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Abstract

In this paper, we study error bounds for Bayesian quadrature (BQ), with an emphasis on
noisy settings, randomized algorithms, and average-case performance measures. We seek
to approximate the integral of functions in a Reproducing Kernel Hilbert Space (RKHS),
particularly focusing on the Matérn-ν and squared exponential (SE) kernels, with samples
from the function potentially being corrupted by Gaussian noise. We provide a two-step
meta-algorithm that serves as a general tool for relating the average-case quadrature error
with the L2-function approximation error. When specialized to the Matérn kernel, we
recover an existing near-optimal error rate while avoiding the existing method of repeatedly
sampling points. When specialized to other settings, we obtain new average-case results
for settings including the SE kernel with noise and the Matérn kernel with misspecification.
Finally, we present algorithm-independent lower bounds that have greater generality and/or
give distinct proofs compared to existing ones.

1 Introduction

The integration of black-box functions is a fundamental problem with numerous applications, with Bayesian
inference being a prominent example. The method of Bayesian Quadrature (BQ) (O’Hagan, 1991; Rasmussen
& Ghahramani, 2003) has particularly gained popularity, adopting Bayesian modeling techniques to model
the unknown function and reduce the required number of function evaluations. Mathematically, the goal is
to approximate the quantity

I(f) =
∫

f(x)p(x)dx, (1)

where p(x) is a known weighting function, but we only have black-box access to f(x). It is common to study
this problem for worst-case functions in a given class, and with noiseless function queries and deterministic
algorithms (e.g., see (Novak, 1988; Kanagawa et al., 2016; Kanagawa & Hennig, 2019)). However, this is also
substantial motivation to understand average-case performance measures, noisy queries, and randomized
algorithms (e.g., see (Novak, 1988; Plaskota, 1996; Novak, 2016)).

As an example motivating noisy settings, when performing integrals in Bayesian inference, function
evaluations themselves may be implemented using a randomized subroutine whose variations can be modeled
by introducing noise terms. As a rather different example, in the same way that noisy Bayesian optimization
(BO) can be used to find maximal sensor readings in a sensor network (e.g., see (Krause & Ong, 2011)),
noisy BQ methods could be used to find average (or weighted average) readings.

1.1 Overview of Contributions

In this paper, our focus is on kernel-based BQ methods, corresponding to functions lying in a Reproducing
Kernel Hilbert Space (RKHS). We focus on the widely-used Matérn and Squared Exponential (SE) kernels,
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given by (Rasmussen & Williams, 2006)

kM(x, x′) = 21−ν

Γ(ν)

(√
2ν ∥x − x′∥

l

)ν

Jν

(√
2ν ∥x − x′∥

l

)
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2l2

)
, (3)

where Jν is the modified Bessel function, Γ is the gamma function, l is the length-scale, ν is the Matérn
smoothness parameter, and ∥·∥ denotes the Euclidean norm. Our main contributions are outlined as follows.

Meta-Algorithm. Our main algorithm is a “meta-algorithm” that builds on an idea originally used for
Sobolev (and other) functions in noiseless settings (e.g., (Novak, 1988, Sec. 2)). The meta-algorithm runs
any algorithm for estimating the function in L2-norm using the first half of the samples, runs a Monte Carlo
method using the remaining samples to estimate the residual, and then combines the two. We give a general
theorem relating the L2-error of the first step with the overall integration error, and show that this has broad
implications beyond the settings for which the idea was used previously, as outlined below.

Resulting Upper Bounds. Some specific applications of our general theorem are as follows:

• By using a maximxum-variance algorithm from (Vakili et al., 2021a) in the first part, we establish
that for the Matérn-ν kernel, one attains an order-optimal error bound of Θ(T − ν

d −1 + σT − 1
2 )

(with time horizon T , noise variance σ2, Matérn smoothness ν, and dimension d). This scaling
was previously derived in (Plaskota, 1996), but used a method based on repeatedly re-sampling a
carefully-chosen set of points many times to reduce noise, which may be undesirable in practice.

• We additionally provide corollaries of our main theorem providing results that appear to be new
(though related results with other settings or criteria do exist), including for the Matérn kernel with
misspecified smoothness, and average-case performance for the SE kernel in both the noiseless and
noisy settings.

Algorithm-Independent Lower Bounds. While our main contributions are those outlined above, we
also provide some results regarding algorithm-independent lower bounds. For the Matérn kernel with noise,
we provide an alternative proof of the Ω(T − ν

d −1 +σT − 1
2 ) lower bound from (Plaskota, 1996) that establishes

a single source of difficulty for both terms in the bound (which were previously handled separately), and we
slightly generalize to Matérn parameters such that ν + d

2 may be non-integer. Moreover, we establish that
the Ω(σT − 1

2 ) lower bound holds much more generally in noisy settings, including for the SE kernel.

Our results are summarized in Table 1, along with various existing results that we discuss in the following
subsection.

1.2 Related Work

Numerical Integration and Bayesian Quadrature. Extensive early work on numerical integration
appeared in the literature on information-based complexity, e.g., see (Bakhvalov, 1959; Novak, 1988; Traub,
2003; Novak & Woźniakowski, 2008) and the references therein. Function classes considered included
Sobolev, Hölder, and others, with the Sobolev class being particularly related to the Matérn RKHS (see
Appendix A). More explicit use of kernel-based methods appeared in (Narcowich & Ward, 2002; Wendland,
2004; Wendland & Rieger, 2005; Rieger & Zwicknagl, 2010), and Bayesian quadrature from a probabilistic
perspective (Rasmussen & Williams, 2006; Kanagawa et al., 2016; 2018; Wynne et al., 2021) has gained
particular popularity due to its role in statistical machine learning.

Upper Bounds Under the Matérn Kernel. For d-dimensional Matérn-ν RKHS functions with query
budget T , early literature such as (Bakhvalov, 1959; Novak, 1988) proved that in the noiseless setting, the
best possible worst-case (deterministic) error is Θ(T − ν

d − 1
2 ), whereas by considering the average-case error of

a randomized algorithm, this can be reduced to Θ(T − ν
d −1). An extensive survey of the noiseless setting can

be found in (Novak, 1988), where it is also noted that basic Monte Carlo sampling attains O(T − 1
2 ) error;

this observation also extends immediately to the noisy setting with σ = O(1) (Plaskota, 1996).
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Summarized
Results Noiseless Worst Noiseless Average Noisy Average

Matérn Lower
Ω

(
T − ν

d − 1
2
)

(Novak, 1988)
Ω

(
T − ν

d −1)
(Novak, 1988)

Ω
(
T − ν

d −1 + σT − 1
2
)

(Plaskota, 1996)

Matérn Upper O
(
T − ν

d − 1
2
)

(Novak, 1988)
O

(
T − ν

d −1)
(Novak, 1988)

O
(
T − ν

d −1 + σT − 1
2
)

(Plaskota, 1996)

SE Lower
Ω(T −CT

1
d )

(Kuo et al., 2017)
(Linear algs. only)

N/A Ω
(
σT − 1

2
)

SE Upper
O

(
e−CT

1
d

)
(Kanagawa & Hennig,

2019)
O

(
e− d

2 T
1
d

)
T − 1

2 O
(
e−C( T

log T )
1
d

T − 1
2 + σT − 1

2
)

Table 1: Summary of some of the most related existing results and our results. Results with an underline
were partially or fully existing but are extended or re-derived in our work (e.g., results extended to fractional
ν + d

2 , upper bounds based on distinct algorithms, or lower bounds via alternative proof techniques). Results
with double underlines are new to this paper, to our knowledge.

As we hinted above, the L2-error bounds for the Matérn kernel with noise in (Wynne et al., 2021) will be
particularly useful for our purposes, including in misspecified settings. Some implications of these results for
noisy BQ were also noted in (Wynne et al., 2021), but they resulted in worse scaling (namely, Θ(T − s

2s+d )
with s = ν + d

2 ) than that shown in Table 1. In fairness, however, several of the results in (Wynne et al.,
2021) can also be applied to settings with non-stochastic noise, whereas we only handle i.i.d. random noise.

Upper Bounds Under the SE Kernel. For functions in the SE RKHS, we observe in Table 1 that
there are non-minor gaps between lower and upper bounds. For a different setting in Rd with p(x) in (1)
being a Gaussian distribution, (Kuo et al., 2017) gives a worst-case lower bound for linear algorithms, by
decomposing SE functions using an orthogonal basis in the L2 space. This lower bound has been further
improved in (Karvonen et al., 2021) using another orthogonal basis in the native RKHS space, but it only
applies to (linear) Gauss-Hermite rules. Overall, research on the SE kernel appears to have mainly focused
on noiseless worst-case upper bounds.

A notable work related to ours is the adaptive BQ (ABQ) algorithm from (Kanagawa & Hennig, 2019). While
their algorithm is adaptive, we see in Table 1 that our non-adaptive algorithm yields a slight improvement
over theirs, albeit with a weaker average-case guarantee. Similar observations also apply to Matérn functions,
where the ABQ algorithm only achieves O(T − ν

d ) scaling (Kanagawa & Hennig, 2019, Cor. C.4).

Equivalence between Random Features and Bayesian Quadrature. An interesting equivalence
between worst-case kernel-based quadrature and random feature based function approximation in L2 norm
has once established in (Bach, 2017). While the main focus in (Bach, 2017) is the worst-case noiseless
setting, it is noticed in Sec. 3.1 therein that their methods are have a certain tolerance to noise. Noisy error
bounds can be obtained via this fact, but they are higher than ours, with the first of the two terms (e.g.,
see (9) below) typically being a factor 1√

T
smaller in our work, and being order-optimal in several cases of

interest. We crucially rely on randomization to achieve this, whereas the proposed algorithm in (Bach, 2017)
is deterministic. We note that for the SE kernel, one of our results (Corollary 3) uses a result from (Bach,
2017) as an intermediate step.

Relationship with Bayesian Optimization. The extensive literature on Bayesian Optimization (BO)
is also related to our work in the sense of iterating acquisition functions. However, BO turns out to be
a strictly harder problem. As surveyed in detail in the noiseless setting in (Novak, 1988), noiseless BO is
closely related to estimating the function in L∞ norm, and noiseless BQ is closely related to estimating it
in L2 norm, with the former being strictly harder. Viewed differently, a key difficulty in BO is identifying a
single short and narrow “bump” (Bull, 2011; Scarlett et al., 2017), whereas in BQ the same bump contributes
a negligible amount to the integral. We elaborate on this connection in Appendix F, showing that BO-type
techniques yield suboptimal BQ bounds for the Matérn kernel. On the other hand, in Section 4, we will see
that this approach gives a fairly good result for the SE kernel in the noiseless (but not noisy) setting.
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Other Variants of BQ. Finally, various works on BQ have explored more sophisticated techniques and
variations such as adaptive sampling (Kanagawa & Hennig, 2019), active area search (Ma et al., 2014), and
settings with multiple related functions (Gessner et al., 2019) (among many others). We are not aware of any
(beyond those outlined above) that are directly related to our study of theoretical error bounds in relatively
standard settings.

