Homayoon Beigi. Multi-modal emotion recognition on
iemocap dataset using deep learning. arXiv preprint arXiv:1804.05788, 2018.

Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Zadeh, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Learning factorized multimodal representations. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rygqqsA9KX.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
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A MATHEMATICAL DETAILS FOR THEORATICAL PERSPECTIVES

A.1 NOTATIONS

We recall overall notations that has been used in this paper:

Notations Descriptions

X ,Z,Y Each is referred to as the input space, latent space, and hypothesis space.

Si = {(xi
m, yim)}Mm=1

The Mi dataset consists of M sampled datapoints,
serving as the primary dataset for training.

Sj = {x̂j
m}Mm=1

The Mj dataset consists of M sampled datapoints,
serving as the synergy for training by providing restricted knowledge.

gi(·), gj(·)
Latent Space Mapping Function on each modality Mi and Mj

gi(·) : X i → Zi and gj(·) : X j → Ẑj

zi, zj , ẑj , z⋆
Each is referred to as the latent feature
derived from the function g applied to the input datasets for each modality.

Zi,Zj , Ẑj ,Z⋆ Each is referred to as the latent space
that contains all possible latent vectors correspoinding to each modality.

h(·) Hypothesis Space Mapping Function⇒ h(·) : Z → Y

Pi,Pj , P̂j ,P⋆
Each is referred to as the empirical distribution of modality’s latent vectors
and true latent vectors within the corresponding constructed spaces.

These notations are introduced in the Definitions and Assumptions outlined in Section 3.

A.2 PROOF OF THEOREM 1 AND COROLLARY 1.1

Theorem 1. The optimal α∗ that minimizes ∆k is formulated as follows:

α∗ =
∆2

i −∆2
j +∆2

ij

2∆2
ij

Moreover, the resulting interpolated representation satisfies ∆k ≤ ∆i and ∆k ≤ ∆j .

Proof. Since Wasserstein distance is symmetric and satisfies triangle inequality (Villani et al., 2009;
Peyré & Cuturi, 2019), we can define the relationship each distribution of latent spaces:

W2(Pi,Pj) ≤W2(P⋆,Pi) +W2(P⋆,Pj) (10)

and this could be simplified via notations provided on Section A.1:

∆ij ≤ ∆i +∆j (11)

According to prior works (Villani et al., 2009; Peyré & Cuturi, 2019; Mahey et al., 2024), we can
define a new equation as follows:
Definition 5 (Generalized Geodesics (Mahey et al., 2024)). According to the convexity property of
2-Wasserstein distance, squared 2-Wasserstein distance betwen Pk and P⋆ is bounded by:

W 2
2 (Pk,P⋆) ≤ (1− α)W 2

2 (P⋆,Pi) + αW 2
2 (P⋆,Pj)− α(1− α)W 2

2 (Pi,Pj) (12)

= (1− α)∆2
i + α∆2

j − α(1− α)∆2
ij (13)

Since our primary goal is to determine the optimal α, we can express Equation 13 as the quadratic
function of α, i.e., f(α) = (1− α)∆2

i + α∆2
j − α(1− α)∆2

ij . The optimal value of α can then be
determined by taking the derivative of the function f(α):

∂f(α)

∂α
= −∆2

i +∆2
j − (1− 2α)∆2

ij = 0 (14)
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Changing into the term of α is then :

α∗ =
1

2

(
1 +

∆2
i −∆2

j

∆2
ij

)
=

1 + C

2
where C =

(∆i +∆j)(∆i −∆j)

∆2
ij

(15)

where α∗ = argmin
α

f(α). This optimal α∗ remains valid under the Assumption 1 that ∆ij is bigger
than 0, ensuring that α∗ does not diverge.

