

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FRAGMENT-WISE INTERPRETABILITY IN GRAPH NEURAL NETWORKS VIA MOLECULE DECOMPOSITION AND CONTRIBUTION ANALYSIS

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) are widely used in the field of predicting molecular properties. However, their black box nature limits their use in critical areas like drug discovery. Moreover, existing explainability methods often fail to reliably quantify the contribution of individual atoms or substructures due to the message-passing dynamics, which entangle local representations with information from the entire graph. As a remedy, we propose **SEAL** (Substructure Explanation via Attribution Learning), an interpretable GNN that divides the molecular graph into chemically meaningful fragments and limits information flow between them. As a result, contributions of individual substructures reflect the true influence of chemical fragments on prediction. Experiments on both synthetic and real molecular benchmarks demonstrate that **SEAL** consistently outperforms existing methods and produces explanations that chemists judge to be more intuitive and trustworthy.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in molecular property prediction by naturally representing molecules as graphs of atoms and bonds (Wieder et al., 2020). However, their decision-making processes remain opaque, limiting their adoption in applications where interpretability is crucial for scientific discoveries. The lack of interpretability is primarily caused by the message-passing mechanism, which repeatedly exchanges information between nodes (atoms). In each layer, a node aggregates messages from its neighbors, updating its own representation to capture increasingly global molecular context. While this enables the network to comprehend complex molecular interactions, it also entangles information across the graph. As a result, a final embedding of each node reflects not only its own properties but also the cumulative properties of distant atoms, making it difficult to assess the influence of particular substructures on prediction. Moreover, typical global pooling mechanisms further mix information from different nodes, often leading to the oversmoothing problem (Zhang et al., 2023).

To overcome this problem, we introduce **SEAL** (Substructure Explanation via Attribution Learning), a novel interpretable GNN that generates fragment-wise explanations for molecular property prediction. **SEAL** decomposes molecular graphs into chemically meaningful fragments and quantifies the contribution of each fragment to model predictions through a constrained message-passing architecture that reduces information leakage between fragments. It is achieved by defining two separate sets of parameters: one used for message passing within fragments (intrafragment weights), and another for message passing between different fragments (interfragment weights). By adding a regularization term on the interfragment weights as an additional loss function, we can control the flow of information between fragments depending on the complexity of the task.

Many molecular properties, including solubility, toxicity, and binding affinity, are predominantly determined by the presence and identity of specific functional groups and substructures rather than complex global interactions (von Korff & Sander, 2006; Murcko, 1995). Therefore, decomposing molecular graphs into chemically meaningful fragments aligns abstractions that chemists use to understand molecular behavior (Ponzoni et al., 2023). For instance, in the solubility prediction examples shown in Figure 1, the molecule is divided into several fragments, among which the most polar

2 RELATED WORK

091 **Graph neural networks.** GNNs have become a standard method for analyzing molecular data,
092 often using either a message-passing mechanism (Gilmer et al., 2020) or a transformer-based ar-
093 chitecture (Rong et al., 2020; Maziarka et al., 2024). Some of these networks work on fragment
094 graphs where atom groups serve as nodes instead of individual atoms. For example, Cao et al.
095 (2024) proposed a GNN that uses fragment-level message passing for better explainability but still
096 relies on external explainers to determine fragment contributions. Wang et al. (2025) recently in-
097 troduced FragFormer, a transformer that operates on fragments and employs a variant of the CAM
098 method (Zhou et al., 2016) to explain its predictions. In both models, fragments can contain signif-
099 icant signals coming from other parts of the molecule, potentially reducing local interpretability. In
100 SEAL, we minimize unnecessary message passing between fragments to enhance interpretability.

101 **Graph-based explainers.** Many explainable AI (XAI) techniques have been proposed to elucidate
102 the predictions of GNNs. Some identify important subgraphs by perturbing the input graph (Ying
103 et al., 2019; Vu & Thai, 2020; Yuan et al., 2021), while other methods analyze the message-passing
104 mechanism in each layer (Feng et al., 2022b; Gui et al., 2023). Often, explaining GNNs is diffi-
105 cult due to the large number of subgraphs and the complex message-passing process. Therefore,
106 Henderson et al. (2021) proposed regularization techniques that disentangle node representations,
107 aiding in generating better explanations. Another approach involves presenting explanations at the
108 fragment level. For instance, Wu et al. (2023) employed BRICS (Degen et al., 2008) to break down

108 molecules into chemically plausible segments and elucidate predictions by masking entire molecular
 109 fragments. In contrast to SEAL, these are post-hoc explanation methods that require additional
 110 postprocessing steps to elucidate predictions.
 111

112 **Interpretable models.** Inherently interpretable methods are also being developed, including
 113 prototype-based graph neural networks (Zhang et al., 2022; Rymarczyk et al., 2023) and attention-
 114 based models (Xiong et al., 2019; Lee et al., 2023). However, prototypical parts and attention maps
 115 on graphs can still be difficult for humans to interpret because of the multitude of explanation pat-
 116 terns that need to be analyzed. (Zhu et al., 2022) introduced HiGNN, a GNN that employs BRICS
 117 to generate fragments, forming hierarchical information to enhance predictions. Unfortunately, the
 118 fragment information is aggregated using multi-head attention, which complicates interpreting the
 119 predictions. To avoid the complexity of prototypical parts or attention maps, SEAL decomposes
 120 molecules into a simple sum of scalar fragment contributions.
 121

122 An extended related work directly comparing features of similar explainers to SEAL is presented in
 123 Appendix F.
 124

3 SEAL

126 There are two main differences between the SEAL and the existing GNN models. The first of them,
 127 described in Section 3.1, corresponds to the way we aggregate the information from the representa-
 128 tion of the atoms. Instead of globally pooling all the representations, we pool them locally within
 129 the fragments. The second difference, described in Section 3.2, corresponds to the message passing
 130 mechanism, which uses intrafragment and interfragment weights. The latter was regulated with an
 131 additional loss.
 132

3.1 LOCAL POOLING AND CONTRIBUTION

133 The interpretability of our model is achieved by redesigning the prediction head in graph-based mod-
 134 els. Typically, a readout function in GNNs is used to create a graph-level representation, and then
 135 an MLP is applied to make predictions. However, the graph readout aggregates information from
 136 all atoms in the graph, hindering the ability to attribute predictions to specific atoms or functional
 137 groups.
 138

139 Our model first aggregates information within graph fragments. We use sum pooling followed by a
 140 LayerNorm (Ba et al., 2016) to create the fragment representation from the fragment atom represen-
 141 tations. Then, the contribution for each fragment is computed with an MLP, and the final prediction
 142 is the sum of all fragment contributions.
 143

144 Let us define a molecular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, X)$, where $\mathcal{V} = \{v_i\}_{i=1}^N$ is a set of nodes correspond-
 145 ing to atoms, $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of edges corresponding to chemical bonds, $X \in \mathbb{R}^{N \times D}$ is an atom
 146 feature matrix, and D is the number of node features. After passing this graph through a sequence
 147 of GNN layers, a matrix of atom representations $H \in \mathbb{R}^{N \times M}$ is obtained. Each atom is assigned to
 148 exactly one of the K fragments $\mathcal{F}_1, \dots, \mathcal{F}_K$. Then, the model output is computed as follows:
 149

$$\bar{\mathbf{h}}_i = \sum_{v_j \in \mathcal{F}_i} \mathbf{h}_j, \quad c_i = \text{MLP}(\bar{\mathbf{h}}_i), \quad \hat{y} = \sum_{i=1}^K c_i + b, \quad (1)$$

150 where $\bar{\mathbf{h}}_i$ is the representation of i -th fragment, c_i is the contribution of this fragment, b is a train-
 151 able bias term, and \hat{y} is the model prediction. The fragment contributions represent the importance
 152 of each fragment. The bias term is essential because every dataset has its own baseline level (aris-
 153 ing from constant shifts in the measurement units or structure-independent noise) that cannot be
 154 accounted for by a variable number of fragments. Without this bias, the model would need to re-
 155 distribute this baseline across fragments, reducing the clarity and interpretability of the resulting
 156 contributions.
 157

158 **Fragmentation.** In all experiments, we use a modified BRICS-based fragmentation approach (De-
 159 gen et al., 2008) inspired by but not identical to Zhang et al. (2021). We isolate side chains attached
 160 to rings, even when they contain a single atom. Additionally, unlike their procedure, we separate
 161

162 non-ring atoms with degree greater than or equal to four (instead of three), and cut non-ring bonds
 163 connecting two rings as well as halogen attachments. These adjustments yield fragments that better
 164 preserve chemically meaningful units and improve interpretability. Although SEAL can use any
 165 fragmentation method as a preprocessing step, we find BRICS most suitable due to its synthesis-
 166 inspired rules and strong empirical performance. For completeness, we also evaluate SEALAtom,
 167 where each atom forms its own fragment; in this case, the model still produces per-atom additive
 168 contributions rather than relying on global average pooling as in standard GNNs.

170 3.2 INTRAFRAGMENT AND INTERFRAGMENT MESSAGE PASSING

172 The aggregation of messages from neighboring nodes in GNNs is invariant to node permutations.
 173 While this mechanism is effective in extracting meaningful information from molecular graphs
 174 needed for making correct predictions, the information from each node is easily diffused in the
 175 graph, hurting the model’s ability to localize crucial atoms and leading to the known problem of
 176 oversmoothing.

177 To mitigate the problem of leaking unnecessary in-
 178 formation to neighboring nodes, we propose a new
 179 graph neural network variant that operates on pre-
 180 fragmented graphs, controlling the information ex-
 181 changed between fragments. In our implementation,
 182 graph layers have separate weights for intrafrag-
 183 ment and interfragment edges, $W_{\text{intra}} \in \mathbb{R}^{M' \times M}$ and
 184 $W_{\text{inter}} \in \mathbb{R}^{M' \times M}$, respectively. This enables the net-
 185 work to extract relevant information within molecu-
 186 lar fragments and block information leaks to neigh-
 187 bor fragments. The new representation of the i -th
 188 atom $\mathbf{h}'_i \in \mathbb{R}^{M'}$ is computed in the SEAL layer as
 189 follows:

$$190 \mathbf{h}'_i = W \mathbf{h}_i + W_{\text{intra}} \text{mean}_{j \in \mathcal{N}_{\text{in}}(i)} \mathbf{h}_j + W_{\text{inter}} \text{mean}_{j \in \mathcal{N}_{\text{out}}(i)} \mathbf{h}_j, \quad (2)$$

192 where $\mathcal{N}_{\text{in}}(i)$ is a set of neighbors of the i -th node
 193 within the same fragment, and $\mathcal{N}_{\text{out}}(i)$ is the set of its
 194 neighbors outside the fragment. If any of these sets
 195 is empty, the corresponding term is removed from
 196 the formula.

197 To avoid leakage of information that is not crucial for prediction, we introduce a regularization term
 198 to the loss function, which is the L_1 norm of the interfragment weights W_{inter} (Figure 2). This term
 199 is controlled by a hyperparameter λ that should be chosen on a case-by-case basis, but typically
 200 higher values lead to more interpretable results. The loss function in our model is:

$$202 \mathcal{L} = \mathcal{L}_{\text{pred}} + \lambda \sum_{l=1}^L \left\| W_{\text{inter}}^{(l)} \right\|_1 \quad (3)$$

205 where $\mathcal{L}_{\text{pred}}$ is the prediction error loss function (mean squared error for regression and cross entropy
 206 for classification), $W_{\text{inter}}^{(l)}$ are the interfragment weights in the l -th layer.

207 To balance the trade-off between model performance and interpretability, we perform a 10-fold
 208 cross-validation testing multiple values of λ . The selected model is the one with the highest λ
 209 values that is not significantly worse than the best model in terms of the target metric (RMSE for
 210 regression or AUROC for classification) according to the Wilcoxon signed-rank test.

212 4 RESULTS

215 In this section, we present the results of experiments conducted on a synthetic benchmark and real-
 216 world datasets, as well as the user study. See Appendix A for training details and implementation.

Figure 2: Message passing in SEAL reduces information exchanged between fragments using different weights for intrafragment (blue arrows) and interfragment (green arrows) edges. The latter are reduced by regularization (red lines).

Figure 3: Comparison of explanation quality for the B-XAIC benchmark computed with the Subgraph Explanation (SE) score for each synthetic dataset (B, P, etc.). SEAL achieves an average score of 0.93, surpassing baseline methods. At the same time, SEAL achieves comparable performance, with an average AUROC of 0.99 ± 0.01 (see Appendix B for details).

4.1 SYNTHETIC DATASET BENCHMARK

Real-world molecular datasets only offer graph-level labels without assigning importance to specific atoms. Therefore, we chose to first use a synthetic dataset that allows for controlled and reliable assessment of eXplainable AI (XAI) methods by providing direct ground-truth explanations. We evaluate our method on the B-XAIC benchmark (Proszewska et al., 2025), which is designed to compare GNN-based XAI methods in the molecular domain. The dataset includes various tasks focused on identifying different substructures: boron atoms (B), phosphorus atoms (P), halogens (X), indole rings, and pan-assay interference compounds (PAINS). The remaining two tasks focus on counting rings or atoms within rings. Each task has a known ground truth explanation, enabling a precise evaluation of the model’s explanation quality.

Metrics. To evaluate both model performance and explanation faithfulness, we use a two-part evaluation strategy. For classification, we report standard metrics such as AUROC, F1 Score, and Accuracy. For interpretability of explanations, we use two metrics proposed by Proszewska et al. (2025). **Subgraph Explanations (SE)** is the AUROC evaluating the agreement between model explanation and ground-truth explanation for positive examples. **Null Explanations (NE)** is the percentage of outliers in explained node attributions computed using the interquartile range method for the negative examples.

Models and baselines. We benchmark our method against a diverse set of GNN explanation techniques, spanning both mask-based, [gradient-based and self-explainable approaches](#): GNNExplainer (Ying et al., 2019), Saliency Maps (Simonyan et al., 2014), InputXGradients (Shrikumar et al., 2016), Integrated Gradients (Sundararajan et al., 2017), Deconvolution (Mahendran & Vedaldi, 2016), (Shrikumar et al., 2016), Guided Backpropagation (Springenberg et al., 2014), PGExplainer (Luo et al., 2020), [HiGNN](#) (Zhu et al., 2022), ProtGNN (Zhang et al., 2022), [PGIB](#) (Seo et al., 2023) and [SME](#) (Wu et al., 2023) denoted as **SMEAtom**, **SMEBrics** and **SMEMurcko** in dependence of fragmentation used in explanation.

The evaluation of model performance is conducted for GCN (Kipf, 2016), GAT (Veličković et al., 2017), GIN (Xu et al., 2018), ProtGNN (Zhang et al., 2022), [HiGNN](#) (Zhu et al., 2022), [PGIB](#) (Seo et al., 2023) and [SME](#) (Wu et al., 2023). Explanation results for post-hoc [gradient](#) methods are reported only for the GIN model, as it demonstrates the strongest performance across tasks. Similarly, in ProtGNN and [PGIB](#), we used GIN as the backbone and Saliency as the explainer. Hyperparameters for all models, including SEAL, were optimized through random search. The search space and the optimal hyperparameters found are listed in Appendix A.

Figure 4: Node-level explanation examples for selected synthetic compounds from the B-XAIC dataset. Each column corresponds to a compound drawn from one of the tasks. The rows (from top to bottom) correspond to the SEAL explanation, the ground-truth explanation, and the explanation generated by the best Baseline (according to SE score). The more intense the red color, the greater the contribution of a substructure or atom. For clarity, the gray regions indicating specific fragments were omitted.

Figure 5: Effect of regularization on explanation quality in the phosphorus detection task. **(a)** Plot showing the relationship between λ and SE. **(b)** Visual comparison of explanations generated with two different values of λ . High λ values prevent the attribution of high contribution to neighboring fragments.

Results. AUROC for all baseline models analyzed equals 0.95 ± 0.07 , where the maximum baseline score is 0.98 ± 0.02 achieved by GIN, and the minimum is 0.88 ± 0.1 . SEAL achieves 0.99 ± 0.01 AUROC, as presented in Table 11 of the Appendix. While achieving competitive classification performance, SEAL adds the capability of explaining its predictions. Figure 3 shows the results of the explanation evaluation, where our method yields significantly higher SE scores than other explainers on challenging tasks such as PAINS, rings-count, indole, and rings-max. In the halogens (X) and phosphorus (P) tasks, our performance is on par with that of the strongest baselines, reflecting the relative ease of localizing single-atom substructures. A slight decline in performance appears in the boron (B) task due to its frequent appearance in complex substructures that our extended BRICS decomposition cannot efficiently segment (see Figure 4). The largest ring pattern, similar to boron, predominantly occurs in larger substructures, but it also presents an additional challenge due to its highly imbalanced nature, with a low percentage of positive samples across the dataset. This limitation does not occur in SEALAtom, which focuses on a single atom. Performance of SEALAtom is consistently strong in the single-atom detection task. However, it faces challenges in more complex tasks. Nevertheless, the overall performance remains comparable to that of alternative explainers. Finally, full evaluation of the positive and negative examples is provided in Table 14 and Table 15 of the Appendix B.

324 Figure 4 presents example explanations generated by our model for randomly selected molecules. It
 325 includes both correct explanations and failure cases where larger fragments (than the ground-truth
 326 label) are highlighted. The figure also compares the ground-truth annotations with the outputs of
 327 the best-performing baseline method (according to the SE score) selected separately for each task.
 328 SEAL effectively highlights chemically meaningful subgraphs, whereas other approaches tend to
 329 assign the prediction to only a few atoms, distributing smaller weights across the entire graph. More
 330 examples can be found in Appendix E.

331
 332 **Regularization** SEAL dynamically adapts its λ parameter to maximize interpretability without
 333 sacrificing performance. We perform an ablation study by varying the regularization parameter λ ,
 334 which determines how much message passing is restricted in our model. We discover that the opti-
 335 mal value of λ depends on the specific task. In some cases, limiting message propagation improves
 336 explanation by preventing information from leaking across irrelevant parts of the graph. For exam-
 337 ple, in the phosphorus (P) task, increasing λ leads to a notable improvement in subgraph explanation
 338 quality, as shown in Figure 5. This indicates that stronger regularization helps the model concentrate
 339 on localized substructures without causing over-smoothing. In contrast, other tasks, such as PAINS
 340 detection, require the information to flow across distant parts of the graph. In these cases, we find
 341 that the best explanation performance occurs when $\lambda = 0$. Notably, low λ values cause informa-
 342 tion leakage into adjacent fragments, whereas higher λ values provide more focused and faithful
 343 explanations.

