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Abstract

To understand the relationship between behavior and neural activity, experiments
in neuroscience often include an animal performing a repeated behavior such as a
motor task. Recent progress in computer vision and deep learning has shown great
potential in the automated analysis of behavior by leveraging large and high-quality
video datasets. In this paper, we design Disentangled Behavior Embedding (DBE)
to learn robust behavioral embeddings from unlabeled, multi-view, high-resolution
behavioral videos across different animals and multiple sessions. We further
combine DBE with a stochastic temporal model to propose Variational Disentangled
Behavior Embedding (VDBE), an end-to-end approach that learns meaningful
discrete behavior representations and generates interpretable behavioral videos.
Our models learn consistent behavior representations by explicitly disentangling
the dynamic behavioral factors (pose) from time-invariant, non-behavioral nuisance
factors (context) in a deep autoencoder, and exploit the temporal structures of pose
dynamics. Compared to competing approaches, DBE and VDBE enjoy superior
performance on downstream tasks such as fine-grained behavioral motif generation
and behavior decoding.

1 Introduction

Understanding the relationship between animal behavior and neural activity is a long-standing goal in
neuroscience. To this end, recent advances in deep learning and computer vision has led to significant
progress in the essential task of automatic analysis of high-resolution behavioral videos.

To extract behavioral information from rich video recordings, two avenues of research relying
on deep learning have been proposed: landmark-based pose estimation methods [22, 26, 32] and
autoencoder-based dimensionality reduction methods [2]. Pose estimation methods characterize
animal behavior with the trajectories of body-part landmarks. Such methods train deep neural
networks to predict manually labeled landmarks from raw video frames, then use the trained models
to generate trajectories for new videos. While these methods have been highly successful in behavior
analysis, they 1) require manual labeling which is often expensive; 2) heavily rely on the manual
selection of the landmarks, which may differ across human annotators; and 3) struggle with subtle
behavior that is hard to track, such as facial movements.
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The complementary approach seeks to reduce the high-dimensional video data to low-dimensional
latent factors through non-linear dimensionality reduction. These methods [2] rely on deep autoen-
coders to encode video frames by solving an unsupervised reconstruction task. The learned latent
embeddings can then be used for downstream tasks, such as clustering, neural decoding, etc. While
unsupervised learning does not rely on manual labeling, existing approaches currently suffer from
certain drawbacks. First of all, canonical autoencoders can be easily biased by the varying visual nui-
sances across videos, such as lighting, distance to camera and physical attributes of animals, resulting
in substantial distributional shifts among the learned behavior embeddings. While non-behavioral
visual variability is usually negligible within single session videos, it makes downstream analysis
difficult when applied to more than one session and to different animals. Secondly, end-to-end
training on videos becomes challenging when considering temporal structures, as traditional temporal
modeling methods are mostly designed for low-dimensional data. How to better exploit temporal
structures of high-dimensional videos for action recognition, motion planning, etc., remains an open
problem for computer vision research.

In this paper, we design Disentangled Behavior Embedding (DBE) to learn robust behavior embed-
dings from large, unlabeled, multi-session videos. Inspired by previous works [33], DBE mitigates
the distributional gaps in multi-session videos by explicitly disentangling the dynamic behavioral
factors (pose) from time-invariant, non-behavioral factors (context). A video frame is thus repre-
sented by a pair of disentangled pose and context components in contrast to a single entangled
representation. For a given video, the context component is designed to be time-invariant to exclude
any behavioral dynamics, whereas the pose component is bottlenecked to keep it from duplicating
context information. DBE latents can be used in conjunction with temporal analysis models, e.g.,
Variational Animal Motion Embedding (VAME) [21], to perform downstream analysis. We also
propose Variational Disentangled Behavior Embedding (VDBE), a fully end-to-end trainable model,
which further exploits the temporal structures of the pose components using a stochastic dynamic
model. Using variational inference, a Gaussian mixture prior is trained to capture the multi-modality
of the transition between consecutive pose components and generate both continuous and discrete
representations of the underlying animal behaviors in videos. Our methods are not only fully unsuper-
vised, but also enjoy superior performances on downstream tasks such as behavioral state estimation
and fine-grained behavioral motif generation. To summarize, the main contributions of this paper are:

1. We develop DBE to tackle the distributional shift across multi-session videos with adaptation
to the behavioral neuroscience setting, e.g., extension to multi-view videos, proper design of
context embedding with standard behavioral neuroscience paradigms.

