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ABSTRACT

Graph neural networks (GNNs) are widely used in the field of predicting molec-
ular properties. However, their black box nature limits their use in critical areas
like drug discovery. Moreover, existing explainability methods often fail to re-
liably quantify the contribution of individual atoms or substructures due to the
message-passing dynamics, which entangle local representations with informa-
tion from the entire graph. As a remedy, we propose SEAL (Substructure Expla-
nation via Attribution Learning), an interpretable GNN that divides the molecular
graph into chemically meaningful fragments and limits information flow between
them. As a result, contributions of individual substructures reflect the true influ-
ence of chemical fragments on prediction. Experiments on both synthetic and real
molecular benchmarks demonstrate that SEAL consistently outperforms existing
methods and produces explanations that chemists judge to be more intuitive and
trustworthy.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in molecular property
prediction by naturally representing molecules as graphs of atoms and bonds (Wieder et al., 2020).
However, their decision-making processes remain opaque, limiting their adoption in applications
where interpretability is crucial for scientific discoveries. The lack of interpretability is primarily
caused by the message-passing mechanism, which repeatedly exchanges information between nodes
(atoms). In each layer, a node aggregates messages from its neighbors, updating its own representa-
tion to capture increasingly global molecular context. While this enables the network to comprehend
complex molecular interactions, it also entangles information across the graph. As a result, a final
embedding of each node reflects not only its own properties but also the cumulative properties of
distant atoms, making it difficult to assess the influence of particular substructures on prediction.
Moreover, typical global pooling mechanisms further mix information from different nodes, often
leading to the oversmoothing problem (Zhang et al., 2023).

To overcome this problem, we introduce SEAL (Substructure Explanation via Attribution
Learning), a novel interpretable GNN that generates fragment-wise explanations for molecular prop-
erty prediction. SEAL decomposes molecular graphs into chemically meaningful fragments and
quantifies the contribution of each fragment to model predictions through a constrained message-
passing architecture that reduces information leakage between fragments. It is achieved by defining
two separate sets of parameters: one used for message passing within fragments (intrafragment
weights), and another for message passing between different fragments (interfragment weights). By
adding a regularization term on the interfragment weights as an additional loss function, we can
control the flow of information between fragments depending on the complexity of the task.

Many molecular properties, including solubility, toxicity, and binding affinity, are predominantly
determined by the presence and identity of specific functional groups and substructures rather than
complex global interactions (von Korff & Sander, 2006; Murcko, 1995). Therefore, decomposing
molecular graphs into chemically meaningful fragments aligns abstractions that chemists use to un-
derstand molecular behavior (Ponzoni et al., 2023). For instance, in the solubility prediction exam-
ples shown in Figure 1, the molecule is divided into several fragments, among which the most polar
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Figure 1: Example explanation generated by SEAL for molecules with low (left side) and high
(right side) solubility. In both cases, the molecule is divided into several fragments (marked with
gray regions), following our modified BRICS rules described in Section 3.1. The most polar groups
contribute positively (red color), and other groups, such as carbon chains, contribute negatively
(blue color) to the predicted solubility, which aligns well with the chemical knowledge about factors
impacting aqueous solubility (Davis & Leeson, 2023).

groups contribute positively and the hydrophobic groups contribute negatively to the predicted solu-
bility without spreading information to other fragments. These fragment-wise explanations provide
more reliable insights than existing GNN explainability methods, which typically assign importance
at the level of individual atoms or bonds.

SEAL achieves competitive performance across synthetic and real-world molecular prediction tasks
while producing the most accurate explanations among all tested explainers. A user study further
confirms that the fragments highlighted by our model are more intuitive to chemists than those re-
turned by other techniques or random assignments. Our contributions can be summarized as follows:

• We propose SEAL, a fragment-based explanation method that decomposes molecular
graphs into chemically meaningful substructures, enabling more intuitive insights into
model predictions.

• SEAL regularizes inter-fragment message passing to prevent oversmoothing across frag-
ments, preserving local signal and enabling more faithful, fragment-specific contribution
estimates.

• SEAL produces explanations preferred by chemists and domain experts while maintaining
state-of-the-art predictive performance on molecular property tasks.

2 RELATED WORK

Graph neural networks. GNNs have become a standard method for analyzing molecular data,
often using either a message-passing mechanism (Gilmer et al., 2020) or a transformer-based ar-
chitecture (Rong et al., 2020; Maziarka et al., 2024). Some of these networks work on fragment
graphs where atom groups serve as nodes instead of individual atoms. For example, Cao et al.
(2024) proposed a GNN that uses fragment-level message passing for better explainability but still
relies on external explainers to determine fragment contributions. Wang et al. (2025) recently in-
troduced FragFormer, a transformer that operates on fragments and employs a variant of the CAM
method (Zhou et al., 2016) to explain its predictions. In both models, fragments can contain signif-
icant signals coming from other parts of the molecule, potentially reducing local interpretability. In
SEAL, we minimize unnecessary message passing between fragments to enhance interpretability.

