FedRAG: A Framework for Fine-Tuning Retrieval-Augmented Generation
Systems

Val Andrei Fajardo' David B. Emerson' Amandeep Singh' Veronica Chatrath! Marcelo Lotif ! Ravi Theja?
Alex Cheung? Izuki Matsuba >

Abstract

Retrieval-augmented generation (RAG) systems
have been shown to be effective in addressing
many of the drawbacks of relying solely on the
parametric memory of large language models. Re-
cent work has demonstrated that RAG systems
can be improved via fine-tuning of their retriever
and generator models. In this work, we intro-
duce FedRAG, a framework for fine-tuning RAG
systems across centralized and federated archi-
tectures. FedRAG supports state-of-the-art fine-
tuning methods, offering a simple and intuitive
interface and a seamless conversion from central-
ized to federated training tasks. FedRAG is also
deeply integrated with the modern RAG ecosys-
tem, filling a critical gap in available tools.

1. Introduction

Large Language Models (LLMs) have demonstrated a re-
markable capacity to perform a diverse set of tasks, despite
standard pre-training only incorporating a next-token predic-
tion objective (Brown et al., 2020; Grattafiori et al., 2024;
Chhun et al., 2022; Ren et al., 2023; Paul et al., 2024).
Prompt engineering techniques, such as in-context learn-
ing, chain-of-thought (CoT), and self-consistency have been
shown to further improve the performance of pre-trained
LLMs in many settings (Brown et al., 2020; Wei et al., 2022;
Wang et al., 2023a). However, there are tasks, particularly
knowledge-intensive ones, where relying solely on infor-
mation encoded in an LLM’s parameters, often referred to
as parametric memory, may lead to factual inaccuracies in
model responses, colloquially named hallucinations (Huang
et al., 2025). Hallucinations issues can become more preva-

“Equal contribution "Vector Institute, Toronto ON
M5G 0C6, Canada *Independent Researcher, Toronto,
Canada. Correspondence to: Val Andrei Fajardo <an-
drei.fajardo @ vectorinstitute.ai>.

Proceedings of the ICML 2025 Workshop on Championing Open-
source Development in Machine Learning (CODEML ’25). Copy-
right 2025 by the author(s).

lent when models attempt to address queries beyond their
knowledge cutoffs (Dige et al., 2024; Ovadia et al., 2024).

Retrieval-augmented generation (RAG) is a popular method-
ology that aims to address this specific drawback (Lewis
et al., 2020; Ram et al., 2023). Specifically, RAG systems
present relevant non-parametric knowledge drawn from ex-
ternal systems alongside queries in the form of additional
input to an LLM. Perhaps the most widely used form of this
involves computing an embedding of right-sized chunks of
the non-parametric knowledge and storing these in a vector
store like Qdrant, Chroma or Pinecone for future search and
retrieval (Fan et al., 2024). More elaborate designs of RAG
systems have also been developed, such as those utilizing
knowledge graphs (Peng et al., 2024).

Recent studies have shown that fine-tuning RAG systems
can lead to even greater performance improvements (Lin
et al., 2023b; Zhang et al., 2024; Chen et al., 2025). That is,
through fine-tuning, the overall RAG system, comprised of a
generator, retriever and knowledge store, may be adapted to
work more cohesively as a single unit in performing tasks.

The RAG ecosystem of today is quite vibrant and includes
a wide range of options for LLMs, retrieval models, and re-
rankers, among other components (Karpukhin et al., 2020;
Ma et al., 2023; Blagojevic, 2023; Wang et al., 2023b;
Zhuang et al., 2023) being offered by organizations op-
erating under both open- as well as closed-source business
models. There are also more than a few storage, observ-
ability, and evaluation solutions that developers can choose
from in order to build an end-to-end RAG production. Fi-
nally, popular RAG frameworks such as Llamalndex (Liu,
2022) and LangChain (Chase, 2022) offer users the abil-
ity to rapidly assemble and experiment with diverse RAG
system configurations, ultimately aiding in the discovery of
optimal designs. Yet, to the best of our knowledge, there are
few, if any, frameworks that help simplify RAG fine-tuning,
while remaining well integrated with other available tools
and resources in the ecosystem.

