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Abstract

Recent studies have shown that performance on
downstream optimization tasks often diverges from
standard accuracy-based losses, highlighting that
the loss function of a predictive model should
align with the decision task of the downstream
optimizer [Wilder et al., 2019, Elmachtoub and
Grigas, 2022]. Despite this observation, no work—
to our knowledge—has yet examined the impact
of this divergence for distribution shift. In this pa-
per, we demonstrate that worst-case distribution
shifts identified by traditional average accuracy-
based metrics fundamentally differ from those for
the downstream decision task at hand. We intro-
duce a novel framework that employs a hierarchi-
cal model structure to identify worst-case distribu-
tion shifts in predictive resource allocation settings.
This task is more difficult than in standard dis-
tribution shift settings because of combinatorial
interactions, where decisions depend on the joint
presence of individuals in the allocation task. We
show that the problem can be reformulated as a
submodular optimization problem, enabling effi-
cient approximations, to capture shifts both within
and across instances of the optimization problem.
We apply our solution to real-world datasets in pub-
lic service settings, providing empirical evidence
that worst-case shifts for one metric often signif-
icantly diverge from worst-case distributions for
other metrics.

1 INTRODUCTION

In many real-world prediction settings, machine learning
algorithms frequently encounter performance degradation
due to distribution shifts, which are characterized by statis-
tical differences between the data encountered during de-

ployment and the data used in training [Quinonero-Candela
et al., 2008, Zech et al., 2018, Koh et al., 2021]. In partic-
ular, we are motivated by resource allocation settings, in
which predictions are used to prioritize individuals within a
given decision problem to receive a scarce resource. Here,
performance drops in unseen populations can lead to both
inefficient and inequitable allocation policies, whether they
be potentially live-saving treatments for a disease or public
service programs to mitigate risks such as unemployment
[Singh et al., 2022, Roland et al., 2022].

Developing methods for estimating worst-case distribution
shifts [Subbaswamy et al., 2021, Li et al., 2021, Thams
et al., 2022, Huang et al., 2022] is crucial to help practi-
tioners identify problems ahead of time, and either mitigate
them or re-evaluate whether to proceed with deployment.
Similarly, previous works in the distributionally robust opti-
mization (DRO) literature seek to minimize worst-case loss
over a feasible set of distributions [Duchi and Namkoong,
2021]. However, these methods universally focus on identi-
fying shifts under which the model suffers a loss in average
accuracy, as measured by traditional loss functions. The
key motivation for our work is that the worst-case shifts
identified by such individual-level processes may not co-
incide with the worst-case shifts for decisions that require
decision-focused optimization over an entire group of indi-
viduals, which introduces specific objectives and constraints:
a model may be more robust than expected if errors do not
flip the optimal decision, and conversely less robust if deci-
sions are sensitive to small errors.

As a simple example, consider a decision maker (e.g. the
operator of an emergency room) deciding whether or not to
administer a limited treatment to a population consisting of
two types of individuals (people seeking treatment). For the
first type, their outcomes are very noisy; however, they virtu-
ally never require intensive treatment. Thus, all decisions are
equally good. For the second type, we can predict outcomes
with moderate accuracy, but there is substantial variation in
treatment needs. A traditional DRO-style algorithm, iden-
tifying worst-case shift with respect to an individual-level
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loss, will typically concentrate more probability on individu-
als of the first type because predictive accuracy is worse for
them – this algorithm would solely seek to maximize worst-
case alpha-tail performance in the dataset. However, from
a resource allocation perspective, a population composed
largely of the first type does not impose difficult trade-offs.
This is due to the fact that demand for the resource is low;
thus, even uninformed predictions will lead to near-optimal
decisions. Furthermore, a population composed of the sec-
ond type of individuals may be much more challenging,
even if the model is more accurate per-individual, since finer
distinctions must be made when weighing treatment costs
and predicted benefits. This matches the intuition behind re-
cent interest in predict-then-optimize settings, where many
studies have shown that the loss function of a predictive
model ought to be tuned to reflect the decision task under-
taken by the downstream optimizer [Wilder et al., 2019,
Elmachtoub and Grigas, 2022, Vanderschueren et al., 2022,
Mandi et al., 2020]. However, despite the understanding
that performance on downstream optimization tasks often
diverges from standard accuracy-based losses, no work – to
our best knowledge – has examined the consequences of
this divergence for distribution shift.

Capturing the population-level dependencies of resource
allocation tasks necessitates a new approach to modeling
potential distribution shifts. Standard approaches model in-
dividuals as iid and consider perturbations of the marginal
probability associated with each individual. However, the
arrivals of different individuals are often not plausibly inde-
pendent. For example, consider an emergency department
attempting to triage patients. Due to factors like seasonality
in the frequency of many medical conditions, the arrival of
different kinds of individuals are in fact correlated, e.g., see-
ing one patient with respiratory illness makes it more likely
that many other patients with respiratory illness will arrive
that day. Moreover, triage decisions are made jointly over
the entire set of individuals for each day, not marginally
for each individual. Formally, decisions are made on the
level of optimization instances that consist of many individ-
uals. Since decisions depend on the joint set of individuals
present, we must be able to model shifts in the entire joint
distribution, not just the marginal probability of each indi-
vidual.

To address this, we use a hierarchical model for the data
generating distribution to capture the optimization instance-
style of modeling real-world allocation tasks. More pre-
cisely, we model the task of estimating worst-case allocation
outcomes as an optimization problem over a hierarchical
model, where shift can take place between optimization
instances, as well as between the individuals belonging to
each optimization instance. This task is significantly more
difficult than in standard distribution shift settings because
of combinatorial interactions, where decisions depend on
the joint presence of individuals in the allocation task. We

show that, by reformulating the aforementioned optimiza-
tion problem as a submodular maximization task, we are
also able to address the complexity of combinatorial inter-
actions.

To summarize, our contributions are as follows:

1. We introduce a novel framework that employs a hier-
archical model structure to identify worst-case distri-
bution shifts in predictive allocation settings. We show
that the problem can be reformulated as a submodu-
lar optimization problem, enabling efficient approxi-
mations. This captures shifts both within and across
instances of the optimization problem and addresses
the complexity of combinatorial interactions.

2. In real world predictive allocation settings (e.g., pub-
lic service data), we empirically show that worst-case
shifts substantially differ from those estimated by tra-
ditional methods (i.e., metrics that focus on individual-
level accuracy).

Our findings highlight that in order to safely build and assess
ML systems for high-stakes allocation settings, systems
must account for the decision task at hand to avoid over-
estimating their robustness to distribution shift.