Graph-based explainers. Many explainable AI (XAI) techniques have been proposed to elucidate
the predictions of GNNs. Some identify important subgraphs by perturbing the input graph (Ying
et al., 2019; Vu & Thai, 2020; Yuan et al., 2021), while other methods analyze the message-passing
mechanism in each layer (Feng et al., 2022b; Gui et al., 2023). Often, explaining GNNs is diffi-
cult due to the large number of subgraphs and the complex message-passing process. Therefore,
Henderson et al. (2021) proposed regularization techniques that disentangle node representations,
aiding in generating better explanations. Another approach involves presenting explanations at the
fragment level. For instance, Wu et al. (2023) employed BRICS (Degen et al., 2008) to break down
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molecules into chemically plausible segments and elucidate predictions by masking entire molecu-
lar fragments. In contrast to SEAL, these are post-hoc explanation methods that require additional
postprocessing steps to elucidate predictions.

Interpretable models. Inherently interpretable methods are also being developed, including
prototype-based graph neural networks (Zhang et al., 2022; Rymarczyk et al., 2023) and attention-
based models (Xiong et al., 2019; Lee et al., 2023). However, prototypical parts and attention maps
on graphs can still be difficult for humans to interpret because of the multitude of explanation pat-
terns that need to be analyzed. (Zhu et al., 2022) introduced HiGNN, a GNN that employs BRICS
to generate fragments, forming hierarchical information to enhance predictions. Unfortunately, the
fragment information is aggregated using multi-head attention, which complicates interpreting the
predictions. To avoid the complexity of prototypical parts or attention maps, SEAL decomposes
molecules into a simple sum of scalar fragment contributions.

An extended related work directly comparing features of similar explainers to SEAL is presented in
Appendix F.

3 SEAL

There are two main differences between the SEAL and the existing GNN models. The first of them,
described in Section 3.1, corresponds to the way we aggregate the information from the representa-
tion of the atoms. Instead of globally pooling all the representations, we pool them locally within
the fragments. The second difference, described in Section 3.2, corresponds to the message passing
mechanism, which uses intrafragment and interfragment weights. The latter was regulated with an
additional loss.

3.1 LOCAL POOLING AND CONTRIBUTION

The interpretability of our model is achieved by redesigning the prediction head in graph-based mod-
els. Typically, a readout function in GNNs is used to create a graph-level representation, and then
an MLP is applied to make predictions. However, the graph readout aggregates information from
all atoms in the graph, hindering the ability to attribute predictions to specific atoms or functional
groups.

Our model first aggregates information within graph fragments. We use sum pooling followed by a
LayerNorm (Ba et al., 2016) to create the fragment representation from the fragment atom represen-
tations. Then, the contribution for each fragment is computed with an MLP, and the final prediction
is the sum of all fragment contributions.

Let us define a molecular graph G = (V, E , X), where V = {vi}Ni=1 is a set of nodes corresponding
to atoms, E ⊆ V × V is a set of edges corresponding to chemical bonds, X ∈ RN×D is an atom
feature matrix, and D is the number of node features. After passing this graph through a sequence
of GNN layers, a matrix of atom representations H ∈ RN×M is obtained. Each atom is assigned to
exactly one of the K fragments F1, . . . ,FK . Then, the model output is computed as follows:

h̄i =
∑

vj∈Fi

hj , ci = MLP
(
h̄i

)
, ŷ =

K∑
i=1

ci + b, (1)

where h̄i is the representation of i-th fragment, ci is the contribution of this fragment, b is a train-
able bias term, and ŷ is the model prediction. The fragment contributions represent the importance
of each fragment. The bias term is essential because every dataset has its own baseline level (aris-
ing from constant shifts in the measurement units or structure-independent noise) that cannot be
accounted for by a variable number of fragments. Without this bias, the model would need to re-
distribute this baseline across fragments, reducing the clarity and interpretability of the resulting
contributions.

Fragmentation. In all experiments, we use a modified BRICS-based fragmentation approach (De-
gen et al., 2008) inspired by but not identical to Zhang et al. (2021). We isolate side chains attached
to rings, even when they contain a single atom. Additionally, unlike their procedure, we separate

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

non-ring atoms with degree greater than or equal to four (instead of three), and cut non-ring bonds
connecting two rings as well as halogen attachments. These adjustments yield fragments that better
preserve chemically meaningful units and improve interpretability. Although SEAL can use any
fragmentation method as a preprocessing step, we find BRICS most suitable due to its synthesis-
inspired rules and strong empirical performance. For completeness, we also evaluate SEALAtom,
where each atom forms its own fragment; in this case, the model still produces per-atom additive
contributions rather than relying on global average pooling as in standard GNNs.