344 **4.2 EVALUATION ON REAL-WORLD DATASETS**
 345

346 Evaluating explanation performance on real-world molecular datasets remains a challenging task.
 347 Unlike synthetic benchmarks, these datasets [generally](#) do not provide ground-truth explanations that
 348 identify which atoms or substructures are responsible for the prediction. Additionally, most molec-
 349 ular properties relevant to real-world applications are significantly more complex, often involving
 350 long-range interactions between fragments or features based on the spatial distribution of atoms.
 351 To benchmark our method with real-world compounds, we follow the same setup as used for the
 352 synthetic dataset.

353
 354 **Datasets.** We evaluate our method on four real-world molecular property prediction datasets.
 355 [While three are standard datasets from TDC](#) (Huang et al., 2021), we also include **MUTAG** (Kazius
 356 et al., 2005), which serves as the sole real-world dataset with available ground truth explanations
 357 (-NO2 and -NH2 chemical groups contribute to mutagenic property). **MUTAG** is a binary classifi-
 358 cation for identifying if a molecule is mutagenic or not. hERG inhibition (Karim et al., 2021) is a bi-
 359 nary classification task that includes molecular structures labeled as hERG blockers or non-blockers,
 360 a property critical for cardiac safety assessment in drug development. CYP450 2C9 inhibition (Veith
 361 et al., 2009) is a binary classification task that focuses on the inhibition of the cytochrome P450 2C9
 362 enzyme, which is central to drug metabolism. Aqueous Solubility (AqSol) (Sorkun et al., 2019) is a
 363 regression task that contains compounds with measured solubility in water.

364
 365 **Metrics.** To evaluate explanations [in the absence of ground truth annotations](#) across different meth-
 366 ods and fairly compare them with our model, we decided to evaluate on standard positive and neg-
 367 ative fidelity. For all models, we mask node features at the input level, ensuring a fair comparison.
 368 **Positive Fidelity** is defined as the prediction change after masking the most important nodes indi-
 369 cated by the explainer, and **Negative Fidelity** is the prediction change after retaining only the most
 370 important nodes and masking everything else. [For MUTAG, we use the same SE metric that is also](#)
 371 [used in our synthetic tasks and in other XAI works testing on MUTAG](#) (Bui et al., 2024).

372 For classification tasks, fidelity is measured by the proportion of times the predicted class changes
 373 after masking. We evaluate masking at thresholds of 10%, 20%, and 30% of nodes, ensuring that
 374 the most relevant atoms are included in explanations without exceeding the specified percentage.
 375 However, our method operates on fragments, and it is impossible to select exactly 10% of the atoms
 376 of the molecule. Therefore, we select the percentage of atoms in the most relevant fragments that
 377 is closest to 10% (e.g. 13%) and mask the same amount of most relevant atoms generated by the
 378 baseline methods [to keep the sparsity budget fixed for fair comparison](#). The advantage of our model
 379 is that the prediction is a sum of contributions, so we can directly mask contributions instead of

Figure 6: Relationship between explanation quality (Positive Fidelity 30% of masking) and performance (AUROC) for various models on real-world molecular datasets (hERG and CYP2C9). SEAL outperforms other methods in terms of explanation quality, while maintaining a strong performance comparable to that of HiGNN and GIN models. Detailed results, presented in Appendix B, confirm that high explanation quality in SEAL does not come at the cost of performance.

Table 1: Results of model explanations on the real-world MUTAG dataset and corresponding prediction performance. Explanations are evaluated using Subgraph Explanation (SE) and Null Explanation (NE) metrics. Performance of the model is measured by AUROC, F1, and Accuracy. Note that all post-hoc gradient explanations are derived from a shared GIN backbone, and the SME models utilize an identical backbone architecture for generating explanations.

MUTAG					
Model	SE \uparrow		AUROC \uparrow	F1 \uparrow	Accuracy \uparrow
Deconvolution	0.84 \pm 0.01		0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
GuidedBackprop	0.38 \pm 0.11		0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
IntegratedGradients	0.56 \pm 0.18		0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
Saliency	0.48 \pm 0.07		0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
InputXGradient	0.45 \pm 0.06		0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
PGExplainer	0.29 \pm 0.08		0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
GNNExplainer	0.48 \pm 0.03		0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
HiGNN	0.55 \pm 0.00		0.87 \pm 0.01	0.80 \pm 0.02	0.80 \pm 0.02
SMEAtom	0.76 \pm 0.04		0.81 \pm 0.01	0.81 \pm 0.01	0.81 \pm 0.01
SMEBrics	0.55 \pm 0.00		0.81 \pm 0.01	0.81 \pm 0.01	0.81 \pm 0.01
SMEMurcko	0.47 \pm 0.03		0.81 \pm 0.01	0.81 \pm 0.01	0.81 \pm 0.01
PGIB	0.46 \pm 0.05		0.50 \pm 0.02	0.75 \pm 0.03	0.75 \pm 0.03
ProtGNN	0.47 \pm 0.06		0.86 \pm 0.01	0.78 \pm 0.01	0.78 \pm 0.01
SEALAtom (ours)	0.71 \pm 0.05		0.79 \pm 0.02	0.73 \pm 0.03	0.73 \pm 0.02
SEAL (ours)	0.88 \pm 0.01		0.85 \pm 0.01	0.80 \pm 0.02	0.79 \pm 0.01

masking the input graph nodes and features (which usually leads to out-of-distribution samples). An ablation study on various masking strategies in SEAL is presented in Appendix C.

Results. Figure 6 shows the relationship between predictive AUROC and the quality of explanations measured by positive fidelity on real-world datasets (hERG, CYP2C9). Our SEAL models achieve AUROC values very close to the best-performing baselines, while outperforming other methods in terms of explanation quality. This shows that our method achieves predictive performance on par with the strongest baselines while offering much more quality in explanation. All results on different metrics and methods are indicated in Appendix B in which we also report the comparison of Scaffold instead of Random splits for Fidelity measurement using masking thresholds of 10%-70%. Table 1 presents a consistent trend, where our model on the MUTAG dataset again outperforms competing approaches in explanation quality. These results are particularly signifi-

Figure 7: Node-level explanation examples for selected compounds from the Aqueous Solubility, CYP 2C9, hERG and MUTAG datasets. Each column corresponds to a compound from one of the datasets. The rows (from top to bottom) correspond to explanations of SEAL, a gradient-based method (Integrated Gradients), and a perturbation-based method (GNNExplainer). The more intense the color, the greater the contribution (red - positive, blue - negative) of a substructure or atom. SEAL highlights entire substructures with a single color, which corresponds to how chemists analyze molecules in terms of their properties. **Only SEAL was able to find -NO₂ groups in MUTAG example.**

cant as they demonstrate that our framework is not limited to synthetic datasets but also generalizes effectively to the complexities of real-world molecular graphs.

For regression tasks like Solubility, evaluating explanation quality is more difficult, and not all explainers are well-defined in this context. Nevertheless, our method attains reasonable fidelity values compared to other explanation methods. These results are detailed in Appendix B.

Qualitative examples. In Figure 7, we present qualitative visualizations of explanations generated by our model compared to the top-performing baselines for the AqSoIDB, CYP2C9, hERG MUTAG datasets. While other methods tend to produce scattered or noisy explanations, our model yields more compact and interpretable substructures. These results show that our approach captures chemically plausible explanations that are easier to interpret and often more localized, especially in tasks like solubility, where polarity and solubility driving fragments are correctly emphasized. More examples can be found in Appendix E.

Discussion. Across all evaluated tasks, our model consistently demonstrates strong performance, both in terms of the prediction performance and explanation faithfulness, while providing an added benefit of interpretability. We got strong and comparative results compared to the GNN baselines. Furthermore, we also outperform the other explainer techniques, in terms of positive and negative fidelity. **Moreover, because SEAL is inherently interpretable, it does not require extensive computing or memory resources, as confirmed in the Complexity Analysis in Appendix G.**

By combining strong quantitative results with interpretability aligned with chemical intuition, SEAL proves to be a reliable tool for understanding model decisions across both real and synthetic molecular data. However, fidelity is not a perfect metric because it compares model predictions for the real molecule and its masked counterpart, which has some nodes or their features removed. This artificial reference point is an out-of-distribution sample for the model, so its prediction should be approached with caution. To further support these findings and assess the practical usefulness of the explanations, also keeping in mind that fidelity is not the most informative metric, we conducted a follow-up user study with expert chemists. This enables us to determine whether the generated explanations are not only mathematically accurate but also chemically meaningful and trustworthy in real-world applications.

Figure 8: User study on the quality of explanations. (a) One example question out of 19 questions in the survey. (b) Distribution of votes per explanation method across all 19 questions. Each bar represents a compound divided between preferred methods (marked with different colors). SEAL produced explanations that chemists preferred the most in 14 out of 19 questions.

4.3 USER STUDY

To test whether the explanations produced by SEAL are intuitive to domain experts, we conducted a user study comprising 19 questions that featured various randomly selected compounds. The task for the participants was to indicate the explanation that highlights the atoms contributing most positively to the molecule's solubility. Each question included nine different explanations: one generated by SEAL, six from other explainers, and two random controls, presented in a random order. One control sampled atoms at random, and the other control contained random BRICS fragments to assess whether the preference is based solely on the selection of functional groups familiar to chemists. All presented explanations contained approximately half of the molecule's atoms. Figure 8a shows an example question from the survey. All 14 participants were experts with a minimum of a master's degree in chemistry. They were blinded to the name of the explanation technique, so that their answer was based only on the atoms selected by each method.

SEAL was chosen more often than other explanations in 14 of 19 questions, significantly outperforming all other methods. For the remaining questions, the following methods were chosen most often: Deconvolution and IntegratedGradients (for 5 questions), and InputXGradients (for 3 questions, with possible ties for first place). Other methods (Saliency, GNNExplainer, and Guided Backprop) did not win in any of the questions. The distribution of votes between methods in each question is shown in Figure 8b. All compounds and visualizations that were used for this user study are listed in the Appendix D. The user study confirms that our method, SEAL, provides explanations that align more closely with human intuition and chemical understanding. It was favored over other techniques, emphasizing its ability to produce meaningful and understandable atom-level attributions.

5 CONCLUSIONS

In this work, we introduce SEAL, a new approach to GNNs for predicting molecular properties that shifts the focus from atoms and bonds to chemically meaningful fragments. By explicitly controlling the passing of messages within and between fragments, SEAL prevents the leakage of unnecessary information and provides explanations that more closely align with how chemists reason about molecules. Experiments on synthetic and real-world datasets demonstrate that SEAL maintains competitive predictive accuracy and delivers more faithful, intuitive, fragment-level interpretations. A user study further shows that chemists consistently find explanations of SEAL more useful than those of existing methods. Thus, SEAL provides a practical approach to enhancing interpretability in molecular modeling without compromising predictive performance.

REPRODUCIBILITY STATEMENT

The implementation of our model and the code for reproducing experiments can be found in the supplementary material. The code will be publicly available under an MIT license upon the publication of the paper. All experiments were conducted on an NVIDIA Grace Hopper GH200, NVIDIA Grace CPU 72-Core @ 3.1 GHz, 16GB RAM, CUDA toolkit 12.4. Our experiments were carried

540 out in Python 3.11, with Pytorch 2.5.1, Pytorch Geometric 2.6.1 for training, and RDKit (2024.9.6)
 541 for preprocessing molecules. The full Python environment is available in the code repository.
 542

543 **REFERENCES**

544 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.

545 Ngoc Bui, Hieu Trung Nguyen, Viet Anh Nguyen, and Rex Ying. Explaining graph neural networks via structure-aware interaction index. *arXiv preprint arXiv:2405.14352*, 2024.

546 Piao-Yang Cao, Yang He, Ming-Yang Cui, Xiao-Min Zhang, Qingye Zhang, and Hong-Yu Zhang. Group graph: a molecular graph representation with enhanced performance, efficiency and interpretability. *Journal of Cheminformatics*, 16(1):133, 2024.

547 Andrew M. Davis and Paul D. Leeson. Physicochemical properties. In *The Handbook of Medicinal Chemistry: Principles and Practice*. The Royal Society of Chemistry, 02 2023. ISBN 978-1-78801-898-2. doi: 10.1039/9781788018982-00001. URL <https://doi.org/10.1039/9781788018982-00001>.

548 Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling and using 'drug-like' chemical fragment spaces. *ChemMedChem*, 3(10):1503, 2008.

549 Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros Tassoulas. Kergnns: Interpretable graph neural networks with graph kernels. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 6614–6622, 2022a.

550 Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, and Xia Hu. DEGREE: Decomposition based explanation for graph neural networks. In *International Conference on Learning Representations*, 2022b.

551 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Message passing neural networks. In *Machine learning meets quantum physics*, pp. 199–214. Springer, 2020.

552 Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, and Shuiwang Ji. Flowx: Towards explainable graph neural networks via message flows. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(7):4567–4578, 2023.

553 Ryan Henderson, Djork-Arné Clevert, and Floriane Montanari. Improving molecular graph neural network explainability with orthonormalization and induced sparsity. In *International Conference on Machine Learning*, pp. 4203–4213. PMLR, 2021.

554 Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning datasets and tasks for drug discovery and development. *arXiv preprint arXiv:2102.09548*, 2021.

555 Abdul Karim, Matthew Lee, Thomas Balle, and Abdul Sattar. Cardiotox net: a robust predictor for herg channel blockade based on deep learning meta-feature ensembles. *Journal of Cheminformatics*, 13(1):60, 2021.

556 Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for mutagenicity prediction. *Journal of Medicinal Chemistry*, 2005.

557 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*, 2016.

558 Sangho Lee, Hyunwoo Park, Chihyeon Choi, Wonjoon Kim, Ki Kang Kim, Young-Kyu Han, Joohoon Kang, Chang-Jong Kang, and Youngdoo Son. Multi-order graph attention network for water solubility prediction and interpretation. *Scientific Reports*, 13(1):957, 2023.

559 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural network. *Advances in neural information processing systems*, 33:19620–19631, 2020.

594 Aravindh Mahendran and Andrea Vedaldi. Salient deconvolutional networks. In *European conference on computer vision*, pp. 120–135. Springer, 2016.
 595
 596

597 Łukasz Maziarka, Dawid Majchrowski, Tomasz Danel, Piotr Gaiński, Jacek Tabor, Igor Podolak,
 598 Paweł Morkisz, and Stanisław Jastrzebski. Relative molecule self-attention transformer. *Journal of Cheminformatics*, 16(1):3, 2024.
 599

600 Mark A Murcko. Computational methods to predict binding free energy in ligand-receptor com-
 601 plexes. *Journal of medicinal chemistry*, 38(26):4953–4967, 1995.
 602

603 Ignacio Ponzoni, Juan Antonio Páez Prosper, and Nuria E Campillo. Explainable artificial intelli-
 604 gence: A taxonomy and guidelines for its application to drug discovery. *Wiley Interdisciplinary Reviews: Computational Molecular Science*, 13(6):e1681, 2023.
 605

606 Magdalena Proszewska, Tomasz Danel, and Dawid Rymarczyk. B-xaic dataset: Benchmarking
 607 explainable ai for graph neural networks using chemical data. *arXiv preprint arXiv:2505.22252*,
 608 2025.
 609

610 Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
 611 Self-supervised graph transformer on large-scale molecular data. *Advances in neural information
 612 processing systems*, 33:12559–12571, 2020.

613 Dawid Rymarczyk, Daniel Dobrowolski, and Tomasz Danel. ProGReST: Prototypical graph regres-
 614 sion soft trees for molecular property prediction. In *Proceedings of the 2023 SIAM International
 615 Conference on Data Mining (SDM)*, pp. 379–387. SIAM, 2023.
 616

617 Sangwoo Seo, Sungwon Kim, and Chanyoung Park. Interpretable prototype-based graph informa-
 618 tion bottleneck. *Advances in Neural Information Processing Systems*, 36:76737–76748, 2023.
 619

620 Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black
 621 box: Learning important features through propagating activation differences. *arXiv preprint
 622 arXiv:1605.01713*, 2016.

623 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 624 Visualising image classification models and saliency maps, 2014.
 625

626 Murat Cihan Sorkun, Abhishek Khetan, and Süleyman Er. Aqsoldb, a curated reference set of
 627 aqueous solubility and 2d descriptors for a diverse set of compounds. *Scientific data*, 6(1):143,
 628 2019.

629 Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
 630 simplicity: The all convolutional net. *arXiv preprint arXiv:1412.6806*, 2014.
 631

632 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 633 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

634 Henrike Veith, Noel Southall, Ruili Huang, Tim James, Darren Fayne, Natalia Artyomenko, Min
 635 Shen, James Inglese, Christopher P Austin, David G Lloyd, et al. Comprehensive characterization
 636 of cytochrome p450 isozyme selectivity across chemical libraries. *Nature biotechnology*, 27(11):
 637 1050–1055, 2009.
 638

639 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 640 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

641 Modest von Korff and Thomas Sander. Toxicity-indicating structural patterns. *Journal of chemical
 642 information and modeling*, 46(2):536–544, 2006.
 643

644 Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
 645 neural networks. *Advances in neural information processing systems*, 33:12225–12235, 2020.
 646

647 Jiaxi Wang, Yaosen Min, Miao Li, and Ji Wu. Fragformer: A fragment-based representation learning
 framework for molecular property prediction. *Transactions on Machine Learning Research*, 2025.

648 Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Seidel, and Thierry Langer. A compact review of molecular property prediction with graph neural
 649 networks. *Drug Discovery Today: Technologies*, 37:1–12, 2020.

650

651 Zhenxing Wu, Jike Wang, Hongyan Du, Dejun Jiang, Yu Kang, Dan Li, Peichen Pan, Yafeng Deng,
 652 Dongsheng Cao, Chang-Yu Hsieh, et al. Chemistry-intuitive explanation of graph neural networks
 653 for molecular property prediction with substructure masking. *Nature communications*, 14(1):
 654 2585, 2023.