2. On top of DBE, we design VDBE to learn both continuous and discrete latent representations
for simultaneous embedding and segmentation within the same model. VDBE is end-to-end
trainable in an unsupervised fashion, alleviating the need to train a second post-hoc model
applied to latent embeddings.

2 Related Works

2.1 Video disentanglement

Disentanglement of the pose and context in a video is an area of increasing interest in computer vision.
The explicit separation of the pose from the context not only facilitates the analysis of the temporal
dynamics but also makes video manipulation easier. As a pioneer in this field, MCNet [30] is an
end-to-end framework that models motion (pose) and content (context) independently. MCNet uses a
convolutional LSTM to model temporal dynamics and shows good performance on pixel-level video
prediction on real-world datasets. Sharing similar ideas, DRNet [5] also separates the pose from the
content but models temporal dynamics directly on low-dimensional pose embeddings. It also utilizes
an explicit adversarial loss for disentanglement. Although DRNet shows superior performance in
video prediction, it is not end-to-end trainable. DDPAE [13] tackles videos of multiple targets on the
moving MNIST dataset and performs disentanglement on each individual target. Yingzhen and Mandt
[33] proposed a disentangled VAE and shows controllable video generation on the synthetic Sprite
dataset. MoCoGAN [29] employs a generative adversarial network that decomposes the random
noises into a content part and a motion part for video generation. S3VAE [34] learns disentangled
context and pose representations of videos with self-supervised regularization. In our approach we
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build a disentanglement mechanism in a similar paradigm as [33], by fixing context embeddings
across time and constraining the dimension of pose embeddings.

2.2 Stochastic dynamic modeling

Latent state-space models (SSM) are widely used to model the temporal structures for sequential
data [3, 8, 17, 20, 7]. While these models have achieved fruitful results in many areas such as
natural language processing and speech recognition, adapting these models to high-dimensional, non-
synthetic videos is still challenging to this date. Hafner et al. [11] proposed PlaNet, with a recurrent
state-space model at its core, to learn environment dynamics from high-dimensional, synthetic videos
and auxiliary action variables for planning. Franceschi et al. [9] proposed a latent dynamical model
enhanced by residual connections for stochastic video prediction. Although there are other papers on
stochastic video generation and prediction on low-dimensional frame embeddings [1, 6, 18], these
methods tackle the problems in an auto-regressive fashion and thus offer no single latent state vector
that captures all the dynamics, as opposite to state-space models. Our approach closely relates to
[11, 9], but differs by using a multi-modal distribution for the transition model and the ability to
generate both continuous and discrete representations.

2.3 Behavioral video analysis

Recently, supervised deep pose estimation methods have been widely used for behavior analysis for
many animal models. Methods such as DeepLabCut (DLC) [22], DeepPoseKit [10] and LEAP [26]
train deep neural networks to produce confidence maps for predefined landmark annotations, all in a
similar fashion. Leveraging the success of DeepLabCut, Wu et al. [32] improved the quality of pose
estimation by imposing additional spatial and temporal constraints on multiple landmarks during
training. Luxem et al. [21] further developed a recurrent variational autoencoder (VAME) to encode
the pose estimation from DLC to a higher-level behavioral space. Prior to deep learning approaches,
Kabra et al. [15] provided a supervised pipeline to automatically annotate animal behavior based on
user-defined labeling.

On the other hand, unsupervised dimensionality reduction methods like PCA have been used to
analyze behavior for decades [28, 4, 31]. More recently, BehaveNet [2] presented meaningful
results of behavior segmentation and neural decoding. BehaveNet first uses a deep convolutional
autoencoder to compress behavioral videos, then fits an autoregressive hidden Markov (ARHMM)
model to exploits the temporal structures of the learned frame embeddings. However, BehaveNet was
evaluated only on videos in a single experimental session and cannot handle the distributional shift
across multiple sessions. Our approach, which falls into this second category, not only inherits the
advantage of being unsupervised but also handles the distributional gaps across multiple sessions by
explicitly disentangling poses from contexts.