The work presented here aims to directly fill this gap. Specif-
ically, we introduce FedRAG, a framework for fine-tuning
RAG systems across both centralized and federated architec-

FedRAG: A Framework for Fine-Tuning RAG Systems

tures.! Decentralized designs for LLM training and deploy-
ment are becoming increasingly important, as evidenced by
popular initiatives like Anthropic’s Model Context Protocol
(MCP) (Anthropic, 2024) and Google’s Agent2Agent Proto-
col (Google, 2025). Moreover, in settings where data privacy
prevents centralizing datasets, decentralized training tech-
niques like federated learning (FL) become an indispensable
tool for improving RAG systems.

2. Related Work
2.1. Fine-tuning RAG Systems

As discussed above, RAG systems are comprised of a num-
ber of components, some of which are driven by trainable
models. This work specifically focuses on two main com-
ponents: the generator, which is responsible for text genera-
tion; and the retrieval model, which maps queries or prompts
into a form, commonly a high-dimensional embedding vec-
tor, used to retrieve related context from a knowledge store.

Several studies have focused on generator training via in-
struction fine-tuning, for which the instruction examples in-
clude context retrieved by the retriever from the knowledge
store. Lin et al. (2023b) refer to this approach as Retrieval-
Augmented Language Model Training (RALT). A similar
generator fine-tuning approach called Retrieval-Augmented
Fine-Tuning (RAFT) was utilized in (Zhang et al., 2024).
RAFT differs from RALT in that the instruction examples
also include LLM generated CoT passages with reasoning
traces linking the response to the query. Finally, in line with
recent trends in reasoning LLMs (Kumar et al., 2025), Chen
et al. (2025) introduce ReSearch, which follows a reinforce-
ment learning approach similar to that used in DeepSeek-
R1 (DeepSeek-Al et al., 2025). With ReSearch, the LLM
learns to generate long CoT passages that incorporate search
and retrieval from a knowledge store. In so doing, the gen-
erator is adapted to cycle between reasoning and retrieval,
potentially multiple times.

Fewer studies exist considering retriever fine-tuning. In the
same work that produced RALT, the authors also introduce
Language Model Supervised Retriever Training (LSR). In
LSR, the retrieval scores of retrieved text chunks as well
as corresponding target sequence probabilities produced
by the generator model, conditioned on the context of each
retrieved chunk, form two distributions whose distance, mea-
sured by the Kullback-Leibler divergence, is minimized.

2.2. Federated Learning for LLM Applications

Recently, Flower Labs developed the first federally pre-
trained LLM called FlowerLLM. Further, efforts supporting

"Library Code:
VectorInstitute/fed-rag

https://github.com/

federated LLM tuning have been undertaken (Sani et al.,
2024). In the context of RAG systems, however, work
has primarily focused on decentralized inference rather
than federated fine-tuning or training. A notable exam-
ple published by Flower Labs demonstrates RAG inference
in a federated setting.” Similarly, Llamalndex has also
developed a library extension to their framework called
llama-index-networks (Fajardo et al., 2024) for de-
centralized RAG inference. To the best of our knowledge,
no existing tools provide a simple interface for converting
centralized RAG fine-tuning to federated tasks.

3. Philosophy and Design Principles

In this section, we describe the core philosophy and design
principles that guide the development of FedRAG. These
principles address the challenges identified in the previous
section and inform implementation decisions.

3.1. Philosophy

We endeavour to build FedRAG for researchers and prac-
titioners alike in a manner that makes applying state-of-
the-art fine-tuning techniques to RAG systems simple, yet
highly effective, irrespective of whether the system is cen-
tralized or federated. Moreover, we seek to make research-
ing new methods for RAG fine-tuning more efficient and
scientifically rigorous by promoting reproducibility. This is
achieved through designing flexible components and appro-
priate tools that allow users to easily replicate and dissemi-
nate their RAG systems, as well as extend the library with
custom trainers, losses, benchmarks, and more.

3.2. Design Principles

Advanced RAG Fine-Tuning: Comprehensive support
for state-of-the-art RAG fine-tuning methods that can be
federated with ease.