2 PROBLEM SETUP

Predictive Modeling with Downstream Allocation. We
address scenarios in which a decision maker must allocate
a limited resource within cohorts of individuals (e.g., an
emergency department that must triage individuals who ar-
rive every day). We model this process as a distribution over
instances of the allocation problem, where each instance is
composed of individuals i with their own features xi ∈ Rd1

and outcome yi ∈ Rd2 . Let X be the feature matrix that
collects the feature vectors of each individual in a given
instance and Y the corresponding outcome matrix. Let P be
the distribution over instances, i.e., X,Y ∼ P. We will also
sometimes need to refer to the marginal distribution that
P induces over individuals, denoted as Pind. The decision
maker observes training data {Xj , Yj}kj=1, where instance
j contains nj individuals. They select a predictive model
m which outputs a prediction m(X) based on the features
of each instance. Typical architectures accomplish this by
making a separate prediction m(xi) for each xi ∈ X and
aggregating the results, but we do not assume this.

The decision maker uses the predictions made by m to
solve an optimization problem that models the constrained
resource allocation, resulting in an allocation vector Z. The
goal of this problem is to maximize an objective function f
which depends both on the decision Z and on the (unknown)
labels Y over a feasible set Φ. Given the predictions Ŷ =
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m(X), the corresponding decision is

Z∗(Ŷ ) = argmax
Z∈Φ

f(Z, Ŷ ).

We define the decision loss on a given instance to be the
regret relative to if the true Y were known:

DL(Y, Ŷ ) = g(f(Z∗(Y ), Y ), f(Z∗(Ŷ );Y )).

Common choices for g may include subtraction (regret) or
division (relative regret).

The goal for our model is to do well in expectation over P,
minimizing EX,Y∼P[DL(Y,m(X))].

Identifying worst-case distribution shifts. We consider
the common setting that the distribution P over instances of
the allocation problem may differ in deployment, compared
to what the model has encountered during training. Specif-
ically, we consider the challenge of identifying the worst-
case distribution shift for allocation performance within a
constrained set parameterized by the total size of the shift
allowed. Let Θ denote such a set of potential distributions.
Our objective is to find

argmaxP∈ΘEX,Y∼P [DL(Y,m(X))].

Identification of such worst-case distributions is a common
objective in order to allow model practitioners to understand
and ameliorate potential failures in deployment [Pfohl et al.,
2022, Subbaswamy et al., 2021, Li et al., 2021, Thams et al.,
2022, Huang et al., 2022]. Previous work considers this
problem for standard loss functions, which are separable
across individuals, i.e., which can be written in the form
Exi,yi∼Pind [ℓ(m(xi), yi)] for some individual-level loss ℓ
with an expectation taken over the marginal distribution over
individuals Pind. For instance, ℓ might be the mean squared
error or cross-entropy loss. The key motivation for our work
is that the worst-case shifts identified by an individual-level
process may not coincide with the worst-case shifts for the
instance-level decisions.

Modeling and solving the worst shift identification problem
for predictive resource allocation requires us to address two
new challenges that are not present for previous work at
the individual level. First, we must provide a parameter-
ized family of distribution shifts over instances, which are
composed of sets of individuals. Second, we must develop
algorithms to solve the resulting optimization problem over
distributions, a task which turns out to be considerably more
challenging because of the associated combinatorial struc-
ture where the impact of one individual on the loss depends
on the presence of other individuals in the set.

Additional Related Work. There is a large body of liter-
ature that develops real-world resource allocation models,
as well as criticisms of their shortcomings when exposed
to distributions shift [Verma et al., 2023, Athey et al., 2023,

Wang et al., 2022, Schultz et al., 2019]. Our work can be
seen as offering a precise way to operationalize and test
for distribution shift concerns before deployment in such
settings. Also related is work in statistics on learning robust
individual treatment rules. E.g., Mo et al. [2021] devise a
set of methods to obtain distributionally robust treatment
allocation policies given covariate shift. Our work differs
in considering the consequences of joint optimization over
a population of individuals, and is the first to account for
downstream optimization in assessing worst-case distribu-
tion shift..

There is an extensive literature devoted to distribution shift
in typical ML settings, as opposed to the resource allocation
problems that are our focus. Our work is closest to the
challenge of diagnosing worst case shifts [Li et al., 2021,
Subbaswamy et al., 2021, Thams et al., 2022]. There is also
a great deal of work devoted to training models that are
robust to distributions shift via methods like Distributionally
Robust Optimization (DRO) [Duchi and Namkoong, 2021,
Rahimian and Mehrotra, 2019, Levy et al., 2020], and we
build on some techniques from this literature. See Appendix
A for further related work.

3 METHODS

Defining a constrained set of shifts. The first challenge to
identifying worst-case distribution shifts for predictive re-
source allocation is to formulate a model for the set of possi-
ble distributions Θ. This is more difficult than in the standard
supervised learning setting, where typical approaches define
a set centered on the empirical distribution over individuals.
For example, common choices include a f -divergence or
Wasserstein uncertainty set [Namkoong and Duchi, 2016,
Kuhn et al., 2019]. Implicitly, such formulations are based
on the assumption that individuals are sampled indepen-
dently from Pind and so can be represented just by a vector
containing the marginal probability of each individual. How-
ever, in our setting the instance-level structure means that
individuals are not marginally independent: the patients who
all arrive at a hospital on a specific day (forming an instance
of the allocation problem) may differ systematically from
those who arrive a month later. To account for this, we rep-
resent our setting via a two-level generative model. First,
a latent instance-level parameter ξ is sampled. We denote
the marginal distribution over ξ as Pξ. Second, individuals
within the instance are sampled iid conditional on ξ:

ξ ∼ Pξ

xi, yi
iid∼ Pind(·|ξ), i = 1...nj

This represents the assumption that individuals are condi-
tionally independent given instance-level information. For
example, after conditioning on circumstances in the com-
munity (e.g. current disease levels), we suppose that the
individual patients arriving at the hospital are independent.
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We remark that some appropriate ξ is guaranteed to exist by
De Finetti’s theorem so long as individuals are modeled as
exchangeable [Orbanz and Teh, 2010].