3.2 INTRAFRAGMENT AND INTERFRAGMENT MESSAGE PASSING

The aggregation of messages from neighboring nodes in GNNs is invariant to node permutations.
While this mechanism is effective in extracting meaningful information from molecular graphs
needed for making correct predictions, the information from each node is easily diffused in the
graph, hurting the model’s ability to localize crucial atoms and leading to the known problem of
oversmoothing.

intrafragment weights

interfragment weights
reduced by regularization

Figure 2: Message passing in SEAL re-
duces information exchanged between frag-
ments using different weights for intrafrag-
ment (blue arrows) and interfragment (green
arrows) edges. The latter are reduced by reg-
ularization (red lines).

To mitigate the problem of leaking unnecessary in-
formation to neighboring nodes, we propose a new
graph neural network variant that operates on pre-
fragmented graphs, controlling the information ex-
changed between fragments. In our implementation,
graph layers have separate weights for intrafrag-
ment and interfragment edges, Wintra ∈ RM ′×M and
Winter ∈ RM ′×M , respectively. This enables the net-
work to extract relevant information within molecu-
lar fragments and block information leaks to neigh-
boring fragments. The new representation of the i-th
atom h′

i ∈ RM ′
is computed in the SEAL layer as

follows:

h′
i = Whi +Wintra mean

j∈Nin(i)
hj +Winter mean

j∈Nout(i)
hj ,

(2)
where Nin(i) is a set of neighbors of the i-th node
within the same fragment, and Nout(i) is the set of its
neighbors outside the fragment. If any of these sets
is empty, the corresponding term is removed from
the formula.

To avoid leakage of information that is not crucial for prediction, we introduce a regularization term
to the loss function, which is the L1 norm of the interfragment weights Winter (Figure 2). This term
is controlled by a hyperparameter λ that should be chosen on a case-by-case basis, but typically
higher values lead to more interpretable results. The loss function in our model is:

L = Lpred + λ

L∑
l=1

∥∥∥W (l)
inter

∥∥∥
1

(3)

where Lpred is the prediction error loss function (mean squared error for regression and cross entropy
for classification), W (l)

inter are the interfragment weights in the l-th layer.

To balance the trade-off between model performance and interpretability, we perform a 10-fold
cross-validation testing multiple values of λ. The selected model is the one with the highest λ
values that is not significantly worse than the best model in terms of the target metric (RMSE for
regression or AUROC for classification) according to the Wilcoxon signed-rank test.

4 RESULTS

In this section, we present the results of experiments conducted on a synthetic benchmark and real-
world datasets, as well as the user study. See Appendix A for training details and implementation.
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Figure 3: Comparison of explanation quality for the B-XAIC benchmark computed with the Sub-
graph Explanation (SE) score for each synthetic dataset (B, P, etc.). SEAL achieves an average score
of 0.93, surpassing baseline methods. At the same time, SEAL achieves comparable performance,
with an average AUROC of 0.99± 0.01 (see Appendix B for details).

4.1 SYNTHETIC DATASET BENCHMARK

Real-world molecular datasets only offer graph-level labels without assigning importance to specific
atoms. Therefore, we chose to first use a synthetic dataset that allows for controlled and reliable
assessment of eXplainable AI (XAI) methods by providing direct ground-truth explanations. We
evaluate our method on the B-XAIC benchmark (Proszewska et al., 2025), which is designed to
compare GNN-based XAI methods in the molecular domain. The dataset includes various tasks
focused on identifying different substructures: boron atoms (B), phosphorus atoms (P), halogens
(X), indole rings, and pan-assay interference compounds (PAINS). The remaining two tasks focus
on counting rings or atoms within rings. Each task has a known ground truth explanation, enabling
a precise evaluation of the model’s explanation quality.

Metrics. To evaluate both model performance and explanation faithfulness, we use a two-part
evaluation strategy. For classification, we report standard metrics such as AUROC, F1 Score, and
Accuracy. For interpretability of explanations, we use two metrics proposed by Proszewska et al.
(2025). Subgraph Explanations (SE) is the AUROC evaluating the agreement between model
explanation and ground-truth explanation for positive examples. Null Explanations (NE) is the
percentage of outliers in explained node attributions computed using the interquartile range method
for the negative examples.

Models and baselines. We benchmark our method against a diverse set of GNN explanation
techniques, spanning both mask-based, gradient-based and self-explainable approaches: GNNEx-
plainer (Ying et al., 2019), Saliency Maps (Simonyan et al., 2014), InputXGradients (Shrikumar
et al., 2016), Integrated Gradients (Sundararajan et al., 2017), Deconvolution (Mahendran & Vedaldi,
2016), (Shrikumar et al., 2016), Guided Backpropagation (Springenberg et al., 2014), PGExplainer
(Luo et al., 2020), HiGNN (Zhu et al., 2022), ProtGNN (Zhang et al., 2022), PGIB (Seo et al.,
2023) and SME (Wu et al., 2023) denoted as SMEAtom, SMEBrics and SMEMurcko in dependence
of fragmentation used in explanation.