2 Problem Setup

Let f : D → R be a real-valued function on the compact domain D = [0, 1]d. By shifting and scaling, our
results readily extend to arbitrary rectangular domains. In addition, our upper bounds easily extend to
general compact domains.

We consider the class Hk(B) of functions whose RKHS norm ∥ · ∥Hk
is upper bounded by some constant

B > 0. We focus in particular on the Matérn-ν kernel (see (2)), whose function class HM(B) is norm-
equivalent to the Sobolev class (see Appendix A for details). We also derive results for the SE kernel (see
(3)), where the function class is denoted as HSE(B).

Let p(x) be a known and bounded density function, i.e., p(x) ∈ [0, pmax] for some pmax > 0, and
∫

p(x)dx = 1.
We define P(pmax) to be the set of all functions satisfying these conditions. Our goal is to estimate the integral
of an RKHS function f : D → R weighted by p(x), defined in (1). Before forming an approximation of this
integral, the algorithm takes T observations: At time step t, select xt ∈ D, and observe yt = f(xt) + ϵt,
where ϵt ∼ N (0, σ2) is Gaussian noise. The final approximate integral is denoted by Î.

As is commonly done for RKHS functions, we will use Bayesian methods based on a GP prior GP(0, k) and
a Gaussian noise model. After observing t noisy samples, the posterior distribution is also a GP with the
following posterior mean and variance:

µt(x) = kt(x)T
(
Kt + λIt

)−1
yt, (4)

σ2
t (x) = k(x, x) − kt(x)T

(
Kt + λIt

)−1kt(x), (5)

where yt = [y1, . . . , yt]T , kt(x) =
[
k(xi, x)

]t

i=1, Kt =
[
k(xt, xt′)

]
t,t′ is the kernel matrix, It is the identity

matrix of dimension t, and λ > 0 is a hyperparameter.

We consider both adaptive algorithms (i.e., the algorithm observes y1, . . . , yt−1 before choosing xt) and non-
adaptive algorithms (i.e., all x1, . . . , xT are chosen in advance). In fact, we will prove our lower bound for
adaptive algorithms and upper bounds for non-adaptive algorithms, thus establishing the stronger type of
result in both cases.

Using the shorthands Hk = Hk(B) (as well as HM or HSE when the kernel k is specialized as Matérn or
SE) and P = P(pmax), the settings in Table 1 are summarized as follows, the last of which is the one we
primarily focus on:

• Noiseless Worst-Case Error: Ek
wst(T ) = supp∈P,f∈Hk

|I − Î|.

• Noiseless Average-Case Error: Ek
avg(T ) = supp∈P,f∈Hk

E
[
|I − Î|

]
, where the expectation is over

the randomized algorithm.

• Noisy Average-Case Error: Ek
avg(T, σ) = supp∈P,f∈Hk

E
[
|I − Î|

]
, where the expectation is over

the randomized algorithm and the noise.

We have omitted a notion of worst-case error for the noisy setting, since there are subtle issues in posing
such a setting in a meaningful manner (e.g., see (Plaskota, 1996)). For instance, even if the algorithm is
deterministic given the noisy observations, it can still obtain randomness by taking digits after the 1000th
decimal point (say) of the observed values yt. That is, the randomness from the noise alone could still give
the same effect as using a randomized algorithm.

4



Under review as submission to TMLR

3 Lower Bounds

Our lower bounds for the noisy setting are stated as follows; note that we allow σ to vary with T .
Theorem 1. (Average-Case Noisy Lower Bounds) Consider our problem setup with constant parameters
(B, ν, d, l), noise variance σ2, and query budget T . Then, for any algorithm (possibly adaptive and/or
randomized) for estimating I, we have the following lower bounds on the average-case error:

1. For Matérn kernel with ν + d
2 ≥ 1, we have

EM
avg(T, σ) = Ω

(
T − ν

d −1 + σT − 1
2
)
. (6)

2. For any kernel such that maxx k(x, x) < ∞ and
∫

[0,1]d k(x, x♮)dx ̸= 0 for some x♮ (e.g., the SE or
Matérn kernel with x♮ = 0), we have:

Ek
avg(T, σ) = Ω

(
σT − 1

2
)
. (7)

Moreover, these lower bounds hold even under the fixed weight function p(x) = 1.

3.1 Proof of Theorem 1

The first term in (6) follows directly from noiseless average-case error bounds (see Appendix B). The second
term can also be established by considering constant-valued functions (Plaskota, 1996), or as a special case
of (7) (which is proved below). On the other hand, it is also of interest to establish a single hard subset
of functions that yields both terms in (6) in a unified manner, thus establishing a single source of difficulty
for both terms. We provide such an approach in Appendix D, considering functions composed of several
small “bumps”. The idea is that with too few samples the algorithm cannot reliably determine which bumps
are positive and which are negative, and if too many of these are uncertain, then a certain level of error is
unavoidable.

It remains to prove (7). To do so, we consider the function f(x) = k(x, x♮), which is bounded and has a
non-zero integral by assumption. Moreover, since k(·, x♮) is trivially in the RKHS class, we have that the
scaled function fc(x) = cf(x) has RKHS norm at most B for all c > 0 below a suitably-chosen threshold.

We consider the sub-class of functions fc with RKHS norm at most B, and show that Ω(σT − 1
2 ) queries are

needed even for this sub-class. To see this, we note that sampling any point x corresponds to observing
c, scaled by f(x), with N(0, σ2) noise. Without loss of optimality, we can assume that the algorithm only
samples at the point(s) where |f(x)| is largest (so that c is maximally scaled while the noise level is fixed),
and by assumption we have |f(x)| < ∞. Then, the noisy integration problem on this sub-class reduces to
the noisy estimation of c with Gaussian noise, which is well known to incur Θ(σT − 1

2 ) error (even when c is
known to be below an arbitrarily small constant threshold), e.g., see (Plaskota, 1996).

4 Upper Bounds

In this section, we introduce our main meta-algorithm and derive upper bounds on the average-case error.
We follow the high-level idea of combining function estimation methods with Monte Carlo estimation on the
residual, previously proposed for the noiseless setting (Novak, 1988), but with different details to account
for the noise. The meta-algorithm is shown in Algorithm 1, and is described as follows. The samples are
performed in two batches, but still in a non-adaptive manner (i.e., the second batch can be chosen without
knowing the first batch).1 The first batch uses T/2 samples to construct an approximation f̂ of f , which
forms an initial estimate Î1 =

∫
D

p(x)f̂(x)dx. The subroutine EstimateFunc for doing so is kept general for

1Our main theorem remains true when the first batch consists of adaptive sampling, but all of our corollaries will be based
on non-adaptive sampling.
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Algorithm 1 Two-batch integral estimation meta-algorithm
1: Input: Function f , domain D, time horizon T , function estimation algorithm EstimateFunc
2: Use EstimateFunc with T

2 samples to produce a function estimate f̂

3: for t = T
2 + 1, . . . , T do

4: Sample xt ∼ p(x) independently
5: Observe yt = f(xt) + ϵt

6: end for
7: Compute the approximate integral Î1 =

∫
D

p(x)f̂(x)dx
8: Compute the residual R̂ = 2

T

∑T
t=T/2+1(yt − f̂(xt))

9: Output Î = Î1 + R̂

Algorithm 2 Maximum variance sampling; can be used as EstimateFunc in Algorithm 1
1: Input: Function f , domain D, GP prior (µ0, k0), GP noise variance λ, time horizon T

2
2: for t = 1, . . . , T

2 do
3: Select xt = arg maxx∈D σt−1(x)
4: Receive yt = f(xt) + ϵt

5: Update σt using x1, . . . , xt

6: end for
7: Update µT/2(x) using x1, . . . , xT/2, y1, . . . , yT/2
8: Output µT/2

now, but by default, we will use maximum variance sampling2 as shown in Algorithm 2, with the estimated
f̂ being given by the GP posterior mean µT/2. Note that these T/2 samples are non-adaptive because the
posterior variance of a GP does not depend on any observations. The remaining T/2 samples estimates the
residual R between the difference of the true integral I and this value Î1:

R = I − Î1 =
∫

D

p(x)(f(x) − f̂(x))dx.

Having fixed f̂ and hence Î1, we can refine our overall estimate of I by estimating the residual R. To do so,
we use the last T/2 samples to construct a Monte Carlo estimator R̂ of R, i.e.,

R̂ = 2
T

T∑
t=T/2+1

(yt − f̂(xt)),

in which each xt is sampled from p(x). Hence, the approximated integral is simply Î = Î1 + R̂.

In the following theorem, we establish the upper bound of the average-case integration error of Algorithm 1
in terms of the noisy L2 distance between f and f̂ , with an extra noise term. This theorem is general and
can be applied to a variety of kernel choices, noise settings, misspecified settings, etc., as we will see below.
In the following, all omitted proofs are deferred to Appendix E.
Theorem 2. (Quadrature-L2 Relationship) For any fixed f ∈ Hk and p ∈ P(pmax), consider running
Algorithm 1 with T observations being corrupted by Gaussian independent noises N (0, σ2), and obtain the
estimates f̂ and Î. Then, the average error satisfies

E
[
|I − Î|

]
≤ 2√

pmaxT − 1
2 E

[
∥f − f̂∥L2

]
+ 2σT − 1

2 , (8)

where the expectation is averaged over the randomness of the points queried and the noise.
2We focus on maximum variance sampling for concreteness, but our analysis and results are unchanged when, at time t, an

arbitrary point satisfying σt−1(x) ≥ γ∥σt−1∥L∞ is found for some γ ∈ (0, 1) (e.g., γ = 1
2 ). This requirement is potentially

much easier to attain in practice, instead of insisting on the global maximum.
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For the Matérn kernel, building on the results of (Wynne et al., 2021, Thm. 4), we obtain the following two
corollaries.
Corollary 1. (Average-Case Noisy Matérn Upper Bound) For f ∈ HM, consider the setup of Theorem 2,
where the subroutine EstimateFunc for producing f̂ is maximum-variance sampling (Algorithm 2) with
parameter λ = Θ(T − ν

d ). Then, the average-case integration error is upper bounded by

EM
avg(T, σ) = O

(
T − ν

d −1 + σT − 1
2

)
. (9)

As discussed in Section 1.2, Corollary 1 matches the lower bound (Theorem 1) up to constant factors, and
shows that the overall difficulty of noisy BQ is as roughly hard as either noiseless BQ or univariate Gaussian
mean estimation with variance σ2 (whichever is harder). Since the algorithm used is non-adaptive but the
lower bound applies even to adaptive algorithms, we conclude that there is no adaptivity gap in terms of
scaling laws in this case.