This principle is central to advancing the state of knowledge
in RAG methods. By implementing and supporting frontier
techniques in RAG fine-tuning, while simultaneously mak-
ing federation straightforward and accessible, researchers
are enabled to develop and evaluate novel approaches in a
systematic and reproducible fashion. At the same time, such
methods transfer smoothly to decentralized systems.

Work With Your Tools: Seamless integration with popu-
lar frameworks including HuggingFace, Unsloth, and Lla-
malndex, to become deeply embedded in the RAG ecosystem
and beyond.

By designing FedRAG as a deeply embedded framework

https://flower.ai/docs/examples/fedrag.
html

https://github.com/VectorInstitute/fed-rag
https://github.com/VectorInstitute/fed-rag
https://flower.ai/docs/examples/fedrag.html
https://flower.ai/docs/examples/fedrag.html

FedRAG: A Framework for Fine-Tuning RAG Systems

within the existing RAG ecosystem, barriers to adoption are
significantly reduced for both practitioners and researchers.
Integrations into popular frameworks and libraries, such
as those mentioned above, allow users to leverage famil-
iar tools and workflows while gaining access to advanced
fine-tuning capabilities. Finally, extensive ecosystem com-
patibility facilitates discoverability and further adoption of
new methods and results, thus maximizing the impact and
reach of research advancements.

Lightweight Abstractions: Clean, intuitive abstractions
that simplify RAG fine-tuning while maintaining full flexibil-
ity and control.

We seek to provide developers with an intuitive interface
and abstractions that are easy to work with, customize, and
extend. Lowering the learning curve to use FedRAG, while
simultaneously increasing its utility and effectiveness, is
essential to providing a pleasant development experience.
This approach enables practitioners and researchers to focus
their efforts entirely on the challenges of designing and
experimenting with methods for improving RAG systems
rather than wrestling with complex implementation details.

4. FedRAG Framework Overview

This section provides a more detailed overview of the Fe-
dRAG library.

4.1. Library Organization

FedRAG incorporates a modular design, consisting of sev-
eral modules with clear and intuitive separation of concerns.
Table 1 presents non-exhaustive overview of the key mod-
ules and their responsibilities.

Module Description

core Core types i.e., RAGSystem
evals Evaluation metrics and benchmarks
fl1 tasks Federated learning task definitions
generators Generator types

knowledge_ stores Data storage

retrievers Retriever types

trainers Trainer types

Table 1. Key modules in FedRAG and their responsibilities.

4.2. Standard Usage Patterns

Building a RAG System: We first introduce
the main classes that FedRAG offers and with
which users will often work. We begin with the
core.RAGSystem class, which is comprised of three
parts, namely: knowledge_stores.KnowledgeStore,
retrievers.Retriever, and generators.Generator.
Figure 1 provides a code snippet on how to assemble a

RAGSystem with FedRAG.

Flat imports are supported
from fed rag import (
RAGSystem,
RAGConfig,
HFSentenceTransformerRetriever,
UnslothFastModelGenerator,
QdrantKnowledgeStore
)

knowledge_store = QdrantKnowledgeStore ()

generator = UnslothFastModelGenerator (
"unsloth/gemma-3-4b-it",

)

retriever = HFSentenceTransformerRetriever (
"nthakur/dragon-plus-query-encoder",
"nthakur/dragon-plus-context-encoder",

)

Assemble rag_system

rag_system = RAGSystem/(
knowledge_store=knowledge_store,
generator=generator,
retriever=retriever,
rag_config=RAGConfig (top_k=2)

)

Executes the typical RAG pipeline

response = rag_system.query ("What are tulips?")

Figure 1. Creating a RAGSystem with FedRAG. Not depicted
here, but the retriever is also used to populate embedded ref-
erence chunks into the knowledge_store, prior to querying.

RAG Fine-Tuning: After the essential RAG components
are constructed, the system can be trained using the fine-
tuning abstractions offered by the library. FedRAG provides
various trainers.Trainer classes distinguished by their
methodology and which model, generator or retriever, they
target. A typical pattern for performing retriever or gener-
ator training is provided in Figure 2. There, the manager
is an orchestrator object that bears the responsibility of
preparing the target model for training and ensuring the
other model is frozen. Note that both generator and retriever
trainer objects also expose a train () method that can be
called without using manager providing an interface similar
to that of HuggingFace.