The evaluation of model performance is conducted for GCN (Kipf, 2016), GAT (Veličković et al.,
2017), GIN (Xu et al., 2018), ProtGNN (Zhang et al., 2022), HiGNN (Zhu et al., 2022), PGIB
(Seo et al., 2023) and SME (Wu et al., 2023). Explanation results for post-hoc gradient methods
are reported only for the GIN model, as it demonstrates the strongest performance across tasks.
Similarly, in ProtGNN and PGIB, we used GIN as the backbone and Saliency as the explainer.
Hyperparameters for all models, including SEAL, were optimized through random search. The
search space and the optimal hyperparameters found are listed in Appendix A.
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Figure 4: Node-level explanation examples for selected synthetic compounds from the B-XAIC
dataset. Each column corresponds to a compound drawn from one of the tasks. The rows (from top
to bottom) correspond to the SEAL explanation, the ground-truth explanation, and the explanation
generated by the best Baseline (according to SE score). The more intense the red color, the greater
the contribution of a substructure or atom. For clarity, the gray regions indicating specific fragments
were omitted.
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Figure 5: Effect of regularization on explanation quality in the phosphorus detection task. (a) Plot
showing the relationship between λ and SE. (b) Visual comparison of explanations generated with
two different values of λ. High λ values prevent the attribution of high contribution to neighboring
fragments.

Results. AUROC for all baseline models analyzed equals 0.95± 0.07, where the maximum base-
line score is 0.98±0.02 achieved by GIN, and the minimum is 0.88±0.1. SEAL achieves 0.99±0.01
AUROC, as presented in Table 11 of the Appendix. While achieving competitive classification per-
formance, SEAL adds the capability of explaining its predictions. Figure 3 shows the results of the
explanation evaluation, where our method yields significantly higher SE scores than other explainers
on challenging tasks such as PAINS, rings-count, indole, and rings-max. In the halogens (X) and
phosphorus (P) tasks, our performance is on par with that of the strongest baselines, reflecting the
relative ease of localizing single-atom substructures. A slight decline in performance appears in the
boron (B) task due to its frequent appearance in complex substructures that our extended BRICS
decomposition cannot efficiently segment (see Figure 4). The largest ring pattern, similar to boron,
predominantly occurs in larger substructures, but it also presents an additional challenge due to its
highly imbalanced nature, with a low percentage of positive samples across the dataset. This limita-
tion does not occur in SEALAtom, which focuses on a single atom. Performance of SEALAtom is
consistently strong in the single-atom detection task. However, it faces challenges in more complex
tasks. Nevertheless, the overall performance remains comparable to that of alternative explainers.
Finally, full evaluation of the positive and negative examples is provided in Table 14 and Table 15
of the Appendix B.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4 presents example explanations generated by our model for randomly selected molecules. It
includes both correct explanations and failure cases where larger fragments (than the ground-truth
label) are highlighted. The figure also compares the ground-truth annotations with the outputs of
the best-performing baseline method (according to the SE score) selected separately for each task.
SEAL effectively highlights chemically meaningful subgraphs, whereas other approaches tend to
assign the prediction to only a few atoms, distributing smaller weights across the entire graph. More
examples can be found in Appendix E.

Regularization SEAL dynamically adapts its λ parameter to maximize interpretability without
sacrificing performance. We perform an ablation study by varying the regularization parameter λ,
which determines how much message passing is restricted in our model. We discover that the opti-
mal value of λ depends on the specific task. In some cases, limiting message propagation improves
explanation by preventing information from leaking across irrelevant parts of the graph. For exam-
ple, in the phosphorus (P) task, increasing λ leads to a notable improvement in subgraph explanation
quality, as shown in Figure 5. This indicates that stronger regularization helps the model concentrate
on localized substructures without causing over-smoothing. In contrast, other tasks, such as PAINS
detection, require the information to flow across distant parts of the graph. In these cases, we find
that the best explanation performance occurs when λ = 0. Notably, low λ values cause informa-
tion leakage into adjacent fragments, whereas higher λ values provide more focused and faithful
explanations.

4.2 EVALUATION ON REAL-WORLD DATASETS

Evaluating explanation performance on real-world molecular datasets remains a challenging task.
Unlike synthetic benchmarks, these datasets generally do not provide ground-truth explanations that
identify which atoms or substructures are responsible for the prediction. Additionally, most molec-
ular properties relevant to real-world applications are significantly more complex, often involving
long-range interactions between fragments or features based on the spatial distribution of atoms.
To benchmark our method with real-world compounds, we follow the same setup as used for the
synthetic dataset.