3 Methods

3.1 Problem formulation

Formally, given a behavioral video x1:T of length T , we are interested in disentangling the dynamic
behavioral factors from the time-invariant non-behavioral nuisances in the video in an unsupervised
fashion. Our goal is to learn meaningful embedding zp1:T that capture common behavioral structures
across multiple animals in multiple recording sessions. We assume that the animal is performing a
repetitive behavioral protocol, such as a mouse performing a forepaw reach or lever press [19, 24], and
not freely moving. Additionally, in behavior experiments, videos are often recorded from different
angles, resulting in multi-view data, e.g. (xa, xb)1:T where a and b denote the two views. For
multi-view videos, we treat each view as a separate image and fuse the outputs of encoders of each
view as the representation of this timestamp, whereas for mono-view videos the embedding of the
frame is the natural representation. For the rest of this paper, we will slightly abuse the notations
and omit the view subscripts, e.g., x1:T refer to either mono-view frames or multi-view frames
(xa, xb)1:T , and z1:T refer to either the embeddings of mono-view frames or the fused embeddings
of multi-view frames.
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Figure 1: Overview of VDBE on a mono-view video. The pose encoder encodes individual frames
into a sequence of frame embeddings, which are then passed through a stochastic dynamic model to
generate pose embeddings. The context embeddings are generated from a single conditional context
frame by the context encoder. Both embeddings are concatenated at each timestamp as inputs to the
decoder which reconstructs the original video clip. The dynamic model (top right) uses an RNN to
infer both latent continuous embeddings and discrete states that capture the transition of the frame
embeddings, and uses a linear state-space model for generation. When the dynamic model is not
used, the full VDBE model becomes DBE. The input video can be either single view or multi-view.
For multi-view videos, encoders and decoders are used for each view separately, and the pose and
context components are concatenations of the corresponding encoder outputs from each view.

3.2 Disentanglement

In order to factor out the non-behavioral factors, our approach utilizes two separate lines of encoders, a
context encoderEc and a pose encoderEp, for each view of the videos. Assuming the non-behavioral
factors are time-invariant within each video, the convolutional context encoder Ec infers a video-level
context embedding zc from a single frame of the video. For multi-view videos, the context of each
view is further concatenated into a single context embedding zc, then used for the reconstruction of
all the frames in this video. The pose encoder Ep shares the same architecture with Ec, and encodes
the behavioral dynamics of the animal from all video frames x1:T into the pose embeddings zp1:T .
For multi-view videos, the outputs of pose encoders are concatenated to get zp1:T . The temporal
structures of the pose component are exploited by a stochastic dynamic model stacked on top of the
pose encoders, which we will detail in the following. To reconstruct the input video x1:T , the context
embedding zc is duplicated and concatenated with each pose embedding zp1:T , then for each view
these concatenated embeddings are further decoded into frame reconstructions by the corresponding
convolutional decoders D.

Because the context embedding zc is time-invariant and therefore incapable of capturing dynamics,
we ensure that it contains no behavioral information about the animal. Thus, the key question about
the disentanglement is how to ensure that the pose embeddings contain no context information. To
enforce disentanglement, we create a bottleneck on the pose embeddings inspired by [33]. We choose
the dimension of the pose embeddings to be as small as possible in the premise of good reconstruction.
This ensures that the capacity of pose embeddings is only sufficient for capturing the temporal
dynamics without any redundant context information. As we will show in the Sec 4, the disentangled
pose embeddings of different sessions are well-aligned with each other, in sharp contrast against the
results from canonical autoencoders where the embeddings of different sessions form distinct clusters.
The disentangled context embedding, on the other hand, capture these non-behavioral nuisances and
form into clusters by sessions as expected. The full disentanglement mechanism is shown in Figure 1.

3.3 Dynamic model

We model the temporal dynamics of the pose embeddings zp1:T using a sequential variational au-
toencoder. For the sake of brevity, we will use z to refer to zp in this section. Similar abbreviations
are applied for other variables as well. We assume that the pose components govern the latent state
of the behaviors and we want to model the temporal transition of the states. In a typical stochastic
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x1 x2 x3 x4

z1 z2 z3 z4

c1 c2 c3 c4

g1 g2 g3 g4

(a) Generation

x1 x2 x3 x4

z1 z2 z3 z4

c1 c2 c3 c4

g1 g2 g3 g4

(b) Inference

Figure 2: The generation (a) and inference (b) process of our stochastic dynamic model. Round nodes
represent stochastic variables and squared nodes represent deterministic variables. Note that in this
illustration, z1 is inferred from two conditional frames x1 and x2; and for ct and gt only the paths
from their immediate past frames are shown for the sake of clarity.

state-space model, the transition from the previous state zt−1 to the current state zt is modeled
stochastically. However, a purely stochastic transition makes it hard for the model to keep long-term
information [11]. Thus, we factor out the stochasticity of the dynamics into a separate component s.
This means that at a given timestamp, the stochastic latent variable st is first sampled from a prior
distribution, usually a Gaussian distribution, then the current state zt is generated from the previous
state zt−1 and the stochasticity s deterministically.