Federated Fine-Tuning: With the centralized fine-tuning
pattern established, we show the simple process for convert-
ing the previous task to a federated one. This is done by ex-
tracting an £1_tasks.FL_task object from the manager.
This is demonstrated in Figure 3. Each client has its own
fine-tuning dataset and contribute to the tuning process in a
decentralized manner and updates are combined with feder-
ated averaging (?).

Evaluation and Benchmarking: In this final pattern
demonstration, we show how benchmarking a RAG sys-
tem can be achieved. Figure 4 depicts an intuitive
benchmarking pattern where an evals.Benchmarker

FedRAG: A Framework for Fine-Tuning RAG Systems

. # Keep code from Figure 1 ... # Keep code from Figures 1 and 2

from fed rag.trainers import (import fed_rag.evals.benchmarks as benchmarks
HuggingFaceTrainerForRALT, from fed rag.evals import (
HuggingFaceTrainerForLSR, Benchmarker,

) ExactMatchEvaluationMetric,
from fed rag.trainer managers import ()
HuggingFaceRAGTrainerManager

) benchmarker = Benchmarker (rag_system=rag_system)
from datasets import Dataset mmlu = benchmarks.HuggingFaceMMLU (streaming=True)
metric = ExactMatchEvaluationMetric ()
Train datasets are examples of (query,
response) pairs # Run benchmark with first 3 examples only
train_dataset = Dataset.from_dict (result = benchmarker.run (
{ benchmark=mmlu,
"query": [...], metric=metric,
"response": [...] is_streaming=True,
num_examples=3,
) agg="avg",

generator_trainer = HuggingFaceTrainerForRALT ()
rag_system=rag_system,
train_dataset=train_dataset . . .

) - - ! Figure 4. Benchmarking with FedRAG.

retriever_trainer = HuggingFaceTrainerForLSR(
rag_system=rag_system,
train_dataset=train_dataset,

) integration had not been represented in the preceding pat-
manager = HuggingFaceRAGTrainerManager (terns of Figures 1-4. FedRAG supports a bridge to convert
mode="retriever’, # can be generator a RAGSystem object to a Llamalndex RAG system equiva-
retriever_trainer=retriever_trainer, . . .
generator_trainer=generator trainer, lent, thus enabling users to leverage their powerful inference
) features and ecosystem. These integrations allow FedRAG
Train users to leverage existing tools while gaining RAG fine-
train_result = manager.train() tuning capabilities, aligning with the Work With Your Tools

design principle in Section 3.2.

Figure 2. Fine-tuning a RAGSystem with FedRAG.

Library Integration

Keep code from Figures and 2
b F

import flwr as £l I backend HuggingFace Generators, retrievers, datasets

f1_task Unsloth Fast fine-tuning of generators
fl_task = manager.get_federated_task() Qdrant Storage solution for knowledge
Build fl server and client LlamaIndex Bridge to inference object
server = fl_task.server (

model=retriever_trainer.model

) Table 2. Currently supported integrations in FedRAG.

client = fl_task.client(
model=retriever_trainer.model,
train_dataset=train_dataset,

) 5. Future Work and Conclusions

Spin up client and server using flwr

fl.start_server (server) In this paper, we introduced FedRAG, a framework for fine-
fl.start_client (client) . .

tuning RAG systems across both centralized and federated
architectures that offers state-of-the-art fine-tuning methods
and fills a critical gap within the RAG ecosystem. In Ap-
pendix A, a lightweight experiment is presented. The results
confirm that the framework can be used to successfully and
flexibly execute RAG fine-tuning tasks. The experimental
code and a containerized image of the knowledge store is

These patterns demonstrate the consistent API design of released with this paper to facilitate reproducibility.
FedRAG, enabling users to seamlessly transition between

RAG system development, central and decentralized fine-
tuning, and evaluation with minimal code changes.

Figure 3. Federated fine-tuning of a RAGSystem with FedRAG.

runs the desired evals.Benchmark using the chosen
evals.EvaluationMetric.