655

656 Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhao-
 657 jun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
 658 representation for drug discovery with the graph attention mechanism. *Journal of medicinal
 659 chemistry*, 63(16):8749–8760, 2019.

660

661 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 662 networks? *arXiv preprint arXiv:1810.00826*, 2018.

663

664 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
 665 Generating explanations for graph neural networks. *Advances in neural information processing
 666 systems*, 32, 2019.

667

668 Zhaoning Yu and Hongyang Gao. Mage: Model-level graph neural networks explanations via motif-
 669 based graph generation. In *The Thirteenth International Conference on Learning Representations*,
 2025.

670

671 Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
 672 graph neural networks. In *Proceedings of the 26th ACM SIGKDD international conference on
 673 knowledge discovery & data mining*, pp. 430–438, 2020.

674

675 Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
 676 networks via subgraph explorations. In *International conference on machine learning*, pp. 12241–
 12252. PMLR, 2021.

677

678 Xu Zhang, Yonghui Xu, Wei He, Wei Guo, and Lizhen Cui. A comprehensive review of the over-
 679 smoothing in graph neural networks. In *CCF Conference on Computer Supported Cooperative
 680 Work and Social Computing*, pp. 451–465. Springer, 2023.

681

682 Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
 683 supervised learning for molecular property prediction. *Advances in Neural Information Processing
 684 Systems*, 34:15870–15882, 2021.

685

686 Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee Kong Lee. Protgnn: Towards self-
 687 explaining graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
 688 volume 36, pp. 9127–9135, 2022.

689

690 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
 691 features for discriminative localization. In *Proceedings of the IEEE conference on computer
 692 vision and pattern recognition*, pp. 2921–2929, 2016.

693

694 Weimin Zhu, Yi Zhang, Duancheng Zhao, Jianrong Xu, and Ling Wang. Hignn: A hierarchical
 695 informative graph neural network for molecular property prediction equipped with feature-wise
 696 attention. *Journal of Chemical Information and Modeling*, 63(1):43–55, 2022.

697

698

699 A TRAINING DETAILS

700

701 A.1 EXPERIMENTAL DETAILS

702 We trained the networks with a batch size of 256, using the AdamW optimizer, and employed early
 703 stopping after 30 epochs. Additionally, a warm-up period was implemented for the first 50 epochs
 704 (with 10 epochs for tasks that required fewer epochs, such as atom-specific tasks from the synthetic
 705 dataset). For our model, we used 10-fold cross-validation to select the optimal λ using the Wilcoxon

signed-rank test. We used MAE and AUROC as target evaluation metrics for hyperparameter searching and the Wilcoxon test. A weight decay of 0.0001 was applied to all models and tasks. Seed was set to 0 during training, while for explanation extraction and evaluation, it was set to 123. All experiment results were obtained using a 5-fold split approach. The B-XAIC benchmark proposed a fixed train-test set, and we followed this recommendation. For the datasets from TDC, we sampled five testing sets using seeds from 0 to 4, following the benchmark recommendation. **By default, we report values from the TDC Random Split, unless Scaffold Split is explicitly indicated.** The ranges of hyperparameters are shown in Table 2.

Table 2: Hyperparameter search space used during model optimization.

Hyperparameter	Values
Hidden dimensions	[64, 128, 256, 512, 1024]
GNN layers	[2, 3, 4]
Learning rate	[0.001, 0.003, 0.0001, 0.0003]
Dropout rate	[0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
λ	[2, 1, 0.5, 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 0]

The hyperparameters selected for the synthetic datasets are listed in Table 9, whereas those for the real-world datasets are presented in Table 10.

A.2 DATA PREPROCESSING

In our experiments, we standardize target values in our regression task (Solubility), but we do not perform any preprocessing in classification tasks. The atom features used for training include one-hot encoded atom types [C, N, O, F, Cl, Br, P, S, B, I, Other]; we do not use any bond features.

B EXTENDED RESULTS

Figure 9: Positive (left column) and Negative (right column) Fidelity scores for CYP2C9 (first row) and hERG (second row) datasets evaluated across different masking percentages (10% to 70%). The results are reported under the Scaffold split and SEAL (ours) models outperform other XAI methods in terms of Positive and Negative fidelity metric at each masking level.

The performance of SEAL with different regularization values λ for the synthetic benchmark is presented in Tables 11, Table 12 and Table 13. Detailed results for the subgraph explanation metric are shown in Table 14, and for the null explanation metric in Table 15. For real-world datasets, the evaluation of classification tasks is presented in Table 16, [Table 17](#), while for the regression task in Table 18. For datasets from TDC, we report Random and Scaffold splits. The values of the fidelity metric for these datasets are presented in Table 19, Table 20, Table 21 and [Table 22](#). The comparison of how the Fidelity changes, in dependence of the percentage of molecule masked (from 10% to 70%), we visualize the results in Figure 9.

C ABLATION STUDY

C.1 MASKING STRATEGY

In our fidelity evaluation, we analyze how masking different types of contributions affects the model’s interpretability. For each fidelity type (positive, negative), we evaluate the impact of masking the top 10%, 20%, and 30% of nodes or contributions. This allows us to compare how well explanations identify the most influential substructures without exceeding a predefined threshold.

Unlike standard explainers that only operate on node masks, our model allows for masking specific contribution scores directly at the level of the model’s architecture by setting $c_i = 0$ for a given fragment. However, a challenge with this approach is that sometimes, even at the beginning of the ranking, a single large important substructure can surpass the 10% node threshold. To fairly compare all the methods, we decide to mask the same amount of atoms for each molecule among the all methods. We need to carefully select the masking strategy: whether to focus on absolute contributions or to selectively mask only positive or negative influences. However, the optimal strategy may vary depending on the task and model sensitivity, whether one chooses to use or omit masking of contributions, and whether masking is guided by absolute, positive only, or negative only importance scores. The results comparing these masking strategies are reported in Table 4 for hERG, in Table 5 for CYP2C9, and in Table 6 for Solubility. These results contain the following naming convention:

- mask-abs: zeroing features, mask contributions - based on maximum absolute value,
- mask: zeroing features, mask contributions - based on maximum or minimum value,
- abs: zeroing features - based on maximum absolute value,
- zero: zeroing features - based on maximum or minimum value.

C.2 ZERO-INIT

We evaluated different strategies for mitigating information leakage to gather faithful explanations. We compare the proposed dynamic regularization λ against a static initialization. Static initialization approach denoted as Zero-Init, initializes the weights W_{inter} close to zero. Weights are randomly initialized from the normal distribution with a mean of 0 and a standard deviation of 10^{-5} . We did not apply regularization, which means $\lambda = 0$. We have focused our analysis on the Phosphorus (P) task of the B-XAIC benchmark, as this task exhibits the highest information leakages, as we have observed.

As shown in Table 3, applying the regularization λ increases the explanation performance, and the model achieves a 0.99 score on the Subgraph Explanation (SE) metric. In contrast, initialization with the zeros (Zero-Init) does not prevent information leakage. This demonstrates that initialization alone is insufficient to prevent information leakage. Our experiment is supported by the qualitative results in Figure 10, where we show how the contribution values are distributed across the graph, without successfully constraining the information flow for the Zero-Init approach.

C.3 λ CONTRIBUTION

To encourage sparsity in identifying the most relevant substructures, we extended the λ constraints. We experimented not only using λ as a regularizer for W_{inter} in message-passing flow, but also

810
811
812
813Table 3: Performance of SEAL on SE (Subgraph Explanation) metric for Phosphorus task (P) on B-XAIC benchmark. Standards λ parameters denoted as SEAL λ and SEAL without regularization, but $W_{\text{inter}} \approx 0$ initialized814
815
816
817
818
819
820
821
822
823

Method	SE
SEAL (Zero-Init)	0.91 ± 0.04
SEAL ($\lambda = 2$)	0.99 ± 0.00
SEAL ($\lambda = 1$)	0.99 ± 0.00
SEAL ($\lambda = 0.5$)	0.99 ± 0.00
SEAL ($\lambda = 10^{-1}$)	0.99 ± 0.00
SEAL ($\lambda = 10^{-2}$)	0.99 ± 0.00
SEAL ($\lambda = 10^{-3}$)	0.96 ± 0.04
SEAL ($\lambda = 10^{-4}$)	0.96 ± 0.04
SEAL ($\lambda = 0$)	0.88 ± 0.01

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838839
840
841
842Figure 10: Effect of regularization on explanation quality in the phosphorus detection task (P). Visual comparison of explanations for $\lambda = 2$ which effectively blocks the information passing and Zero-Init ($W_{\text{inter}} \approx 0$), $\lambda = 0$ where information flow goes from Phosphorus to neighbour atoms.843
844
845
846
847
848
849

directly in scalar fragment contributions c_i , under these conditions forward pass and loss function are defined as:

$$\bar{\mathbf{h}}_i = \sum_{v_j \in \mathcal{F}_i} \mathbf{h}_j, \quad c_i = \text{MLP}(\bar{\mathbf{h}}_i), \quad \hat{y} = \sum_{i=1}^K c_i + b, \quad (4)$$

850
851

where c_i is the scalar contribution to the prediction obtained from the fragment representation, the loss function with extended λ constraints is defined as:

$$\mathcal{L} = \mathcal{L}_{\text{pred}} + \lambda_{\text{MP}} \sum_{l=1}^L \left\| W_{\text{inter}}^{(l)} \right\|_1 + \lambda_{\text{CONTR}} \sum_{i=1}^K |c_i| \quad (5)$$

855
856
857

where λ_{MP} controls the flow between fragments as in the original defined loss, and λ_{CONTR} tends to create sparse contributions c_i .

858
859
860

To assess the need for this dual λ approach, we performed an ablation study for different λ_{MP} and λ_{CONTR} hyperparameter values. The results visualized in Figure 11 compare the performance of the model (AUROC) and explanations (SE) on two tasks from B-XAIC (rings-count, PAINS).

861
862
863

While observing the performance presented in Figure 11, a clear pattern appears: regularization λ_{CONTR} has no influence on the prediction as well as the explanation. As shown in heatmaps, the color gradient of performance changes smoothly and is almost entirely aligned along the λ_{MP} axis. For different λ_{MP} parameters, we see significant changes in Subgraph Explanation (SE) and AUROC

Figure 11: **Ablation study on λ regularization.** The heatmaps display the Subgraph Explanation (SE) and AUROC metric for rings-count and PAINS tasks from B-XAIC, across a grid of λ_{MP} and λ_{CONTR} values. λ_{MP} points to the regularization between fragments on the message passing mechanism, and λ_{CONTR} points to the regularization on the contributions c_i .

metrics. Changing λ_{CONTR} makes no difference in the results, worth to note is that, higher λ_{CONTR} makes model collapses what causes underperforming. This observation suggests that regularizing fragment contribution by the λ_{CONTR} is not necessary; the main role is taken by the regularization between fragments by the λ_{MP} .

D USER STUDY

All of the molecules that were included in our user study are presented in Figures 13-19. Each explanation is annotated with the name of the method that produced this explanation (the names were not included in the survey, and the order of the explanations was randomized). Some methods resulted in the same explanation, which is why some of the figures have multiple method names. In these situations, we had to generate more random explanations to maintain a consistent number of options across questions. Methods that took part in these experiments: SEAL, GuidedBackprop, GNNExplainer, InputXGradient, Saliency, Deconvolution, IntegratedGradients, two Random methods, the first where we sample from nodes, the second where we sample for substructures generated by BRICS.

E VISUALIZATIONS

Figures 20, 22, 24, 26, 28, 30, and 32 display examples of explanations generated by the SEAL model for the tasks in the synthetic dataset for the positive target class. The explanations for the negative class, where the substructure is not present in the compound, are illustrated in Figures 21, 23, 25, 27, 29, 31, and 33. The explanations for the real-world datasets are available in Figures 34-37.

918
919
920
921
922
923
924
925
926
927

928 Table 4: Model explanations performance using different type of masking strategy in SEAL
929 architecture for hERG dataset. Evaluating using Fidelity metrics at 10%, 20%, and 30% masking
930 thresholds.

Model	Fidelity ₁₀ + ↑	Fidelity ₁₀ - ↓	Fidelity ₂₀ + ↑	Fidelity ₂₀ - ↓	Fidelity ₃₀ + ↑	Fidelity ₃₀ - ↓
hERG						
SEAL-mask-abs	0.36 ± 0.01	0.18 ± 0.00	0.37 ± 0.02	0.18 ± 0.01	0.38 ± 0.02	0.15 ± 0.01
SEAL-mask	0.57 ± 0.01	0.00 ± 0.00	0.66 ± 0.01	0.00 ± 0.00	0.76 ± 0.01	0.00 ± 0.00
SEAL-abs	0.49 ± 0.04	0.46 ± 0.04	0.49 ± 0.04	0.46 ± 0.04	0.49 ± 0.04	0.44 ± 0.05
SEAL-zero	0.59 ± 0.05	0.45 ± 0.04	0.58 ± 0.10	0.43 ± 0.06	0.58 ± 0.12	0.40 ± 0.09
SEAL-mask-abs	0.36 ± 0.01	0.18 ± 0.01	0.37 ± 0.02	0.18 ± 0.01	0.39 ± 0.02	0.15 ± 0.01
SEAL-mask	0.57 ± 0.02	0.00 ± 0.00	0.65 ± 0.02	0.00 ± 0.00	0.75 ± 0.01	0.00 ± 0.00
SEAL-abs	0.54 ± 0.04	0.48 ± 0.10	0.55 ± 0.03	0.47 ± 0.11	0.55 ± 0.03	0.45 ± 0.12
SEAL-zero	0.64 ± 0.03	0.44 ± 0.15	0.66 ± 0.06	0.41 ± 0.18	0.67 ± 0.10	0.38 ± 0.20
SEAL-mask-abs	0.37 ± 0.01	0.18 ± 0.01	0.37 ± 0.01	0.17 ± 0.00	0.39 ± 0.02	0.15 ± 0.01
SEAL-mask	0.57 ± 0.01	0.00 ± 0.00	0.66 ± 0.02	0.00 ± 0.00	0.76 ± 0.01	0.00 ± 0.00
SEAL-abs	0.52 ± 0.04	0.49 ± 0.05	0.52 ± 0.04	0.48 ± 0.06	0.52 ± 0.04	0.47 ± 0.07
SEAL-zero	0.62 ± 0.03	0.47 ± 0.08	0.62 ± 0.07	0.45 ± 0.10	0.61 ± 0.09	0.42 ± 0.11
SEAL-mask-abs	0.37 ± 0.01	0.20 ± 0.02	0.38 ± 0.01	0.19 ± 0.01	0.40 ± 0.01	0.16 ± 0.01
SEAL-mask	0.59 ± 0.01	0.00 ± 0.00	0.68 ± 0.01	0.00 ± 0.00	0.77 ± 0.01	0.00 ± 0.00
SEAL-abs	0.50 ± 0.03	0.50 ± 0.03	0.51 ± 0.02	0.49 ± 0.04	0.51 ± 0.02	0.48 ± 0.04
SEAL-zero	0.59 ± 0.05	0.49 ± 0.04	0.60 ± 0.07	0.48 ± 0.05	0.58 ± 0.07	0.45 ± 0.07
SEAL-mask-abs	0.37 ± 0.01	0.19 ± 0.02	0.38 ± 0.01	0.18 ± 0.01	0.39 ± 0.01	0.15 ± 0.01
SEAL-mask	0.59 ± 0.01	0.00 ± 0.00	0.68 ± 0.01	0.00 ± 0.00	0.78 ± 0.01	0.00 ± 0.00
SEAL-abs	0.47 ± 0.03	0.48 ± 0.03	0.48 ± 0.02	0.47 ± 0.03	0.49 ± 0.02	0.46 ± 0.04
SEAL-zero	0.59 ± 0.03	0.47 ± 0.05	0.58 ± 0.07	0.45 ± 0.07	0.56 ± 0.09	0.43 ± 0.09
SEAL-mask-abs	0.38 ± 0.03	0.24 ± 0.01	0.39 ± 0.02	0.22 ± 0.01	0.41 ± 0.02	0.20 ± 0.02
SEAL-mask	0.63 ± 0.03	0.02 ± 0.01	0.72 ± 0.03	0.01 ± 0.01	0.80 ± 0.03	0.01 ± 0.01
SEAL-abs	0.43 ± 0.04	0.48 ± 0.01	0.45 ± 0.04	0.48 ± 0.01	0.47 ± 0.03	0.47 ± 0.02
SEAL-zero	0.58 ± 0.04	0.48 ± 0.01	0.59 ± 0.05	0.47 ± 0.02	0.57 ± 0.05	0.44 ± 0.04
SEAL-mask-abs	0.42 ± 0.02	0.28 ± 0.04	0.44 ± 0.02	0.28 ± 0.04	0.46 ± 0.02	0.27 ± 0.03
SEAL-mask	0.63 ± 0.01	0.09 ± 0.03	0.71 ± 0.01	0.07 ± 0.02	0.78 ± 0.01	0.05 ± 0.02
SEAL-abs	0.46 ± 0.02	0.49 ± 0.01	0.49 ± 0.01	0.49 ± 0.01	0.50 ± 0.02	0.49 ± 0.01
SEAL-zero	0.56 ± 0.05	0.49 ± 0.01	0.57 ± 0.05	0.48 ± 0.01	0.55 ± 0.06	0.47 ± 0.02
SEAL-mask-abs	0.46 ± 0.02	0.32 ± 0.02	0.47 ± 0.01	0.32 ± 0.02	0.48 ± 0.01	0.31 ± 0.02
SEAL-mask	0.67 ± 0.02	0.15 ± 0.02	0.74 ± 0.02	0.15 ± 0.01	0.78 ± 0.03	0.14 ± 0.01
SEAL-abs	0.43 ± 0.02	0.49 ± 0.02	0.48 ± 0.02	0.49 ± 0.02	0.49 ± 0.02	0.48 ± 0.02
SEAL-zero	0.52 ± 0.02	0.49 ± 0.02	0.53 ± 0.02	0.48 ± 0.02	0.51 ± 0.02	0.48 ± 0.02

963
964
965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981

982 Table 5: Model explanations performance using different type of masking strategy in SEAL archi-
983 tecture for CYP2C9 dataset. Evaluating using Fidelity metrics at 10%, 20%, and 30% masking
984 thresholds.