While this strategy has been proved to be effective in many scenarios [6, 11, 9], the uni-modal
Gaussian transition distribution is limited for behavior analysis because it does not capture the
multi-modality of behavior. For example, in the video dataset we will show in Section 4, the transition
of the animal poses is usually caused by a set of distinct, prototypical actions, such as lift, reach
and grab. A uni-modal Gaussian transition distribution is inadequate for modeling such multi-modal
transitions. Furthermore, for the purpose of motif segmentation it offers no discrete states which are
highly desired.

A more suitable choice for capturing such multi-modality is a Gaussian mixture model [27]. Shu et al.
[27] design the transition distribution in the generative model to be a Gaussian mixture while keeping
the posterior inference approximation to be a uni-modal Gaussian. A closed-form approximation of
the exact KL divergence is then used in evidence lower bound for optimization. In this paper, we use
an alternative approach to introduce the Gaussian mixture. Instead of using a single stochastic latent
variable s with a Gaussian mixture prior, we decompose it into two stochastic variables, the mixture
index c and a Gaussian noise g. This Gaussian mixture prior also enables the model to perform
embedding (zt) and segmentation (ct) simultaneously. With all these, we can dive into the details of
our variational autoencoder, as illustrated in the zoomed-in region in Figure 1.

Generation The generative procedure is shown in Figure 2a. We model the transition between the
previous state zt−1 and the current state zt using a Gaussian mixture. The generative model is:

z1 ∼ N (0, I), zt+1 = fθ(zt, st), (1)
ct ∼ cat(πθ(zt)), gt ∼ N (0, I), st = µct + σct � gt, (2)

xt = N (Decθ(zt, zc)), (3)

where πθ and fθ are linear projection layers. At each timestamp, stochastic variables ct and gt model
the discrete state and the additional stochasticity, then the continuous state zt is generated with a
deterministic path from zt−1, ct and gt. Note that although both ct and gt capture the stochasticity
of the transition, only ct is dependent on the previous state zt−1. ct is sampled from a categorical
distribution parameterized by zt−1 and gt is simply sampled from a standard Gaussian distribution.
The inferred ct is used for for motif segmentation in the test stage. We assume the covariance matrix
of each Gaussian component is diagonal and � denotes element-wise multiplication (Hadamard
product).
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Inference Because of the non-linearity in the generative model, the true posterior distributions
of the latent variables are intractable. As shown in Figure 2b, we use variational inference
to approximate these posteriors. The inferred posterior is factorized as qφ(c1:T , g1:T , z1) =∏T
t=1 q(ct|x1:T )q(gt|x1:T )q(z1|x1:C), where q(ct|x1:T ) is a conditional categorical distribution,

and q(gt|x1:T ) as well as q(z1|x1:C) is a conditional Gaussian distribution. We use a shared GRU
network followed by separate projection heads for q(ct|x1:T ) and q(gt|x1:T ). For q(z1|x1:C), we use
an MLP whose inputs are the first C conditional frames in the sequence. At test-time, we also use
these inference networks to generate behavior representation, i.e. we use the mean of the Gaussian
distribution and the highest category of the categorical distribution as the continuous and discrete
representations of the behavior of each frame.

Optimization We use the following evidence lower bound (ELBO) for optimization:

Lθ,φ(x1:T ) =
T∑
t=1

[
Eqφ(c1:T ,g1:T ,z1) log pθ(xt|zt)− αDKL(qφ(ct|x1:t)||pθ(ct|zt−1))

− βDKL(qφ(gt|x1:t)||pθ(gt))
]
− γDKL(qφ(z1|x1:C)||pθ(z1)),

(4)

where α, β and γ are the trade-off parameters that control the information flow to each stochastic
latent variables c1:T , g1:T and z1 respectively [12]. The first log-likelihood term corresponds to
the frame reconstruction and the other KL-divergence terms are the regularization of the inferred
stochastic latent variables to their prior knowledge.