In terms of future development, we have several exciting and
impactful additions on the development roadmap. For exam-
ple, an MCP RAG system and companion MCP knowledge
store will soon be integrated into the framework, which will
pave the way for studying the effects of adapting RAG sys-
In this section, we briefly outline the existing integrations to tems to knowledge provided by third-party MCP providers.
popular tools and frameworks within the RAG ecosystem. Additional high-priority development items are presented
Of the integrations listed in Table 2, only the Llamalndex in Table 4 of Appendix B. We are eager to continue the

4.3. Integrations

FedRAG: A Framework for Fine-Tuning RAG Systems

development of FedRAG and believe that it will enable re-
searchers and practitioners to more easily explore advanced
RAG fine-tuning techniques in both centralized and feder-
ated settings.

Acknowledgements

Resources used in preparing this research were pro-
vided, in part, by the Province of Ontario, the Govern-
ment of Canada through CIFAR, and companies sponsor-
ing the Vector Institute www.vectorinstitute.ai/
partnerships/.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Anthropic. Model context protocol, 2024. URL https:
//github.com/modelcontextprotocol/
modelcontextprotocol.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on freebase from question-answer pairs. In Pro-
ceedings of the 2013 conference on empirical methods in
natural language processing, pp. 15331544, 2013.

Blagojevic, V. Enhancing RAG pipelines in
Haystack: Introducing diversityranker and
lostinthemiddleranker, 2023. https://
towardsdatascience.com/enhancing—rag-
pipelines-in-haystack-45f14e2bc9£f5.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., and et al. Language mod-
els are few-shot learners. In Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 1877-1901,
2020.

Chase, H. LangChain, October 2022. URL https://
github.com/langchain-ai/langchain.

Chen, M., Li, T., Sun, H., Zhou, Y., Zhu, C., Wang, H.,
Pan, J. Z., Zhang, W., Chen, H., Yang, F., Zhou, Z., and
Chen, W. Research: Learning to reason with search for
llms via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2503.19470.

Chhun, C., Colombo, P., Suchanek, F. M., and Clavel, C.
Of human criteria and automatic metrics: A benchmark
of the evaluation of story generation. In Calzolari, N.,
Huang, C.-R., Kim, H., Pustejovsky, J., Wanner, L., Choi,

K.-S., Ryu, P-M., Chen, H.-H., Donatelli, L., Ji, H.,
Kurohashi, S., Paggio, P., Xue, N., Kim, S., Hahm, Y.,
He, Z., Lee, T. K., Santus, E., Bond, F., and Na, S.-H.
(eds.), Proceedings of the 29th International Conference
on Computational Linguistics, pp. 5794-5836, Gyeongju,
Republic of Korea, October 2022. International Com-
mittee on Computational Linguistics. URL https:
//aclanthology.org/2022.coling—-1.509/.

DeepSeek-Al, Guo, D., Yang, D., Zhang, H., and et al.
Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://
arxiv.org/abs/2501.12948.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances in
neural information processing systems, 36:10088-10115,
2023.

Dige, O., Willes, J., and Emerson, D. B. Evaluating
RAG system performance: The impact of knowledge
cut-off and fine-tuning. In Adaptive Foundation Mod-
els: Evolving Al for Personalized and Efficient Learning,
2024. URL https://openreview.net/forum?
1d=2K6I3317QV.

Fajardo, V. A., Liu, J., Markewich, L., Suo, S,
Zhang, H., and Desai, S. Llamalndex Networks, 11
2024. URL https://github.com/run—-1lama/
llama_index/llama-index—networks. Exten-
sion for Llamalndex.

Fan, W, Ding, Y., Ning, L., Wang, S., Li, H,, Yin, D.,
Chua, T.-S., and Li, Q. A survey on rag meeting llms:
Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD °24, pp.
6491-6501, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400704901. doi: 10.
1145/3637528.3671470. URL https://doi.org/
10.1145/3637528.3671470.