Similarly to prior works such as (Kanagawa et al., 2016; Teckentrup, 2020; Wynne et al., 2021), we now
consider the setting in which the smoothness hyperparameter ν is unknown, and Algorithm 2 is accordingly
modified as follows:

• Instead of assuming that ν is given (via the prior k0), we assume that the algorithm is given a
sequence of estimates {ν̂t}T

t=1. These are kept generic, but could correspond to estimates that are
iteratively updated as more data is collected.

• When forming the GP posterior at time t, the parameter ν̂t is used.

Following (Wynne et al., 2021), given the time horizon T , we define ν− = inft≤T ν̂t and ν+ = supt≤T ν̂t,3
and we assume that the number of distinct values in {ν̂t}T

t=1 is upper bounded by fixed constant.
Corollary 2. (Average-Case Noisy Matérn Upper Bound – Misspecified Setting) For f ∈ HM, consider the
setup of Theorem 2, where the subroutine EstimateFunc for producing f̂ is the above-described modification
of maximum-variance sampling with parameters {ν̂t}T

t=1 satisfying ν+ > ν, and with λ = Θ(T − ν−
d ). Then,

the average-case integration error is upper bounded by

EM
avg(T, σ) = O

(
T − min(ν−,ν)

d −1 + T − ν+ν−−ν+
d −1 + σT − 1

2

)
. (10)

As a special case of this result, when ν− = ν+ (and both are greater than ν, in accordance with the
assumption ν+ > ν), the scaling precisely reduces to that of Corollary 1. Thus, interestingly, over-estimating
the smoothness parameter is not harmful in terms of scaling laws; similar observations were made in prior
works such as (Kanagawa et al., 2016) (Remark 2 therein). More broadly, Theorem 2 can be used to convert
other L2 guarantees from (Wynne et al., 2021) (or from other works) to BQ guarantees, but for brevity we
only formally state Corollary 2.

We now turn to the SE kernel with noise, for which we follow the use of random features (Rahimi & Recht,
2007). we specifically build on (Bach, 2017), which analyzes weighted random Fourier features from a function
approximation point of view. The approximation requires sampling from a leverage function distribution
based on an infinite-dimensional integral operator. With the help of their analysis, we obtain the following
corollary.
Corollary 3. (Average-Case Noisy SE Upper Bound) For f ∈ HSE, under the setup of Theorem 2, there
exists a random feature sampling algorithm that produces an approximation f̂ in Algorithm 1 such that the
average-case error is

ESE
avg(T, σ) = O

(
e−Cr( T

log T )
1
d

T − 1
2 + σT − 1

2

)
for some constant Cr > 0.

3This can be generalized so that these definitions also restrict t ≥ N for some finite N , but we simply take N = 1 to reduce
notation.
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In Section 1, we highlighted that BQ is related to RKHS-based optimization problems. We briefly note that
that the techniques from such works can also be used to obtain BQ bounds via Algorithm 2 (using it for
T observations rather than only the first half) or sampling on a uniform grid, but the resulting scaling is
typically highly suboptimal. Specifically, in Appendix F, we show that this approach leads to the following:

EM
avg(T, σ) = O

(
T − ν

2ν+d (log T )
4ν+d

4ν+2d

)
, (11)

EM
avg(T ) = O

(
T − ν

d

)
, (12)

ESE
avg(T, σ) = O

(
(log T )

d+1
2 T − 1

2

)
, (13)

ESE
avg(T ) = O

(
e− d

2 T
1
d

)
, (14)

where (11) and (13) hold under the assumption that σ = Θ(1). These four results correspond to the Matérn
noisy/noiseless and SE noisy/noiseless settings respectively. Algorithm 2 can be used directly to obtain the
first three results, whereas (14) is based on sampling on a uniform grid.

While the first three bounds above are weaker than our earlier results, (14) gives fast decay to zero for the
noiseless SE case. Moreover, in Appendix F we additionally show that (14) can be slightly reduced by a
T − 1

2 factor using Algorithm 1, as summarized in the following corollary.
Corollary 4. (Average-Case Noiseless SE Upper Bound) For f ∈ HSE, consider the setup of Theorem 2,
where EstimateFunc is chosen to take samples on a uniformly-spaced grid and return µT/2 with λ = 0.
Then, the average-case error is upper bounded by

ESE
avg(T ) = O

(
e− d

2 T
1
d T − 1

2

)
. (15)

5 Experiments

In this section, we conduct simulation studies to compare our two-batch algorithm with its component parts,
maximum variance sampling (MVS) and Monte Carlo sampling (MC). These experiments serve to verify that
Algorithm 1 can be effective in practice, but we will also discuss some potential gaps between the theory
and practice. In particular, our goal is not to establish state-of-the-art practical performance.

We refer to Algorithm 2 as MVS-MAT or MVS-SE when the kernel is Matérn or SE, and similarly for
Algorithm 1 with MVS-MC-MAT or MVS-MC-SE. To attain a better understanding of how MVS-MC
performs with respect to time, we modify it to alternate between MVS samples and MC samples, instead of
doing all of one followed by all of the other. Mathematically, this does not change the behavior at the final
time step.

5.1 Setup

GP model. We adopt the common choice ν = 3/2 for Matérn-ν kernel, and the GP noise hyperparameter
λ is fixed as 10−4 for both kernels 4. The lengthscale is left as a free parameter, as is an additional scale
parameter that we introduce (multiplying (2)) to permit functions with varying ranges. Except where stated
otherwise, these two parameters are learned by maximizing the data log-likelihood (Rasmussen & Williams,
2006) using the built-in SciPy optimizer based on L-BFGS-B, which is also used for finding the maximum
variance point. We seek to solve the BQ problem with a constant weight function, i.e., p(x) = 1.

Evaluation. We compare MVS-MC against its two components, MVS and Monte Carlo. For MVS and
MVS-MC, we perform 100 trials, with each trial using a distinct set of 3 random initial points (but these
are common to both methods). For MC, since every round is already randomized, we simply run 100 trials
without initial points. For all functions, we consider a time horizon of T = 250, and evaluate the performance

4Our theory uses choices such as λ = Θ(T − ν
d ) with unspecified implied constants, which makes it difficult to choose the

parameter in a way that exactly matches the theory. However, since the theory dictates choosing λ to be small, we set it to be
small here accordingly.
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Figure 1: Results for synthetic functions.

using the mean absolute error, with the ground truth value (and also Î1 at Line 7 of Algorithm 1) being
determined by trapezoidal rule with 105 uniformly-spaced grid points (without noise). Error bars in our
plots indicate ±0.5 standard deviation with respect to the 100 trials.

Varying the split size. In our theoretical analysis, we let MVS-MC use half of the samples for each
component (MVS and MC). However, in practice, it may be beneficial to allow different splits. In our
experiments, we additionally explore the effect of the split fraction, i.e., the fraction allocated to the MVS
part, and plot the final error with respect to that fraction. A split of 0 corresponds to MC, and a split of 1
corresponds to MVS.

5.2 Results

We provide a selection of our results here, and give additional results in Appendix G.

5.2.1 Synthetic Kernel-Based Functions

We first simulate on a set of synthetic functions following the method of (Janz et al., 2020), where each
function is constructed by sampling m = 30d points, x̂1 . . . x̂m, uniformly on [0, 1]d, and â1 . . . âm uniformly
on [−1, 1]. The function is then defined as f(x) =

∑m
i=1 âik(x̂i, x). The length-scale and ν (in the case of

the Matérn kernel) are set to be fixed as 0.2 and 3/2 respectively.

We let MVS and MVS-MC know the kernel hyperparameters exactly (i.e., they match the ones used to
produce the functions). Some results for d = 4 and σ ∈ {0.1, 0.5} are shown in Figure 1, and further (d, σ)
pairs are shown in Appendix G. We observe that MC performs well at the higher noise level, but performs
poorly at the lower noise level, which aligns with the theory. At the final time step, MVS in fact performs
well in both cases, though it can perform poorly in the low-query regime (e.g., Matérn 4D). While MVS-MC
is not universally best, it is generally able to capture the benefits of both MVS and MC in this experiment.

5.2.2 Benchmark Functions and Sensor Measurement Function

We consider a variety of well-known benchmark functions, namely, Ackley, Alpine, Gramacy-Lee, Griewank
and Keane; see (Bingham, 2013) for the descriptions. We also consider an experiment for sensor measurement
data, which is described in Appendix G. A small selection of the results are shown in Figure 2, and the rest
are shown in Appendix G.

These results again indicate that MC is better suited to higher noise levels, but they provide a somewhat less
clear picture for MVS and the ideal MVS-MC split. In general, the error as a function of the split fraction
can increase, decrease, or exhibit “U-shaped” behavior, though we again found the choice of 0.5 to usually
be a good one (even if not always optimal).

Notably, in both the synthetic and benchmark experiments, the error can drop suddenly at 1.0, as this is
where the MC component is no longer used and MVS-MC simply becomes MVS. This indicates that the
theoretical benefits of MVS-MC over MVS may not always be observed in practice (e.g., because the theory
hides important constant factors, or only captures the behavior for very large T ). It may be of interest to
seek refined theory addressing these findings in future work.
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Figure 2: Results for benchmark and real data functions.

6 Conclusion

We have developed a framework for relating average-case quadrature error with L2-function approximation
error, allowing us to derive a number of both existing and new results. In addition, we explored algorithm-
independent lower bounds with greater generality and/or distinct proofs compared to existing ones. In future
work, it may be of interest to address some of the remaining gaps, such as those between the upper and
lower bounds for the SE kernel (see Table 1).
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A Connections Between Matérn RKHS and Sobolev Class

We briefly summarize some definitions and properties of the Sobolev function class, as stated and used in
the work (Wynne et al., 2021) that we will later build on.