It still remains to be proven that the optimal value of α∗ indeed minimizes ∆k and satisfies the
condition that ∆k is smaller than both ∆i and ∆j . To establish this, we begin by verifying if ∆k is
truly minimized. Let the minimized value of ∆k be denoted as ∆∗

k. Assume that zk ∼ Pk lies on
the geodesic between zi ∼ Pi and zj ∼ Pj , representing a projection onto the true latent space.4

To demonstrate this, we can apply the Pythagorean theorem. Under the above assumption, ∆∗
k can

be expressed as:

∆∗
k
2 = ∆2

i − (α∆ij)
2 (16)

= ∆2
j − ((1− α)∆ij)

2 (17)

We can further rearrange the above equations as:

∆2
i −∆2

j = (2α− 1)∆2
ij (18)

From this, we solve for optimal α, denoted as α∗:

α∗ =
1

2

(
1 +

∆2
i −∆2

j

∆2
ij

)
(19)

This expression corresponds to the optimal value α∗ from Equation 4 and satisfies the Pythagorean
theorem, which we assumed to hold when minimizing ∆k. This minimized value of ∆k represents
the distance between P⋆ and the distribution Pk, projected directly onto the geodesic connecting
Pi and Pj . Moreover, we conclude that the minimized ∆∗

k is indeed smaller than both ∆i and ∆j ,
where ∆∗

k
2 ≤ ∆2

i as related to Equation 16 and ∆∗
k
2 ≤ ∆2

j as related to Equation 17. Therefore,
result is formally expressed as:

∆∗
k ≤ min(∆i,∆j) (20)

where it satisfies the Theorem 1.

Corollary 1.1 The optimal α∗ is bounded as follows:

α∗ =



[
∆i

∆i +∆j
, 1

]
if ∆i > ∆j

[
0,

∆i

∆i +∆j

]
otherwise

Proof. To establish the validity of the optimal α∗ under different conditions for ∆i and ∆j , we begin
by examining the relationship between these two quantities.

• Condition 1.1: (∆i > ∆j) : This scenario implies that the difference between ∆i and ∆j is
positive, meaning C =

∆i−∆j

∆i+∆j
exhibits a positive value. In this case, the constant C is bounded

by the inequality:

C ≥ ∆i −∆j

∆i +∆j
(21)

4This concept is detailed in the min-SWDD paper (Mahey et al., 2024).
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Substituting this bound into Equation 15, we have the following inequality for the optimal value
of α∗:

α∗ ≥ 1

2

(
1 +

∆i −∆j

∆i +∆j

)
(22)

=
∆i

∆i +∆j
(23)

Since we know that α∗ is constrained by 0 ≤ α∗ ≤ 1, this inequality confirms that α∗ = ∆i

∆i+∆j

satisfies the first condition of optimality, as given by Equation 5. This ensures that when ∆i > ∆j ,
the chosen value of α∗ lies within the allowable range and maintains the necessary relationship
between the distances.

• Condition 1.2: (∆i ≤ ∆j) : In this case, the difference between ∆i and ∆j is non-positive, and
consequently, the value of C becomes negative. Thus, the constant C is bounded by the inequality:

C ≤ ∆i −∆j

∆i +∆j
(24)

By applying the same process as in Condition 1, we substitute this bound into the formula for α∗,
yielding:

α∗ ≤ ∆i

∆i +∆j
(25)

Since α∗ must satisfy 0 ≤ α∗ ≤ 1, this condition is similarly met. Given that α∗ ≥ 0, this
value conforms to the second condition of optimality in Equation 5. Hence, when ∆i ≤ ∆j , the
optimal value of α∗ continues to fulfill the constraints of the inequality, ensuring that the geometric
relationship between the distances is preserved.

Thus, the optimal value α∗ satisfies both conditions for the two possible relationships between ∆i

and ∆j , concluding the proof.

A.3 PROOF OF THEOREM 2 AND COROLLARY 2.1

Theorem 2. Let ẑk ∈ Ẑk be the interpolated latent space between the Mi and the restricted Mj ,
defined by the interpolation coefficient α as: Ẑk = {ẑk = (1 − α)zi + αẑj | zi ∈ Zi, ẑj ∈ Ẑj},
where P̂k represents its distribution. Let the 2-Wasserstein distance between P̂k and P⋆ be denoted
as W2(P⋆, P̂k) = ∆̂k. Then the optimal α̂∗ that minimizes ∆̂k is formulated as follows: ∆̂k:

α̂∗ =
∆2

i − ∆̂2
j + ∆̂2

ij

2∆̂2
ij

Moreover, the resulting interpolated representation satisfies ∆̂k ≤ ∆i and ∆̂k ≤ ∆̂j .