Model	Fidelity ₁₀ + ↑	Fidelity ₁₀ - ↓	Fidelity ₂₀ + ↑	Fidelity ₂₀ - ↓	Fidelity ₃₀ + ↑	Fidelity ₃₀ - ↓
CYP2C9						
SEAL-mask-abs	0.36 ± 0.01	0.19 ± 0.01	0.37 ± 0.01	0.18 ± 0.01	0.39 ± 0.02	0.15 ± 0.02
SEAL-mask	0.52 ± 0.02	0.04 ± 0.05	0.57 ± 0.03	0.03 ± 0.04	0.66 ± 0.03	0.01 ± 0.01
SEAL-abs	0.41 ± 0.11	0.40 ± 0.11	0.42 ± 0.11	0.39 ± 0.11	0.45 ± 0.10	0.38 ± 0.12
SEAL-zero	0.49 ± 0.08	0.37 ± 0.15	0.51 ± 0.08	0.35 ± 0.15	0.54 ± 0.07	0.32 ± 0.16
SEAL-mask-abs	0.34 ± 0.02	0.20 ± 0.02	0.35 ± 0.01	0.19 ± 0.02	0.36 ± 0.02	0.16 ± 0.02
SEAL-mask	0.50 ± 0.02	0.05 ± 0.06	0.55 ± 0.02	0.04 ± 0.05	0.64 ± 0.03	0.01 ± 0.01
SEAL-abs	0.40 ± 0.13	0.40 ± 0.12	0.41 ± 0.13	0.40 ± 0.12	0.42 ± 0.13	0.38 ± 0.12
SEAL-zero	0.45 ± 0.10	0.39 ± 0.13	0.46 ± 0.11	0.38 ± 0.13	0.47 ± 0.11	0.35 ± 0.14
SEAL-mask-abs	0.35 ± 0.01	0.20 ± 0.02	0.36 ± 0.01	0.19 ± 0.02	0.37 ± 0.01	0.15 ± 0.01
SEAL-mask	0.50 ± 0.02	0.05 ± 0.04	0.56 ± 0.01	0.04 ± 0.03	0.64 ± 0.02	0.01 ± 0.01
SEAL-abs	0.35 ± 0.02	0.36 ± 0.04	0.37 ± 0.02	0.35 ± 0.04	0.40 ± 0.05	0.33 ± 0.05
SEAL-zero	0.44 ± 0.05	0.34 ± 0.05	0.46 ± 0.05	0.32 ± 0.05	0.48 ± 0.05	0.28 ± 0.05
SEAL-mask-abs	0.38 ± 0.02	0.19 ± 0.02	0.38 ± 0.02	0.18 ± 0.02	0.38 ± 0.02	0.16 ± 0.01
SEAL-mask	0.57 ± 0.02	0.00 ± 0.00	0.63 ± 0.02	0.00 ± 0.00	0.72 ± 0.02	0.00 ± 0.00
SEAL-abs	0.53 ± 0.12	0.52 ± 0.10	0.55 ± 0.12	0.50 ± 0.10	0.57 ± 0.11	0.48 ± 0.10
SEAL-zero	0.56 ± 0.08	0.51 ± 0.11	0.59 ± 0.08	0.49 ± 0.10	0.60 ± 0.08	0.45 ± 0.12
SEAL-mask-abs	0.35 ± 0.02	0.20 ± 0.02	0.36 ± 0.02	0.20 ± 0.01	0.36 ± 0.02	0.18 ± 0.01
SEAL-mask	0.53 ± 0.02	0.00 ± 0.00	0.60 ± 0.02	0.00 ± 0.00	0.69 ± 0.02	0.00 ± 0.00
SEAL-abs	0.47 ± 0.14	0.40 ± 0.08	0.48 ± 0.15	0.40 ± 0.08	0.50 ± 0.15	0.38 ± 0.08
SEAL-zero	0.50 ± 0.09	0.39 ± 0.12	0.52 ± 0.10	0.38 ± 0.12	0.53 ± 0.11	0.36 ± 0.14
SEAL-mask-abs	0.38 ± 0.02	0.22 ± 0.03	0.39 ± 0.01	0.21 ± 0.02	0.39 ± 0.02	0.20 ± 0.02
SEAL-mask	0.53 ± 0.02	0.06 ± 0.04	0.58 ± 0.02	0.05 ± 0.04	0.65 ± 0.02	0.04 ± 0.03
SEAL-abs	0.41 ± 0.09	0.38 ± 0.09	0.42 ± 0.10	0.37 ± 0.08	0.43 ± 0.09	0.36 ± 0.08
SEAL-zero	0.47 ± 0.06	0.36 ± 0.09	0.49 ± 0.08	0.35 ± 0.10	0.51 ± 0.09	0.31 ± 0.10
SEAL-mask-abs	0.38 ± 0.03	0.26 ± 0.04	0.41 ± 0.04	0.25 ± 0.03	0.43 ± 0.04	0.24 ± 0.03
SEAL-mask	0.52 ± 0.02	0.13 ± 0.05	0.58 ± 0.02	0.11 ± 0.03	0.63 ± 0.03	0.10 ± 0.04
SEAL-abs	0.38 ± 0.07	0.41 ± 0.11	0.41 ± 0.09	0.39 ± 0.09	0.44 ± 0.10	0.36 ± 0.07
SEAL-zero	0.41 ± 0.05	0.40 ± 0.13	0.45 ± 0.06	0.38 ± 0.12	0.47 ± 0.07	0.34 ± 0.11
SEAL-mask-abs	0.37 ± 0.01	0.25 ± 0.02	0.41 ± 0.02	0.23 ± 0.02	0.43 ± 0.03	0.22 ± 0.01
SEAL-mask	0.52 ± 0.00	0.11 ± 0.02	0.59 ± 0.01	0.09 ± 0.01	0.65 ± 0.01	0.07 ± 0.01
SEAL-abs	0.30 ± 0.01	0.32 ± 0.02	0.33 ± 0.01	0.31 ± 0.02	0.35 ± 0.02	0.29 ± 0.02
SEAL-zero	0.39 ± 0.02	0.28 ± 0.02	0.43 ± 0.02	0.26 ± 0.02	0.47 ± 0.03	0.21 ± 0.02

1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035

1036 Table 6: Model explanations performance using different type of masking strategy in SEAL archi-
 1037 tecture for Solubility dataset. Evaluating using Fidelity metrics at 10%, 20%, and 30% masking
 1038 thresholds.

Model	Fidelity ₁₀ + ↑	Fidelity ₁₀ - ↓	Fidelity ₂₀ + ↑	Fidelity ₂₀ - ↓	Fidelity ₃₀ + ↑	Fidelity ₃₀ - ↓
Solubility						
SEAL-mask-abs	0.45 ± 0.03	0.26 ± 0.10	0.46 ± 0.03	0.25 ± 0.10	0.49 ± 0.04	0.22 ± 0.09
SEAL-mask	0.42 ± 0.03	0.30 ± 0.10	0.45 ± 0.03	0.29 ± 0.09	0.49 ± 0.03	0.27 ± 0.08
SEAL-abs	1.12 ± 0.25	1.04 ± 0.42	1.20 ± 0.28	0.96 ± 0.38	1.34 ± 0.32	0.84 ± 0.33
SEAL-zero	0.98 ± 0.23	1.20 ± 0.47	1.07 ± 0.26	1.11 ± 0.42	1.21 ± 0.30	0.98 ± 0.37
SEAL-mask-abs	0.44 ± 0.04	0.22 ± 0.04	0.46 ± 0.04	0.21 ± 0.04	0.48 ± 0.05	0.19 ± 0.04
SEAL-mask	0.41 ± 0.03	0.27 ± 0.04	0.44 ± 0.03	0.27 ± 0.04	0.47 ± 0.04	0.24 ± 0.04
SEAL-abs	1.04 ± 0.31	0.83 ± 0.39	1.11 ± 0.34	0.78 ± 0.36	1.22 ± 0.38	0.69 ± 0.31
SEAL-zero	0.90 ± 0.30	0.99 ± 0.42	0.98 ± 0.33	0.93 ± 0.38	1.10 ± 0.37	0.82 ± 0.33
SEAL-mask-abs	0.44 ± 0.02	0.22 ± 0.03	0.46 ± 0.02	0.21 ± 0.03	0.48 ± 0.02	0.19 ± 0.03
SEAL-mask	0.41 ± 0.03	0.26 ± 0.03	0.44 ± 0.02	0.26 ± 0.03	0.48 ± 0.03	0.24 ± 0.03
SEAL-abs	1.08 ± 0.31	0.89 ± 0.41	1.15 ± 0.33	0.83 ± 0.38	1.26 ± 0.37	0.74 ± 0.34
SEAL-zero	0.91 ± 0.26	1.08 ± 0.50	1.01 ± 0.28	1.00 ± 0.46	1.13 ± 0.33	0.89 ± 0.40
SEAL-mask-abs	0.44 ± 0.05	0.27 ± 0.03	0.45 ± 0.06	0.25 ± 0.03	0.47 ± 0.06	0.23 ± 0.02
SEAL-mask	0.45 ± 0.04	0.24 ± 0.04	0.48 ± 0.04	0.24 ± 0.03	0.52 ± 0.04	0.23 ± 0.02
SEAL-abs	0.77 ± 0.20	0.67 ± 0.29	0.83 ± 0.23	0.62 ± 0.26	0.92 ± 0.27	0.55 ± 0.23
SEAL-zero	0.69 ± 0.20	0.78 ± 0.33	0.75 ± 0.23	0.73 ± 0.30	0.83 ± 0.25	0.65 ± 0.26
SEAL-mask-abs	0.42 ± 0.02	0.23 ± 0.03	0.43 ± 0.02	0.22 ± 0.03	0.44 ± 0.02	0.20 ± 0.03
SEAL-mask	0.42 ± 0.01	0.21 ± 0.02	0.45 ± 0.02	0.21 ± 0.02	0.48 ± 0.01	0.21 ± 0.02
SEAL-abs	0.64 ± 0.12	0.50 ± 0.13	0.68 ± 0.13	0.49 ± 0.13	0.73 ± 0.14	0.46 ± 0.13
SEAL-zero	0.59 ± 0.11	0.48 ± 0.11	0.64 ± 0.12	0.47 ± 0.11	0.72 ± 0.14	0.44 ± 0.11
SEAL-mask-abs	0.48 ± 0.04	0.29 ± 0.03	0.51 ± 0.04	0.25 ± 0.03	0.55 ± 0.05	0.22 ± 0.03
SEAL-mask	0.45 ± 0.04	0.33 ± 0.03	0.50 ± 0.05	0.31 ± 0.03	0.54 ± 0.05	0.27 ± 0.03
SEAL-abs	1.24 ± 0.20	1.26 ± 0.33	1.37 ± 0.21	1.14 ± 0.30	1.55 ± 0.25	0.98 ± 0.25
SEAL-zero	1.10 ± 0.23	1.43 ± 0.32	1.23 ± 0.25	1.29 ± 0.29	1.40 ± 0.27	1.11 ± 0.24
SEAL-mask-abs	0.59 ± 0.06	0.41 ± 0.04	0.62 ± 0.06	0.39 ± 0.04	0.66 ± 0.06	0.36 ± 0.03
SEAL-mask	0.56 ± 0.06	0.47 ± 0.04	0.60 ± 0.06	0.45 ± 0.04	0.64 ± 0.07	0.42 ± 0.03
SEAL-abs	0.78 ± 0.14	0.64 ± 0.16	0.84 ± 0.15	0.58 ± 0.13	0.91 ± 0.17	0.52 ± 0.09
SEAL-zero	0.72 ± 0.10	0.73 ± 0.22	0.79 ± 0.10	0.66 ± 0.19	0.88 ± 0.12	0.58 ± 0.15
SEAL-mask-abs	0.53 ± 0.06	0.46 ± 0.04	0.59 ± 0.06	0.42 ± 0.04	0.63 ± 0.07	0.37 ± 0.04
SEAL-mask	0.54 ± 0.05	0.47 ± 0.04	0.61 ± 0.05	0.43 ± 0.04	0.65 ± 0.06	0.38 ± 0.04
SEAL-abs	0.49 ± 0.03	0.55 ± 0.07	0.54 ± 0.04	0.53 ± 0.08	0.58 ± 0.05	0.48 ± 0.07
SEAL-zero	0.53 ± 0.03	0.49 ± 0.07	0.60 ± 0.03	0.46 ± 0.06	0.65 ± 0.04	0.41 ± 0.05

1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 **F EXTENDED RELATED WORK**
1081

1082 SEAL differs substantially from existing explainability approaches for graph neural networks.
 1083 Model-level explanation methods such as XGNN (Yuan et al., 2020) and MAGE (Yu & Gao, 2025)
 1084 operate by generating synthetic graphs rather than attributing predictions on a specific molecular
 1085 input, making them unsuitable for fragment-level interpretability. Among self-explainable GNNs,
 1086 including KerGNN (Feng et al., 2022a), ProtGNN (Zhang et al., 2022), and PGIB (Seo et al., 2023),
 1087 none provide instance-specific explanations at the level of molecular fragments, as they rely on
 1088 prototypes or kernels rather than decomposing a prediction across chemically meaningful substruc-
 1089 tures. The closest work is HiGNN (Zhu et al., 2022), whose hierarchical architecture makes post-
 1090 hoc inspection easier, but it does not enforce fragment-wise interpretability within the model and
 1091 therefore remains only partially interpretable. SME (Wu et al., 2023) also uses BRICS-derived
 1092 fragments but functions purely as a post-hoc masking explainer. Other common explainers such
 1093 as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), SubgraphX (Yuan et al.,
 1094 2021), and PGM-Explainer (Vu & Thai, 2020) identify important subgraphs by masking or per-
 1095 turbing the input graph, which alters molecular structures and often produces out-of-distribution
 1096 graphs. DEGREE (Feng et al., 2022b) is the only post-hoc method that yields a form of prediction
 1097 decomposition, though it is not fragment-based and still relies on the representations learned by a
 1098 standard GNN. Methods like FlowX (message-flow analysis, Gui et al. (2023)) and gradient-based
 1099 techniques operate on the original graph but their signals become unreliable under oversmoothing.
 1100 Importantly, none of these approaches, including hierarchical or prototype-based models, explicitly
 1101 address oversmoothing or regulate cross-fragment message mixing, whereas SEAL provides inher-
 1102 ent fragment-level interpretability and direct architectural control over information flow. For feature
 1103 comparison, see Figure 7.

1104 **Table 7: Comparison of XAI GNN models with emphasis on SEAL key features.** ‘frag.’ is a
 1105 fragment-based explanation, ‘interp.’ is an inherently interpretable model, ‘instance’ is an instance-
 1106 level explanation (as opposed to model-level), ‘molecular’ is an explainer adapted to molecular
 1107 domain, ‘decomp.’ is an explainer which decomposes prediction into subgraph contributions, ‘con-
 1108 trol’ is an explainer with an oversmoothing control mechanism, and ‘original’ is an explainer that
 1109 does not alter the original input graph.

Model	frag.	interp.	instance	molecular	decomp.	control	original
SEAL (ours)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HiGNN	Yes	Partially	Yes	Yes	No	No	Yes
ProtGNN	No	Yes	Yes	No	No	No	Yes
KerGNN	No	Yes	Yes	No	No	No	Yes
PGIB	No	Yes	Yes	No	No	No	No
GNNExplainer	No	No	Yes	No	No	No	No
PGExplainer	No	No	Yes	No	No	No	No
SubgraphX	No	No	Yes	No	No	No	No
PGM-Explainer	No	No	Yes	No	No	No	No
GraphSHAP	No	No	Yes	No	No	No	No
FlowX	No	No	Yes	No	No	No	Partially
Gradient Methods	No	No	Yes	No	No	No	Yes
DEGREE	No	No	Yes	No	Yes	No	Yes
SME	Yes	No	Yes	Yes	No	No	No
MotifExplainer	Yes	No	Yes	No	No	No	Partially
MAGE	Yes	No	No	No	No	No	No
XGNN	No	No	No	No	No	No	No

1128 **G COMPLEXITY ANALYSIS**
1129

1130 We denote the standard GCN forward pass complexity as: $O(L|E|F + LN^2)$ where L is layers,
 1131 $|E|$ is edges, N is nodes, and F is feature dimension. SEAL performs a node update using three
 1132 components: a root transformation W and aggregations over intra- and inter-fragment neighbors
 1133 with W_{intra} and W_{inter} . The time complexity is therefore $O(|E|F + 3NF^2) \approx O(|E|F + NF^2)$,

1134 which is asymptotically equivalent to a standard GCN layer. The memory complexity is $O(3F^2) \approx$
 1135 $O(F^2)$, due to the three weight matrices, which dominate the storage requirements, which is also
 1136 equivalent asymptotically to standard GCN.

1137 Each of the methods listed in Table 8 has an asymptotic forward complexity approximately equivalent
 1138 to our SEAL layer and a standard GCN $O(|E|F + NF^2)$. Some methods introduce additional
 1139 mechanisms that increase practical computational costs: for example, HiGNN uses fragment
 1140 interaction blocks, while prototype-based methods such as ProtGNN and PGIB adopt a technique to
 1141 resolve the time complexity issue in MCTS. Despite some cases, the core message-passing and lin-
 1142 ear transformations dominate the time complexity, so the asymptotic cost remains comparable to
 1143 SEAL and GCN. The comparison of the complexity of the explanation for each method is presented
 1144 in Table 8, where our SEAL method needs only constant time to obtain the explanation, as it is
 1145 directly interpretable from the sum of the contributions.

1146 In Figure 12 we present the time measurement of each method, which consists of a single inference
 1147 run to obtain results and the explanation, averaged over all graphs. The tests were run on a CPU
 1148 with 64GB of RAM, without a GPU. Experiments were done on the same configurations (hidden
 1149 dimension equals 256, layers equals 3) for different models. Our model has an increased number
 1150 of parameters (405K) in comparison to GIN (334K) and GCN (136K). As we expected, SEAL
 1151 needs only a forward pass, which takes one of the smallest times (2.1 ms), since it is interpretable
 1152 from the design. Gradient-based methods require an additional backward pass, which increases
 1153 computational cost. Among self-explainable models, PGIB incorporates optimizations to reduce
 1154 MCTS overhead. Similarly, for ProtGNN, which offers variants both with and without MCTS, we
 1155 report results for the faster configuration, but it is worth noting that the version with MCTS was the
 1156 slowest explanation. Finally, while PGExplainer requires an initial training phase, its inference time
 1157 is significantly faster than GNNExplainer.