For integer-valued s, the Sobolev function class of order s on a domain D is defined as

W s
2 (D) =

{
f ∈ L2(D) :

∑
α : |α|≤s

∥∂αf∥L2 < ∞
}

, (16)

and the associated norm is given by

∥f∥W s
2

=
( ∑

|α|≤s

∥∂αf∥2
L2

)1/2
, (17)

where each α is a d-dimensional multi-index with |α| =
∑d

i=1 αi, and ∂αf(x) is the weak derivative of order
α. For a fractional (i.e., non-integer) order s ∈ R with s ≥ d

2 (i.e., ν > 0), the Sobolev function class of
order s is defined as

W s
2 (D) =

{
f ∈ L2(D) :

∫
x∈D

(1 + ∥x∥2
2)s|f̂(ξ)|2dx < ∞

}
, (18)

where f̂(ξ) is the Fourier transform of f(x). The associated norm is given by

∥f∥W s
2

=
( ∫

x∈D

(1 + ∥x∥2
2)s|f̂(ξ)|2dx

)1/2
. (19)

In the following, we will use W s
2 as a shorthand for W s

2 (D). Here we state a known result that characterizes
the equivalence between Sobolev space and RKHS of Matérn kernels.
Lemma 1. (Sobolev Space & RKHS of Matérn kernels (Teckentrup, 2020, Prop. 3.3)) Let HM be the RKHS
of the Matérn-ν kernel on D = [0, 1]d (with any fixed positive length scale), and let s = ν + d/2. Then, the
Matérn RKHS is norm-equivalent to the Sobolev space W s

2 . That is, HM = W s
2 , and there exist constants

c1, c2 > 0 such that for any f ∈ HM (or equivalently, f ∈ W s
2 ) we have

c1∥f∥W s
2

≤ ∥f∥HM ≤ c2∥f∥W s
2
. (20)

B Existing Results for the Noiseless Setting

The following lower bound for the noiseless setting (i.e, σ2 = 0) is a slight extension of (Novak, 1988, Thm. 1
& 3), where we have generalized their results to fractional Sobolev spaces where s = ν + d

2 may be non-
integer. For completeness, we translate it into our notation and present the proof in Appendix C. Here and
subsequently, the kernel parameters ν, l, dimension d, and RKHS norm B are all treated as constants, and
we consider the limit T → ∞.
Theorem 3. (Noiseless Lower Bound) Consider the noiseless problem setup with constant parameters
(B, ν, d, l) satisfying ν + d

2 ≥ 1, and time horizon T . Then, we have the following lower bounds for the
Matérn kernel in the noiseless setting:

13
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1. For any algorithm (possibly adaptive), the worst-case error satisfies

EM
wst(T ) = Ω(T − ν

d − 1
2 ).

2. For any algorithm (possibly adaptive), the average-case error satisfies

EM
avg(T ) = Ω(T − ν

d −1).

Moreover, these lower bounds hold even under the fixed weight function p(x) = 1.

These scaling laws are known to be order-optimal, since matching upper bounds (using non-adaptive
algorithms) have been established, e.g., see (Novak, 1988) for a detailed summary. For the average-case
criterion, see also Corollary 1 with σ = 0.

C Proof of Theorem 3 (Noiseless Lower Bounds)

While Theorem 3 is already known for Sobolev spaces with integer-valued s (Novak, 2016), it is useful to
present a self-contained proof for the purpose of (i) completeness in handling the non-integer case, and (ii)
introducing tools that will be re-used in the noisy setting (Appendix D). We generally follow the analysis
of (Novak, 1988), while adapting the notation to match ours, and making some minor adjustments in the
analysis.

C.1 Function Class Construction for the Matérn Kernel

We first describe a bounded-support class of functions consisting of multiple bumps. The following lemma
introduces the associated function and some useful properties.
Lemma 2. (Bounded-Support Function Construction (Bull, 2011, Lem. 5), (Cai & Scarlett, 2021, Lem. 4))
Let h(x) = exp

( −1
1−∥x∥2

)
1{∥x∥2 < 1} be the d-dimensional bump function, and let g0(x) = ϵ

h(0) h
( 2x

w

)
, i.e.,

a rescaled version of h for some w > 0 and ϵ > 0. Then, g0 satisfies the following properties:

• g0(x) = 0 for all x outside the ℓ2-ball of radius w centered at the origin;
• g0(x) ∈ [0, ϵ] for all x, and g0(0) = ϵ.
• ∥g0∥HM ≤ c1

ϵ
h(0)

( 1
w

)ν∥h∥HM when k is the Matérn-ν kernel on Rd, where c1 is constant.

In accordance with this lemma, let g0(x) = ϵ
h(0) h( 2x

w ) be the rescaled bump function with values in
[0, ϵ] and radius w

2 (i.e., diameter w). For suitably-chosen M , we consider M such bumps with disjoint
supports by shifting, and accordingly consider 2M functions, one for each possible sign pattern of the bumps.
Mathematically, all functions of the form f(x) :=

∑M
i=1 δigi(x) are contained in HM, where δi ∈ {+1, −1}

and gi(x) is the shifted version of g0(x). Since the bumps form a d-dimensional grid of step size w in each
dimension and the domain is D = [0, 1]d, we have

M =
⌊ 1

w

⌋d

. (21)

In fact, since the bumps have spherical support instead of rectangular, we could fit more of them into [0, 1]d,
but doing so would only impact the constant factors, which we do not seek to optimize.

A 1D example of f(x) is illustrated in Figure 3.

Letting I0 :=
∫

∥x∥≤ w
2

g0(x)dx denote the integral of g0, we have

I0 ≥ Ω(wdϵ), (22)

which follows from the fact that the integral of h(x) is constant, the vertical scaling shrinks the integral by
ϵ, and the horizontal scaling shrinks the integral by Θ(wd).
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Figure 3: 1D illustration of a function in the restricted Matérn function class.

To evaluate the RKHS norm of each f , we use the equivalence of the RKHS norm of f and the Sobolev norm,
as stated in Lemma 1. Since each f is a sum of M disjoint-support functions, we can define these disjoint
regions as D1, . . . , DM . First considering the case of integer-valued s (see (17) for the relevant definition),
we have:

∥f∥W s
2

=
( ∑

|α|≤s

∥∂αf(x)∥2
L2

)1/2

=
( ∑

|α|≤s

∥∥∥∂α
M∑

i=1
δigi(x)

∥∥∥2

L2

)1/2

=
( ∑

|α|≤s

∥∥∥ M∑
i=1

δi∂
αgi(x)

∥∥∥2

L2

)1/2

=
( ∑

|α|≤s

∫
D

∣∣∣ M∑
i=1

δi∂
αgi(x)

∣∣∣2
dx

)1/2

=
( ∑

|α|≤s

M∑
i=1

∫
Di

∣∣∂αgi(x)
∣∣2

dx
)1/2

(23)

=
( M∑

i=1
∥gi(x)∥2

W s
2

)1/2

=
√

M∥g0∥W s
2
, (24)

where (23) holds since the regions D1, . . . , DM are disjoint.

For non-integer values of s = ν + d
2 , there always exists n ∈ N+ such that n < s < n + 1, and we can proceed

analogously to the analysis in (Hesse, 2006). Note also that our assumption ν + d
2 ≥ 1 ensures that n ≥ 1.

From the definition of fractional Sobolev norm in 19, and using Hölder’s inequality, we can “interpolate” the
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fractional Sobolev norm between two integer Sobolev norms (we specify the constants λ, η, p, and q below):

∥f∥2
W s

2
=

∫
x∈D

(1 + ∥x∥2
2)s|f̂(ξ)|2dx

=
∫

x∈D

(1 + ∥x∥2
2)s−λ|f̂(ξ)|2−η · (1 + ∥x∥2

2)λ|f̂(ξ)|ηdx

≤
( ∫

x∈D

(1 + ∥x∥2
2)(s−λ)p|f̂(ξ)|(2−η)pdx

) 1
p ·

( ∫
x∈D

(1 + ∥x∥2
2)λq|f̂(ξ)|ηqdx

) 1
q (25)

= ∥f∥2n+2−2s
W n

2
· ∥f∥2s−2n

W n+1
2

(26)

= M · ∥g0∥2n+2−2s
W n

2
· ∥g0∥2s−2n

W n+1
2

= O
(

M · ∥g0∥2n+2−2s

Hn− d
2

· ∥g0∥2s−2n

Hn+1− d
2

)
(27)

= O
(

M
ϵ2n+2−2s

(wn− d
2 )2n+2−2s

· ϵ2s−2n

(wn+1− d
2 )2s−2n

)
(28)

= O
( Mϵ2

w2s−d

)
(29)

= O
(Mϵ2

w2ν

)
, (30)

where:

• In (25)–(26), we have chosen λ = (n + 1)(s − n), η = 2(s − n) ∈ (0, 2), p = 1
n+1−s > 1 and

q = 1
s−n > 0, so that the pre-condition of Hölder’s inequality holds ( 1

p + 1
q = 1).

• In addition, (26) uses the identities (s − λ)p = n, (2 − η)p = 2, and λq = n + 1, which follow from
direct substitutions and simplifications.

• (27) uses the norm equivalence in Lemma 1.

• (28) substitutes the RKHS norm bound for g0, i.e., ∥g0∥HM = O( ϵ
wν ), as demonstrated in Lemma 2.

• (29) cancels (wn− d
2 )2n−2s with (wn− d

2 )2s−2n, so that the exponent to w becomes (2n−d)+(2s−2n) =
2d − s.

• (30) uses s = ν + d
2 .

Again using the norm equivalence between Sobolev function and the Matérn RKHS, we can bound the RKHS
norm of f as follows in view of (30) and (21):

∥f∥HM = O
( ϵ

M
ν
d + 1

2

)
. (31)

Equating the right-hand side of (31) with B and rearranging, it follows that ∥f∥HM ≤ B with a choice of ϵ
satisfying

ϵ = Θ
( B

M
ν
d + 1

2

)
. (32)

C.2 Completion of the Proof of Theorem 3

The finite function (sub-)class described in Section C.1 is denoted by HM ⊂ HM. We first consider the
worst-case criterion. Suppose there is an algorithm estimating I for a function f ∈ HM, and the algorithm
has a budget of T = M

2 . The best this algorithm can do is determine the signs of M
2 out of the M bumps.