Proof. Similar to the approach in Appendix A.2, ∆̂k can be defined with following Definition 5:

W 2
2 (P⋆, P̂k) ≤ (1− α)W 2

2 (P⋆,Pi) + αW 2
2 (P⋆, P̂j)− α(1− α)W 2

2 (Pi, P̂j) (26)

= (1− α)∆2
i + α∆̂2

j − α(1− α)∆̂2
ij (27)

To determine the optimal α that minimizes the left-hand side of Equation 27, we can utilize the
derivative of the function f(α) = (1 − α)∆2

i + α∆̂2
j − α(1 − α)∆̂2

ij and set it equal to zero, as
demonstrated in Equation 14:

∂f(α)

∂α
= −∆2

i + ∆̂2
j − (1− 2α)∆̂2

ij = 0. (28)

This can be rephrased in terms of α, analogous to Equation 15:

α̂∗ =
1

2

(
1 +

∆2
i − ∆̂2

j

∆̂2
ij

)
=

1 + C ′

2
, where C ′ =

(∆i + ∆̂j)(∆i − ∆̂j)

∆̂2
ij

(29)
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Additionally, the optimal α̂∗ is valid, similar to the validity of α∗, under Assumption 1 and the
property of ∆̂ij , where ∆ij ≤ ∆̂ij .

To achieve the goal of minimizing ∆̂k, we need to demonstrate that applying the optimal α̂∗ results
in a value of ∆̂k smaller than both ∆i and ∆̂j . Following the previous steps outlined in the proof of
Theorem 1, we can proceed as follows.

Let the minimized distance be denoted as ∆̂∗
k, with the optimal coefficient being α̂∗. Using the

Pythagorean Theorem, we relate the distances ∆i, ∆̂j , and ∆̂ij through the following expressions:

∆̂∗2
k = ∆2

i − (α̂∗∆̂ij)
2 (30)

= ∆̂2
j − ((1− α̂∗)∆̂ij)

2 (31)

These two equations can be rearranged in terms of α̂∗, leading to the expression:

∆2
i − ∆̂2

j = (2α̂∗ − 1)∆̂2
ij (32)

From this, solving for α̂∗ yields:

α̂∗ =
1

2

(
1 +

∆2
i − ∆̂2

j

∆̂2
ij

)
(33)

This expression is equivalent to Equation 8 in Theorem 2. The assumption that the optimal α̂∗

minimizes ∆̂∗
k, which denotes the geodesic projection of the distribution P̂k between Pi and P̂j ,

aligns with the closed-form solution for α̂∗ given in Definition 5 and Equation 29.

Furthermore, by substituting into Equations 30 and 31, the minimization of ∆̂2
k implies:

∆̂2
k ≤ min(∆2

i , ∆̂
2
j ) (34)

⇒ ∆̂k ≤ min(∆i, ∆̂j) (35)

Based on Definition 4 and the triangle inequality, ∆̂j can be further bounded as ∆̂j ≤ ∆j + δ.
However, as discussed in Remark 2.1, the term δ is expected to have a negligible effect on the
Wasserstein distance between the distributions, resulting in only a minor constant offset. Therefore,
this does not significantly impact the Wasserstein distance between the distributions, which Equation
35 will approximately similar to Equation 20.

Corollary 2.1 The optimal α̂∗ is bounded as follows:

α̂∗ =



[
∆i

∆i +∆j + δ
, 1

]
if ∆i > ∆̂j

[
0,

∆i

∆i +∆j

]
otherwise

Proof. We analyze the bounds on α̂∗ by considering two conditions based on ∆i and ∆̂j :

• Condition 2.1 (∆i > ∆̂j): In this case, C ′ is positive. From the triangle inequality for the
2-Wasserstein distance, we obtain the following lower bound:

C ′ ≥ ∆i − ∆̂j

∆i + ∆̂j

(36)

Substituting this bound into Equation 29, we derive:

α̂∗ ≥ ∆i

∆i + ∆̂j

(37)

≥ ∆i

∆i +∆j + δ
(38)

where δ is a small constant, accounting for minor deviations between ∆̂j and ∆j , as discussed in
Remark 2.1. Since α̂∗ ≤ 1, this satisfies the first condition in Equation 9.
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• Condition 2.2 (∆i ≤ ∆̂j): In this scenario, C ′ becomes negative. Using a similar approach as
in Case 1, the upper bound for C ′ is:

C ′ ≤ ∆i − ∆̂j

∆i + ∆̂j

(39)

Substituting this into Equation 29, we get:

α̂∗ ≤ ∆i

∆i + ∆̂j

(40)

Since ∆̂j ≥ ∆j , we can substitute ∆̂j with ∆j , resulting in a looser bound:

α̂∗ ≤ ∆i

∆i +∆j
(41)

Thus, this bound satisfies the second condition of Equation 9.