Google. Agent2agent (a2a) protocol, 2025. URL https:
//github.com/google/A2A.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., and et al.
The llama 3 herd of models, 2024. URL https://
arxiv.org/abs/2407.21783.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Huang, L., Yu, W,, Ma, W., Zhong, W., Feng, Z., Wang,
H., Chen, Q., Peng, W., Feng, X., Qin, B., and Liu,

www.vectorinstitute.ai/partnerships/
www.vectorinstitute.ai/partnerships/
https://github.com/modelcontextprotocol/modelcontextprotocol
https://github.com/modelcontextprotocol/modelcontextprotocol
https://github.com/modelcontextprotocol/modelcontextprotocol
https://towardsdatascience.com/enhancing-rag-pipelines-in-haystack-45f14e2bc9f5
https://towardsdatascience.com/enhancing-rag-pipelines-in-haystack-45f14e2bc9f5
https://towardsdatascience.com/enhancing-rag-pipelines-in-haystack-45f14e2bc9f5
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2503.19470
https://aclanthology.org/2022.coling-1.509/
https://aclanthology.org/2022.coling-1.509/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=2K6I3317QV
https://openreview.net/forum?id=2K6I3317QV
https://github.com/run-llama/llama_index/llama-index-networks
https://github.com/run-llama/llama_index/llama-index-networks
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470
https://github.com/google/A2A
https://github.com/google/A2A
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

FedRAG: A Framework for Fine-Tuning RAG Systems

T. A survey on hallucination in large language mod-
els: Principles, taxonomy, challenges, and open ques-
tions. ACM Trans. Inf. Syst., 43(2), January 2025. ISSN
1046-8188. doi: 10.1145/3703155. URL https:
//doi.org/10.1145/3703155.

Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni,
F., Schick, T., Dwivedi-Yu, J., Joulin, A., Riedel, S., and
Grave, E. Few-shot learning with retrieval augmented
language models. arXiv preprint arXiv:2208.03299, 1(2):
4, 2022.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov,
S., Chen, D., and Yih, W.-t. Dense passage retrieval for
open-domain question answering. In Webber, B., Cohn,
T., He, Y., and Liu, Y. (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6769-6781, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.550. URL https://
aclanthology.org/2020.emnlp-main.550.

Kumar, K., Ashraf, T., Thawakar, O., Anwer, R. M.,
Cholakkal, H., Shah, M., Yang, M.-H., Torr, P. H. S.,
Khan, F. S., and Khan, S. Llm post-training: A deep
dive into reasoning large language models, 2025. URL
https://arxiv.org/abs/2502.21321.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Kiittler, H., Lewis, M., Yih, W.-t., Rocktéschel,
T., Riedel, S., and Kiela, D. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. In Proceedings
of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS 20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Lin, S.-C., Asai, A., Li, M., Oguz, B., Lin, J., Mehdad, Y.,
Yih, W.-t., and Chen, X. How to train your dragon: Di-
verse augmentation towards generalizable dense retrieval.
arXiv preprint arXiv:2302.07452, 2023a.

Lin, X. V,, Chen, X., Chen, M., Shi, W., Lomeli, M., James,
R., Rodriguez, P., Kahn, J., Szilvasy, G., Lewis, M., et al.
Ra-dit: Retrieval-augmented dual instruction tuning. In
The Twelfth International Conference on Learning Repre-
sentations, 2023b.

Liu, J. Llamalndex, November 2022. URL https://
github.com/jerryjliu/llama_index.

Ma, X., Gong, Y., He, P., Zhao, H., and Duan, N. Query
rewriting in retrieval-augmented large language models.
In Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5303-5315, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.322. URL https://
aclanthology.org/2023.emnlp-main.322.

Ovadia, O., Brief, M., Mishaeli, M., and Elisha, O. Fine-
tuning or retrieval? comparing knowledge injection
in 1Ims, 2024. URL https://arxiv.org/abs/
2312.05934.

Paul, D., Ismayilzada, M., Peyrard, M., Borges, B., Bosse-
lut, A., West, R., and Faltings, B. REFINER: Reason-
ing feedback on intermediate representations. In Gra-
ham, Y. and Purver, M. (eds.), Proceedings of the 18th
Conference of the European Chapter of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 1100-1126, St. Julian’s, Malta, March 2024. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-long.67/.

Peng, B., Zhu, Y., Liu, Y., Bo, X., Shi, H., Hong, C., Zhang,
Y., and Tang, S. Graph retrieval-augmented generation:
A survey, 2024. URL https://arxiv.org/abs/
2408.08921.