For the unexplored regions, being in the worst-case setting, we can make an adversarial argument: The
adversary either makes all of these bumps negative or all of them positive, whichever leads to a higher error.
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This leads to two feasible values of I that differ by Θ(MI0), which in turn implies that adversarially choosing
the worse of the two must give |I − Î| = Ω(MI0). Hence, when T = M

2 , we have

EM
wst(T ) ≥ Ω

(M

2 · I0

)
(33)

= Ω(Mwdϵ) (34)
= Ω(ϵ), (35)

where (34) uses (22), and (35) uses (21). Substituting (32) and T = M
2 into (35), we obtain

EM
wst(T ) = Ω

( B

(2T ) ν
d + 1

2

)
= Ω

( 1
T

ν
d + 1

2

)
,

which establishes the desired worst-case lower bound.

For the average-case criterion, we proceed slightly differently. We first note that the supremum in EM
avg(T ) =

supf∈HM
E

[
|I − Î|

]
can be lower bounded by the average with respect to f drawn uniformly from HM (and

also still averaged over any randomness in the algorithm). Again considering a budget of T = M
2 , there

must be at least M
2 regions with no samples, and for each such region, the associated integral is +I0 or −I0

with equal probability. Thus, conditioned on the observed samples, the posterior distribution of I can be
expressed as a sum of two independent random variables, one of which is of the form

S M
2

=
M/2∑
i=1

δi · I0, (36)

where for notational convenience, we assume (without loss of generality) that it is the first M
2 regions that

have no samples. That is, S M
2

is a random variable expressing the posterior uncertainty in the M
2 non-

sampled regions. There may also be additional uncertainty due more than M
2 regions being non-sampled,

but for proving a lower bound, it suffices to consider the case that there is no additional uncertainty beyond
S M

2
.

Since δi is equiprobable on {+1, −1}, we have E[S M
2

] = 0. Moreover, the variance of (36) is given by

σ2
S M

2
=

M/2∑
i=1

Var(δi · I0) = M

2 I2
0 , (37)

since δ1I0, · · · , δ M
2

I0 are i.i.d. random variables each having variance I2
0 . In the limit of large M , if we

consider the normalized sum

ZS M
2

=
S M

2
− E[S M

2
]

σS M
2

,

then by the central limit theorem (CLT) (Feller, 1957, Ch. VIII), as M → ∞, ZS M
2

convergences in
distribution to the standard normal distribution N (0, 1). In other words S M

2
is asymptotically distributed

as N (0, σ2
S M

2
). When estimating a Gaussian (or an asymptotically Gaussian quantity), an average absolute

error proportional to the standard deviation is unavoidable; for instance, if we know that Z ∼ N (0, σ2
Z),

then our best guess of Z is Ẑ = 0, but this still gives E[|Z − Ẑ|] = E[|Z|] = σ
√

2
π . Thus, the lower bound for

the average case regret is EM
avg(T ) ≥ Ω(σS M

2
) = Ω(

√
MI0), and by substituting (21), (22), (32), we obtain

EM
avg(T ) = Ω

( ϵ√
M

)
= Ω

( 1
T

ν
d +1

)
.
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D Unified Derivation of Both Terms in Theorem 1 (Lower Bound)

In this appendix, we show that analyzing a suitably chosen hard subset of functions provides an alternative
derivation of both terms in Theorem 1 in a unified manner. Specifically, we consider the same class HM
that was used in the noiseless case in Appendix C, but the analysis requires substantial modifications and is
much more technical. We proceed in several steps.

Step 1: Reduction to a simpler problem. Similarly to the noiseless setting above, we start by
lower bounding EM

avg(T, σ) = supf∈HM
E

[
|I − Î|

]
by E

[
|I − Î|

]
, where now the average is taken over three

sources of randomness: the uniform distribution over 2M functions in HM (with parameters M and ϵ), the
randomization in the algorithm, and the noise. Moreover, once f is randomized, letting the algorithm be
deterministic is without loss of optimality, so we assume this is the case (this is simply an instantiation of
Yao’s minimax principle).

We claim that in order to attain a lower bound with the preceding prior, it suffices to attain a lower bound
in the following simplified setup:

• There exists an unknown collection of signs Si ∈ {−1, +1} for i = 1, . . . , M , each taking either value
independently with probability 1

2 .

• The goal of the algorithm is to estimate I0
∑M

i=1 Si, where I0 is the integral of a single (positive)
bump in the original BQ problem.

• At time t, the algorithm may select an index it (possibly in an adaptive manner) and observe
yt = ϵSit

+ ϵt with independent noise ϵt ∼ N(0, σ2).

We observe that this problem is exactly equivalent to our original problem in the case that the BQ algorithm
is constrained to select midpoints of the bumps, where the bump takes its highest absolute value (i.e., ϵ).
Intuitively, this is without loss of optimality because such points have the highest signal, and are thus the
most informative.

To make this more formal, we note that sampling a point with absolute value |f(x)| = c ∈ (0, ϵ) gives
yt = cSit + ϵt with Sit being the associated bump sign, and this is information-theoretically equivalent to
observing yt

ϵ
c = ϵSit + ϵ

c ϵt. Since ϵ
c > 1, this simply amounts to still observing ϵSit , but with more noise,

and this extra noise could always be artificially added anyway. Hence, sampling at the midpoint is without
loss of generality or optimality.5

We proceed by studying this simplified problem.

Step 2: Establish hardness of estimating most sign values. As a stepping stone to characterizing
the difficulty of estimating I0

∑M
i=1 Si, we provide an auxiliary result on the hardness of estimating S =

(S1, . . . , SM ) to within a certain Hamming distance. Although estimating each individual sign is a harder
problem than estimating their sum (which may appear concerning from the perspective of proving a lower
bound), this will turn out to be a useful intermediate step. We let Ŝ = (Ŝ1, . . . , ŜM ) denote an estimate of
S based on the queries.
Lemma 3. In the simplified setup with discrete queries it ∈ {1, . . . , M} (rather than xt ∈ D), consider any
(possibly adaptive) deterministic algorithm that produces an estimate Ŝ of S. Then, there exists a sufficiently
small constant c such that we require a time horizon of

T ≥ c · M · max
{

1,
σ2

ϵ2

}
(38)

in order to obtain E
[
dH(S, Ŝ)

]
≤ M

8 . Here dH denotes the Hamming distance, and the expectation is with
respect to S uniform on the 2M possibilities, as well as the random noise.

5The locations with |f(x)| = 0 carry no information, so we can assume without loss of generality that they are never sampled.
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Proof. By a standard variant of Fano’s inequality with approximate recovery (e.g., see (Scarlett & Cevher,
2019, Thm. 2)), we have

P
[
dH(S, Ŝ) ≥ M

4

]
≥ 1 − I(S; Ŝ) + 1

log(2M ) − log(Nmax) , (39)

where I(·; ·) denotes the mutual information (Cover & Thomas, 2006), and Nmax is the number of
vectors in {−1, 1}M within Hamming distance M

4 of any fixed vector (e.g., the all-ones vector). We
have Nmax =

∑M/4
i=0

(
M
i

)
≤ M

(
M

M/4
)
, from which a standard bound on the binomial coefficient gives

Nmax ≤ eMH2(1/4)(1+o(1)) with H2(q) = q log 1
q + (1 − q) log 1

1−q being the binary entropy function. Since
H2(1/4) is strictly smaller than log 2, substitution into (39) gives

P
[
dH(S, Ŝ) ≥ M

4

]
≥ 1 − I(S; Ŝ) + 1

Θ(M) . (40)

Moreover, following standard steps, we can upper bound the numerator as follows (Scarlett & Cevher, 2019,
Sec. 3):

• Use the data processing inequality to write I(S; Ŝ) ≤ I(S; I, Y), with (I, Y) being the length-T
collection of sampled inputs and observed outputs by the algorithm.

• Use the chain rule for mutual information to upper bound I(S; I, Y) by a corresponding sum over
time indices: I(S; I, Y) ≤

∑T
t=1 I(S; Yt|It).

To simplify the last expression, we note that given It, the only entry of S that impacts Yt is SIt , so we can
further write I(S; Yt|It) ≤ I(SIt

; Yt|It).

Recall that when SIt equals some value s ∈ {−1, 1}, the corresponding observation is yt ∼ N(sI0, σ2).
Hence, by the relation between mutual information and KL divergence (Scarlett & Cevher, 2019, Sec. 3.3),
the preceding mutual information is further upper bounded by the KL divergence between N(±ϵ, σ2) and
N(0, σ2) (this is the same regardless of whether ϵ has a +1 or −1 coefficient), which is ϵ2

2σ2 .

Substituting the preceding findings back into the preceding inequality I(S; I, Y) ≤
∑T

t=1 I(S; Yt|It), it follows
that I(S; I, Y) ≤ T ϵ2

2σ2 . Hence, if T < c · Mσ2

ϵ2 with a small enough constant c, then the right-hand side of (40)
exceeds 1

2 . The fact that dH(S, Ŝ) ≥ M
4 with probability exceeding 1

2 then implies that E
[
dH(S, Ŝ)

]
> M

8 .

The preceding argument proves the lemma when σ2

ϵ2 ≥ 1. On the other hand, if σ2

ϵ2 < 1, then the requirement
in (38) simply becomes T ≥ cM , which we claim to be trivially necessary for attaining E

[
dH(S, Ŝ)

]
≤ M

8 , as
long as c ≤ 3

4 . To see this, note that with any smaller number of samples, a quarter (or more) of the indices
cannot even be sampled once. When this is the case, the algorithm cannot do any better than guessing the
corresponding Si values, getting each one correct with probability 1

2 .

The contrapositive statement of Lemma 3 is that if T < c · M · max
{

1, σ2

ϵ2

}
, then it must hold that

E
[
dH(S, Ŝ)

]
> M

8 . Furthermore, by writing the Hamming distance as a sum of indicator function 1{Si ̸= Ŝi},
the preceding inequality can be written as

1
M

M∑
i=1

P[Si ̸= Ŝi] >
1
8 . (41)

Step 3: Characterize the posterior uncertainty. In the argument that follows, we are not directly
interested in P[Si ̸= Ŝi], but instead P[Si ̸= Ŝi | D], where D = (I, Y) contains the T pairs of the form (it, yt)
collected throughout the course of the algorithm. This conditional probability can be viewed as representing
the posterior uncertainty of Si, with a value of 1

2 meaning complete uncertainty, and a value of 0 or 1 meaning
complete certainty.
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The probability in (41) is taken with respect to the joint randomness of S and the noise (which enters via D).
While the decomposition P[S]P[D|S] is most natural, it is useful to consider the opposite form P[D]P[S|D],
so that we can analyze the posterior distribution P[S|D].