Therefore, we find that the derived bounds on α̂∗ fulfill the both conditions stated in Equation 9.

B IMPLEMENTATION DETAILS

B.1 DATASETS

ImageNet-1K and Evaluation Benchmarks ImageNet-1K (Krizhevsky et al., 2012) is the image
datasets that contains 1000 classes with 1,281,167 training images and 50,000 validation images.
ImageNet has been widely used in image classification benchmarks in various methoods, especially
in computer vision task (Dosovitskiy et al., 2021; Steiner et al., 2022; Zhou et al., 2023; Pang et al.,
2024). In our evaluation, we also assessed ImageNet-related validation benchmarks focusing on
out-of-distribution (OOD) and robustness scenarios. These benchmarks can be categorized into
three types: in-domain, OOD, and robustness.

For the in-domain category, we utilized ImageNet-V2 (Recht et al., 2019), which consists of 10
images per class from the original ImageNet-1K, with total 10,000 images. The OOD benchmarks
contains ImageNet-Rendition (Hendrycks et al., 2020), ImageNet-Sketch (Wang et al., 2019), and
ImageNet-Stylized (Geirhos et al., 2019). ImageNet-Rendition features 200 classes with a total
of 30,000 images, while ImageNet-Sketch contains approximately 50 images per class, totaling
50,889 images sourced from Google image queries labeled as "sketch of {class name}."
Lastly, the robustness scenarios encompass ImageNet-A (Hendrycks et al., 2020) and ImageNet-
C (Hendrycks & Dietterich, 2019). ImageNet-A consists of images misclassified by the ResNet-50
model. ImageNet-C features a variety of generated corruptions, such as Gaussian noise and blurring,
and is commonly used in adversarial training approaches.

IEMOCAP The IEMOCAP dataset (Busso et al., 2008) contains video, language and audio
modalities. It consists of 151 recorded dialogue videos featuring two speakers per session, resulting
in a total of 302 videos. Each segment is annotated for nine emotions: angry, excited, fear, sad, sur-
prised, frustrated, happy, disappointed, and neutral. Recorded across five sessions with five pairs of
speakers. It also contains the audio and script for each video data. IEMOCAP dataset is a valuable
resource for research in multimodal emotion recognition and has been widely employed in various
multimodal methods (Tripathi et al., 2018; Li et al., 2018) for the emotion sentiment classification.

As mentioned in Section 4.1, our implementation focused solely on the script and audio components,
emphasizing the language and audio modalities. For convenience, we narrowed our analysis to six
specific emotions: neutral, happy, angry, sad, excited, and frustrated, employing the official PyTorch
framework (Paszke et al., 2019) for dataloader.

AVMNIST The AVMNIST dataset (Vielzeuf et al., 2018) contains digit images (0 to 9) from the
MNIST dataset (LeCun et al., 1998), where each image has dimensions of 28 × 28 × 1. These
images have been subjected to PCA projection, resulting in a reduced information representation
compared to the original MNIST dataset. In addition to the visual modality, the dataset includes an
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audio modality from the Free Spoken Digits Dataset (FSDD) (Jackson et al., 2018). The audio data
has been preprocessed into mel-frequency spectrograms, sampled at a resolution of 112× 112× 1.

In the context of the audio modality [A], we approach the two cases, [V→A] and [A→V], using
distinct strategies. For the [V→A] case, the audio modality is processed using convolutional neural
networks (CNNs), outlined in AGM (Li et al., 2023). In contrast, for the [A→V] case, we utilize
raw audio data from the FSDD dataset rather than mel-spectrogram images, as pretrained models
specifically trained on spectrogram data are not readily available for this task.