1158

1159 Table 8: Comparison of Explanation Complexity for the Gradients Based methods: Saliency, In-
 1160 putXGradients, GuidedBackprop, Deconvolution, Integrated Gradients. Masked-Based Methods:
 1161 GNNExplainer, PGExplainer. Self-Explainable: ProtGNN, PGIB. Fragment-Based Methods: SME,
 1162 HiGNN, SEAL. We use the following notation S Integration steps, T optimization epochs, W :
 1163 Complexity of MLP, M : Number of Prototypes, K Number of fragments produced by BRICS.

Method	Explanation Complexity
Saliency	$O(L E F + LNF^2)$
InputXGradients	$O(L E F + LNF^2)$
GuidedBackprop	$O(L E F + LNF^2)$
Deconvolution	$O(L E F + LNF^2)$
IntegratedGradients	$O(S(L E F + LNF^2))$
GNNExplainer	$O(T(L E F + LNF^2))$
PGExplainer	$O(T(L E F + LNF^2) + O(T E W))$
ProtGNN	$O(MF)$
PGIB	$O(MF)$
SME*	$O(2^K(L E F + LNF^2))$
HiGNN	$O(KF)$
SEAL	O(1)

1178 *In practice, SME limits the exponential search space (2^K) to a fixed number of samples (e.g., 100)
 1179

1180

H USE OF LLMS

1181

1182 In this study, large language models (LLMs) like Claude Sonnet 4 and ChatGPT 4o were used to
 1183 rewrite sections of the text. The authors reviewed and verified the generated content.
 1184

1185

1186

1187

1188

1189 Table 9: Hyperparameters found for SEAL, SEALAtom, GAT, GCN, GIN, ProtGNN, HiGNN, **SME**
1190 and **PGIB** in synthetic dataset evaluation.

1191 Model	1192 B	1192 P	1192 PAINS	1192 X	1192 indole	1192 rings-count	1192 rings-max
SEAL							
1194 Hidden dimensions	1024	1024	512	1024	512	1024	256
1195 GNN layers	4	4	3	2	4	2	4
1196 Learning rate	0.0001	0.003	0.003	0.003	0.0003	0.003	0.003
1197 Dropout	0.4	0.1	0.1	0.1	0.1	0.1	0.2
1198 λ	2	2	0	2	10^{-4}	10^{-3}	2
SEALAtom							
1200 Hidden dimensions	1024	1024	256	1024	256	512	1024
1201 GNN layers	4	4	4	2	4	4	4
1202 Learning rate	0.0001	0.003	0.003	0.003	0.003	0.0003	0.0003
1203 Dropout	0.4	0.1	0.2	0.1	0.2	0.1	0.1
1204 λ	2	2	0	2	10^{-4}	10^{-4}	2
GAT							
1206 Hidden dimensions	256	1024	256	1024	256	1024	256
1207 GNN layers	3	4	3	4	3	4	3
1208 Learning rate	0.0003	0.0001	0.0001	0.0001	0.0001	0.003	0.0001
1209 Dropout	0.4	0.4	0	0.4	0	0.1	0
GCN							
1212 Hidden dimensions	1024	1024	512	1024	512	512	1024
1213 GNN layers	4	4	4	4	4	4	4
1214 Learning rate	0.0001	0.0001	0.0003	0.0001	0.0003	0.0003	0.0003
1215 Dropout	0.4	0.4	0.1	0.4	0.1	0.1	0.1
GIN							
1217 Hidden dimensions	1024	1024	1024	1024	512	256	1024
1218 GNN layers	4	4	4	4	4	3	4
1219 Learning rate	0.0001	0.0001	0.0003	0.0001	0.0003	0.001	0.0003
1220 Dropout	0.4	0.4	0.1	0.4	0.1	0.5	0.1
ProtGNN							
1223 Hidden dimensions	1024	1024	1024	1024	512	256	1024
1224 GNN layers	4	4	4	4	4	3	4
1225 Learning rate	0.0001	0.0001	0.0003	0.0001	0.0003	0.001	0.0003
1226 Dropout	0.4	0.4	0.1	0.4	0.1	0.5	0.1
HiGNN							
1228 Hidden dimensions	128	128	256	128	128	256	128
1229 GNN layers	4	4	4	4	4	4	4
1230 Learning rate	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
1231 Dropout	0.4	0.4	0.1	0.4	0.4	0.5	0.1
SME							
1234 Hidden dimensions	256	256	256	256	256	128	256
1235 GNN layers	3	3	4	3	3	2	3
1236 Learning rate	0.0003	0.0003	0.003	0.0003	0.0003	0.0001	0.0001
1237 Dropout	0.3	0.3	0.2	0.3	0.3	0.4	0.2
PGIB							
1239 Hidden dimensions	256	256	1024	256	512	1024	256
1240 GNN layers	3	3	4	3	4	4	4
1241 Learning rate	0.0001	0.0001	0.0003	0.0001	0.0001	0.003	0.0001
1241 Dropout	0.2	0.2	0.1	0.2	0.2	0.1	0.4

1242
 1243 Table 10: Hyperparameters found for SEAL, SEALAtom, GAT, GCN, GIN, ProtGNN, HiGNN,
 1244 SME and PGIB in real-world dataset evaluation.

Model	CYP	hERG	Solubility	MUTAG
SEALAtom				
Hidden dimensions	512	1024	512	512
GNN layers	4	4	4	4
Learning rate	0.0003	0.0003	0.0003	0.0003
Dropout	0.1	0.1	0.1	0.1
λ	0	0	0	0
SEAL				
Hidden dimensions	512	512	1024	256
GNN layers	4	4	4	3
Learning rate	0.0003	0.0003	0.003	0.0001
Dropout	0.1	0.1	0.1	0.0
λ	2.0	0.0001	0.0001	0.001
GAT				
Hidden dimensions	256	256	128	256
GNN layers	3	3	3	3
Learning rate	0.0001	0.0001	0.0003	0.0001
Dropout	0	0	0.3	0.0
GCN				
Hidden dimensions	256	1024	1024	1024
GNN layers	4	4	4	4
Learning rate	0.003	0.003	0.003	0.0003
Dropout	0.2	0.1	0.1	0.1
GIN				
Hidden dimensions	512	512	1024	256
GNN layers	4	4	4	3
Learning rate	0.0003	0.0003	0.0003	0.0001
Dropout	0.1	0.1	0.1	0.0
ProtGNN				
Hidden dimensions	256	256	-	1024
GNN layers	4	3	-	3
Learning rate	0.003	0.003	-	0.003
Dropout	0.2	0.5	-	0.0
HiGNN				
Hidden dimensions	128	256	512	512
GNN layers	4	4	4	4
Learning rate	0.003	0.0003	0.0003	0.0003
Dropout	0.2	0.1	0.1	0.1
SME				
Hidden dimensions	256	1024	1024	256
GNN layers	4	4	2	4
Learning rate	0.003	0.0001	0.0003	0.003
Dropout	0.4	0.3	0.4	0.2
PGIB				
Hidden dimensions	512	512	-	1024
GNN layers	2	3	-	3
Learning rate	0.001	0.0001	-	0.001
Dropout	0.4	0.2	-	0.5

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

Figure 12: Comparison of computational efficiency across different explanation approaches. Measurement execution time (in ms) required for model inference and explanation generation. The methods are categorized into: Gradient-based: Saliency, InputXGradient, GuidedBackprop, Deconvolution, Integrated Gradients, Masked-based: GNNExplainer, PGExplainer, Self-Explainable: ProtGNN, PGIB, and Fragment-based: SME, HiGNN, and our SEAL.

1318

1319

1320

1321

1322

1323

1324

1325

Table 11: AUROC score of various graph neural network architectures on the B-XAIC benchmark.

Model	rings-count	rings-max	X	P	B	Indole	PAINS
AUROC \uparrow							
GIN	1.00 \pm 0.00	0.93 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00
GCN	1.00 \pm 0.00	0.82 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.97 \pm 0.00
GAT	0.88 \pm 0.01	0.75 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.97 \pm 0.00	0.92 \pm 0.01
HiGNN	0.97 \pm 0.00	0.91 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.99 \pm 0.00
ProtGNN	0.98 \pm 0.01	0.68 \pm 0.06	0.94 \pm 0.03	0.98 \pm 0.04	0.79 \pm 0.19	0.98 \pm 0.01	0.88 \pm 0.10
SME	1.00 \pm 0.00	0.86 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.98 \pm 0.00
PGIB	0.83 \pm 0.02	0.76 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.97 \pm 0.00	0.90 \pm 0.02
SEAL ($\lambda = 2$)	0.97 \pm 0.01	0.99 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.95 \pm 0.00
SEAL ($\lambda = 1$)	0.97 \pm 0.00	0.99 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.96 \pm 0.01
SEAL ($\lambda = 0.5$)	0.97 \pm 0.00	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.96 \pm 0.00
SEAL ($\lambda = 10^{-1}$)	0.98 \pm 0.00	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.96 \pm 0.00
SEAL ($\lambda = 10^{-2}$)	0.98 \pm 0.00	0.99 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.96 \pm 0.01
SEAL ($\lambda = 10^{-3}$)	0.98 \pm 0.01	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00
SEAL ($\lambda = 10^{-4}$)	0.99 \pm 0.00	0.99 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00
SEAL ($\lambda = 0$)	0.99 \pm 0.00	0.98 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00
SEALAtom ($\lambda = 2$)	0.83 \pm 0.01	0.66 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.74 \pm 0.01	0.71 \pm 0.01
SEALAtom ($\lambda = 1$)	0.82 \pm 0.01	0.66 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.75 \pm 0.01	0.71 \pm 0.01
SEALAtom ($\lambda = 0.5$)	0.82 \pm 0.02	0.66 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.74 \pm 0.01	0.71 \pm 0.01
SEALAtom ($\lambda = 10^{-1}$)	0.81 \pm 0.02	0.65 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.74 \pm 0.01	0.71 \pm 0.02
SEALAtom ($\lambda = 10^{-2}$)	0.86 \pm 0.02	0.66 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.75 \pm 0.02	0.70 \pm 0.01
SEALAtom ($\lambda = 10^{-3}$)	0.93 \pm 0.01	0.69 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.95 \pm 0.03	0.82 \pm 0.03
SEALAtom ($\lambda = 10^{-4}$)	0.96 \pm 0.02	0.74 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.96 \pm 0.01
SEALAtom ($\lambda = 0$)	0.97 \pm 0.00	0.93 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00

1349

1350
1351
1352
1353
1354
1355

Table 12: F1 score of various graph neural network architectures on the B-XAIC benchmark.

Model	rings-count	rings-max	X	P	B	Indole	PAINS
F1 Score \uparrow							
GIN	1.00 \pm 0.00	0.96 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.97 \pm 0.00
GCN	0.98 \pm 0.00	0.93 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.97 \pm 0.00	0.93 \pm 0.00
GAT	0.79 \pm 0.03	0.92 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.92 \pm 0.01	0.85 \pm 0.01
HIGNN	0.92 \pm 0.01	0.95 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.95 \pm 0.01	0.96 \pm 0.01
ProtGNN	0.94 \pm 0.01	0.92 \pm 0.00	0.86 \pm 0.01	0.94 \pm 0.05	0.98 \pm 0.01	0.91 \pm 0.03	0.86 \pm 0.05
SME	1.00 \pm 0.00	0.95 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.98 \pm 0.00
PGIB	0.77 \pm 0.01	0.89 \pm 0.04	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.91 \pm 0.01	0.83 \pm 0.02
SEAL ($\lambda = 2$)	0.90 \pm 0.03	0.85 \pm 0.05	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.01	0.98 \pm 0.00	0.86 \pm 0.00
SEAL ($\lambda = 1$)	0.86 \pm 0.02	0.87 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.01	0.98 \pm 0.00	0.86 \pm 0.01
SEAL ($\lambda = 0.5$)	0.87 \pm 0.03	0.87 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.01	0.98 \pm 0.00	0.86 \pm 0.01
SEAL ($\lambda = 10^{-1}$)	0.88 \pm 0.04	0.89 \pm 0.01	1.00 \pm 0.00	0.99 \pm 0.01	0.99 \pm 0.01	0.98 \pm 0.00	0.86 \pm 0.01
SEAL ($\lambda = 10^{-2}$)	0.92 \pm 0.01	0.90 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	0.98 \pm 0.02	0.99 \pm 0.00	0.86 \pm 0.02
SEAL ($\lambda = 10^{-3}$)	0.93 \pm 0.02	0.91 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.01	0.99 \pm 0.00	0.93 \pm 0.01
SEAL ($\lambda = 10^{-4}$)	0.94 \pm 0.01	0.91 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	0.98 \pm 0.01	0.99 \pm 0.00	0.95 \pm 0.00
SEAL ($\lambda = 0$)	0.93 \pm 0.01	0.88 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.96 \pm 0.01
SEALAtom ($\lambda = 2$)	0.66 \pm 0.02	0.31 \pm 0.03	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.57 \pm 0.02	0.54 \pm 0.02
SEALAtom ($\lambda = 1$)	0.62 \pm 0.02	0.31 \pm 0.03	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.58 \pm 0.03	0.54 \pm 0.02
SEALAtom ($\lambda = 0.5$)	0.62 \pm 0.05	0.30 \pm 0.03	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.56 \pm 0.03	0.54 \pm 0.01
SEALAtom ($\lambda = 10^{-1}$)	0.56 \pm 0.09	0.27 \pm 0.04	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.55 \pm 0.03	0.48 \pm 0.06
SEALAtom ($\lambda = 10^{-2}$)	0.68 \pm 0.01	0.28 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.53 \pm 0.05	0.46 \pm 0.01
SEALAtom ($\lambda = 10^{-3}$)	0.83 \pm 0.01	0.32 \pm 0.03	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.87 \pm 0.07	0.62 \pm 0.05
SEALAtom ($\lambda = 10^{-4}$)	0.87 \pm 0.04	0.35 \pm 0.03	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.98 \pm 0.00	0.85 \pm 0.01
SEALAtom ($\lambda = 0$)	0.88 \pm 0.01	0.68 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.94 \pm 0.01

1376
1377
1378
1379

Table 13: Accuracy score of various graph neural network architectures on the B-XAIC benchmark.

Model	rings-count	rings-max	X	P	B	Indole	PAINS
Accuracy \uparrow							
GIN	1.00 \pm 0.00	0.96 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.97 \pm 0.00
GCN	0.98 \pm 0.00	0.93 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.97 \pm 0.00	0.93 \pm 0.00
GAT	0.81 \pm 0.02	0.91 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.92 \pm 0.01	0.86 \pm 0.01
HIGNN	0.92 \pm 0.01	0.95 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.95 \pm 0.01	0.96 \pm 0.01
ProtGNN	0.94 \pm 0.01	0.94 \pm 0.00	0.86 \pm 0.01	0.95 \pm 0.04	0.98 \pm 0.00	0.91 \pm 0.03	0.86 \pm 0.04
SME	1.00 \pm 0.00	0.95 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.98 \pm 0.00
PGIB	0.77 \pm 0.01	0.89 \pm 0.04	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.91 \pm 0.01	0.83 \pm 0.02
SEAL ($\lambda = 2$)	0.93 \pm 0.02	0.98 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.91 \pm 0.00
SEAL ($\lambda = 1$)	0.91 \pm 0.02	0.98 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.91 \pm 0.01
SEAL ($\lambda = 0.5$)	0.92 \pm 0.02	0.98 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.91 \pm 0.01
SEAL ($\lambda = 10^{-1}$)	0.92 \pm 0.03	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.91 \pm 0.00
SEAL ($\lambda = 10^{-2}$)	0.95 \pm 0.01	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.91 \pm 0.01
SEAL ($\lambda = 10^{-3}$)	0.96 \pm 0.01	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.95 \pm 0.00
SEAL ($\lambda = 10^{-4}$)	0.97 \pm 0.00	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.97 \pm 0.00
SEAL ($\lambda = 0$)	0.96 \pm 0.00	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.97 \pm 0.00
SEALAtom ($\lambda = 2$)	0.82 \pm 0.01	0.93 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.72 \pm 0.01	0.72 \pm 0.01
SEALAtom ($\lambda = 1$)	0.81 \pm 0.01	0.93 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.71 \pm 0.00	0.71 \pm 0.02
SEALAtom ($\lambda = 0.5$)	0.81 \pm 0.01	0.93 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.71 \pm 0.01	0.71 \pm 0.01
SEALAtom ($\lambda = 10^{-1}$)	0.80 \pm 0.02	0.94 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.71 \pm 0.01	0.73 \pm 0.01
SEALAtom ($\lambda = 10^{-2}$)	0.83 \pm 0.01	0.94 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.72 \pm 0.02	0.73 \pm 0.00
SEALAtom ($\lambda = 10^{-3}$)	0.91 \pm 0.01	0.94 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.91 \pm 0.05	0.79 \pm 0.01
SEALAtom ($\lambda = 10^{-4}$)	0.93 \pm 0.02	0.94 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.98 \pm 0.00	0.91 \pm 0.00
SEALAtom ($\lambda = 0$)	0.93 \pm 0.00	0.96 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.96 \pm 0.00

1403

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416

1417 Table 14: Performance of various model explanations on the B-XAIC benchmark. The subgraph
 1418 explanation (SE) metric is employed for positive examples containing the relevant pattern.