Given this generative model, we adapt the common strategy
of using the empirical distribution over the samples P̂ as
a proxy for the unobserved P. Specifically, we allow both
deviation from the empirical distribution over instances (to
model shift in Pξ) as well as deviation from the empirical
distribution over individuals within each instance (to model
shift in each Pind(·|ξ)). Let ξj be the value of the latent
variable in observed instance j. Importantly, even though
ξj is not itself observed, we only need to be able to model
shifts in the distribution over X,Y conditional on ξj . For
this purpose, let P̂ind,j denote the empirical distribution over
individuals within observed instance j; this will be our em-
pirical proxy for Pind(·|ξj). If the decision maker happens
to have additional samples believed to be from the same
population, these could be used as well. Accordingly, we
define the feasible set of shifts for Pind(·|ξj) to be

Θj = {Qj |D(Qj , P̂ind,j) ≤ ρind}

where D is a standard divergence on distributions (e.g., the
χ2 divergence) and ρind is a parameter chosen by the user to
control the amount of distribution shift allowed at the indi-
vidual level. To obtain the overall set of feasible shifts, we
additionally allow a controlled level of shift in the distribu-
tion over instances. Let P̂ξ be the empirical distribution over
the sampled instances (emphasizing again that the values of
ξ are irrelevant and we treat P̂ξ just as a distribution over
the indices 1...k). We will represent our feasible set by the
combination of a distribution Qξ over the sampled instances
alongside a set {Qj}kj=1 of within-instance distributions
over individuals. The final feasible set is thus

Θ = {(Qξ, {Qj}kj=1)|D(Qξ, P̂ξ) ≤ ρξ, Qj ∈ Θj ∀j}

where ρξ is a final parameter specifying the allowed degree
of shift across instances. Each element of Θ defines a dis-
tribution, which can be sampled from by first sampling an
instance identifier j from Qξ and then sampling individuals
iid from Qj . Qξ can be represented as a vector in Rk giving
the probability of each instance, and Qj can be represented
as a vector of size nj giving the marginal probability placed
on each observed individual.

Optimization over the set of shifts. The model above in-
duces an optimization problem to identify the worst-case
shift with respect to the decision loss. Specifically, we wish
to solve

max
Q∈Θ

Ej∼Qξ

[
EX,Y∼Qj

[DL(Y,m(X))]
]
. (1)

To analyze the structure further, we expand the expectations
into sums, using that samples are iid within instances. Let
Sj denote the set of all possible draws (with replacement)

of nj individuals from the observed samples. The problem
becomes

max
Q∈Θ

k∑
j=1

Qξ(j)
∑

X,Y ∈Sj

( nj∏
i=1

Qj(xi, yi)

)
DL(Y,m(X)).

A first step towards solving this problem is to note that
each Qj can in fact be computed separately, since the outer
objective is a sum with non-negative coefficients. That is,
we can define

Q∗
j = arg max

Qj∈Θj

∑
X,Y ∈Sj

( nj∏
i=1

Qj(xi, yi)

)
DL(Y,m(X))

and then solve

max
Q∈Θ

k∑
j=1

Qξ(j)
∑

X,Y ∈Sj

(
nj∏
i=1

Q∗
j (xi, yi)

)
DL(Y,m(X))

to obtain the optimal distribution over instances. The outer
problem has a relatively tractable structure which is closely
related to existing work on distributionally robust optimiza-
tion. Given knowledge of Q∗

j , it can be solved using off-the-
shelf convex optimization techniques. However, the inner
optimization problem for each instance j is much more
difficult as it is a nonconvex problem. Indeed, polynomial
optimization is in general computationally intractable [Karp,
2010, Cook, 2023]. This structure reflects the fundamen-
tal change in perspective from individual-level losses to
resource allocation: the decision loss encapsulates the joint
dependence of decisions on the entire set of individuals
who arrive, so the contribution of the parameter for each
individual to the loss cannot be neatly disentangled.

To solve this problem, we draw on techniques from the
combinatorial optimization literature and prove that it can
actually be reformulated as a DR-submodular optimization
problem. This special structure allows us to develop efficient
algorithms with provable approximation guarantees.

Reformulation as a submodular optimization problem.
We assert that our optimization objective falls under DR-
submodular problems – one class of generally non-convex
functions. We demonstrate below that under a novel trans-
formation of the objective, our problem is non-monotone
DR-submodular in the individual-level and convex in the
optimization instance-level. This justifies the use of Frank-
Wolfe methods for more optimal solutions to our optimiza-
tion problems. We assume without loss of generality that
the decision loss is either naturally non-positive or bounded
in the range [−∞, 1]. Nonnegativity always holds by def-
inition of the regret, and any uniformly bounded loss can
be rescaled to an upper value of 1. Thus, for a given loss
function DL with such bounds, we define:

DL′(Y, Ŷ ) = DL(Y, Ŷ )− 1

Then, we introduce a change of variables that supports our
non-monotone Frank-Wolfe solution, built on Bian et al.
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[2017]. Our solution requires that our feasible set contains
the zero vector. Since this condition does not hold for the
simplex, we instead optimize over the offset from the em-
pirical distribution, where an initialized offset value of 0
is equivalent to the empirical distribution. We define these
offsets, along with their feasible sets in the constrained opti-
mization setting, as:

Wj(xi, yi) = Qj(xi, yi)−
1

|Qj |
∀i, j

Ωj =

{
Wj |Qj +

1

|Qj |
∈ Θj

}

This change of variables is finally represented by the follow-
ing modified optimization problem.

max
W∈Ω

Ej∼Wξ

[
EX,Y∼Wj

[DL′(Y,m(X))]
]
+ 1. (2)

Note that we apply a correction term of 1 to our final worst-
case estimation of DL′, in order to account for the adjust-
ment from DL in Equation 1 to DL′ in Equation 2.

To begin the justification of this approach, we will prove
that an approximate solution to Equation 2 results in an
equivalent quality approximation to the original problem
in Equation 1. We will then prove that the optimization
problem over offsets W is DR-submodular, with full proofs
in Appendix B.

Theorem 3.1. Suppose we have a solution W to Equation
2 with value at least α ·OPT ′

W − ϵ for some α ∈ R, ϵ ∈ R,
where OPT ′

W is the optimal value. W corresponds to a
Q with value at least α · OPTQ − ϵ where OPTQ is the
optimal value of solving Equation 1.

In order to prove that the change-of-variables objective is
DR-submodular, we first note that the following definition
may be helpful:

Definition 3.2. A twice-differentiable function f : X → Y
is DR-submodular if all entries of the Hessian matrix are
non-positive.

We then demonstrate that the objective function of our refor-
mulated inner optimization problem satisfies this definition:

Theorem 3.3. The objective function of the optimization
problem in Equation 2 is non-monotone DR-submodular in
Wj .

Next, we build on this result to introduce efficient approxi-
mation algorithms for the reformulated problem.

Approximation algorithms. Bian et al. [2017] intro-
duce several methods for maximizing non-monotone DR-
submodular problems; we utilize an adaptation of their non-
monotone Frank-Wolfe variant in order to solve the above

DR-submodular problems, in the context of resource allo-
cation. Since this algorithm requires that the zero vector be
a member of the feasible set, we optimize over the offset
from the empirical distribution. Further, we take advantage
of strong empirical results identified by past works in ap-
plying momentum-based methods to Frank-Wolfe methods
[Mokhtari et al., 2018, Li et al., 2020]. These methods store
gradients from prior iterations of the algorithm and consider
them to adjust the current iteration’s gradients.