Datasets. We evaluate our method on four real-world molecular property prediction datasets.
While three are standard datasets from TDC (Huang et al., 2021), we also include MUTAG (Kazius
et al., 2005), which serves as the sole real-world dataset with available ground truth explanations
(-NO2 and -NH2 chemical groups contribute to mutagenic property). MUTAG is a binary classifi-
cation for identifying if a molecule is mutagenic or not. hERG inhibition (Karim et al., 2021) is a bi-
nary classification task that includes molecular structures labeled as hERG blockers or non-blockers,
a property critical for cardiac safety assessment in drug development. CYP450 2C9 inhibition (Veith
et al., 2009) is a binary classification task that focuses on the inhibition of the cytochrome P450 2C9
enzyme, which is central to drug metabolism. Aqueous Solubility (AqSol) (Sorkun et al., 2019) is a
regression task that contains compounds with measured solubility in water.

Metrics. To evaluate explanations in the absence of ground truth annotations across different meth-
ods and fairly compare them with our model, we decided to evaluate on standard positive and neg-
ative fidelity. For all models, we mask node features at the input level, ensuring a fair comparison.
Positive Fidelity is defined as the prediction change after masking the most important nodes indi-
cated by the explainer, and Negative Fidelity is the prediction change after retaining only the most
important nodes and masking everything else. For MUTAG, we use the same SE metric that is also
used in our synthetic tasks and in other XAI works testing on MUTAG (Bui et al., 2024).

For classification tasks, fidelity is measured by the proportion of times the predicted class changes
after masking. We evaluate masking at thresholds of 10%, 20%, and 30% of nodes, ensuring that
the most relevant atoms are included in explanations without exceeding the specified percentage.
However, our method operates on fragments, and it is impossible to select exactly 10% of the atoms
of the molecule. Therefore, we select the percentage of atoms in the most relevant fragments that
is closest to 10% (e.g. 13%) and mask the same amount of most relevant atoms generated by the
baseline methods to keep the sparsity budget fixed for fair comparison. The advantage of our model
is that the prediction is a sum of contributions, so we can directly mask contributions instead of
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Figure 6: Relationship between explanation quality (Positive Fidelity 30% of masking) and perfor-
mance (AUROC) for various models on real-world molecular datasets (hERG and CYP2C9). SEAL
outperforms other methods in terms of explanation quality, while maintaining a strong performance
comparable to that of HiGNN and GIN models. Detailed results, presented in Appendix B, confirm
that high explanation quality in SEAL does not come at the cost of performance.

Table 1: Results of model explanations on the real-world MUTAG dataset and corresponding predic-
tion performance. Explanations are evaluated using Subgraph Explanation (SE) and Null Explana-
tion (NE) metrics. Performance of the model is measured by AUROC, F1, and Accuracy. Note that
all post-hoc gradient explanations are derived from a shared GIN backbone, and the SME models
utilize an identical backbone architecture for generating explanations.

MUTAG

Model SE ↑ AUROC ↑ F1 ↑ Accuracy ↑
Deconvolution 0.84 ± 0.01 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01
GuidedBackprop 0.38 ± 0.11 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01
IntegratedGradients 0.56 ± 0.18 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01
Saliency 0.48 ± 0.07 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01
InputXGradient 0.45 ± 0.06 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01
PGExplainer 0.29 ± 0.08 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01
GNNExplainer 0.48 ± 0.03 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01

HiGNN 0.55 ± 0.00 0.87 ± 0.01 0.80 ± 0.02 0.80 ± 0.02

SMEAtom 0.76 ± 0.04 0.81 ± 0.01 0.81 ± 0.01 0.81 ± 0.01
SMEBrics 0.55 ± 0.00 0.81 ± 0.01 0.81 ± 0.01 0.81 ± 0.01
SMEMurcko 0.47 ± 0.03 0.81 ± 0.01 0.81 ± 0.01 0.81 ± 0.01

PGIB 0.46 ± 0.05 0.50 ± 0.02 0.75 ± 0.03 0.75 ± 0.03
ProtGNN 0.47 ± 0.06 0.86 ± 0.01 0.78 ± 0.01 0.78 ± 0.01

SEALAtom (ours) 0.71 ± 0.05 0.79 ± 0.02 0.73 ± 0.03 0.73 ± 0.02
SEAL (ours) 0.88 ± 0.01 0.85 ± 0.01 0.80 ± 0.02 0.79 ± 0.01

masking the input graph nodes and features (which usually leads to out-of-distribution samples). An
ablation study on various masking strategies in SEAL is presented in Appendix C.