Model	rings-count	rings-max	X	P	B	Indole	PAINS
SE \uparrow							
Deconvolution	0.55 \pm 0.24	0.36 \pm 0.22	0.07 \pm 0.00	0.90 \pm 0.00	0.72 \pm 0.01	0.36 \pm 0.21	0.33 \pm 0.01
GuidedBackprop	0.69 \pm 0.05	0.67 \pm 0.02	0.94 \pm 0.01	0.85 \pm 0.11	1.00 \pm 0.00	0.85 \pm 0.03	0.78 \pm 0.02
IntegratedGrad	0.36 \pm 0.00	0.64 \pm 0.04	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.84 \pm 0.06	0.76 \pm 0.02
Saliency	0.51 \pm 0.04	0.66 \pm 0.03	0.92 \pm 0.02	1.00 \pm 0.00	1.00 \pm 0.00	0.87 \pm 0.02	0.81 \pm 0.01
InputXGradient	0.49 \pm 0.03	0.48 \pm 0.03	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.74 \pm 0.05	0.54 \pm 0.03
GNNExplainer	0.49 \pm 0.01	0.50 \pm 0.00	0.50 \pm 0.00	0.51 \pm 0.01	0.53 \pm 0.05	0.53 \pm 0.03	0.54 \pm 0.06
HiGNN	0.77 \pm 0.00	0.75 \pm 0.00	0.82 \pm 0.00	0.82 \pm 0.01	0.76 \pm 0.01	0.78 \pm 0.02	0.66 \pm 0.02
ProtGNN	0.51 \pm 0.04	0.61 \pm 0.06	0.54 \pm 0.11	0.99 \pm 0.01	0.97 \pm 0.02	0.73 \pm 0.11	0.67 \pm 0.10
PGExplainer	0.50 \pm 0.00	0.96 \pm 0.02	0.74 \pm 0.20				
PGIB	0.64 \pm 0.06	0.56 \pm 0.01	0.86 \pm 0.03	0.92 \pm 0.02	0.93 \pm 0.02	0.88 \pm 0.02	0.73 \pm 0.01
SMEAAtom	0.81 \pm 0.01	0.69 \pm 0.01	0.71 \pm 0.15	0.72 \pm 0.20	1.00 \pm 0.00	0.59 \pm 0.04	0.70 \pm 0.02
SMEBrics	0.78 \pm 0.00	0.79 \pm 0.01	0.75 \pm 0.04	0.81 \pm 0.01	0.77 \pm 0.01	0.90 \pm 0.00	0.78 \pm 0.01
SMEMurcko	0.59 \pm 0.00	0.52 \pm 0.01	0.52 \pm 0.01	0.56 \pm 0.01	0.52 \pm 0.01	0.54 \pm 0.00	0.54 \pm 0.00
SEAL ($\lambda = 2$)	1.00 \pm 0.00	0.87 \pm 0.01	1.00 \pm 0.00	0.99 \pm 0.00	0.88 \pm 0.01	0.96 \pm 0.00	0.77 \pm 0.00
SEAL ($\lambda = 1$)	1.00 \pm 0.00	0.88 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.88 \pm 0.01	0.96 \pm 0.00	0.77 \pm 0.01
SEAL ($\lambda = 0.5$)	1.00 \pm 0.00	0.87 \pm 0.01	1.00 \pm 0.00	0.99 \pm 0.00	0.88 \pm 0.01	0.96 \pm 0.00	0.78 \pm 0.01
SEAL ($\lambda = 10^{-1}$)	1.00 \pm 0.00	0.88 \pm 0.00	1.00 \pm 0.00	0.99 \pm 0.00	0.88 \pm 0.01	0.96 \pm 0.00	0.78 \pm 0.01
SEAL ($\lambda = 10^{-2}$)	1.00 \pm 0.00	0.88 \pm 0.01	1.00 \pm 0.00	0.99 \pm 0.00	0.88 \pm 0.01	0.96 \pm 0.00	0.78 \pm 0.01
SEAL ($\lambda = 10^{-3}$)	0.98 \pm 0.01	0.75 \pm 0.04	1.00 \pm 0.00	0.96 \pm 0.04	0.88 \pm 0.01	0.96 \pm 0.00	0.80 \pm 0.01
SEAL ($\lambda = 10^{-4}$)	0.96 \pm 0.01	0.60 \pm 0.06	1.00 \pm 0.00	0.96 \pm 0.04	0.88 \pm 0.01	0.96 \pm 0.00	0.83 \pm 0.02
SEAL ($\lambda = 0$)	0.87 \pm 0.04	0.44 \pm 0.03	1.00 \pm 0.00	0.91 \pm 0.04	0.88 \pm 0.01	0.96 \pm 0.00	0.83 \pm 0.01
SEALAtom ($\lambda = 2$)	0.74 \pm 0.07	0.54 \pm 0.05	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.62 \pm 0.07	0.49 \pm 0.03
SEALAtom ($\lambda = 1$)	0.70 \pm 0.03	0.50 \pm 0.03	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.65 \pm 0.06	0.46 \pm 0.01
SEALAtom ($\lambda = 0.5$)	0.70 \pm 0.06	0.53 \pm 0.06	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.62 \pm 0.06	0.46 \pm 0.01
SEALAtom ($\lambda = 10^{-1}$)	0.75 \pm 0.05	0.54 \pm 0.06	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.62 \pm 0.07	0.48 \pm 0.03
SEALAtom ($\lambda = 10^{-2}$)	0.71 \pm 0.01	0.58 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.60 \pm 0.07	0.48 \pm 0.02
SEALAtom ($\lambda = 10^{-3}$)	0.66 \pm 0.00	0.59 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	0.95 \pm 0.04	0.68 \pm 0.06	0.58 \pm 0.03
SEALAtom ($\lambda = 10^{-4}$)	0.65 \pm 0.00	0.56 \pm 0.01	1.00 \pm 0.00	0.98 \pm 0.04	0.97 \pm 0.06	0.71 \pm 0.06	0.61 \pm 0.01
SEALAtom ($\lambda = 0$)	0.61 \pm 0.01	0.63 \pm 0.01	0.95 \pm 0.01	0.85 \pm 0.08	0.91 \pm 0.05	0.75 \pm 0.01	0.64 \pm 0.02

1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470

1471 Table 15: Performance of various model explanations on the B-XAIC benchmark. The null expla-
 1472 nation (NE) metric is employed for negative examples, checking uniform distribution.

Model	rings-count	rings-max	X	P	B	Indole	PAINS
NE \uparrow							
Deconvolution	0.56 \pm 0.06	0.82 \pm 0.01	0.84 \pm 0.01	0.84 \pm 0.01	0.82 \pm 0.01	0.80 \pm 0.01	0.81 \pm 0.01
GuidedBackprop	0.32 \pm 0.08	0.19 \pm 0.03	0.35 \pm 0.10	0.51 \pm 0.04	0.45 \pm 0.03	0.33 \pm 0.05	0.28 \pm 0.02
IntegratedGradients	0.81 \pm 0.08	0.75 \pm 0.06	0.19 \pm 0.10	0.36 \pm 0.37	0.22 \pm 0.07	0.31 \pm 0.13	0.42 \pm 0.25
Saliency	0.48 \pm 0.05	0.41 \pm 0.03	0.37 \pm 0.05	0.55 \pm 0.03	0.50 \pm 0.08	0.42 \pm 0.03	0.35 \pm 0.04
InputXGradient	0.53 \pm 0.05	0.49 \pm 0.02	0.23 \pm 0.07	0.69 \pm 0.16	0.39 \pm 0.14	0.49 \pm 0.01	0.40 \pm 0.04
GNNEExplainer	0.80 \pm 0.07	0.92 \pm 0.06	0.65 \pm 0.02	0.67 \pm 0.01	0.67 \pm 0.00	0.73 \pm 0.09	0.55 \pm 0.26
HiGNN	0.56 \pm 0.06	0.31 \pm 0.02	0.19 \pm 0.01	0.14 \pm 0.00	0.16 \pm 0.00	0.38 \pm 0.03	0.58 \pm 0.09
ProtGNN	0.43 \pm 0.12	0.40 \pm 0.03	0.53 \pm 0.18	0.64 \pm 0.33	0.33 \pm 0.06	0.46 \pm 0.06	0.40 \pm 0.05
PGExplainer	1.00 \pm 0.00	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.16 \pm 0.09	0.42 \pm 0.42
PGIB	0.42 \pm 0.04	0.31 \pm 0.05	0.32 \pm 0.04	0.36 \pm 0.06	0.34 \pm 0.05	0.33 \pm 0.03	0.26 \pm 0.02
SMEAtom	0.54 \pm 0.11	0.07 \pm 0.01	0.33 \pm 0.11	0.54 \pm 0.11	0.48 \pm 0.09	0.03 \pm 0.01	0.03 \pm 0.01
SMEBrics	0.70 \pm 0.05	0.57 \pm 0.00	0.81 \pm 0.01	0.80 \pm 0.01	0.80 \pm 0.01	0.74 \pm 0.00	0.67 \pm 0.01
SMEMurcko	1.00 \pm 0.00	0.20 \pm 0.00	0.46 \pm 0.01	0.34 \pm 0.01	0.38 \pm 0.00	0.33 \pm 0.01	0.30 \pm 0.01
SEAL ($\lambda = 2$)	0.44 \pm 0.05	0.72 \pm 0.02	0.32 \pm 0.09	0.16 \pm 0.06	0.44 \pm 0.02	0.64 \pm 0.04	0.61 \pm 0.01
SEAL ($\lambda = 1$)	0.42 \pm 0.05	0.73 \pm 0.02	0.36 \pm 0.09	0.18 \pm 0.18	0.45 \pm 0.03	0.63 \pm 0.03	0.62 \pm 0.01
SEAL ($\lambda = 0.5$)	0.45 \pm 0.04	0.73 \pm 0.01	0.38 \pm 0.08	0.21 \pm 0.16	0.46 \pm 0.05	0.63 \pm 0.04	0.63 \pm 0.01
SEAL ($\lambda = 10^{-1}$)	0.53 \pm 0.06	0.72 \pm 0.02	0.32 \pm 0.05	0.22 \pm 0.07	0.48 \pm 0.05	0.68 \pm 0.03	0.63 \pm 0.01
SEAL ($\lambda = 10^{-2}$)	0.48 \pm 0.04	0.72 \pm 0.02	0.51 \pm 0.05	0.09 \pm 0.05	0.49 \pm 0.04	0.63 \pm 0.02	0.63 \pm 0.01
SEAL ($\lambda = 10^{-3}$)	0.71 \pm 0.10	0.74 \pm 0.01	0.36 \pm 0.07	0.10 \pm 0.01	0.43 \pm 0.07	0.69 \pm 0.05	0.65 \pm 0.01
SEAL ($\lambda = 10^{-4}$)	0.70 \pm 0.05	0.73 \pm 0.01	0.33 \pm 0.09	0.10 \pm 0.02	0.26 \pm 0.06	0.65 \pm 0.05	0.70 \pm 0.03
SEAL ($\lambda = 0$)	0.59 \pm 0.06	0.70 \pm 0.02	0.60 \pm 0.07	0.16 \pm 0.08	0.38 \pm 0.12	0.57 \pm 0.05	0.68 \pm 0.01
SEALAtom ($\lambda = 2$)	0.59 \pm 0.02	0.11 \pm 0.01	0.18 \pm 0.10	0.08 \pm 0.06	0.03 \pm 0.02	0.09 \pm 0.01	0.00 \pm 0.00
SEALAtom ($\lambda = 1$)	0.59 \pm 0.04	0.14 \pm 0.05	0.16 \pm 0.12	0.11 \pm 0.06	0.06 \pm 0.02	0.09 \pm 0.01	0.00 \pm 0.00
SEALAtom ($\lambda = 0.5$)	0.59 \pm 0.02	0.13 \pm 0.05	0.11 \pm 0.11	0.12 \pm 0.01	0.06 \pm 0.02	0.09 \pm 0.01	0.00 \pm 0.00
SEALAtom ($\lambda = 10^{-1}$)	0.60 \pm 0.02	0.07 \pm 0.03	0.12 \pm 0.09	0.09 \pm 0.06	0.02 \pm 0.00	0.09 \pm 0.01	0.00 \pm 0.00
SEALAtom ($\lambda = 10^{-2}$)	0.58 \pm 0.05	0.06 \pm 0.05	0.23 \pm 0.06	0.14 \pm 0.12	0.05 \pm 0.03	0.13 \pm 0.05	0.00 \pm 0.00
SEALAtom ($\lambda = 10^{-3}$)	0.48 \pm 0.08	0.09 \pm 0.02	0.22 \pm 0.04	0.09 \pm 0.06	0.04 \pm 0.03	0.05 \pm 0.03	0.08 \pm 0.05
SEALAtom ($\lambda = 10^{-4}$)	0.34 \pm 0.04	0.06 \pm 0.04	0.14 \pm 0.07	0.05 \pm 0.03	0.03 \pm 0.02	0.04 \pm 0.02	0.05 \pm 0.01
SEALAtom ($\lambda = 0$)	0.40 \pm 0.05	0.08 \pm 0.02	0.41 \pm 0.23	0.35 \pm 0.29	0.29 \pm 0.12	0.06 \pm 0.01	0.08 \pm 0.01

1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512
1513
1514
1515
15161517 Table 16: Comparison of model performance on real-world datasets (hERG and CYP2C9). [Results](#)
1518 are reported for both Random and Scaffold splitting strategies.

1519	1520	1521	Model	1522 Random			1523 Scaffold		
				AUROC \uparrow	F1 \uparrow	Accuracy \uparrow	AUROC \uparrow	F1 \uparrow	Accuracy \uparrow
hERG	1522	1523	GIN	0.86 \pm 0.01	0.78 \pm 0.01	0.78 \pm 0.01	0.79 \pm 0.02	0.70 \pm 0.04	0.72 \pm 0.02
	1524	1525	GAT	0.70 \pm 0.01	0.64 \pm 0.01	0.65 \pm 0.01	0.75 \pm 0.02	0.66 \pm 0.04	0.71 \pm 0.02
	1526	1527	GCN	0.81 \pm 0.03	0.73 \pm 0.02	0.73 \pm 0.02	0.76 \pm 0.02	0.67 \pm 0.04	0.71 \pm 0.03
	1528	1529	HiGNN	0.87 \pm 0.01	0.79 \pm 0.01	0.79 \pm 0.01	0.80 \pm 0.01	0.72 \pm 0.01	0.72 \pm 0.01
	1530	1531	ProtGNN	0.76 \pm 0.06	0.69 \pm 0.05	0.69 \pm 0.05	0.76 \pm 0.05	0.69 \pm 0.05	0.70 \pm 0.05
	1532	1533	SME	0.76 \pm 0.01	0.76 \pm 0.01	0.76 \pm 0.01	0.76 \pm 0.01	0.77 \pm 0.01	0.77 \pm 0.01
	1534	1535	PGIB	0.75 \pm 0.02	0.68 \pm 0.02	0.68 \pm 0.02	0.74 \pm 0.01	0.67 \pm 0.01	0.67 \pm 0.01
	1536	1537	SEAL ($\lambda = 2$)	0.81 \pm 0.01	0.71 \pm 0.03	0.74 \pm 0.01	0.76 \pm 0.02	0.67 \pm 0.02	0.71 \pm 0.01
	1538	1539	SEAL ($\lambda = 1$)	0.81 \pm 0.01	0.73 \pm 0.02	0.75 \pm 0.01	0.76 \pm 0.01	0.67 \pm 0.04	0.71 \pm 0.01
	1540	1541	SEAL ($\lambda = 0.5$)	0.81 \pm 0.01	0.73 \pm 0.02	0.75 \pm 0.01	0.76 \pm 0.02	0.68 \pm 0.04	0.71 \pm 0.01
	1542	1543	SEAL ($\lambda = 10^{-1}$)	0.79 \pm 0.01	0.70 \pm 0.02	0.73 \pm 0.01	0.76 \pm 0.02	0.67 \pm 0.04	0.71 \pm 0.02
	1544	1545	SEAL ($\lambda = 10^{-2}$)	0.80 \pm 0.00	0.70 \pm 0.02	0.73 \pm 0.01	0.75 \pm 0.01	0.65 \pm 0.04	0.70 \pm 0.01
	1546	1547	SEAL ($\lambda = 10^{-3}$)	0.81 \pm 0.03	0.71 \pm 0.03	0.74 \pm 0.02	0.78 \pm 0.02	0.69 \pm 0.03	0.72 \pm 0.01
	1548	1549	SEAL ($\lambda = 10^{-4}$)	0.85 \pm 0.01	0.76 \pm 0.01	0.77 \pm 0.00	0.81 \pm 0.01	0.71 \pm 0.03	0.74 \pm 0.02
	1550	1551	SEAL ($\lambda = 0$)	0.85 \pm 0.01	0.76 \pm 0.01	0.78 \pm 0.01	0.80 \pm 0.02	0.71 \pm 0.03	0.74 \pm 0.01
	1552	1553	SEALAtom ($\lambda = 2$)	0.65 \pm 0.01	0.49 \pm 0.06	0.62 \pm 0.01	0.66 \pm 0.02	0.50 \pm 0.10	0.63 \pm 0.03
	1554	1555	SEALAtom ($\lambda = 1$)	0.65 \pm 0.01	0.50 \pm 0.08	0.62 \pm 0.02	0.66 \pm 0.02	0.53 \pm 0.11	0.63 \pm 0.02
	1556	1557	SEALAtom ($\lambda = 0.5$)	0.65 \pm 0.01	0.50 \pm 0.05	0.62 \pm 0.01	0.65 \pm 0.01	0.52 \pm 0.10	0.63 \pm 0.03
	1558	1559	SEALAtom ($\lambda = 10^{-1}$)	0.66 \pm 0.01	0.51 \pm 0.05	0.63 \pm 0.01	0.66 \pm 0.01	0.52 \pm 0.10	0.63 \pm 0.03
	1560	1561	SEALAtom ($\lambda = 10^{-2}$)	0.65 \pm 0.01	0.53 \pm 0.02	0.63 \pm 0.01	0.66 \pm 0.01	0.51 \pm 0.10	0.63 \pm 0.03
	1562	1563	SEALAtom ($\lambda = 10^{-3}$)	0.71 \pm 0.01	0.60 \pm 0.01	0.67 \pm 0.01	0.66 \pm 0.03	0.54 \pm 0.08	0.64 \pm 0.03
	1564	1565	SEALAtom ($\lambda = 10^{-4}$)	0.75 \pm 0.01	0.63 \pm 0.01	0.69 \pm 0.01	0.71 \pm 0.02	0.62 \pm 0.05	0.68 \pm 0.02
	1566	1567	SEALAtom ($\lambda = 0$)	0.84 \pm 0.01	0.75 \pm 0.01	0.77 \pm 0.01	0.77 \pm 0.01	0.68 \pm 0.05	0.72 \pm 0.02
CYP2C9	1568	1569	GIN	0.86 \pm 0.01	0.79 \pm 0.01	0.79 \pm 0.01	0.83 \pm 0.01	0.65 \pm 0.03	0.79 \pm 0.02
	1570	1571	GAT	0.68 \pm 0.01	0.67 \pm 0.01	0.69 \pm 0.01	0.67 \pm 0.02	0.21 \pm 0.11	0.70 \pm 0.05
	1572	1573	GCN	0.84 \pm 0.01	0.78 \pm 0.01	0.78 \pm 0.01	0.80 \pm 0.02	0.57 \pm 0.03	0.77 \pm 0.04
	1574	1575	HiGNN	0.85 \pm 0.00	0.76 \pm 0.02	0.75 \pm 0.02	0.84 \pm 0.01	0.75 \pm 0.04	0.74 \pm 0.04
	1576	1577	ProtGNN	0.85 \pm 0.00	0.77 \pm 0.01	0.77 \pm 0.01	0.83 \pm 0.01	0.78 \pm 0.02	0.78 \pm 0.02
	1578	1579	SME	0.80 \pm 0.02	0.82 \pm 0.01	0.82 \pm 0.01	0.80 \pm 0.01	0.81 \pm 0.02	0.80 \pm 0.02
	1580	1581	PGIB	0.75 \pm 0.02	0.72 \pm 0.01	0.72 \pm 0.01	0.79 \pm 0.02	0.74 \pm 0.03	0.74 \pm 0.03
	1582	1583	SEAL ($\lambda = 2$)	0.81 \pm 0.01	0.65 \pm 0.02	0.78 \pm 0.01	0.79 \pm 0.02	0.64 \pm 0.01	0.75 \pm 0.02
	1584	1585	SEAL ($\lambda = 1$)	0.81 \pm 0.01	0.64 \pm 0.03	0.78 \pm 0.01	0.79 \pm 0.02	0.65 \pm 0.02	0.76 \pm 0.02
	1586	1587	SEAL ($\lambda = 0.5$)	0.81 \pm 0.00	0.64 \pm 0.02	0.78 \pm 0.01	0.78 \pm 0.01	0.63 \pm 0.03	0.75 \pm 0.02
	1588	1589	SEAL ($\lambda = 10^{-1}$)	0.79 \pm 0.01	0.59 \pm 0.03	0.76 \pm 0.01	0.80 \pm 0.02	0.64 \pm 0.02	0.76 \pm 0.01
	1590	1591	SEAL ($\lambda = 10^{-2}$)	0.79 \pm 0.01	0.58 \pm 0.03	0.76 \pm 0.01	0.78 \pm 0.01	0.61 \pm 0.02	0.77 \pm 0.01
	1592	1593	SEAL ($\lambda = 10^{-3}$)	0.83 \pm 0.01	0.64 \pm 0.03	0.78 \pm 0.01	0.79 \pm 0.01	0.62 \pm 0.01	0.77 \pm 0.02
	1594	1595	SEAL ($\lambda = 10^{-4}$)	0.83 \pm 0.00	0.64 \pm 0.04	0.78 \pm 0.01	0.80 \pm 0.01	0.62 \pm 0.03	0.77 \pm 0.02
	1596	1597	SEAL ($\lambda = 0$)	0.83 \pm 0.01	0.64 \pm 0.03	0.79 \pm 0.01	0.82 \pm 0.01	0.65 \pm 0.03	0.78 \pm 0.02
	1598	1599	SEALAtom ($\lambda = 2$)	0.63 \pm 0.03	0.43 \pm 0.07	0.70 \pm 0.01	0.63 \pm 0.02	0.40 \pm 0.04	0.69 \pm 0.03
	1600	1601	SEALAtom ($\lambda = 1$)	0.64 \pm 0.01	0.38 \pm 0.06	0.70 \pm 0.01	0.62 \pm 0.02	0.35 \pm 0.06	0.69 \pm 0.04
	1602	1603	SEALAtom ($\lambda = 0.5$)	0.62 \pm 0.01	0.31 \pm 0.04	0.69 \pm 0.01	0.62 \pm 0.01	0.33 \pm 0.03	0.69 \pm 0.04
	1604	1605	SEALAtom ($\lambda = 10^{-1}$)	0.61 \pm 0.00	0.31 \pm 0.04	0.68 \pm 0.01	0.61 \pm 0.01	0.32 \pm 0.01	0.69 \pm 0.04
	1606	1607	SEALAtom ($\lambda = 10^{-2}$)	0.70 \pm 0.02	0.45 \pm 0.06	0.72 \pm 0.01	0.67 \pm 0.02	0.46 \pm 0.06	0.71 \pm 0.03
	1608	1609	SEALAtom ($\lambda = 10^{-3}$)	0.73 \pm 0.01	0.49 \pm 0.03	0.74 \pm 0.01	0.72 \pm 0.01	0.52 \pm 0.03	0.73 \pm 0.03
	1610	1611	SEALAtom ($\lambda = 10^{-4}$)	0.80 \pm 0.01	0.60 \pm 0.02	0.77 \pm 0.01	0.75 \pm 0.02	0.60 \pm 0.03	0.74 \pm 0.02
	1612	1613	SEALAtom ($\lambda = 0$)	0.82 \pm 0.01	0.60 \pm 0.03	0.77 \pm 0.01	0.76 \pm 0.02	0.61 \pm 0.03	0.73 \pm 0.03