Main algorithm. In our algorithm, we first optimize over
individuals within a given optimization instance and then
optimize over all optimization instances. We include the full
pseudocode in Algorithm 1, a formal writeup of how we
implement the Frank-Wolfe algorithm developed by Bian
et al. [2017]. Our algorithm includes a subroutine called
gradmax, which maximizes the dot product over the feasible
set of viable allocations and the gradients of the objective
function w.r.t. the optimization variables Staib et al. [2019].
Additional implementation details can be found in Appendix
C.

Algorithm 1 Frank-Wolfe Method for Maximizing Ex-
pected Loss over Optimization Instances

Input: weight offsets Wξ, · · · ,Wj , · · · ,Wk (initial-
ized to {0}nj

1 ), v0 = {0}nj

1 , iterations, num_samples,
num_samples2, pt, ρind, ρξ
for i = 1 to k do

for j = 1 to iterations do
for r = 1 to num_samples do

sample {xs, ys}
nj

s=1 ∼ Wi

calculate ℓ = DL′(m({xs}
nj

s=1), {ys}
nj

s=1)
accumulate ∂ℓ

∂Wi

end for
set vj = pt ∗ − ∂ℓ

∂Wi
+ (1− pt) ∗ vj−1

solve δ = gradmax(vj , ρind)− 1
|Wi|

update Wi = Wi +
1

iterationsδ
end for

end for
initialize λ = {0}k1
for i = 1to k do

for j = 1 to num_samples2 do
sample {xs, ys}

nj

s=1 ∼ Wi

accumulate ℓ = DL′(m({xs}
nj

s=1), {ys}
nj

s=1)
end for
set λi = avg(ℓ)

end for
solve Wξ = gradmax(λ, ρξ)

4 EXPERIMENTS AND RESULTS

We consider the following allocation tasks on real-world
data. Specifically, we focus on the following three tasks,
utilizing US census data [Ding et al., 2021]. Each task is
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motivated by resource allocation problems in a public policy-
related setting. More concretely, we consider (1) predicting
employment status, (2) predicting an individual’s income in
American dollars, and (3) predicting whether an individual’s
income is above or below $50,000 annually. For each task,
we consider a hypothetical resource allocation problem,
modeling a decision maker who wishes to target a limited
intervention to individuals more likely to be unemployed
or more likely to have low income, respectively. In each
of these tasks, the optimization instances are formed from
individuals in a particular US state, reflecting that allocation
decisions are made among geographic cohorts and different
states may differ systematically in distribution.

We use these domains to run large-scale experiments over
thousands of different combinations of models, optimization
instances, and loss functions. See Appendix D for further
details on the train-test setup, model architectures, etc.

4.1 LOSS FUNCTIONS

We identify and compare the worst-case distribution shift
for the following loss functions. Recall that the objective of
our method is to identify a set of distributions over individu-
als and optimization instances that maximizes the expected
value of a given loss function. First, we look at top-k, where
the decision maker has k units of the resource available per
instance and the objective function is the number of individ-
uals with true label 1 who receive the resource. This is the
most canonical model of scarce resource allocation based
on predicted risk. Second, we look at knapsack, where the
decision maker’s objective is the same as the top-k setting
but they are subject to a knapsack constraint instead of a
simple budget [Mulamba et al., 2020, Stuckey et al., 2020,
Tang and Khalil, 2022]. More specifically, we set an indi-
vidual’s cost to be proportional to the number of years of
education, simulating a policy maker who also wishes to
guarantee that public assistance is given preferentially to
individuals with less education. Note that top-k is a simplifi-
cation of knapsack where cost is identical for all individuals.
Third, we study a fairness-motivated loss function in which
the decision maker takes the decision rendered by top-k but
wishes to assess the equity of the resulting allocation. We
calculate the true positive rate (TPR) over all distinct racial
subgroups in the optimization instance, and calculate a Gini
coefficient using these TPRs as a measure of unfairness of
treatment over racial groups. For simplicity, we refer to this
loss function as fairness-based loss.

For the binary prediction tasks, we look at 1-accuracy, or
the misclassification rate over individuals. We also look at
the cross entropy loss (CE) over individuals. During opti-
mization, CE is scaled as necessary to fit the format required
by our Frank-Wolfe solution (i.e. we take the negative in-
verse of cross-entropy loss).

For the income regression task, we look at mean squared
error (MSE), which is also scaled as necessary to fit the
format required by our Frank-Wolfe sollution (i.e. we take
the base-2 log and divide by a constant). Further, we look at
a utility-based loss, where a decision maker seeks to maxi-
mize the Nash social welfare function of income, divided by
a constant, over individuals [Kaneko and Nakamura, 1979].
The decision maker also has access to a (finite) budget which
prioritizes distributing money to relatively poor individuals
to maximize utility.

4.2 EXPERIMENTAL SETUP

We train predictive models on each dataset using cross-
entropy (CE) loss, mean-squared error (MSE) loss, and
Smart Predict-then-Optimize loss (SPO) with knapsack as
the underlying decision task [Elmachtoub and Grigas, 2022,
Tang and Khalil, 2022]. We train two separate models for
each state, one with the SPO loss and one with either CE (for
binary classification models) or MSE (for regression mod-
els). For each predictive model, we then identify worst-case
distributions over all optimization instances, w.r.t. each ap-
plicable metric, to obtain different worst-case distributions
to compare systematically. Per each of 5 loss functions, this
results in 50 worst-case distributions per base model, for
75,000 worst-case distributions over each of the three pre-
diction tasks. After identifying all worst-case distributions,
we evaluate each converged worst-case distribution on all
other applicable metrics. This is accomplished by (i) draw-
ing samples from the generative model for each worst-case
distribution, (ii) evaluating the average loss of these samples
when inputted to each of the other loss functions, and (iii)
for each model, compiling these averages for all worst-case
distributions – resulting in the following matrices in Figure
1. See Appendix D for additional experimental details, and
Appendix E for additional results.

4.3 RESULTS

Given a worst-case distribution w.r.t. one metric, we evaluate
the expected value of all other applicable metrics using sam-
ples from the distribution. This allows us to quantitatively
assess whether a worst-case shift w.r.t. a decision-blind met-
ric (e.g., 1-accuracy, MSE, CE) is also worst-case w.r.t. a
decision-based metric (e.g. top-k, knapsack, fairness-based
loss, utility-based loss). We refer to decision-based met-
rics as metrics that consider the relative predictive model
outputs and/or individual-level features in an optimization
problem. We refer to decision-blind metrics that do not con-
sider the relative predictive model outputs; these metrics
can be expressed as a sum of losses over individuals. Note
that worst-case shifts with respect to the decision-blind met-
rics can be seen as implementing the standard f-divergence
approach popularized by Namkoong and Duchi [2016] [Sub-
baswamy et al., 2021, Li et al., 2021]. We first present these
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results for each allocation task, and then provide a more
qualitative interpretation of how worst-case distributions
differ by loss function.