With this in mind, we claim that the following holds with probability at least 1
16 with respect to D (i.e., the

equation to follow depends on D but still contains randomness via P[S|D]):

1
M

M∑
i=1

P[Si ̸= Ŝi | D] >
1
16 . (42)

To see this, assume by contradiction that this were only to hold with probability less than 1
16 . Then, letting

A denote the event that (42) holds, we would have

1
M

M∑
i=1

P[Si ̸= Ŝi] = E
[

1
M

M∑
i=1

P[Si ̸= Ŝi|D]
]

= E
[

1
M

M∑
i=1

P[Si ̸= Ŝi|D]1{D ∈ A}
]

+ E
[

1
M

M∑
i=1

P[Si ̸= Ŝi|D]1{D /∈ A}
]
.

where the first line uses the tower property of expectation. Then, the two terms are bounded as follows:

• Using what we assumed by contradiction and upper bounding 1
M

∑M
i=1 P[Si ̸= Ŝi | D] ≤ 1, the first

term is at most 1
16 .

• Using the opposite inequality to (42) for D /∈ A, and upper bounding 1{·} ≤ 1, the second term is
also at most 1

16 .

Thus, we obtain 1
M

∑M
i=1 P[Si ̸= Ŝi] ≤ 1

8 , which contradicts (41), and we conclude that (42) must hold with
probability at least 1

16 (with respect to D).

We now apply a similar argument to the preceding one, but considering the uniform distribution over M
implicit in (42) (as opposed to the distribution of D). Omitting the details to avoid repetition, it follows
that at least M

32 of the indices in {1, . . . , M} have P[Si ̸= Ŝi|D] > 1
32 ; any smaller number than M

32 would
contradict (42).

The above findings are summarized in the following lemma.
Lemma 4. Under the setup of Lemma 3, if

T < c · M · max
{

1,
σ2

ϵ2

}
(43)

for sufficiently small c > 0, then with probability at least 1
16 (with respect to D), there exist at least M

32 indices
such that P[Si ̸= Ŝi | D] > 1

32 .

Step 4: Central limit theorem. We now return to the problem formed in Step 1, where the goal is
to estimate I0

∑M
i=1 Si, and the algorithm does not necessarily form any entry-by-entry estimate Ŝ. We

continue to let D denote the samples collected, and we let Di denote the subset of D corresponding to times
when it = i.
Lemma 5. Under the uniform prior on S = (S1, . . . , SM ), conditioned on any collection of samples D, we
have that the signs (S1, . . . , SM ) remain conditionally independent.

Proof. This is immediate from the fact that we consider an independent prior (namely, the uniform prior
over all 2M sign patterns) and assume that the noise terms between times are independent. Thus, whenever
some index it is selected, the resulting observation yt bears information about Sit , but bears no information
about any of the other Sj .
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By Lemma 5, conditioned on D, the posterior distribution of
∑M

i=1 Si is a sum of independent ±1-valued
random variables. Moreover, by Lemma 4, when T satisfies (43) it holds with probability at least 1

16 that
at least 1

32 fraction of these indices have strictly positive posterior variance. This, in turn, implies that
I0

∑M
i=1 Si has a posterior variance of Ω(MI2

0 ).

Having a constant fraction of strictly positive-variance terms is sufficient for applying the central limit
theorem for independent but non-identical random variables (Feller, 1957, Ch. VIII). By doing so, we find
that I0

∑M
i=1 Si is asymptotically Gaussian; the mean is inconsequential for our purposes, and the variance

scales as Ω(MI2
0 ), i.e., the standard deviation is Ω(

√
M · I0). As highlighted in Appendix C, when we have

a posterior standard deviation of Ω(
√

M · I0), we incur Ω(
√

M · I0) error. Since we have shown that this is
the case with constant probability, it follows that the average error is Ω(

√
M · I0).

Step 5: Simplification. Recall from Appendix C that in our function class, we have M =
⌊ 1

w

⌋d, I0 =
Θ(wdϵ) = Θ

(
ϵ

M

)
, and ϵ = Θ

( 1
Mν/d+1/2

)
. Hence, the scaling Ω(

√
M · I0) can be expressed as Ω

(
ϵ√
M

)
. We

now complete the proof by considering two cases:

• If the maximum in (43) is achieved by the first term, then we have M = Θ(T ) (supposing that T is
as high as possible subject to (43)). Moreover, the above-established fact gives an Ω

( 1
T

ν
d

+1

)
lower

bound.

• If the maximum in (43) is achieved by the second term, then we get M = Θ
(

T ϵ2

σ2

)
, or equivalently

ϵ√
M

= Θ
(

σ√
T

)
. Hence, the lower bound is Ω

(
σ√
T

)
for both kernels.

Combining these two cases, we obtain a final lower bound of EM
avg(T, σ) = Ω

(
max

{
σ√
T

, 1
T

ν
d

+1

})
. This is

equivalent to Ω(T ν
d −1 + σT − 1

2 ), and the proof of Theorem 1 is complete.

E Proofs of Average-Case Upper Bounds

E.1 Proof of Theorem 2 (General Guarantee for Algorithm 1)

Our first result establishes that R̂ is an unbiased estimator of R.

Lemma 6. Condition on arbitrary fixed values of y1, . . . , yT/2 (and hence, fixed Î1 and R), and consider the
resulting distribution of R̂ due to the randomness in xT/2+1, . . . , xT and ϵT/2+1, . . . , ϵT . We have

E[R̂] = R. (44)
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Proof. Recalling that f̂ is the initial estimate of f based on the first T
2 samples, we have

E[R̂] = E
[ 2

T

T∑
t=T/2+1

(
yt − f̂(xt)

)]

= 2
T

T∑
t=T/2+1

E[yt − f̂(xt)]

= 2
T

T∑
t=T/2+1

E[f(xt) − f̂(xt) + ϵt]

= 2
T

T∑
t=T/2+1

E[f(xt) − f̂(xt)] + 2
T

T∑
t=T/2+1

E[ϵt]

= 2
T

T∑
t=T/2+1

∫
D

p(x)[f(x) − f̂(x)]dx + 0

=
∫

D

p(x)[f(x) − f̂(x)]dx = R,

where the second and fourth equalities are due to the linearity of expectation, and the fifth equality holds
since xt ∼ p(x) and E[ϵt] = 0.

In addition, the variance of the residual estimator R̂ is bounded according to the following.

Lemma 7. Under the setup of Lemma 6, we have

Var[R̂] ≤ 4pmax

T
∥f − f̂∥2

L2 + 4σ2

T
, (45)

where the variance is with respect to the randomness in xT/2+1, . . . , xT and ϵT/2+1, . . . , ϵT .

Proof. We have

Var[R̂] = Var
[ 2

T

T∑
t=T/2+1

(
yt − f̂(xt)

)]

= 4
T 2 Var

[ T∑
t=T/2+1

(
f(xt) − f̂(xt) + ϵt

)]

≤ 8
T 2 Var

[ T∑
t=T/2+1

(
f(xt) − f̂(xt)

)]
+ 8

T 2 Var
[ T∑

t=T/2+1

ϵt

]

= 8
T 2

T∑
t=T/2+1

Var[f(xt) − f̂(xt)] + 8
T 2 ·

T∑
t=T/2+1

Var[ϵt]

≤ 8
T 2

T∑
t=T/2+1

Var[f(xt) − f̂(xt)] + 4σ2

T
, (46)

where on the third line we use the fact that Var[X + Y ] ≤ 2Var[X] + 2Var[Y ], on the fourth line we use the
independence of xt and ϵt across t, and the last line is due to Var[ϵt] = σ2. Moreover, by the definition of
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variance, we have

Var[f(xt) − f̂(xt)] = E[(f(xt) − f̂(xt))2] − E[f(xt) − f̂(xt)]2

≤ E[(f(xt) − f̂(xt))2]

=
∫

D

p(x)(f(x) − f̂(x))2dx

≤ pmax∥f − f̂∥2
L2 , (47)

where the last inequality is due to our assumption that p(x) ∈ [0, pmax] for all x. Substituting (47) into (46),
we obtain (45) as desired.

We can now analyze the error of our algorithm averaged over all samples, including the first T/2. Let E1[·]
(respectively, E2[·]) denote averaging with respect to the randomness from the first (respectively, second)
batch. We first note that conditioned on the first T/2 samples, we have

E2

[∣∣I − Î1 − R̂
∣∣] ≤

√
E2

[(
I − Î1 − R̂

)2
]

=
√

E2

[(
R − R̂

)2
]

=
√

E2

[(
E2[R̂] − R̂

)2]
=

√
Var[R̂] (48)

≤ 2√
pmaxT − 1

2 ∥f − f̂∥L2 + 2σT − 1
2 , (49)

where the first inequality follows from Jensen’s inequality, the third line holds due to Lemma 6, and the last
two steps are due to Lemma 7 and the elementary inequality √

x + y ≤
√

x + √
y.

Then, incorporating the randomness from the first T/2 samples, we obtain

E
[∣∣I − Î1 − R̂

∣∣] = E1

[
E2

[∣∣I − Î1 − R̂
∣∣]]

≤ 2√
pmaxT − 1

2 E
[
∥f − f̂∥L2

]
+ 2σT − 1

2 , (50)

where we applied the tower property of expectation, followed by (49) (note that E1
[
∥f −f̂∥2

L2

]
= E

[
∥f −f̂∥L2

]
since no quantities from the second batch are present). This concludes the proof of Theorem 2.

E.2 Proofs of Corollaries 1 and 2 (Noisy Matérn Upper Bounds)

It remains to upper bound the average-case L2-error E
[
∥f − f̂∥L2

]
between the true function f and the

estimate f̂ . To do so, we will use results from (Wynne et al., 2021) on the L2 estimation error for functions
in Sobolev spaces, and adapt them to our problem for functions in the Matérn RKHS. These results depend
on various technical assumptions made in (Wynne et al., 2021), some of which are trivially satisfied in our
setting: our domain [0, 1]d implies their Assumption 1, our Matérn-ν functions with finite RKHS norm
implies their Assumptions 2, 4 and 5. Moreover,their Assumption 3 only pertains to the misspecified setting,
imposing the requirement that {ν̂t}t≥T has finitely many values (as we also assume for Corollary 2).