Results. Figure 6 shows the relationship between predictive AUROC and the quality of expla-
nations measured by positive fidelity on real-world datasets (hERG, CYP2C9). Our SEAL mod-
els achieve AUROC values very close to the best-performing baselines, while outperforming other
methods in terms of explanation quality. This shows that our method achieves predictive perfor-
mance on par with the strongest baselines while offering much more quality in explanation. All
results on different metrics and methods are indicated in Appendix B in which we also report the
comparison of Scaffold instead of Random splits for Fidelity measurement using masking thresholds
of 10%-70%. Table 1 presents a consistent trend, where our model on the MUTAG dataset again
outperforms competing approaches in explanation quality. These results are particularly signifi-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MUTAGCYP2C9Solubility

SE
A
L

In
te
gr
at
ed

G
ra
d
ie
n
ts

G
N
N
Ex

p
la
in
er

hERG

Figure 7: Node-level explanation examples for selected compounds from the Aqueous Solubility,
CYP 2C9, hERG and MUTAG datasets. Each column corresponds to a compound from one of
the datasets. The rows (from top to bottom) correspond to explanations of SEAL, a gradient-based
method (Integrated Gradients), and a perturbation-based method (GNNExplainer). The more in-
tense the color, the greater the contribution (red - positive, blue - negative) of a substructure or atom.
SEAL highlights entire substructures with a single color, which corresponds to how chemists ana-
lyze molecules in terms of their properties. Only SEAL was able to find -NO2 groups in MUTAG
example.

cant as they demonstrate that our framework is not limited to synthetic datasets but also generalizes
effectively to the complexities of real-world molecular graphs.

For regression tasks like Solubility, evaluating explanation quality is more difficult, and not all
explainers are well-defined in this context. Nevertheless, our method attains reasonable fidelity
values compared to other explanation methods. These results are detailed in Appendix B.

Qualitative examples. In Figure 7, we present qualitative visualizations of explanations gener-
ated by our model compared to the top-performing baselines for the AqSolDB, CYP2C9, hERG
MUTAG datasets. While other methods tend to produce scattered or noisy explanations, our model
yields more compact and interpretable substructures. These results show that our approach captures
chemically plausible explanations that are easier to interpret and often more localized, especially in
tasks like solubility, where polarity and solubility driving fragments are correctly emphasized. More
examples can be found in Appendix E.

Discussion. Across all evaluated tasks, our model consistently demonstrates strong performance,
both in terms of the prediction performance and explanation faithfulness, while providing an added
benefit of interpretability. We got strong and comparative results compared to the GNN baselines.
Furthermore, we also outperform the other explainer techniques, in terms of positive and negative
fidelity. Moreover, because SEAL is inherently interpretable, it does not require extensive computing
or memory resources, as confirmed in the Complexity Analysis in Appendix G.

By combining strong quantitative results with interpretability aligned with chemical intuition, SEAL
proves to be a reliable tool for understanding model decisions across both real and synthetic molec-
ular data. However, fidelity is not a perfect metric because it compares model predictions for the
real molecule and its masked counterpart, which has some nodes or their features removed. This
artificial reference point is an out-of-distribution sample for the model, so its prediction should be
approached with caution. To further support these findings and assess the practical usefulness of the
explanations, also keeping in mind that fidelity is not the most informative metric, we conducted
a follow-up user study with expert chemists. This enables us to determine whether the generated
explanations are not only mathematically accurate but also chemically meaningful and trustworthy
in real-world applications.

9
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Figure 8: User study on the quality of explanations. (a) One example question out of 19 questions
in the survey. (b) Distribution of votes per explanation method across all 19 questions. Each bar
represents a compound divided between preferred methods (marked with different colors). SEAL
produced explanations that chemists preferred the most in 14 out of 19 questions.

4.3 USER STUDY

To test whether the explanations produced by SEAL are intuitive to domain experts, we conducted a
user study comprising 19 questions that featured various randomly selected compounds. The task for
the participants was to indicate the explanation that highlights the atoms contributing most positively
to the molecule’s solubility. Each question included nine different explanations: one generated by
SEAL, six from other explainers, and two random controls, presented in a random order. One con-
trol sampled atoms at random, and the other control contained random BRICS fragments to assess
whether the preference is based solely on the selection of functional groups familiar to chemists.
All presented explanations contained approximately half of the molecule’s atoms. Figure 8a shows
an example question from the survey. All 14 participants were experts with a minimum of a mas-
ter’s degree in chemistry. They were blinded to the name of the explanation technique, so that their
answer was based only on the atoms selected by each method.

SEAL was chosen more often than other explanations in 14 of 19 questions, significantly outper-
forming all other methods. For the remaining questions, the following methods were chosen most of-
ten: Deconvolution and IntegratedGradients (for 5 questions), and InputXGradients (for 3 questions,
with possible ties for first place). Other methods (Saliency, GNNExplainer, and Guided Backprop)
did not win in any of the questions. The distribution of votes between methods in each question is
shown in Figure 8b. All compounds and visualizations that were used for this user study are listed in
the Appendix D. The user study confirms that our method, SEAL, provides explanations that align
more closely with human intuition and chemical understanding. It was favored over other tech-
niques, emphasizing its ability to produce meaningful and understandable atom-level attributions.