In Figure 1, we observe the performance of worst-case distri-
butions w.r.t. each metric (both decision-blind and decision-
based) on all other metrics. We find that worst-case distri-
butions w.r.t. a given metric tend to overfit on that metric.
In other words, for a given dataset and prediction task, the
worst-case distribution w.r.t. a metric (e.g. CE) tends to per-
form comparatively worse on other metrics (e.g. top-k) than
the worst-case distribution w.r.t. that other metric. In other
words, the expected value of top-k induced by sampling
individuals from the worst-case distribution w.r.t. top-k will
be higher than the expected value of top-k induced by sam-
pling individuals from the worst-case distribution w.r.t. CE.
In particular, this can be observed from the main diagonal
entries throughout all subfigures in Figure 1: no worst-case
distribution achieved a metric that was (noticeably) higher
than the worst-case distribution trained w.r.t. that metric.
We find that this trend is generally consistent across all
considered metrics, models, and datasets/prediction tasks.

These observations lend great importance to considerations
of the downstream allocation tasks predictive models may
face when deployed in the real world. For instance, when a
practitioner trains a robust model w.r.t one metric (decision-
based or decision blind), if the downstream allocation prob-
lem is changed (even subtly) (e.g. changing the cost per
individual from constant to varying based on individual fea-
tures), in many settings, models could break under shifts
that were not initially thought to be worst-case.

We find that the use of decision-blind metrics (MSE, CE,
accuracy) to inform judgement on worst-case outcomes for
decision-based tasks, in general, risks underestimating true
worst-case outcomes, which we can justify with thorough
examination of the individuals in our optimization instances.
Through these results (see Figures 1, 2, 3), we find that
existing methods of identifying worst-case distributions (e.g.
DRO), which generally focus on decision-blind metrics and
optimize worst-alpha-tail performance over individuals, fail
to accurately depict worst-case outcomes in the predictive
resource allocation setting, wherein model predictions are
passed into higher-level optimization problems for decision-
making. This implies that our method identifies worst-case
distributions for allocative tasks substantially better than
existing DRO-like methods, as our method more precisely
considers the structure of downstream (allocation) problems
in our solutions. Below we discuss potential mechanisms for
this behavior by analyzing which types of individuals are
more likely to be sampled in worst-case distributions w.r.t.
a given metric, and how these individuals change given a
worst-case distribution w.r.t. a different metric.

For further analysis, we examine differences between the
worst-case distributions w.r.t. a selection of metrics by vi-

sualizing the converged weights of individuals of varying
feature values and varying model predictions (see Figures 2,
3). We find that, given the same individuals within the same
optimization instance, worst-case distributions w.r.t. differ-
ent metrics differ in the individuals they tend to upweight.
We clearly observe that in a worst-case distribution w.r.t
CE (Figure 2a), individuals are weighed directly proportion-
ally to their distance from the decision boundary (e.g. false
positives with high model predictions receive high weights,
as do false negatives with low model predictions). We can
use similar logic when identifying which individuals are up-
weighted in the worst-case distribution w.r.t. MSE (Figure
3a); individuals are gradually upweighted the higher their
residual is, or in other words, the farther their prediction
strays from their ground-truth label (noted by the dotted
identity lines in Figure 3).

In contrast, worst-case distributions w.r.t. decision-based
metrics upweight systematically different sets of individu-
als. We observe that in Figure 2b, two particular types of
individuals are highly upweighted: a non-white, positive
(i.e. unemployed) individual with a high model prediction,
along with a white, negative (i.e. employed) individual with
a high model prediction. When these individuals are consid-
ered in conjunction within the fairness metric, we tend to
correctly treat many positive non-white individuals, incor-
rectly treat many negative white individuals, and incorrectly
fail to treat some positive white individuals. Notice that
while non-white individuals tend to be correctly treated
here, white individuals are consistently assigned the incor-
rect treatment, thus achieving high disparity in the quality
of treatment between non-white and white individuals and
a high fairness-based loss metric. Turning our focus to the
utility-based loss metric with income regression in Figure
3b, the worst-case distribution seems to upweight only rel-
atively high-residual individuals, as expected by definition
of the utility-based loss metric. More concretely, since our
Nash social welfare function scales with the log of income,
there exists a diminishing returns effect of allocating money
to high-income individuals. Therefore, we can maximize
the impact of an ideal treatment on individuals, and thus,
achieve higher levels of relative regret, if our sample con-
sists of many low-income individuals, but we instead choose
to mistakenly treat higher-income individuals whose pre-
dicted income is particularly low. Furthermore, individuals
with relatively high values for both ground-truth labels and
predictions do not receive high weights despite having large
residuals, since they still have higher predicted incomes than
the upweighted individuals and are unlikely to be treated in
this allocation setting.

Based on the observed differences between the worst-case
distributions w.r.t. decision-blind metrics and worst-case
distributions w.r.t. decision-based metrics, we conclude that
practitioners who use current off-the-shelf DRO methods
for building robust predictive allocation models may not ac-
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Figure 1: Diagonal-normalized aggregated heat maps over states for models trained with CE loss (in the regression case,
MSE loss) (top row) and SPO loss (bottom row). From left to right in each row, results are displayed by task for (a,d)
employment classification, (b,e) income classification, and (c,f) income regression. Within each heat map, rows denote the
metric the worst-case distribution maximizes, and columns denote the metrics the worst-case distribution was evaluated on.
Note that each column is divided by the diagonal entry in that column, resulting in a main diagonal of all 1.0. Furthermore,
because CE loss is always negative, each entry in columns corresponding to CE loss is equal to the diagonal entry in that
column divided by the original loss in that cell. The strong main diagonals here accentuate our observation that worst-case
distributions w.r.t. a given metric tend to ’overfit’ on that metric. Note that cross-entropy and accuracy are used only in
binary classification tasks, and mean-squared error and utility-based loss are used only in the income regression task.

tually be training models robust to the true worst-case shifts
in the downstream decision task their model will be used
for. In other words, the DRO equivalent of greedily plac-
ing weight on poorly-performing individuals w.r.t. decision-
blind metrics results in worst-case distributions metrics that
fundamentally differ in composition from the worst-case
distributions for an optimization-level, decision-based met-
ric. These results provide insights to practitioners deploying
robust predictive models for resource allocation: allocative
tasks make structurally different uses of machine learning
predictions than decision-blind prediction tasks, and meth-
ods for identifying distribution shifts must reflect this struc-
ture.