The above expectation is estimated with a single sample from the approximated posterior distribution.
To allow gradients to back-propagate through the non-differentiable sampling operation, we use the
re-parameterization tricks. For the Gaussian posterior distributions q(gt|x1:T ) and q(z1|x1:C), we
re-parameterize the distribution into their estimated mean and standard deviation with a standard
Gaussian noise [16]. For the categorical posterior distribution q(ct|x1:T ) we use the Gumbel-Softmax
re-parameterization trick [14]: the sampling process is re-parameterized into the estimated discrete
log-probability and a Gumbel noise, following by a softmax normalization. The outputs of softmax
are also discretized to one-hot encodings to ensure consistency between training and testing. Note that
theoretically one can compute the exact expectation over the discrete latent variable ct without using
Monte Carlo estimation, but our experiments show that one-time sampling can generate satisfying
results with the advantage of being more efficient.

4 Results

Figure 3: Hand-reach dataset. Mice were
head-fixed and trained to grab a food pel-
let. Trial structure: 4 seconds ITI period
followed by the tone and table turning. We
analyze the [-0.25, 1.75] segment which
contains most of the significant behaviors
for expert mice.

We evaluate our methods on two multi-session video
datasets: the Hand-reach dataset [19] we collected,
and the Wide-Field Calcium Imaging (WFCI) dataset
[24, 25]. The Hand-reach dataset contains videos of
head-fixed mice who were trained to reach from their
perch to a food pellet. The datasets consists of 263 suc-
cessful trials of 3 expert animals (who have learned the
motor task) in 8 sessions, and includes fine-grained be-
havior. In a successful execution of the task, the animal
will lift its paw from the perch, reach and grab the pellet
and bring it to its mouth and eat it. The animal might
perform multiple grab attempts in a single trial before
successfully grabbing the pellet. An illustration of the
Hand-reach dataset is shown in Figure 3. The videos
were acquired on multiple dates, within which the ex-
perimental layout is potentially different, e.g., location
of the table. Two cameras simultaneously record from
the front and right side of the mouse. Each video is 12
seconds long, with a frame rate of 200Hz. The video
begins with a 4-seconds inter-trial interval (ITI), the end of which we set as the origin (0) of our time
axis. A cue of 0.2 seconds is shortly followed by table-turning which brings the food in front of
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the mouse. Since the mice in this dataset are experts, and thus mostly stationary before the cue and
chewing the pellet after successful execution of the hand-reach, we use a 2-second clip of the main
dynamic behavior of each full video to train the model. Each clip starts at 0.25 second before the cue
and ends at 1.75 seconds after, which contains most of the motions of interest. The context frame for
each video is selected from the ITI period, sampled at 1 second before the cue, when most of the
subjects are stationary.

In the WFCI dataset (an extended version of the dataset in [2]), head-fixed mice perform a visual
decision making task, using levers to initiate trials and reporting choices by licking from spouts. The
behavioral videos are recorded from a side and a bottom view of the subjects, with a length of 189
frames and a frame rate of 30Hz. The dataset contains 3708 videos from 8 sessions of 4 animals in
total. We randomly select 80% of the videos as training set and use the remaining 20% as test set.

We train both DBE and VDBE, without and with the stochastic dynamic modeling component. We
compare our methods against two behavior embedding methods: BehaveNet [2] and VAME [21], with
implementation details of each provided in Appendix B and Appendix C, respectively. In Section 4.1
and 4.2, we demonstrate the efficacy of our disentanglement component. In Section 4.3, we show
both DBE (combined with a motif segmentation model) and VDBE achieve superior results for motif
segmentation compared to the original models.

4.1 Disentanglement

To demonstrate the efficacy of disentanglement, we focus on session recognition: given the behavior
embedding of a specific video frame, can we identify which session (animal and date) this frame
comes from? We train a simple linear classifier to classify the experimental session from different
pose embeddings, and ideal disentanglement should generate session-agnostic pose embeddings. The
accuracy of the session classification for each model is reported in Table 1. DBE as well as our full
VDBE model generates session-agnostic pose embeddings, compared to the plain CAE autoencoder
used in Behavenet. Although DLC also provides session-agnostic coordinates, selected markers
do not encode enough useful information for extracting robust behavioral motifs across sessions
(Section 4.3). The context embedding of our methods (DBE-context and VDBE-context) accurately
classify the session, further demonstrating disentanglement of context from pose.