5 CONCLUSIONS

In this work, we introduce SEAL, a new approach to GNNs for predicting molecular properties that
shifts the focus from atoms and bonds to chemically meaningful fragments. By explicitly control-
ling the passing of messages within and between fragments, SEAL prevents the leakage of unneces-
sary information and provides explanations that more closely align with how chemists reason about
molecules. Experiments on synthetic and real-world datasets demonstrate that SEAL maintains
competitive predictive accuracy and delivers more faithful, intuitive, fragment-level interpretations.
A user study further shows that chemists consistently find explanations of SEAL more useful than
those of existing methods. Thus, SEAL provides a practical approach to enhancing interpretability
in molecular modeling without compromising predictive performance.

REPRODUCIBILITY STATEMENT

The implementation of our model and the code for reproducing experiments can be found in the
supplementary material. The code will be publicly available under an MIT license upon the publica-
tion of the paper. All experiments were conducted on an NVIDIA Grace Hopper GH200, NVIDIA
Grace CPU 72-Core @ 3.1 GHz, 16GB RAM, CUDA toolkit 12.4. Our experiments were carried
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out in Python 3.11, with Pytorch 2.5.1, Pytorch Geometric 2.6.1 for training, and RDKit (2024.9.6)
for preprocessing molecules. The full Python environment is available in the code repository.
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A TRAINING DETAILS

A.1 EXPERIMENTAL DETAILS

We trained the networks with a batch size of 256, using the AdamW optimizer, and employed early
stopping after 30 epochs. Additionally, a warm-up period was implemented for the first 50 epochs
(with 10 epochs for tasks that required fewer epochs, such as atom-specific tasks from the synthetic
dataset). For our model, we used 10-fold cross-validation to select the optimal λ using the Wilcoxon
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signed-rank test. We used MAE and AUROC as target evaluation metrics for hyperparameter search-
ing and the Wilcoxon test. A weight decay of 0.0001 was applied to all models and tasks. Seed was
set to 0 during training, while for explanation extraction and evaluation, it was set to 123. All ex-
periment results were obtained using a 5-fold split approach. The B-XAIC benchmark proposed a
fixed train-test set, and we followed this recommendation. For the datasets from TDC, we sampled
five testing sets using seeds from 0 to 4, following the benchmark recommendation. By default, we
report values from the TDC Random Split, unless Scaffold Split is explicitly indicated. The ranges
of hyperparameters are shown in Table 2.

Table 2: Hyperparameter search space used during model optimization.
Hyperparameter Values

Hidden dimensions [64, 128, 256, 512, 1024]
GNN layers [2, 3, 4]
Learning rate [0.001, 0.003, 0.0001, 0.0003]
Dropout rate [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
λ [2, 1, 0.5, 10−1, 10−2, 10−3, 10−4, 0]

The hyperparameters selected for the synthetic datasets are listed in Table 9, whereas those for the
real-world datasets are presented in Table 10.

A.2 DATA PREPROCESSING

In our experiments, we standardize target values in our regression task (Solubility), but we do not
perform any preprocessing in classification tasks. The atom features used for training include one-
hot encoded atom types [C, N, O, F, Cl, Br, P, S, B, I, Other]; we do not use any bond features.

B EXTENDED RESULTS
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Figure 9: Positive (left column) and Negative (right column) Fidelity scores for CYP2C9 (first row)
and hERG (second row) datasets evaluated across different masking percentages (10% to 70%). The
results are reported under the Scaffold split and SEAL (ours) models outperform other XAI methods
in terms of Positive and Negative fidelity metric at each masking level.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The performance of SEAL with different regularization values λ for the synthetic benchmark is
presented in Tables 11, Table 12 and Table 13. Detailed results for the subgraph explanation metric
are shown in Table 14, and for the null explanation metric in Table 15. For real-world datasets,
the evaluation of classification tasks is presented in Table 16, Table 17, while for the regression
task in Table 18. For datasets from TDC, we report Random and Scaffold splits. The values of the
fidelity metric for these datasets are presented in Table 19, Table 20, Table 21 and Table 22. The
comparison of how the Fidelity changes, in dependence of the percentage of molecule masked (from
10% to 70%), we visualize the results in Figure 9.

C ABLATION STUDY

C.1 MASKING STRATEGY

In our fidelity evaluation, we analyze how masking different types of contributions affects the
model’s interpretability. For each fidelity type (positive, negative), we evaluate the impact of mask-
ing the top 10%, 20%, and 30% of nodes or contributions. This allows us to compare how well
explanations identify the most influential substructures without exceeding a predefined threshold.

Unlike standard explainers that only operate on node masks, our model allows for masking specific
contribution scores directly at the level of the model’s architecture by setting ci = 0 for a given
fragment. However, a challenge with this approach is that sometimes, even at the beginning of
the ranking, a single large important substructure can surpass the 10% node threshold. To fairly
compare all the methods, we decide to mask the same amount of atoms for each molecule among
the all methods. We need to carefully select the masking strategy: whether to focus on absolute
contributions or to selectively mask only positive or negative influences. However, the optimal
strategy may vary depending on the task and model sensitivity, whether one chooses to use or omit
masking of contributions, and whether masking is guided by absolute, positive only, or negative
only importance scores. The results comparing these masking strategies are reported in Table 4 for
hERG, in Table 5 for CYP2C9, and in Table 6 for Solubility. These results contain the following
naming convention:

• mask-abs: zeroing features, mask contributions - based on maximum absolute value,

• mask: zeroing features, mask contributions - based on maximum or minimum value,

• abs: zeroing features - based on maximum absolute value,

• zero: zeroing features - based on maximum or minimum value.