Ram, O., Levine, Y., Dalmedigos, 1., Muhlgay, D., Shashua,
A., Leyton-Brown, K., and Shoham, Y. In-context
retrieval-augmented language models. Transactions of
the Association for Computational Linguistics, 11:1316—
1331, 2023. doi: 10.1162/tacl_a_00605. URL https:
//aclanthology.org/2023.tacl-1.75.

Ren, J., Zhao, Y., Vu, T., Liu, P. J., and Lakshminarayanan,
B. Self-evaluation improves selective generation in large
language models. In Antorén, J., Blaas, A., Buchanan,
K., Feng, F., Fortuin, V., Ghalebikesabi, S., Kriegler, A.,
Mason, 1., Rohde, D., Ruiz, F. J. R., Uelwer, T., Xie, Y.,
and Yang, R. (eds.), Proceedings on ’I Can’t Believe
It’s Not Better: Failure Modes in the Age of Foundation
Models” at NeurlPS 2023 Workshops, volume 239 of
Proceedings of Machine Learning Research, pp. 49-64.
PMLR, 16 Dec 2023. URL https://proceedings.
mlr.press/v239/ren23a.html.

Sani, L., Iacob, A., Cao, Z., Lee, R., Marino, B., Gao,
Y., Cai, D., Li, Z., Zhao, W., Qiu, X., and Lane, N. D.
Photon: Federated 1lm pre-training, 2024. URL https:
//arxiv.org/abs/2411.02908.

Touvron, H., Martin, L., Stone, K., Albert, P., Almabhairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023, 2023a. URL https:
//openreview.net/forum?id=1PLINIMMrw.

https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://arxiv.org/abs/2502.21321
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://aclanthology.org/2023.emnlp-main.322
https://aclanthology.org/2023.emnlp-main.322
https://arxiv.org/abs/2312.05934
https://arxiv.org/abs/2312.05934
https://aclanthology.org/2024.eacl-long.67/
https://aclanthology.org/2024.eacl-long.67/
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
https://aclanthology.org/2023.tacl-1.75
https://aclanthology.org/2023.tacl-1.75
https://proceedings.mlr.press/v239/ren23a.html
https://proceedings.mlr.press/v239/ren23a.html
https://arxiv.org/abs/2411.02908
https://arxiv.org/abs/2411.02908
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

FedRAG: A Framework for Fine-Tuning RAG Systems

Wang, Y., Lipka, N., Rossi, R. A., Siu, A., Zhang, R., and
Derr, T. Knowledge graph prompting for multi-document
question answering, 2023b. URL https://arxiv.
org/abs/2308.11730.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Confer-
ence on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Zhang, T., Patil, S. G., Jain, N., Shen, S., Zaharia, M., Stoica,
I, and Gonzalez, J. E. Raft: Adapting language model
to domain specific rag. In First Conference on Language
Modeling, 2024.

Zhuang, S., Liu, B., Koopman, B., and Zuccon, G. Open-
source large language models are strong zero-shot query
likelihood models for document ranking. In Bouamor, H.,
Pino, J., and Bali, K. (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 8807—
8817, Singapore, December 2023. Association for Com-
putational Linguistics. doi: 10.18653/v1/2023.findings-
emnlp.590. URL https://aclanthology.org/
2023.findings—-emnlp.590.

https://arxiv.org/abs/2308.11730
https://arxiv.org/abs/2308.11730
https://aclanthology.org/2023.findings-emnlp.590
https://aclanthology.org/2023.findings-emnlp.590

FedRAG: A Framework for Fine-Tuning RAG Systems

A. Example: RA-DIT

In their work, Lin et al. (2023b) conducted various experiments studying the effectiveness of RALT and LSR fine-tuning
methods. Their experiments revealed that applying RALT or LSR individually leads to performance gains, but the greatest
gain comes after applying both RALT and LSR in succession. They termed this combination of fine-tuning techniques
Retrieval-Augmented Dual Instruction Tuning (RA-DIT). In order to illustrate the potential of the FedRAG framework, we
aim to reproduce a lightweight version of their experiments. The rest of this appendix outlines the RAG system specifications,
details on fine-tuning as well as evaluation setup, and finally the results of the experiments.