Finally, we empirically study the efficiency of our algorithm
via empirical comparisons with existing polynomial solvers,
in identifying distributions over optimization instances and

individuals. In Figure 4, we evaluate our algorithm for solv-
ing Equation 2, as the number of optimization problems
sampled during each iteration of the Frank-Wolfe algorithm
increases. Note that, by enumerating over all possible sets
of nj individuals and calculating the value of loss for each
set, Equation 2 becomes a closed-form polynomial opti-
mization problem. We find that we consistently approach
values found by the polynomial optimization solver, Pyomo
with optimizer IPOPT, when used to solve Equation 2 [Hart
et al., 2017, Biegler and Zavala, 2009]. In Figure 4, we plot
our estimated solutions to Equation 2 as a proportion of
the solutions achieved by Pyomo/IPOPT against the num-
ber of samples per iteration of the Frank-Wolfe algorithm.
We then aggregate these results by metric across models
trained with CE, MSE, or SPO loss functions. This analysis
is conducted on all tasks: employment prediction, income
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Figure 2: Plots of individuals in an optimization instance
in the employment prediction task, from the perspective of
worst-case distributions w.r.t. CE (a) and the fairness-based
metric (b). The underlying predictive model was trained
with CE loss. For each worst-case distribution w.r.t. the
metric of interest, we display over all individuals their model
predictions, assigned weights, and education level, split by
true label. Note that the color-bar denotes the weight in the
worst-case distribution and that differently-shaped points
represent individuals of different races (circle for white,
square for non-white).
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Figure 3: Plots of individuals in an optimization instance in
the income regression task, from the perspective of worst-
case distributions w.r.t. mse (a) and the utility-based metric
(b). The underlying predictive model was trained with mean-
squared error loss. For each worst-case distribution, we
display over all individuals their model predictions, label
income, and assigned weights. In each figure the identity
line (True Income = Model Prediction) is marked with a
dotted line.

prediction, and income regression. We find that 87% of the
plotted curves exceeded 80% of the solutions reached by Py-
omo/IPOPT, and all curves reached over 60% of this value.
Furthermore, all curves increased monotonically (i.e., closer
to the solution reached by Pyomo/IPOPT) as the number
of samples increased, indicating that as our method has ac-
cess to more instances of optimization problems it more
effectively maximizes estimates of worst-case loss. The the-
oretically guaranteed approximation ratio for nonmonotone
submodular optimization with Frank-Wolfe algorithms is
1
e ≈ 37% [Bian et al., 2017]. Therefore, these results sug-
gest that our algorithm empirically performs much stronger
than the worst-case theoretical guarantees.
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Figure 4: Aggregate results of efficiency experiment. The
converged expected values of loss are plotted over all met-
rics and all datasets. Here nj = 8, and we calculate refer-
ence worst-case expected values of each metric using Py-
omo with the IPOPT solver. All values are normalized w.r.t.
the value of the Pyomo/IPOPT solution. The bolded flat
line at y = 1 represents the Pyomo/IPOPT solutions. The
colored lines each represent, for a given predictive model
training method, prediction task, and metric, how closely
our method asymptotically reaches the solution quality of
the Pyomo/IPOPT solutions. We find that the majority of
our curves converged asymptotically to over 80% of the
Pyomo/IPOPT solution.

5 DISCUSSION

In this paper, we develop an algorithmic approach to find
worst-case distribution shifts over a constrained set for
predictive resource allocation problems. Our formulation
reflects the structure of predict-then-optimize settings, al-
lowing us to account for distribution shift within and be-
tween optimization instances through a two-level generative
model, which DRO-style methods do not account for. We
show that the optimization of this model can be formulated
as a submodular optimization problem and solved with a
Frank-Wolfe algorithm. We empirically demonstrate that
worst-case distributions with respect to decision-blind and
decision-based metrics exhibit substantial divergences, and
that worst-case distributions with respect to decision-blind
metrics may be very far from the worst-case for decision
tasks. Finally, we find that our methods efficiently approach
solutions found by existing polynomial solvers much more
closely than might be suggested by worst-case theoretical
guarantees. In all, our results highlight that evaluation of the
robustness of ML models in high-stakes resource allocation
settings must account for the nature of the downstream deci-
sion problem in order to capture the true consequences of
potential distribution shift.
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A RELATED WORK

Methods of Representing Distribution Shift. Prior studies on distribution shift have investigated some combination of
covariate shift, label shift, and/or subpopulation shift in the context of standalone machine learning models Liu et al. [2023].
The concept of subpopulation shift, which relates tangentially to our use of optimization instances to separate individuals,
involves a shift in the distribution of data amongst an unseen class variable. This concept has deep ties to fair and robust
machine learning, as in practice many models fail to generalize well to specific subgroups within a broader population Yang
et al. [2023]. In terms of optimization, beyond the mere diagnosis of distribution shift, via such methods as outlier detection,
prior work also encapsulates the development of models that are trained in an adversarial manner such as to minimize their
expected loss over a set of ’reasonable’ or viable out-of-distribution test sets, known as Distributionally Robust Optimization
(DRO) Duchi and Namkoong [2021], Rahimian and Mehrotra [2019]. [Levy et al., 2020] for instance identify a method for
DRO with respect to convex loss functions that scales independently of population size, utilizing χ2 divergence uncertainty
sets. In the field of biodiversity Mäkinen and Vanhatalo [2018] identify shifts in the spaciotemporal distribution of arctic
species using Bayesian Hierarchical Models tiered on observations, density processes and process parameters, a related
paradigm to our use of hierarchical modeling to describe distributions over sets of individuals.

Predictive Treatment Allocation. A wide body of work exists to identify optimal treatment allocation policies, particularly
in the health and public policy sectors. In terms of applications in public policy, Verma et al. [2023] deploy the first Restless
Multi-Armed Bandit framework in public health in India. Their model is used by the NGO ARMMAN to identify women
in underserved communities to contact regarding maternal and childcare information. Athey et al. [2023] follow in this
more empirical style of evaluation, developing a set of empirically validated treatment strategies to provide ’nudges’ to
college students in order to increase financial aid application renewals. Finally a smaller body of work exists criticizing the
overeagerness of industry in adopting predictive allocation models prior to addressing theoretical and empirical concerns.
Wang et al. [2022] cite distribution shift as one major obstacle the field of predictive optimization as a whole must surmount
before it is accepted as a legitimate machine learning practice, motivating in particular our work in non-parametric shifts. In
the same vein of concerns regarding distribution shift in treatment allocation Schultz et al. [2019] suggest that triage risk
models tend to perform better on middle-aged patients than older patients in terms of short-term mortality risk.