Representation of zj In Section 5.2, we discussed the representation of zj . Since ImageNet-1K
does not contains any supervision related to the [L] modality, except class label, we employed a
new description for each image generated by LLaVA (Liu et al., 2024). Specifically, we input im-
ages from ImageNet along with the following prompt: "USER: <image>\nWhat does this
image represent? Explain in a sentence.\nASSISTANT:". LLaVA generates
a descriptive prompt for each image, which provides a description that is closer to the true su-
pervision of the language modality, zj , compared to our original prompt, "This is a class
about #.", ẑj . As demonstrated in Table 4, this change does not result in significant performance
differences, where it aligns to our theoretical perspective in Theorem 2 and Remark 2.1 that δ does
not substantially affect the distance between the distributions of each modality.

B.2 ADDITIONAL EXPERIMENTAL SETTINGS

Pseudo code and detail implementation of ẑj We provide the pseudo-code on Algorithm 1 and
implementation details for ẑjm in all cases in Table 5 as follows:

Algorithm 1 Traininig Procedures for [Mj →Mi]
Hyperparameter: α: interpolate coefficients, B: batch size
Input: {(xi

m, yim)}Mm=1 ∼ Si: input data from Mi modality sampled in batch size B for each,
{x̂j

m}Mm=1 ∼ Sj : imperfect input data from Mj modality sampled in batch size B for each
Required: LCE : Cross-Entropy Loss, θi: Mi modality model parameters
Function: gi(·; θi): latent feature mapping function of Mi modality, gj(·; θj): latent feature map-
ping function of Mj modality, hi(·; θi): hypothesis function of Mi modality

1: while not done do
2: for m = 1, . . . ,M do
3: zkm = gi(x

i
m; θi)

4: ẑjm = gj(x̂
j
m; θj)

5: Lcls = LCE(hi(z
k
m; θi), y

i
m)

6: Lz = E
[
1
2 ||z

k
m − ẑjm||22

]
7: Ltotal = (1− α)Lcls + αLz

8: θi ← θi −∇θiLtotal

9: end for
10: end while

Table 5: Implementation details of ẑjm across different datasets and cases

Datasets & Cases Implementation of ẑj
m

ImageNet-1k [L→V] [L]⇒ This is about Class #.†

IEMOCAP [L→A] [L]⇒ This is about Emotion #.†

IEMOCAP [A→L] [A]⇒ Add Gaussian Noise: ξ ∼ N (0, λI)†† & Random Shuffling

AVMNIST [V→A] [V]⇒ Random Shuffled Image (mismatch paired sets)

AVMNIST [A→V] [A]⇒ Add Gaussian Noise: ξ ∼ N (0, λI)†† & Random Shuffling
†: # is a random number that does not directly correspond to the actual label.

††: λ is a parameter that controls the variance of the Gaussian noise. We applied λ = 10−3
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Hyperparameters Settings In the [L→V] case for the ImageNet-1K classification task, we ad-
hered to the hyperparameter settings established by AugReg-ViT (Steiner et al., 2022) for all train-
ing models, specifically ResNet-50, ViT-B/32, and ViT-B/16. For the baseline model, we trained for
300 epochs with a batch size of 2048, utilizing a learning rate of 1 × 10−3 and a weight decay of
5 × 10−4. We employed the AdamW optimizer (Loshchilov & Hutter, 2019) with cosine learning
rate scheduling (Loshchilov & Hutter, 2017) and implemented a linear warmup for 20 epochs. Data
augmentations, including MixUp (Zhang et al., 2018), RandAugment (Cubuk et al., 2020), and Au-
gReg (Steiner et al., 2022), were applied throughout the training process. Furthermore, we utilized
Automatic Mixed Precision (Micikevicius et al., 2018) in conjunction with four A6000 GPUs.