A.1. RAG System
A.1.1. KNOWLEDGE STORE & RETRIEVER

We use text chunks from the December 2021 Wikipedia dump released by Izacard et al. (2022). This release
includes two files, infobox. jsonl and text—-1ist-100-sec. jsonl, which can be downloaded from the
facebookresearch/atlas GitHub repository.’> For the knowledge store, we use the first 10M text passages pro-
vided in text-1ist-100-sec. jsonl with no further preprocessing with the exception of concatenating the t it le,
section, and text fields for each passage.

For the retriever, we use DRAGON+ (Lin et al., 2023a). More specifically, we use the SentenceTransformer versions
of this dual-encoder model available on HuggingFace.*> The context encoder of DRAGON+ is used to encode the 10M text
chunks prior to loading the embeddings into the knowledge store.

A.1.2. GENERATOR

For the generator LLM, we use a quantized (4-bit) Llama2-7B (Touvron et al., 2023). We specifically use the official version
of this model available on HuggingFace,® with the 1oad_in_4bit parameter set to True.

A.2. Fine-tuning & Evaluation

For the fine-tuning dataset, we use Web Questions (Berant et al., 2013) available on HuggingFace.” We
apply QLoRA (Dettmers et al., 2023) fine-tuning with only the RALT objective by making use of a
trainers.HuggingFaceTrainerForRALT object and supplying it a generators.HFPeftModelGenerator. The latter
is used to load a PeftMode1 available on HuggingFace.?

For evaluation, we use the test split of the global_facts subset of MMLU (Hendrycks et al., 2020) available on
HuggingFace, which has exactly 100 data points.” Similar to Lin et al. (2023b), we apply 5-shot in-context learning for each
evaluation example. The few-shot examples are randomly drawn from the validation split and held fixed throughout
evaluation. For performance measurement, we use the exact match metric.

A.3. Results

We report the results of two separate fine-tuning runs in Table 3. For comparison, we also report the performance of the
same RAG system but without any fine-tuning applied at all.

The results of our lightweight experiment corroborate the findings of Lin et al. (2023b) and align with results from other
work (Zhang et al., 2024; Chen et al., 2025). That is, RAG fine-tuning can lead to significant performance gains. Note that
the observed variability in runs is due to the sampling parameters used for generation.

Shttps://github.com/facebookresearch/atlas
*nttps://huggingface.co/nthakur/dragon-plus—-query-encoder
Shttps://huggingface.co/nthakur/dragon-plus-context—-encoder
*https://huggingface.co/meta-1lama/Llama-2-7b-hf
"https://huggingface.co/datasets/stanfordnlp/web_questions
$https://huggingface.co/Styxxxx/llama2_7b_lora-quac
‘https://huggingface.co/datasets/cais/mmlu

https://github.com/facebookresearch/atlas
https://huggingface.co/nthakur/dragon-plus-query-encoder
https://huggingface.co/nthakur/dragon-plus-context-encoder
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/datasets/stanfordnlp/web_questions
https://huggingface.co/Styxxxx/llama2_7b_lora-quac
https://huggingface.co/datasets/cais/mmlu

FedRAG: A Framework for Fine-Tuning RAG Systems

Method Runl Run2 Average

Without fine-tuning ~ 17.0 27.0 22.0
RALT fine-tuning 27.0 340 30.5

Table 3. RA-DIT inspired experiment demonstrating the effect of RALT fine-tuning on exact match performance for the MMLU
(global_facts) benchmark.
B. Development Roadmap

In this section, we provide a portion of our development roadmap that includes the high-priority items, which we deem to be
highly impactful for our users.

Item Description

MCP knowledge store An MCP client that can be used to receive knowledge context from third-party
MCP servers.

MCP RAG system A specialized RAG system class that is able to retrieve knowledge from the MCP
Knowledge Store and subsequently supply it to the generator.

ReSearch generator trainer An implementation of ReSearch (Chen et al., 2025), i.e., equipping generator
LLMs with reasoning infused with search.

Improved retriever trainers New training objectives for language model supervised retriever fine-tuning.

Advanced federated learning Support for more advanced federated learning techniques.

LangChain integration Bridge to LangChain inference objects.

General optimizations Optimizations for batch RAG system querying and concurrent benchmarking.

Table 4. Development roadmap: high-priority items for FedRAG.