We consider the commonly-used notions of fill distance hX and separation radius qX , which are widely
used (e.g., see (Wynne et al., 2021; Rieger & Zwicknagl, 2010)) and the associated convergence rates for
kernel-based interpolation methods. For a point set X ⊂ D, the two distances are defined as

hX = sup
x∈X

inf
y∈D

∥x − y∥, qX := 1
2 min

x,y∈X,x̸=y
∥x − y∥. (51)

Intuitively, sufficiently small fill distance implies that X covers the whole domain D. It is known that quasi-
uniform point sets achieve the optimal order of hX and qX , at Θ(T − 1

d ) (see, e.g. (Novak & Woźniakowski,
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2008, Thm. 4.17)). Moreover, (Wenzel et al., 2021, Thm. 11) shows that greedily minimizing the GP posterior
variance leads to asymptotically uniform points, which in turn achieves a small fill distance. Considering
maximum-variance sampling (Algorithm 2) in the first batch in our meta-algorithm (Algorithm 1), we are
able to directly make use of the following results from (Wynne et al., 2021).
Lemma 8. (L2-Error Result from (Wynne et al., 2021, Thm. 4)) Let f be any function in HM, and X =
{xt}T

t=1 be the sequence of points selected by Algorithm 2, which outputs µT with parameter λ. Then, there
exists a constant h0 > 0 such that ∀X ⊆ D with hX ≤ h0, and when ν is known, the average noisy L2-error
is

E[∥f − µT ∥L2 ] = O
(

h
d
2
X(hν

X + λ)∥f∥HM + h
d
2
X

(
hν

Xλ−1 + 1
)
E[∥ϵ∥]

)
. (52)

where ϵ = (ϵ1, . . . , ϵT ) is the vector of noise terms

Moreover, under the modified version of Algorithm 2 for the misspecified setting (described just above
Corollary 2, where ν− and ν+ are also defined), we have

E[∥f − µT ∥L2 ] = O
(

h
d
2
X

(
h

min(ν,ν−)+ν+−ν
X qν−ν+

X + λqν−ν+

X

)
∥f∥HM + h

d
2
X

(
hν−

X λ−1 + 1
)
E[∥ϵ∥]

)
. (53)

To obtain this lemma from (Wynne et al., 2021, Thm. 4), we substitute s → 0, τf → ν + d
2 , τ+

k → ν+ + d
2 ,

τ−
k → ν− + d

2 , q → 2 and m(·) → 0 in the notation therein. Setting λ = T − ν
d and hX = Θ(T − 1

d ), (52) can
be simplifed as

E[∥f − µT ∥L2 ] = O
(

T − ν
d − 1

2 B + T − 1
2 E[∥ϵ∥]

)
. (54)

Similarly, by setting λ = T − ν−
d , hX = Θ(T − 1

d ), and qX = Θ(T − 1
d ), (53) reduces to

E[∥f − µT ∥L2 ] = O
(

T − min(ν−,ν)+ν+−ν−ν++ν
d − 1

2 B + T − ν+ν−−ν+
d − 1

2 B + T − 1
2 E[∥ϵ∥]

)
. (55)

Note that since the noises are i.i.d Gaussian with zero mean, we have

E[∥ϵ∥] ≤
√

E[∥ϵ∥2] =
√
E[ϵ2

1] + · · · + E[ϵ2
T/2] =

√
Var[ϵ1] + · · · + Var[ϵT/2] =

√
T

2 σ. (56)

For f ∈ HM and known ν, substituting (56) and (54) into (50), we obtain

E
[
|I − Î1 − R̂|

]
= O

(√
pmaxT − 1

2
(
T − ν

d − 1
2 B + T − 1

2 E[∥ϵ∥]
)

+ σT − 1
2

)
= O

(
T − ν

d −1 + σT − 1
2

)
,

which yields Corollary 1.

For the misspecified setting, we substitute (55)–(56) into (50), and obtain

E
[
|I − Î1 − R̂|

]
= O

(√
pmaxT − 1

2
(
T − min(ν−,ν)+ν+−ν−ν++ν

d − 1
2 B + T − ν+ν−−ν+

d − 1
2 B + T − 1

2 E[∥ϵ∥]
)

+ σT − 1
2

)
= O

(
T − min(ν−,ν)

d −1 + T − ν+ν−−ν+
d −1 + σT − 1

2

)
,

which yields Corollary 2.

E.3 Proof of Corollary 3 (Noisy SE Upper Bound)

The bulk of this subsection is devoted to introducing definitions and results from (Bach, 2017). Although we
are working towards the noisy setting, all results stated are for the noiseless setting until stated otherwise.

It is often useful to study an RKHS through an integral operator Σ, which leads to an isometry with L2(dρ)
space with measure dρ:

(Σf)(·) =
∫

X
f(x)k(x, ·)dρ(x).
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For the moment, we consider any kernel (including SE) that can be written in the form

k(x, x′) =
∫

ϕ(x, ω)ϕ(x′, ω)dρ(ω),

for some ϕ(x, ·) : L2(dρ) → L2(dρ). Let {xi}T
i=1 be i.i.d samples drawn from density q with respect to

measure dρ, and pick weights β such that the approximation of f is

f̂(·) =
T∑

i=1

βi√
q(xi)

ϕ(xi, ·),

which belongs to the Hilbert space Ĥk formed by the approximated kernel k̂ through T random features
{ωi}T

i=1 with the same density q:

k̂(x, y) = 1
T

T∑
i=1

1
q(ωi)

ϕ(x, ωi)ϕ(y, ωi).

The weights β are chosen to solve the following minimization problem with Lagrange multiplier λ > 0:

min
β

∥f − f̂∥L2(dρ) + Tλ∥β∥2,

with the solution
β = 1

T
ΦT

( 1
T

ΦΦT + λI
)−1

f, ∥β∥2 ≤ 4
T

(57)

where Φ : RT → L2(dρ) is an operator:

Φβ =
T∑

i=1

βi√
q(ωi)

ϕ(ωi, ·).

The quantity ΦΦT in turn defines th following empirical integral operator Σ̂ : L2(dρ) → L2(dρ):

(Σ̂f)(·) = 1
T

T∑
i=1

1
q(ωi)

⟨f, ϕ(ωi, ·)⟩L2(dρ)ϕ(ωi, ·).

This allows us to write f̂ as
f̂ = Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2f, (58)

where Σ1/2 is the unique positive self-adjoint square root of Σ, and forms a bijection from L2(dρ) to the
RKHS Hk (Bach, 2017).

With the above definitions, it was shown in (Bach, 2017) that the noiseless L2-error between f and f̂
corresponds to the eigenvalue decay of the integral operator Σ if q is the optimized distribution:

q(x) ∝
∑
i≥1

µi

µi + λ
ei(x)2, (59)

where µi is the i-th largest eigenvalue of Σ, and ei(x) is the corresponding eigenfunction. Specifically,
∥f − f̂∥L2(dρ) has a geometric error (e.g., exp(−i

1
d )) if µi decays geometrically/exponentially. The guarantee

that we make use of is formally stated as follows.
Lemma 9. (Bach, 2017, Prop. 2) For the optimized distribution defined in (59), and the estimate f̂ defined
in (58), let δ > 0 and dλ = TrΣ(Σ + λI)−1, and assume that T ≥ 5dλ log( 16dλ

δ ). Then, it holds with
probability at least 1 − δ that

inf
∥f∥Hk

≤1
sup

∥f̂∥Ĥk ≤2
∥f − f̂∥L2(dρ) ≤ 2

√
λ.
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Note that dλ represents a notion of effective dimension or effective degrees of freedom. For the SE kernel
integral operator, the eigenvalue decay satisfies the following (e.g., see (Santin & Schaback, 2016, Thm. 15)):

µi = O
(

exp(−Cei
1
d )

)
, (60)

for some constant Ce > 0. Moreover, (Sun et al., 2018, Lem. 6) shows that, for µi decaying according to
(60), it holds that dλ = O((log 1

λ )d). Rearranging T = Θ(dλ log(dλ)) in Lemma 9 gives us that

dλ = Θ
( T

log T

)
.

Then, by equating Θ
(

T
log T

)
with (log 1

λ )d and rearranging, we obtain

√
λ = O

(
exp

(
− Cr

( T

log T

) 1
d
))

(61)

for some constant Cr > 0. This determines the L2-error between f and f̂ in Lemma 9 in the absence of
noise.

To account for the effect of noise, we use the following lemma to extend Lemma 9.
Lemma 10. (Bach, 2017, Sec. 5) Under the preceding setup, if each function query is corrupted by
independent noise with variance not exceeding q(xi)σ2 in the i-th entry, then we have

inf
∥f∥Hk

≤1
sup

∥f̂∥Ĥk ≤2
E

[
∥f − f̂∥L2(dρ)

]
≤ 2

√
λ + σ∥β∥.

While the presence of q(xi) in the preceding statement seems complicated, it is fortunately considerably
simplified in our case due to the following.
Lemma 11. (Bach, 2017, Sec. 4.4) For shift-invariant kernels in [0, 1]d (including SE), the optimized
distribution q is the uniform distribution when the uniform measure dρ is used.

Therefore, we have q(·) = 1 (i.e., the uniform distribution over [0, 1]d), and the additional noisy term in
Lemma 10 is at most σ∥β∥ ≤ 2σT − 1

2 due to the upper bound on ∥β∥ given in (57). Combining with (61),
the noisy L2 guarantee becomes

inf
∥f∥Hk

≤1
sup

∥f̂∥Ĥk ≤2
E

[
∥f − f̂∥L2(dρ)

]
= O

(
exp

(
− Cr

( T

log T

) 1
d
)

+ σT − 1
2

)
,

and substituting into our general BQ guarantee (Theorem 2), we obtain Corollary 3.

F Alternative Analysis Based on Confidence Bounds

In this section, we present an analysis based on constructing confidence intervals of the true function on each
time step, which is a popular strategy in the analysis Bayesian optimization (BO) algorithms. Our analysis
is most closely related to that of the BO simple regret in (Vakili et al., 2021a).

F.1 Noisy Setting

Different from our earlier results, this result is stated with high probability, rather than in expectation.
However, we can easily convert to the latter by choosing δ small enough, e.g., δ = 1

poly(T ) , and noting that
low-probability failure event contributes an asymptotically negligible amount to the average.