For the multimodal datasets, we customized two hyperparameter settings configuration based on the
datasets: IEMOCAP dataset for fine-tuning and AVMNIST dataset for training from scratch. In the
fine-tuning approach, particularly for the cases of [L→A] and [A→L], we conducted training for
30 epochs with a batch size of 4. Given that the learning procedure is fine-tuning, we adjusted the
learning rate to 5 × 10−5 and the weight decay to 5 × 10−4, while also applying cosine learning
rate scheduling (Loshchilov & Hutter, 2017). The Adam optimizer (Kingma & Ba, 2015) was
employed, and no data augmentations were utilized. For training from scratch, specifically in the
cases of [L→V] and [A→V] on the AVMNIST dataset, we again trained for 30 epochs with a batch
size of 32. The learning rate was set to 1×10−3, with a reduction factor of 0.1 applied at 25 epochs.
The Adam optimizer (Kingma & Ba, 2015) was used, and data augmentations were omitted during
this training phase as well.

Revisiting the value of α, we set α = 0.5 for the case of [L→V] on ImageNet-1K dataset, and
α = 0.3 was employed for all other cases on IEMOCAP and AVMNIST dataset.

C ADDITIONAL ABLATION STUDIES

C.1 DESIGN CHOICES IN LATENT LOSS FUNCTION Lz

In this section, we conduct an ablation study to assess the impact of different latent loss functions,
Lz . While our primary approach employs mean squared error (MSE) loss to directly align latent
representation vectors, we also explore the use of cosine embedding loss: Lz = 1 − cos (zkm, ẑjm).
For comparison, we consider the best results of each cases from Table 1 and Table 2. As summarized
in Table 6, the performance remains consistent across both loss functions, with variations ranging
from -0.1% to 0.3%. These results suggest that adhering to the representation distribution of the
Mj modality effectively supports the training of the Mi modality, regardless of the choice of loss
function.

Table 6: Performance comparison of different Lz across various datasets and cases

MSE Cosine Embedding Loss
ImageNet-1K [L→V] 79.58 79.61

IEMOCAP [L→A] 61.20 61.20

IEMOCAP [A→L] 56.49 56.77

AVMNIST [V→A] 42.44 42.67

AVMNIST [A→V] 66.69 66.25

C.2 ADDITIONAL RESULTS IN LARGER MODEL

We also conducted experiments with a larger model, focusing on the [L→V] case on the ImageNet-
1k dataset. Specifically, we utilized ViT-L/16, which requires approximately 5× more FLOPs com-
pared to ViT-B/16. As the results are provied on Table 7, it demonstrate that our approach achieves
significant improvements even with this larger model. This indicates that our method does not rely
on the scalability of model size; instead, it leverages the qualitative representations of the Mj modal-
ity to effectively synergize with or enhance the training of the Mi modality.
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Table 7: Large model classification results on ImageNet-1K and evaluation benchmarks

Model [L→V] IN V2 Rend. Sketch A Style. C (↓)

ViT-L/16 (reproduced) 78.31 68.99 49.03 37.88 29.14 23.25 46.39
+ RoBERTa (Liu et al., 2019) 80.71 70.62 52.50 40.45 31.85 27.47 41.61

C.3 DESIGN CHOICES FOR IMPERFECT SUPERVISION ẑj

In this section, we present additional experiments for the [L→V] case in ImageNet-1K classification
to evaluate how varying levels of imperfect supervision impact performance. We define 3 levels of
imperfection to analyze its effects:

• Level 1 - Completely Imperfect Supervision: At this level, we generated 1,000 random sen-
tences using ChatGPT-4o and randomly matched them to the training data of the Mi modality
model. This represents a highly imperfect supervision setting, introducing significant noise into
the supervision of the Mi modality.

• Level 2 (Recap) - "This is about Class #.": This level corresponds to our main ap-
proach, where supervision is based on random number # assigned to the data.

• Level 3 (Recap) - Perfect Supervision: As described in Section 5.2 and Appendix B.1, this level
employs high-quality supervision generated by LLaVA (Liu et al., 2024) for each image in the
dataset.

Table 8: ImageNet-1K classification results with ViT-B/32 + RoBERTa under different levels of ẑj

Model [L→V] Single† Level 1 Level 2 Level 3
Accuracy 72.39 74.40 74.92 75.39

†: Training with ViT-B/32 only.

The results in Table 8 reveal that even when ẑj is entirely unrelated, representing a completely
imperfect paired dataset, it can still synergize effectively with the Mi modality. Notably, this setup
achieves an improvement of nearly 2% compared to training with a single modality and Level 1
supervision. These findings underscore the strength of our approach and strongly align with our
theoretical perspectives, as in Theorem 2.
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