Predict-then-Optimize Machine Learning. Predict-then-optimize is a more generalized class of problems than resource
allocation, in which a model predicts a cost vector from a vector of features, and second, the predicted cost vector is used
as a set of parameters for an optimization problem. This class of machine learning along with deterministic optimization
is common in many areas of deployment, from limited resource allocation problems to shortest-path problems; in many
such setups, we have some unknown cost variable that can be estimated using some machine learning model and optimized
through well-known algorithms Elmachtoub and Grigas [2022].

A large portion of work in predict-then-optimize machine learning has sought to train models that perform well in-distribution
Wilder et al. [2019], Elmachtoub and Grigas [2022], with significant work aiming to develop loss functions that take into
account the optimization task in-context. This framework has also been investigated for specific prediction models along with
applications in reinforcement learning and solving combinatorial problems Elmachtoub et al. [2020], Mandi et al. [2020],
Wang et al. [2021]. However, a comparatively smaller body of work exists to train or fine-tune machine learning models in
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predict-then-optimize settings that are distributionally robust. Notably Johnson-Yu et al. [2023] examine robust methods
for accounting for label shift in predict-then-optimize, proposing modifications for a two-stage machine, decision-focused
learning setup to anticipate label shift.

B FULL PROOFS OF DR-SUBMODULARITY

Definition B.1. Given some index i and some sample of entries X,Y from a probability distribution P, let #(i, (X,Y )) :
(Z,P) → N be the number of times the ith indexed individual occurs in the sample X,Y .

Before the proof of Theorem 3.1 , we begin by proving the following lemma to establish guarantees on a solution to a
modification of Equation 2 that uses the same version of decision loss, DL, as Equation 1. This helps us establish bounds on
guarantees after changing DL to DL′ in Equation 2.

Lemma B.2. Suppose we have a solution W to a slight modification of Equation 2 with value at least α ·OPTW − ϵ for
some α ∈ R, ϵ ∈ R, where OPTW is the optimal value, and DL is used in Equation 2 instead of DL′. Then, we have a
solution to the original optimization problem over Qj , Equation 1, with value at least α ·OPTQ − ϵ where OPTQ is the
optimal value of the original problem.

Proof of Lemma B.2.

Proof. First, formally define the optimization problem representing the modified Equation 2 as

max
W∈Ω

Ej∼Wξ

[
EX,Y∼Wj

[DL(Y,m(X))]
]
+ 1.

Let the optimal solution to the modified Equation 2 be represented as OPTW . Furthermore, we define the achieved loss of
our solution on the modified Equation 2 as ϕ̂, e.g.

ϕ̂ = Ej∼Wξ
[EX,Y∼Wj

[DL(Y,m(X))]]

Let ϕ denote the realized loss of W on Equation 1 when we transform W into a set of valid probability distributions, e.g.

ϕ = Ej∼Wξ+
1
k
[EX,Y∼Wj+

1
|Wj |

[DL(Y,m(X))]]

Using these definitions,

ϕ̂ =
∑
j∈Wξ

(Wξ(j) +
1

k
)
∑

X,Y ∈Sj

DL(Y,m(X))Pr(X,Y )

=
∑
j∈Wξ

(Wξ(j) +
1

k
)
∑

X,Y ∈Sj

DL(Y,m(X))

nj∏
i∈(X,Y )

(Wj(Xi, Yi) +
1

|Wj |
)

=
∑

j∈Wξ+
1
k

(Wξ +
1

k
)
∑

X,Y ∈Sj

DL(Y,m(X))

nj∏
i∈(X,Y )

(Wj(Xi, Yi) +
1

|Wj |
)

= Ej∼W+ 1
k
[EX,Y∼Wj+

1
|Wj |

DL(Y,m(X))]

= ϕ.

With the same logic, we substitute aspects of the sampling process using W to derive information about the optimal solutions:

14



OPTW = max
W∈Ω

Ej∼Wξ
[EX,Y∼Wj

[DL(Y,m(X))]]

= max
W∈Ω

∑
j∈Wξ

(
1

k
+Wξ(j))

∑
X,Y ∈Sj

Pr(X,Y )DL(Y,m(X))

= max
W∈Ω

∑
j∈Wξ

(
1

k
+Wξ(j))

∑
X,Y ∈Sj

DL(Y,m(X))

nj∏
i∈(X,Y )

(
1

|Wj |
+Wj(Xi, Yi))

= max
Q∈Θ

∑
j∈Qξ

Qξ(j)
∑

X,Y ∈Sj

DL(Y,m(X))

nj∏
i∈(X,Y )

Qj(Xi, Yi)

= OPTQ.

Thus,

ϕ̂ ≥ α(OPTW )− ϵ =⇒ ϕ ≥ α(OPTQ)− ϵ.

Proof of Theorem 3.1.

Proof. Let the final expectation of our estimated solution to Equation 2 be ϕ̂′, e.g.

ϕ̂′ = Ej∼Wξ
[EX,Y∼Wj [DL′(Y,m(X))]]

Furthermore, let OPT ′
W denote the optimal solution to Equation 2. We have:

ϕ̂′ ≥ α(OPT ′
W )− ϵ

= α(max
W∈Ω

∑
j∈Wξ

Wξ(j)
∑

X,Y ∈Sj

Pr(X,Y )(DL′(Y,m(X))− 1)

+ 1)− ϵ

= α(max
W∈Ω

∑
j∈Wξ

Wξ(j)

 ∑
X,Y ∈Sj

Pr(X,Y )DL′(Y,m(X)))−
∑

X,Y ∈Sj

Pr(X,Y )

+ 1)− ϵ

= α(max
W∈Ω

∑
j∈Wξ

Wξ(j)(−1 +
∑

X,Y ∈Sj

Pr(X,Y )DL′(Y,m(X)))

+ 1)− ϵ

= α(max
W∈Ω

1 +
∑
j∈Wξ

−Wξ(j) +

∑
j∈Wξ

Wξ(j)
∑

X,Y ∈Sj

Pr(X,Y )DL′(Y,m(X))

)

= α(max
W∈Ω

∑
j∈Wξ

Wξ(j)
∑

X,Y ∈Sj

Pr(X,Y )DL′(Y,m(X))

)

= α(OPT ′
W )− ϵ =⇒

ϕ̂′ ≥ α(OPTQ)− ϵ (by Lemma B.2)
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Proof of Theorem 3.3.