We further visualize the advantage of disentanglement in Figure 4. We plot the 2D PCA applied to
the BehaveNet and DBE embeddings of two videos that show similar behaviors but are recorded in
different sessions.The plain CAE of BehaveNet generates separate pose embeddings even though the
behaviors are similar. This distributional shift will be problematic when one wants to transfer the
knowledge learned in one session to another. This means that one needs to learn a new model every
time when there are new sessions, and learn a mapping across animals to relate the embeddings of the
same behavior. In contrast to BehaveNet, our DBE nicely aligns the two videos in the pose embedding
space. As we will show in the later section, this consistency is crucial to motif segmentation and
behavior decoding. More results comparing BehaveNet and DBE embeddings, as well as ethograms
of both the Hand-reach and the WFCI dataset, are provided in Appendix F and G.

Figure 4: Embeddings of 2 similar videos (Hand-reach)

Model Hand-reach WFCI

BehaveNet 100.00 99.99
DLC 21.19 -
DBE 28.21 35.49
VDBE 17.94 19.54
DBE-context 88.59 100.00
VDBE-context 96.19 100.00

Table 1: Session classification

4.2 Trajectory decoding

DLC is a robust method used to track manually selected landmarks in behavioral videos. A good
behavioral embedding should contain the information encoded by DLC. To illustrate that our approach
learns meaningful behavior embeddings, we perform a simple linear regression task from the DBE
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embeddings to the DLC coordinates in the Hand-reach dataset. A good fit of the linear regression
model suggests that our learned embedding contains the DLC coordinate information.

We place 5 markers on the center and 4 digits of the right paw of the mouse in each view of the
videos, and train a DLC model to track the coordinates of those 10 markers. Due to the differences in
spatial layout of the sessions (e.g., table location), we fit separate linear regression models to each
marker for each individual experimental session. Only DLC coordinates that have a confidence score
larger than 0.95 are used for the training of linear regression.

(a) DLC trajectories prediction (b) Goodness-of-fit of linear regression

Figure 5: Predicting DLC trajectories from disentangled embeddings on the Hand-reach dataset. (a)
Example video overlaid with true DLC trajectories (red) and the linear regression model predictions
(green). (b) R2 averaged across each coordinate for each individual session.

An example of DLC predictions and the average R2 of each individual linear regression model are
shown in Figure 5. In Figure 5a, the predictions are well aligned with the true DLC trajectories,
capturing the right paw of the mouse moving from the perch to the pellet on the table. The high R2

scores in Figure 5b show that the linear regression models are well-fitted to the data, which indicates
that the DBE embeddings manifest meaningful information about the selected markers.

4.3 Motif segmentation

Learning fine-grained behavior motifs from videos is an essential but challenging task for analyzing
animal behavior, especially when no supervision is available. In this section, we compare our
approach with other competing methods for motif segmentation on the Hand-reach dataset. To
evaluate the quality of the generated motifs, we select 10% of the videos (25 videos) and perform
expert manual labeling of the selected videos with a set of seven behaviors of interest: On-Perch, Lift,
Reach, Grab, To-mouth, At-mouth, and Back-To-Perch (4730 labeled frames). The rest of the videos
are used as the training set for motif segmentation methods, i.e. clustering. For each method, we
assign the learned motifs to the labeled set of behavior, where the mapping is selected to maximize
the clustering accuracy of holdout videos. Thus, each motif corresponds to a “mega-cluster" that
may or may not contain more than one inferred discrete state. Note that we set the number of the
discrete states k to be larger than the number of target labels for two reasons. The first reason is that
only part of the frames are labeled and the target labels do not cover all the possible behavior of the
mice. Extra clusters are necessary to capture these additional behavior. The second reason is that
setting a larger number of motifs rather than the exact number of labels accounts for inter-class versus
intra-class variability. For example, this enables separating a highly variable behavioral label like
Reach into more than one motif without having to compensate for that by merging At-mouth and
To-mouth into a single motif. We evaluate the performance of motif segmentation on three clustering
metrics, accuracy, Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI).