1566

1567

1568

1569

Table 17: Comparison of model performance on real-world datasets (MUTAG).

	Model	AUROC \uparrow	F1 \uparrow	Accuracy \uparrow
MUTAG	GIN	0.87 \pm 0.01	0.81 \pm 0.00	0.81 \pm 0.01
	GAT	0.78 \pm 0.00	0.72 \pm 0.01	0.72 \pm 0.01
	GCN	0.82 \pm 0.02	0.75 \pm 0.01	0.75 \pm 0.01
	HiGNN	0.87 \pm 0.01	0.80 \pm 0.02	0.80 \pm 0.02
	ProtGNN	0.86 \pm 0.01	0.78 \pm 0.01	0.78 \pm 0.01
	SME	0.81 \pm 0.01	0.81 \pm 0.01	0.81 \pm 0.01
	PGIB	0.83 \pm 0.02	0.75 \pm 0.03	0.75 \pm 0.03
	SEAL ($\lambda = 2$)	0.81 \pm 0.02	0.75 \pm 0.01	0.75 \pm 0.01
	SEAL ($\lambda = 1$)	0.81 \pm 0.01	0.75 \pm 0.02	0.75 \pm 0.01
	SEAL ($\lambda = 0.5$)	0.81 \pm 0.01	0.75 \pm 0.02	0.75 \pm 0.01
	SEAL ($\lambda = 10^{-1}$)	0.81 \pm 0.01	0.76 \pm 0.01	0.75 \pm 0.01
	SEAL ($\lambda = 10^{-2}$)	0.84 \pm 0.01	0.79 \pm 0.01	0.79 \pm 0.01
	SEAL ($\lambda = 10^{-3}$)	0.85 \pm 0.01	0.80 \pm 0.02	0.79 \pm 0.01
	SEAL ($\lambda = 10^{-4}$)	0.85 \pm 0.00	0.79 \pm 0.01	0.78 \pm 0.01
	SEAL ($\lambda = 0$)	0.84 \pm 0.01	0.77 \pm 0.03	0.77 \pm 0.02
	SEALAtom ($\lambda = 2$)	0.56 \pm 0.03	0.38 \pm 0.13	0.53 \pm 0.03
	SEALAtom ($\lambda = 1$)	0.55 \pm 0.04	0.36 \pm 0.13	0.53 \pm 0.03
	SEALAtom ($\lambda = 0.5$)	0.55 \pm 0.04	0.38 \pm 0.13	0.53 \pm 0.04
	SEALAtom ($\lambda = 10^{-1}$)	0.55 \pm 0.05	0.39 \pm 0.11	0.53 \pm 0.04
	SEALAtom ($\lambda = 10^{-2}$)	0.69 \pm 0.02	0.62 \pm 0.03	0.66 \pm 0.01
	SEALAtom ($\lambda = 10^{-3}$)	0.70 \pm 0.03	0.61 \pm 0.06	0.66 \pm 0.03
	SEALAtom ($\lambda = 10^{-4}$)	0.75 \pm 0.01	0.68 \pm 0.02	0.70 \pm 0.01
	SEALAtom ($\lambda = 0$)	0.79 \pm 0.02	0.73 \pm 0.03	0.73 \pm 0.02

1591

1592

1593

1594

1595

Table 18: Comparison of model performance on real-world datasets (Solubility). Results are reported for both Random and Scaffold splitting strategies.

	Model	Random		Scaffold	
		MAE \downarrow	RMSE \downarrow	MAE \downarrow	RMSE \downarrow
Solubility	GIN	0.41 \pm 0.01	0.60 \pm 0.02	0.58 \pm 0.03	0.82 \pm 0.06
	GAT	0.57 \pm 0.01	0.75 \pm 0.03	0.60 \pm 0.02	0.82 \pm 0.03
	GCN	0.49 \pm 0.02	0.67 \pm 0.03	0.59 \pm 0.03	0.82 \pm 0.04
	HiGNN	0.38 \pm 0.05	0.55 \pm 0.07	0.53 \pm 0.06	0.72 \pm 0.06
	SME	0.32 \pm 0.01	0.46 \pm 0.01	0.39 \pm 0.02	0.54 \pm 0.02
	SEAL ($\lambda = 2$)	0.54 \pm 0.04	0.73 \pm 0.05	0.69 \pm 0.06	0.90 \pm 0.05
	SEAL ($\lambda = 1$)	0.53 \pm 0.05	0.73 \pm 0.05	0.66 \pm 0.03	0.88 \pm 0.05
	SEAL ($\lambda = 0.5$)	0.54 \pm 0.05	0.73 \pm 0.05	0.67 \pm 0.03	0.88 \pm 0.03
	SEAL ($\lambda = 10^{-1}$)	0.54 \pm 0.05	0.73 \pm 0.06	0.66 \pm 0.02	0.87 \pm 0.02
	SEAL ($\lambda = 10^{-2}$)	0.53 \pm 0.05	0.73 \pm 0.04	0.63 \pm 0.02	0.84 \pm 0.03
	SEAL ($\lambda = 10^{-3}$)	0.48 \pm 0.01	0.68 \pm 0.04	0.61 \pm 0.02	0.82 \pm 0.02
	SEAL ($\lambda = 10^{-4}$)	0.47 \pm 0.01	0.66 \pm 0.04	0.60 \pm 0.03	0.81 \pm 0.03
	SEAL ($\lambda = 0$)	0.45 \pm 0.01	0.66 \pm 0.03	0.59 \pm 0.02	0.80 \pm 0.02
	SEALAtom ($\lambda = 2$)	0.64 \pm 0.01	0.81 \pm 0.01	0.72 \pm 0.03	0.93 \pm 0.03
	SEALAtom ($\lambda = 1$)	0.63 \pm 0.01	0.80 \pm 0.01	0.70 \pm 0.03	0.92 \pm 0.03
	SEALAtom ($\lambda = 0.5$)	0.61 \pm 0.00	0.78 \pm 0.01	0.68 \pm 0.04	0.90 \pm 0.05
	SEALAtom ($\lambda = 10^{-1}$)	0.58 \pm 0.01	0.76 \pm 0.01	0.66 \pm 0.02	0.88 \pm 0.04
	SEALAtom ($\lambda = 10^{-2}$)	0.53 \pm 0.01	0.72 \pm 0.01	0.63 \pm 0.02	0.87 \pm 0.04
	SEALAtom ($\lambda = 10^{-3}$)	0.49 \pm 0.01	0.69 \pm 0.01	0.60 \pm 0.02	0.85 \pm 0.05
	SEALAtom ($\lambda = 10^{-4}$)	0.48 \pm 0.01	0.66 \pm 0.01	0.59 \pm 0.02	0.82 \pm 0.04
	SEALAtom ($\lambda = 0$)	0.47 \pm 0.01	0.65 \pm 0.03	0.61 \pm 0.02	0.81 \pm 0.03

1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632

1633 Table 19: Performance of model explanations on real-world datasets (CYP2C9). Explanations are
 1634 evaluated using Fidelity metrics at 10%, 20%, and 30% masking thresholds, representing the pro-
 1635 portion of most important atoms (nodes) either removed or retained during the evaluation.

Model	Fidelity ₁₀₊ ↑	Fidelity ₁₀₋ ↓	Fidelity ₂₀₊ ↑	Fidelity ₂₀₋ ↓	Fidelity ₃₀₊ ↑	Fidelity ₃₀₋ ↓
Deconvolution	0.34 ± 0.03	0.37 ± 0.03	0.35 ± 0.03	0.36 ± 0.03	0.36 ± 0.03	0.35 ± 0.03
GuidedBackprop	0.36 ± 0.03	0.37 ± 0.04	0.36 ± 0.03	0.36 ± 0.03	0.36 ± 0.03	0.35 ± 0.03
IntegratedGradients	0.61 ± 0.19	0.28 ± 0.15	0.63 ± 0.21	0.27 ± 0.15	0.60 ± 0.23	0.24 ± 0.15
Saliency	0.38 ± 0.05	0.36 ± 0.03	0.38 ± 0.05	0.35 ± 0.03	0.39 ± 0.06	0.34 ± 0.03
InputXGradient	0.35 ± 0.03	0.41 ± 0.11	0.35 ± 0.04	0.40 ± 0.10	0.35 ± 0.04	0.39 ± 0.09
GNNEExplainer	0.41 ± 0.07	0.32 ± 0.06	0.42 ± 0.08	0.31 ± 0.08	0.42 ± 0.09	0.28 ± 0.09
HiGNN	0.22 ± 0.04	0.37 ± 0.10	0.25 ± 0.05	0.36 ± 0.09	0.31 ± 0.07	0.31 ± 0.08
ProtGNN	0.42 ± 0.10	0.48 ± 0.13	0.46 ± 0.12	0.47 ± 0.13	0.49 ± 0.13	0.45 ± 0.13
PGEExplainer	0.35 ± 0.03	0.40 ± 0.09	0.35 ± 0.03	0.39 ± 0.09	0.36 ± 0.03	0.38 ± 0.06
CYP2C9						
SMEAAtom	0.31 ± 0.03	0.33 ± 0.02	0.32 ± 0.02	0.33 ± 0.02	0.33 ± 0.02	0.32 ± 0.02
SMEBrics	0.31 ± 0.03	0.33 ± 0.02	0.32 ± 0.03	0.32 ± 0.02	0.33 ± 0.02	0.32 ± 0.03
SMEMurcko	0.30 ± 0.03	0.33 ± 0.02	0.31 ± 0.04	0.32 ± 0.02	0.32 ± 0.03	0.32 ± 0.02
PGIB	0.30 ± 0.05	0.30 ± 0.04	0.31 ± 0.05	0.29 ± 0.05	0.32 ± 0.04	0.27 ± 0.06
SEAL ($\lambda = 2$)	0.52 ± 0.02	0.04 ± 0.05	0.57 ± 0.03	0.03 ± 0.04	0.66 ± 0.03	0.01 ± 0.01
SEAL ($\lambda = 1$)	0.50 ± 0.02	0.05 ± 0.06	0.55 ± 0.02	0.04 ± 0.05	0.64 ± 0.03	0.01 ± 0.01
SEAL ($\lambda = 0.5$)	0.50 ± 0.02	0.05 ± 0.04	0.56 ± 0.01	0.04 ± 0.03	0.64 ± 0.02	0.01 ± 0.01
SEAL ($\lambda = 10^{-1}$)	0.57 ± 0.02	0.00 ± 0.00	0.63 ± 0.02	0.00 ± 0.00	0.72 ± 0.02	0.00 ± 0.00
SEAL ($\lambda = 10^{-2}$)	0.53 ± 0.02	0.00 ± 0.00	0.60 ± 0.02	0.00 ± 0.00	0.69 ± 0.02	0.00 ± 0.00
SEAL ($\lambda = 10^{-3}$)	0.53 ± 0.02	0.06 ± 0.04	0.58 ± 0.02	0.05 ± 0.04	0.65 ± 0.02	0.04 ± 0.03
SEAL ($\lambda = 10^{-4}$)	0.52 ± 0.02	0.13 ± 0.05	0.58 ± 0.02	0.11 ± 0.03	0.63 ± 0.03	0.10 ± 0.04
SEAL ($\lambda = 0$)	0.52 ± 0.00	0.11 ± 0.02	0.59 ± 0.01	0.09 ± 0.01	0.65 ± 0.01	0.07 ± 0.01
SEALAtom ($\lambda = 2$)	0.43 ± 0.08	0.14 ± 0.06	0.44 ± 0.08	0.10 ± 0.05	0.44 ± 0.08	0.05 ± 0.03
SEALAtom ($\lambda = 1$)	0.34 ± 0.09	0.16 ± 0.06	0.35 ± 0.09	0.12 ± 0.05	0.35 ± 0.09	0.06 ± 0.03
SEALAtom ($\lambda = 0.5$)	0.38 ± 0.09	0.07 ± 0.07	0.39 ± 0.10	0.05 ± 0.05	0.38 ± 0.09	0.02 ± 0.03
SEALAtom ($\lambda = 10^{-1}$)	0.52 ± 0.15	0.02 ± 0.01	0.55 ± 0.17	0.01 ± 0.01	0.53 ± 0.18	0.00 ± 0.00
SEALAtom ($\lambda = 10^{-2}$)	0.35 ± 0.03	0.24 ± 0.08	0.35 ± 0.03	0.23 ± 0.08	0.34 ± 0.03	0.19 ± 0.08
SEALAtom ($\lambda = 10^{-3}$)	0.34 ± 0.04	0.24 ± 0.07	0.33 ± 0.04	0.23 ± 0.07	0.33 ± 0.04	0.21 ± 0.07
SEALAtom ($\lambda = 10^{-4}$)	0.44 ± 0.05	0.17 ± 0.04	0.44 ± 0.05	0.17 ± 0.05	0.44 ± 0.06	0.17 ± 0.07
SEALAtom ($\lambda = 0$)	0.57 ± 0.04	0.20 ± 0.03	0.58 ± 0.04	0.18 ± 0.04	0.57 ± 0.04	0.17 ± 0.05

1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686

1687 Table 20: Performance of model explanations on real-world datasets (hERG). Explanations are eval-
 1688 uated using Fidelity metrics at 10%, 20%, and 30% masking thresholds, representing the proportion
 1689 of most important atoms (nodes) either removed or retained during the evaluation.