We first provide several existing results that we use to prove results in (11) and (13).
Lemma 12. (Lee et al., 2022, Prop. 1 & Remark 5) Let Hk be the set of functions whose RKHS norm is
upper bounded by a constant B > 0. Then f is L-Lipschitz continuous with some constant L depending only
on the kernel parameters.
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In the following, we use the shorthand notation x1:T = (x1, . . . , xT ), and similarly for other quantities
indexed by t. Recall also the posterior mean and variance defined in (4)–(5), with parameter λ > 0.
Lemma 13. (Confidence Intervals (Vakili et al., 2021a, Thm. 1)) Fix a function f satisfying ∥f∥Hk

≤ B,
and assume Gaussian noises with variance σ2. Assume further that x1:T are independent of ϵ1:T , i.e., the
points are chosen non-adaptively. For a fixed x ∈ D, for any t ∈ [T ], define the upper and lower confidence
bounds as

Uδ
t (x) = µt(x) + (B + β(δ))σt(x),

Lδ
t (x) = µt(x) − (B + β(δ))σt(x),

with β(δ) = σ
λ

√
2 log 1

δ , and δ ∈ (0, 1). Then, we have for any x ∈ D that

f(x) ≤ U δ
t (x) w.p. at least 1 − δ (62)

f(x) ≥ Lδ
t (x) w.p. at least 1 − δ. (63)

Lemma 14. (Adaption of (Srinivas et al., 2010, Lem. 5.4)) Letting γT = supx1:T ⊆D I(y1:T ; f1:T ), where
f1:T = (f(x1:T )) ∈ RT denotes the function values at the points x1, . . . , xT , we have

T∑
t=1

σ2
t−1(xt) ≤ 2γT

log
(
1 + 1

λ2

) . (64)

Let D̃ be a finite subdomain of D = [0, 1]d with T d/2 points, with equal spacing of width 1√
T

in each
dimension. For any x ∈ D, let [x]

D̃
= arg minx′∈D̃

∥x − x′∥2. By construction, we have, for any x ∈ D that

∥∥x − [x]
D̃

∥∥
2 ≤

√
d√
T

= O
( 1√

T

)
. (65)

By Lemma 12, the function f is L-Lipschitz. Thus we have for any x ∈ D that

|f(x) − f([x]
D̃

)| ≤ L∥x − [x]
D̃

∥2 = O
( L√

T

)
. (66)

For any fixed x ∈ D̃, applying Lemma 13 gives the following with probability at least 1 − δ

2|D̃|
:

f(x) ≥ µT (x) −
(

B + β
( δ

|D̃|

))
σT (x). (67)

By a union bound over all x ∈ D̃, we have, for all x ∈ D̃ simultaneously that

f(x) ≥ µT (x) −
(

B + β
( δ

|D̃|

))
σT (x), (68)

with probability at least 1 − δ
2 . Similarly, we have, for all x ∈ D̃ that

f(x) ≤ µT (x) +
(

B + β
( δ

|D̃|

))
σT (x), (69)

with probability at least 1 − δ
2 . Combining (68) and (69), and again applying the union bound, we have, for

all x ∈ D̃ that
|f(x) − µT (x)| ≤

(
B + β

( δ

|D̃|

))
σT (x), (70)
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with probability at least 1 − δ. We now extend the above upper bound to any point x in the domain D:

|f(x) − µT (x)| ≤
∣∣∣f(x) − f([x]

D̃
) + f([x]

D̃
) − µT ([x]

D̃
) + µT ([x]

D̃
) − µT (x)

∣∣∣
≤

∣∣∣f(x) − f([x]
D̃

)
∣∣∣ +

∣∣∣f([x]
D̃

) − µT ([x]
D̃

)
∣∣∣ +

∣∣∣µT ([x]
D̃

) − µT (x)
∣∣∣

≤ O
( L√

T

)
+

(
B + β

( δ

|D̃|

))
σT ([x]

D̃
) + O

( L√
T

)
, (71)

where the second inequality is by applying the triangle inequality, and the third inequality is due to (70)
and (66).

We will now show an upper bound on the posterior variance σT (x). Due to the decreasing property of
posterior variance, we know that σt+1(x) ≤ σt(x) for all x and t. Furthermore, due to the maximum
variance sampling strategy, we have σt−1(xt) ≥ σt−1(x). Thus, we have

σT ([x]
D̃

) ≤ σt−1([x]
D̃

) ≤ σt−1(xt) (72)

for all x and t ≤ T . Squaring and averaging over t ∈ [T ] gives

σ2
T ([x]

D̃
) ≤ 1

T

T∑
t=1

σ2
t−1(xt), (73)

and applying Lemma 14, we obtain

σT ([x]
D̃

) ≤
√√√√ 2γT

T log
(

1 + 1
λ2

) . (74)

Substituting (74) and |D̃| = T d/2 into (71), and recalling the definition of β(·) in Lemma 13, we obtain

|f(x) − µT (x)| ≤ O
( L√

T

)
+

(
B + σ

λ

√
d log T + 2 log 1

δ

)√√√√ 2γT

T log
(

1 + 1
λ2

) (75)

= O

(√
γT

T

(
d log T + log 1

δ

))
. (76)

Finally, the absolute error of the above algorithm can be upper bounded by∣∣∣ ∫
D

p(x)(f(x) − µT (x))dx
∣∣∣ ≤ max

x∈D

∣∣f(x) − µT (x)
∣∣ ∫

D

p(x)dx = O

(√
γT

T

(
d log T + log 1

δ

))
. (77)

with probability at least 1 − δ. For the Matérn-ν kernel, γT = O
(
T

d
2ν+d (log T ) 2ν

2ν+d
)
, and for the SE kernel,

γT = O
(
(log(T ))d+1)

(see (Vakili et al., 2021b)). Thus, we obtain the noisy upper bounds in (11) and (13)
upon setting δ = 1

poly(T ) as outlined at the start of this subsection.

F.2 Noiseless Setting

For the noiseless setting, we first state two usefull lemmas, the first giving a standard deterministic confidence
bound, and the second relating the posterior variance and the fill distance hX (see (51)).
Lemma 15. For any f ∈ Hk with ∥f∥Hk

≤ B, we have with probability one that Lt(x) ≤ f(x) ≤ Ut(x) for
any t and x ∈ D, where

Ut(x) = µt−1(x) + Bσt−1(x),
Lt(x) = µt−1(x) − Bσt−1(x),

and where µt−1(·) and σt−1(·) are given in (4)–(5) with λ = 0.
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Lemma 16. (Adaption of (Santin & Haasdonk, 2016, Thm. 3)) Consider the set of points X := {xt}T
t=1

obtained by Algorithm 2. Then:

1. For functions in the Matérn RKHS, we have

max
x∈D

σT (x) = O(hν
X). (78)

2. For functions in the SE RKHS, there exists Cp > 0 such that

max
x∈D

σT (x) = O
(

e
− Cp

hX

)
. (79)

For the Matérn kernel, as discussed in Appendix E.2, it is known that maximum-variance sampling leads to
the fill distance being hX = Θ(T − 1

d ), which is the best possible. Hence, the desired upper bound (12) for
the Matérn kernel follows directly from (78) along with Lemma 15 and similar steps to (75)–(77).

For the SE kernel, the scaling of hX induced via maximum variance sampling is not clear; see the discussion
in (Santin & Haasdonk, 2016, Sec. 4.1). To overcome this, we adopt the simpler approach of sampling on a
uniformly-spaced grid to ensure that hX = Θ(T − 1

d ) (e.g., see (Kanagawa & Hennig, 2019, Thm. 4.3)) and
applying the following recent result.
Lemma 17. ((Xu et al., 2022, Eq. (32))) Consider the domain D = [0, 1]d and a grid-based subset X ⊂ D,
i.e., X = {( k1

N , . . . , kd

N )|ki ∈ {0, . . . , N − 1}}. Then, letting T denote the size of X, sampling each point once
yields the following upper bound on the noiseless posterior standard deviation (with λ = 0):

max
x∈D

σT (x) = O
(
e− d

2 T
1
d

)
. (80)

Since we consider a bounded domain, the point-wise guarantee (80) immediately implies the L2 guarantee
E[∥f − µT ∥L2 ] = O

(
e− d

2 T
1
d

)
. Then, combining with Lemma 15 and proceeding similarly to (77), we obtain

the noiseless upper bound in (14).

Moreover, in Algorithm 1, we can let EstimateFunc be f̂ = µT/2 with a uniform grid, and substitution
into Theorem 2 readily yields Corollary 4.

G Additional Experimental Results

G.1 Further Synthetic Experiments

In Figures 4, 5, and 6, we present additional results on synthetic kernel-based functions and benchmark
functions. Overall, while there is no definitive ordering between the methods in general, we observe similar
findings to those discussed in Section 5.2. In particular, for the plots of error vs. split fraction, the trend
can be decreasing (particularly at low noise), increasing (particularly at high noise), or “U-shaped”, but 0.5
is generally a reasonable choice. As we already discussed in Section 5.2, there is often a sudden drop at 1.0.

We note that some of the MVS curves exhibit non-monotone behavior (e.g., for Alpine-2D). We believe that
this is because the only randomness in MVS is in the noise and the 3 initial points, whereas MC and MVS-MC
have much more randomness due to being randomized algorithms. When there is limited randomness and
few queries have been made, the algorithm is essentially outputting an uncertain guess, and it can happen
that this guess luckily has a low error, but then this luck diminishes as more samples are taken. In contrast,
MVS-MC and MC have enough internal randomness to “average out” the lucky and unlucky scenarios.

G.2 Sensor Measurement Data

We consider the problem of estimating an average sensor reading from limited queries, which each query
consists of reading the value at a given time instant. Note that since the algorithms we consider are non-
adaptive, the query times can be pre-computed. The data set consists of energy consumption readings for
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(a) Ackley-1D
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Figure 4: Comparison of algorithms and the effect of noise.
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Figure 5: Comparison of different MVS-MC splits, i.e., the fraction of rounds for which MVS is used.
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Figure 6: Comparison of different MVS-MC splits, i.e., the fraction of rounds for which MVS is used.
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Figure 7: Time-series function for energy measurements.
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Figure 8: Results for time series energy data.

London Households that took part in the UK Power Networks led Low Carbon London Project, between
November 2011 and February 2014.6

We construct a time-series signal (shown in Figure 7) of length 19,548 by sampling the data at intervals of
one hour. Our goal is to estimate the average energy consumption during this period. Although the domain
is now discrete, we let MVS and MVS-MC work on the continuous space, and round the selected decimal
value to the nearest point in the data set. To create a noisy BQ problem, we artificially add Gaussian
N(0, σ2) noise to each query, with σ ∈ {0, 0.1, 0.5}. The results are shown in Figure 8; in this case, we found
the various methods to perform relatively similarly to each other.

6The data can be downloaded at data.london.gov.uk.
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