Proof. Consider the gradient of the expansion of Equation 2 into sums w.r.t. a single weight placed on an individual of index
a in instance j:

∂

∂Wj(xa, ya)

∑
X,Y ∈Sj

 nj∏
i=1,

(
Wj(xi, yi) +

1

|Wj |

)DL′(Y,m(X))

=
∑

X,Y ∈Sj

#(a, (X,Y ))(Wj(xa, ya) +
1

|Wj |
)#(a,(X,Y ))−1

 nj∏
i=1,i̸=a

(
Wj(xi, yi) +

1

|Wj |

)DL′(Y,m(X))

= EX,Y∼Wj
[DL′(Y,m(X))

#(a, (X,Y ))

Wj(xa, ya) +
1

|Wj |
]

The resulting expectation is non-positive due to non-negative weights in any probability mass function and non-positive loss
DL. Next consider the diagonal entries of the Hessian matrix of the refactored objective:

∂2

∂2Wj(xa, ya)

∑
X,Y ∈Sj

[
nj∏
i=1

(
Wj(xi, yi) +

1

|Wj |

)]
DL′(Y,m(X))

=
∑

X,Y ∈Sj

#(a, (X,Y ))(#(a, (X,Y ))− 1)(Wj(xa, ya) +
1

|Wj |
)#(a,(X,Y ))−2

 nj∏
i=1,i̸=a

(
Wj(xi, yi) +

1

|Wj |

)DL′(Y,m(X))

≤ 0. (by non-positive DL’)

Finally consider the off-diagonal entries of the Hessian matrix below, where we consider a second arbitrary individual of
index b, where a ̸= b:

∂2

∂Wj(xa, ya)∂Wj(xb, yb)

∑
X,Y ∈Sj

[ nj∏
i=1

(
Wj(xi, yi) +

1

|Wj |

)]
DL′(Y,m(X))

=
∑

X,Y ∈Sj

#(a, (X,Y ))(#(b, (X,Y )))(Wj(xa, ya) +
1

|Wj |
)#(a,(X,Y ))−1

(Wj(xb, yb) +
1

|Wj |
)#(b,(X,Y ))−1

 nj∏
i=1,i/∈{a,b}

(
Wj(xi, yi) +

1

|Wj |

)DL′(Y,m(X))

≤ 0. (by non-positive DL’)

By Definition 4.3 J is DR-submodular and by Definition 4.2 J is non-monotone; this conclusion applies WLOG to all
subpopulations between 1 and k inclusive.
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C ADDITIONAL METHODOLOGICAL DETAILS

• Due to the strong empirical improvements we saw along with past work by such works as Li et al. [2020], we also
introduce a momentum term into the update rule that preserves a portion of gradients calculated in the previous iteration
of the algorithm, initialized to 0.

• Building on prior work from Staib et al. [2019], Frank-Wolfe algorithms commonly require subroutines to maximize
the dot product over the feasible set of viable allocations and the gradients of the objective function with respect to the
optimization variables. We incorporate their work as a subroutine within our algorithm, termed gradmax. Gradmax is
also used to solve the optimization problem over all optimization instances, where we input a vector of converged worst-
case losses for all optimization instances along with ρξ into gradmax, which then returns the probability distribution
within the feasible set that maximizes expected worst-case loss over optimization instances.

D ADDITIONAL EXPERIMENTAL DETAILS

Regarding the training process of our underlying predictive models:

• For each of the 50 US states in the census datasets we train two models: one with CE loss (for regression, MSE) and
one with SPO loss, resulting in 300 total models.

• Note that, while training with cross-entropy/mean-squared error loss can be accomplished with nothing but the raw
train set, training with SPO loss requires treating each optimization instance as a random sample of individuals from
the train set. To this end, we take 15,000 samples of nj = 40 individuals from the combined training sets of each state,
each sample representing one resource allocation problem.

• Two such models are trained on each of the three datasets, resulting in six total trained models per each of the fifty
optimization instances (300 total predictive models).

• The predictive models used to predict employment/income also differ in architecture depending on the dataset. For em-
ployment classification we train logistic regression models on each state’s train set; for income classification/regression
we train a 2-hidden-layer neural network. All categorical features are mapped to Pytorch embedding layers that are also
trained for each predictive model.

Regarding the application of these predictive models in finding worst-case distributions w.r.t. relevant loss metrics:

• Each of the trained models are then optimized to find their worst-case distributions with respect to our provided decision
problems.

• For each worst-case distribution (defined by a unique combination of predictive model, loss function, and optimization
instance) we run 15 iterations of our Frank-Wolfe algorithm, with a momentum value of pt = 0.7 and with 35,000
optimization problems sampled per iteration.

• For each of the three worst-case distributions converged for each of the models, we evaluate the expected performance
of the distribution on all three loss functions, given the original model used to generate the distribution. This is
accomplished by sampling 200 optimization instances from each distribution/loss function combination, sampling
4000 decision problems from each optimization instance, and aggregating over distribution/loss function pairs. For all
models we set variables ρ1 = nj = 40, ρ2 = 6.25 in order to impose meaningful constraints on optimization problems
(i.e., balance between small ρ values that do not allow for significant deviation from the empirical distribution and
large values yielding unconstrained optimization over the simplex).

Regarding our experiment comparing our method to Pyomo/IPOPT:

• In this experiment we set nj = 8. Note that the degree of the polynomial scales with nj . As a result traditional
polynomial solvers such as Pyomo/IPOPT can become computationally-consuming at large scales. This is particularly
true when many calls are made to the solver (in our case, Pyomo/IPOPT is called once for each worst-case distribution
w.r.t. each metric).

• Each colored curve in Figure 4 scales up to 3,000 samples per iteration of the Frank-Wolfe algorithm.
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E ADDITIONAL PRESENTATION OF AGGREGATE RESULTS

Below we include, for all combinations of dataset and method used for training the underlying predictive model (CE/MSE,
SPO), a set of aggregate results identical to those of Figure 1 but with 95% confidence bounds. Note that for each individual
subfigure, the confidence interval is calculated using a normality assumption, with the results of the 50 individual predictive
models belonging to that subfigure’s combination of dataset and training method serving as data points.
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Figure 5: Diagonal-normalized aggregated heat maps with 95% confidence intervals over states for models trained with
CE loss (in the regression case, mean-squared error) (top row) and SPO loss (bottom row). From left to right in each row,
results are displayed by task for (a,d) employment classification, (b,e income classification, and (c,f) income regression.
Within each heat map, rows denote the metric the worst-case distribution maximizes, and columns denote the metrics the
worst-case distribution was evaluated on. Note that each column is divided by the diagonal entry in that column, resulting in
a main diagonal of all 1.0. Furthermore, because CE loss is always negative, each entry in columns corresponding to CE loss
is equal to the diagonal entry in that column divided by the original loss in that cell.
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