Model	Fidelity ₁₀₊ ↑	Fidelity ₁₀₋ ↓	Fidelity ₂₀₊ ↑	Fidelity ₂₀₋ ↓	Fidelity ₃₀₊ ↑	Fidelity ₃₀₋ ↓
Deconvolution	0.44 ± 0.04	0.48 ± 0.02	0.48 ± 0.02	0.48 ± 0.02	0.49 ± 0.02	0.46 ± 0.03
GuidedBackprop	0.45 ± 0.02	0.48 ± 0.02	0.48 ± 0.03	0.48 ± 0.02	0.48 ± 0.02	0.47 ± 0.02
IntegratedGradients	0.55 ± 0.13	0.44 ± 0.06	0.58 ± 0.18	0.41 ± 0.11	0.59 ± 0.19	0.38 ± 0.12
Saliency	0.43 ± 0.02	0.48 ± 0.02	0.46 ± 0.02	0.47 ± 0.03	0.48 ± 0.02	0.47 ± 0.02
InputXGradient	0.40 ± 0.04	0.49 ± 0.02	0.43 ± 0.04	0.49 ± 0.02	0.46 ± 0.03	0.49 ± 0.03
GNNEExplainer	0.46 ± 0.03	0.47 ± 0.03	0.50 ± 0.06	0.45 ± 0.05	0.52 ± 0.07	0.44 ± 0.05
HIGNN	0.34 ± 0.04	0.47 ± 0.04	0.41 ± 0.06	0.46 ± 0.04	0.45 ± 0.05	0.45 ± 0.05
ProtGNN	0.40 ± 0.06	0.42 ± 0.07	0.42 ± 0.07	0.42 ± 0.07	0.43 ± 0.07	0.42 ± 0.07
PGEExplainer	0.35 ± 0.04	0.48 ± 0.03	0.41 ± 0.04	0.47 ± 0.04	0.45 ± 0.03	0.46 ± 0.04
SMEAAtom	0.41 ± 0.00	0.52 ± 0.04	0.45 ± 0.02	0.51 ± 0.04	0.48 ± 0.03	0.51 ± 0.03
SMEBricks	0.38 ± 0.02	0.52 ± 0.04	0.45 ± 0.03	0.52 ± 0.04	0.49 ± 0.04	0.51 ± 0.04
SMEMurcko	0.38 ± 0.02	0.52 ± 0.04	0.44 ± 0.03	0.52 ± 0.04	0.49 ± 0.04	0.50 ± 0.03
PGIB	0.36 ± 0.03	0.43 ± 0.07	0.39 ± 0.04	0.41 ± 0.07	0.42 ± 0.04	0.38 ± 0.07
SEAL ($\lambda = 2$)	0.57 ± 0.01	0.00 ± 0.00	0.66 ± 0.01	0.00 ± 0.00	0.76 ± 0.01	0.00 ± 0.00
SEAL ($\lambda = 1$)	0.57 ± 0.02	0.00 ± 0.00	0.65 ± 0.02	0.00 ± 0.00	0.75 ± 0.01	0.00 ± 0.00
SEAL ($\lambda = 0.5$)	0.57 ± 0.01	0.00 ± 0.00	0.66 ± 0.02	0.00 ± 0.00	0.76 ± 0.01	0.00 ± 0.00
SEAL ($\lambda = 10^{-1}$)	0.59 ± 0.01	0.00 ± 0.00	0.68 ± 0.01	0.00 ± 0.00	0.77 ± 0.01	0.00 ± 0.00
SEAL ($\lambda = 10^{-2}$)	0.59 ± 0.01	0.00 ± 0.00	0.68 ± 0.01	0.00 ± 0.00	0.78 ± 0.01	0.00 ± 0.00
SEAL ($\lambda = 10^{-3}$)	0.63 ± 0.03	0.02 ± 0.01	0.72 ± 0.03	0.01 ± 0.01	0.80 ± 0.03	0.01 ± 0.01
SEAL ($\lambda = 10^{-4}$)	0.63 ± 0.01	0.09 ± 0.03	0.71 ± 0.01	0.07 ± 0.02	0.78 ± 0.01	0.05 ± 0.02
SEAL ($\lambda = 0$)	0.67 ± 0.02	0.15 ± 0.02	0.74 ± 0.02	0.15 ± 0.01	0.78 ± 0.03	0.14 ± 0.01
SEALAtom ($\lambda = 2$)	0.78 ± 0.01	0.01 ± 0.01	0.86 ± 0.01	0.00 ± 0.00	0.87 ± 0.03	0.00 ± 0.00
SEALAtom ($\lambda = 1$)	0.78 ± 0.03	0.01 ± 0.01	0.87 ± 0.02	0.00 ± 0.00	0.89 ± 0.01	0.00 ± 0.00
SEALAtom ($\lambda = 0.5$)	0.77 ± 0.03	0.05 ± 0.03	0.86 ± 0.02	0.00 ± 0.00	0.85 ± 0.03	0.00 ± 0.00
SEALAtom ($\lambda = 10^{-1}$)	0.78 ± 0.01	0.01 ± 0.01	0.87 ± 0.01	0.00 ± 0.00	0.89 ± 0.01	0.00 ± 0.00
SEALAtom ($\lambda = 10^{-2}$)	0.77 ± 0.01	0.00 ± 0.00	0.83 ± 0.01	0.00 ± 0.00	0.87 ± 0.01	0.00 ± 0.00
SEALAtom ($\lambda = 10^{-3}$)	0.83 ± 0.02	0.02 ± 0.02	0.89 ± 0.03	0.01 ± 0.00	0.91 ± 0.03	0.01 ± 0.01
SEALAtom ($\lambda = 10^{-4}$)	0.55 ± 0.08	0.57 ± 0.15	0.54 ± 0.10	0.58 ± 0.15	0.50 ± 0.12	0.54 ± 0.13
SEALAtom ($\lambda = 0$)	0.73 ± 0.02	0.23 ± 0.16	0.74 ± 0.02	0.28 ± 0.14	0.71 ± 0.05	0.30 ± 0.12

1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741

1742 Table 21: Performance of model explanations on real-world datasets (Solubility). Explanations
 1743 are evaluated using Fidelity metrics at 10%, 20%, and 30% masking thresholds, representing the
 1744 proportion of most important atoms (nodes) either removed or retained during the evaluation.

Model	Fidelity ₁₀ + ↑	Fidelity ₁₀ - ↓	Fidelity ₂₀ + ↑	Fidelity ₂₀ - ↓	Fidelity ₃₀ + ↑	Fidelity ₃₀ - ↓
Deconvolution	2.56 ± 0.87	4.09 ± 1.17	2.82 ± 0.94	3.96 ± 1.13	3.20 ± 1.03	3.79 ± 1.08
GuidedBackprop	3.77 ± 1.10	3.30 ± 1.11	4.02 ± 1.19	3.09 ± 1.04	4.24 ± 1.29	2.80 ± 0.96
IntegratedGradients	2.33 ± 0.80	4.62 ± 1.58	2.56 ± 0.87	4.54 ± 1.56	2.88 ± 0.96	4.39 ± 1.50
Saliency	3.22 ± 0.99	3.68 ± 1.20	3.46 ± 1.07	3.50 ± 1.15	3.75 ± 1.15	3.23 ± 1.06
InputXGradient	3.14 ± 0.93	3.50 ± 1.06	3.41 ± 1.02	3.33 ± 1.00	3.74 ± 1.14	3.09 ± 0.93
GNNEExplainer	3.56 ± 1.24	3.64 ± 0.99	3.90 ± 1.34	3.47 ± 0.93	4.25 ± 1.48	3.24 ± 0.85
HIGNN	0.46 ± 0.08	0.43 ± 0.09	0.49 ± 0.08	0.40 ± 0.09	0.53 ± 0.09	0.36 ± 0.08
PGEExplainer	3.21 ± 1.05	3.49 ± 0.97	3.44 ± 1.13	3.29 ± 0.90	3.72 ± 1.20	3.02 ± 0.81
SMEAAtom	1.01 ± 0.65	1.18 ± 1.05	1.07 ± 0.70	1.11 ± 0.97	1.17 ± 0.85	0.99 ± 0.79
SMEBricks	0.96 ± 0.57	1.01 ± 0.69	1.02 ± 0.60	0.95 ± 0.60	1.09 ± 0.69	0.87 ± 0.50
SMEMurcko	0.98 ± 0.59	1.09 ± 0.85	1.04 ± 0.63	1.01 ± 0.75	1.12 ± 0.74	0.91 ± 0.60
SEAL ($\lambda = 2$)	1.12 ± 0.25	1.04 ± 0.42	1.20 ± 0.28	0.96 ± 0.38	1.34 ± 0.32	0.84 ± 0.33
SEAL ($\lambda = 1$)	1.04 ± 0.31	0.83 ± 0.39	1.11 ± 0.34	0.78 ± 0.36	1.22 ± 0.38	0.69 ± 0.31
SEAL ($\lambda = 0.5$)	1.08 ± 0.31	0.89 ± 0.41	1.15 ± 0.33	0.83 ± 0.38	1.26 ± 0.37	0.74 ± 0.34
SEAL ($\lambda = 10^{-1}$)	0.77 ± 0.20	0.67 ± 0.29	0.83 ± 0.23	0.62 ± 0.26	0.92 ± 0.27	0.55 ± 0.23
SEAL ($\lambda = 10^{-2}$)	0.64 ± 0.12	0.50 ± 0.13	0.68 ± 0.13	0.49 ± 0.13	0.73 ± 0.14	0.46 ± 0.13
SEAL ($\lambda = 10^{-3}$)	1.24 ± 0.20	1.26 ± 0.33	1.37 ± 0.21	1.14 ± 0.30	1.55 ± 0.25	0.98 ± 0.25
SEAL ($\lambda = 10^{-4}$)	0.78 ± 0.14	0.64 ± 0.16	0.84 ± 0.15	0.58 ± 0.13	0.91 ± 0.17	0.52 ± 0.09
SEAL ($\lambda = 0$)	0.49 ± 0.03	0.55 ± 0.07	0.54 ± 0.04	0.53 ± 0.08	0.58 ± 0.05	0.48 ± 0.07
SEALAtom ($\lambda = 2$)	0.41 ± 0.04	0.65 ± 0.15	0.44 ± 0.04	0.63 ± 0.15	0.46 ± 0.05	0.58 ± 0.13
SEALAtom ($\lambda = 1$)	0.38 ± 0.02	0.56 ± 0.14	0.41 ± 0.02	0.54 ± 0.13	0.43 ± 0.03	0.50 ± 0.12
SEALAtom ($\lambda = 0.5$)	0.39 ± 0.03	0.33 ± 0.11	0.41 ± 0.04	0.32 ± 0.12	0.43 ± 0.04	0.30 ± 0.12
SEALAtom ($\lambda = 10^{-1}$)	0.37 ± 0.03	0.28 ± 0.10	0.40 ± 0.04	0.25 ± 0.11	0.41 ± 0.05	0.22 ± 0.10
SEALAtom ($\lambda = 10^{-2}$)	0.86 ± 0.34	1.19 ± 0.53	0.93 ± 0.36	1.03 ± 0.45	1.01 ± 0.41	0.83 ± 0.34
SEALAtom ($\lambda = 10^{-3}$)	0.80 ± 0.42	0.81 ± 0.48	0.86 ± 0.46	0.70 ± 0.38	0.93 ± 0.55	0.57 ± 0.27
SEALAtom ($\lambda = 10^{-4}$)	0.97 ± 0.37	0.95 ± 0.46	1.04 ± 0.41	0.82 ± 0.34	1.15 ± 0.48	0.68 ± 0.22
SEALAtom ($\lambda = 0$)	0.69 ± 0.10	0.54 ± 0.10	0.74 ± 0.11	0.51 ± 0.08	0.79 ± 0.12	0.47 ± 0.06

1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795

Table 22: **Performance of model explanations on real-world datasets (MUTAG).** Explanations are evaluated using **Subgraph Explanation (SE)** and **Null Explanation (NE)** metrics.

	Model	SE \uparrow	NE \uparrow
MUTAG	Deconvolution	0.84 \pm 0.01	0.77 \pm 0.02
	GuidedBackprop	0.38 \pm 0.11	0.60 \pm 0.07
	IntegratedGradients	0.56 \pm 0.18	0.53 \pm 0.03
	Saliency	0.48 \pm 0.07	0.63 \pm 0.03
	InputXGradient	0.45 \pm 0.06	0.63 \pm 0.06
	GNNEExplainer	0.48 \pm 0.03	0.72 \pm 0.02
	ProtGNN	0.47 \pm 0.06	0.65 \pm 0.03
	HiGNN	0.55 \pm 0.00	0.70 \pm 0.02
	PGExplainer	0.29 \pm 0.08	0.68 \pm 0.03
	SMEAAtom	0.76 \pm 0.04	0.36 \pm 0.07
	SMEBrics	0.55 \pm 0.00	0.77 \pm 0.01
	SMEMurcko	0.47 \pm 0.03	0.60 \pm 0.03
	PGIB	0.46 \pm 0.05	0.50 \pm 0.04
	SEAL ($\lambda = 2$)	0.85 \pm 0.02	0.54 \pm 0.02
	SEAL ($\lambda = 1$)	0.85 \pm 0.02	0.55 \pm 0.01
	SEAL ($\lambda = 0.5$)	0.85 \pm 0.02	0.54 \pm 0.01
	SEAL ($\lambda = 10^{-1}$)	0.84 \pm 0.02	0.55 \pm 0.01
	SEAL ($\lambda = 10^{-2}$)	0.87 \pm 0.02	0.53 \pm 0.02
	SEAL ($\lambda = 10^{-3}$)	0.88 \pm 0.01	0.52 \pm 0.02
	SEAL ($\lambda = 10^{-4}$)	0.90 \pm 0.01	0.53 \pm 0.02
	SEAL ($\lambda = 0$)	0.91 \pm 0.01	0.51 \pm 0.02
	SEALAtom ($\lambda = 2$)	0.65 \pm 0.02	0.24 \pm 0.02
	SEALAtom ($\lambda = 1$)	0.65 \pm 0.02	0.24 \pm 0.02
	SEALAtom ($\lambda = 0.5$)	0.65 \pm 0.01	0.24 \pm 0.02
	SEALAtom ($\lambda = 10^{-1}$)	0.65 \pm 0.01	0.25 \pm 0.02
	SEALAtom ($\lambda = 10^{-2}$)	0.97 \pm 0.00	0.27 \pm 0.02
	SEALAtom ($\lambda = 10^{-3}$)	0.97 \pm 0.00	0.25 \pm 0.03
	SEALAtom ($\lambda = 10^{-4}$)	0.86 \pm 0.02	0.42 \pm 0.02
	SEALAtom ($\lambda = 0$)	0.71 \pm 0.05	0.47 \pm 0.03

1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

Figure 13: Node-level explanation examples from user study, The red color indicates that the highlighted atoms had a positive contribution to the compound's solubility.

Figure 16: Node-level explanation examples from user study, The red color indicates that the highlighted atoms had a positive contribution to the compound’s solubility.

2154
 2155
 2156
 2157
 2158
 2159

Figure 19: Node-level explanation examples from user study, The red color indicates that the highlighted atoms had a positive contribution to the compound’s solubility.

2221
 2222
 2223
 2224
 Figure 21: Node-level explanation examples of the SEAL method evaluated on the Boron (B) task
 for the negative target class. The red color indicates that the highlighted atoms had a positive
 contribution to the compound’s positive prediction. Blue as a negative contribution.

2253
 2254
 2255
 2256
 2257
 Figure 22: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
 Halogens (X) task for the positive target class. The red color indicates that the highlighted atoms
 had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

2265
 2266
 2267
 Figure 23: Node-level explanation examples of the SEAL method evaluated on the Halogens (X)
 task for the negative target class. The red color indicates that the highlighted atoms had a positive
 contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 24: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on the rings-max task for the positive target class. The red color indicates that the highlighted atoms had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

Figure 26: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on the rings-count task for the positive target class. The red color indicates that the highlighted atoms had a positive contribution to the compound's positive prediction. Blue as a negative contribution.

Figure 27: Node-level explanation examples of the SEAL method evaluated on the rings-count task for the negative target class. The red color indicates that the highlighted atoms had a positive contribution to the compound's positive prediction. Blue as a negative contribution.

Figure 28: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on the PAINS task for the positive target class. The red color indicates that the highlighted atoms had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 29: Node-level explanation examples of the SEAL method evaluated on the PAINS task for the negative target class. The red color indicates that the highlighted atoms had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 30: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on the indole task for the positive target class. The red color indicates that the highlighted atoms had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 31: Node-level explanation examples of the SEAL method evaluated on the indole task for the negative target class. The red color indicates that the highlighted atoms had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

2515
2516 Figure 32: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
2517 the Phosphorus (P) task for the positive target class. The red color indicates that the highlighted
2518 atoms had a positive contribution to the compound’s positive prediction. Blue as a negative
2519 contribution.

2532
2533 Figure 33: Node-level explanation examples of the SEAL method evaluated on the Phosphorus (P)
2534 task for the negative target class. The red color indicates that the highlighted atoms had a positive
2535 contribution to the compound’s positive prediction. Blue as a negative contribution.

2536
2537

2579 Figure 34: Node-level explanation examples of the SEAL method evaluated on the hERG dataset.
 2580 The red color indicates that the highlighted atoms had a positive contribution to the positive prediction.
 2581 Blue as a negative contribution.

2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591

2634 Figure 35: Node-level explanation examples of the SEAL method evaluated on the CYP2C9 dataset.
 2635 The red color indicates that the highlighted atoms had a positive contribution to the positive predic-
 2636 tion. Blue as a negative contribution.

2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645

2684 Figure 36: Node-level explanation examples of the SEAL method evaluated on the aqueous solu-
 2685 bility dataset. The red color indicates that the highlighted atoms had a positive contribution to the
 2686 positive prediction. Blue as a negative contribution.

2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699

Figure 37: Node-level explanation examples of the SEAL method evaluated on the MUTAG dataset. The red color indicates that the highlighted atoms had a positive contribution to the positive prediction. Blue as a negative contribution.