We use the DBE embeddings in two variations for motif segmentation: DBE+ARHMM which
replaces the CAE embeddings of the BehaveNet model with DBE embeddings, and DBE+VAME,
which replaces the DLC trajectories with DBE embeddings as inputs to VAME. As shown in Table 2
and Figure 6, disentanglement is the key to achieve good behavioral clusters across different animals
and multiple sessions. Combining DBE for frame embedding and 30-cluster VAME (DBE+VAME)
for temporal dynamics and segmentation achieves the best accuracy, NMI and ARI. Our full VDBE
model has very similar performance, with both models exhibiting ∼ 30% higher accuracy than
BehaveNet and over 20% higher accuracy than the original VAME framework (relying on DLC
inputs). These results also show that using a more powerful temporal model such as VAME can
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Table 2: Multi-session motif segmentation for the Hand-reach dataset
Model Unsup. Dis. End2End Accuracy NMI ARI

BehaveNet (k=15) 3 7 7 50.52 30.89 20.98
BehaveNet (k=30) 3 7 7 53.09 33.44 25.09
DBE + ARHMM (k=15) 3 3 7 64.04 42.06 36.08
DBE + ARHMM (k=30) 3 3 7 71.49 48.96 45.76
DLC + VAME (k=30) 7 7 7 57.17 42.07 44.09
DBE + VAME (k=15) 3 3 7 71.31 59.47 51.46
DBE + VAME (k=30) 3 3 7 81.25 67.31 67.33
VDBE (k=30) 3 3 3 79.53 64.85 66.94

(a) BehaveNet (k=30) (b) DBE+VAME (k=30) (c) VDBE (k=30)

Figure 6: Confusion matrices of BehaveNet, DBE+VAME and VDBE for the Hand-reach dataset.

benefit motif segmentation. With disentanglement, the confusion matrices ( Fig. 6) are more diagonal
which indicates better clustering. Figure 7 shows examples of random segments from VDBE motifs
corresponding to 4 different labels. Note that VDBE successfully clusters the behaviors even when
the context is varying. Additional results can be found in supplementary materials.

4.4 Controllable behavior generation

One advantage of VDBE and ARHMM-based models compared to VAME is that we can decode
synthetic videos from behavior embeddings, which demonstrates better interpretability and allows
potential applications to neural decoding. In this section, we further investigate behavior decoding
by manipulating the context components. In order to generate synthetic videos that replicate source
behavior with a new context, we use the inferred discrete behavior representations c1:T from the
source video and the context embedding from the target session, while g1:T and z1 are sampled from
their prior distributions. If the target session is the same as the source session, the synthetic video
should be similar to the source video. The results are shown in Figure 8. Note that the behavior in
the source video is replicated in both generated videos with the same and different contexts. This
indicates that our model successfully learns the dynamics of the behavior.

5 Conclusions

In this paper, we tackle the problem of unsupervised behavior representation learning from multi-
session videos. A disentanglement mechanism is designed to separate session-wise non-behavioral
factors from the useful behavioral information, and a stochastic dynamic model is jointly trained to
model the temporal dynamics of behaviors. Compared with competing methods, our method shows
superior performance on multiple tasks such as fine-grained motif segmentation, meanwhile also
enjoys the advantages of being unsupervised, end-to-end trainable, and more interpretable.

Despite the above improvements, a couple of open questions still remain and will be explored in
future work. Firstly, the current model which relies on a predefined number of states is limited in
generalization of the motif assignment to videos which include novel unseen behavior. Secondly, our
disentanglement assumes the non-behavioral nuisances are stationary through a video, which is not
always true. Future work should benefit from allowing slow dynamics in context embeddings. Thirdly,
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(a) Lift (b) Reach (c) Grab (d) At-Mouth

Figure 7: Motifs learned by VDBE. The blue channel indicates the start of the motif and the red
channel indicates the end. Note that in each column the behavior is consistent but the context is
varying (e.g., location of the table and identity of the mouse).
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Figure 8: Source (top row) and generated videos of the same discrete behavior sequence, with the
same (middle row) and different (bottom row) contexts. Each row is plotted at intervals of 20 frames.

with the distributional shift in videos confirmed, it would be interesting to study disentangling other
visual behavior representations such as DLC for multi-session analysis. Finally, with the learned
behavioral embeddings consistent across sessions, future works can leverage this representation to
relate behavior to neural activity [23].

Regarding societal impacts of our study as well as behavior analysis research in general, although
there is a significant gap between the head-fixed animal behavior studied here and naturalistic human
behavior, we should always be careful about the negative consequences for human monitoring.

Code is available at https://github.com/Mishne-Lab/Disentangled-Behavior-Embedding.
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