C.2 ZERO-INIT

We evaluated different strategies for mitigating information leakage to gather faithful explanations.
We compare the proposed dynamic regularization λ against a static initialization. Static initialization
approach denoted as Zero-Init, initializes the weights Winter close to zero. Weights are randomly
initialized from the normal distribution with a mean of 0 and a standard deviation of 10−5. We did
not apply regularization, which means λ = 0. We have focused our analysis on the Phosphorus (P)
task of the B-XAIC benchmark, as this task exhibits the highest information leakages, as we have
observed.

As shown in Table 3, applying the regularization λ increases the explanation performance, and
the model achieves a 0.99 score on the Subgraph Explanation (SE) metric. In contrast, initialization
with the zeros (Zero-Init) does not prevent information leakage. This demonstrates that initialization
alone is insufficient to prevent information leakage. Our experiment is supported by the qualitative
results in Figure 10, where we show how the contribution values are distributed across the graph,
without successfully constraining the information flow for the Zero-Init approach.

C.3 λ CONTRIBUTION

To encourage sparsity in identifying the most relevant substructures, we extended the λ constraints.
We experimented not only using λ as a regularizer for Winter in message-passing flow, but also
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Table 3: Performance of SEAL on SE (Subgraph Explanation) metric for Phosphorus task (P) on
B-XAIC benchmark. Standards λ parameters denoted as SEAL λ and SEAL without regularization,
but Winter ≈ 0 initialized

Method SE
SEAL (Zero-Init) 0.91 ± 0.04
SEAL (λ = 2) 0.99 ± 0.00
SEAL (λ = 1) 0.99 ± 0.00
SEAL (λ = 0.5) 0.99 ± 0.00
SEAL (λ = 10−1) 0.99 ± 0.00
SEAL (λ = 10−2) 0.99 ± 0.00
SEAL (λ = 10−3) 0.96 ± 0.04
SEAL (λ = 10−4) 0.96 ± 0.04
SEAL (λ = 0) 0.88 ± 0.01

Node-level explanation

0
0

0
W inter≈

Figure 10: Effect of regularization on explanation quality in the phosphorus detection task (P).
Visual comparison of explanations for λ = 2 which effectively blocks the information passing and
Zero-Init (Winter ≈ 0), λ = 0 where information flow goes from Phosphorus to neighbour atoms.

directly in scalar fragment contributions ci, under these conditions forward pass and loss function
are defined as:

h̄i =
∑

vj∈Fi

hj , ci = MLP
(
h̄i

)
, ŷ =

K∑
i=1

ci + b, (4)

where ci is the scalar contribution to the prediction obtained from the fragment representation, the
loss function with extended λ constraints is defined as:

L = Lpred + λMP

L∑
l=1

∥∥∥W (l)
inter

∥∥∥
1
+ λCONTR

K∑
i=1

|ci| (5)

where λMP controls the flow between fragments as in the original defined loss, and λCONTR tends to
create sparse contributions ci.

To assess the need for this dual λ approach, we performed an ablation study for different λMP and
λCONTR hyperparameter values. The results visualized in Figure 11 compare the performance of the
model (AUROC) and explanations (SE) on two tasks from B-XAIC (rings-count, PAINS).

While observing the performance presented in Figure 11, a clear pattern appears: regularization
λCONTR has no influence on the prediction as well as the explanation. As shown in heatmaps, the
color gradient of performance changes smoothly and is almost entirely aligned along the λMP axis.
For different λMP parameters, we see significant changes in Subgraph Explanation (SE) and AUROC
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Figure 11: Ablation study on λ regularization. The heatmaps display the Subgraph Explanation (SE)
and AUROC metric for rings-count and PAINS tasks from B-XAIC, across a grid of λMP and λCONTR
values. λMP points to the regularization between fragments on the message passing mechanism, and
λCONTR points to the regularization on the contributions ci.

metrics. Changing λCONTR makes no difference in the results, worth to note is that, higher λCONTR
makes model collaps what causes underperforming. This observation suggests that regularizing
fragment contribution by the λCONTR is not necessary; the main role is taken by the regularization
between fragments by the λMP.

D USER STUDY

All of the molecules that were included in our user study are presented in Figures 13-19. Each
explanation is annotated with the name of the method that produced this explanation (the names
were not included in the survey, and the order of the explanations was randomized). Some methods
resulted in the same explanation, which is why some of the figures have multiple method names.
In these situations, we had to generate more random explanations to maintain a consistent number
of options across questions. Methods that took part in these experiments: SEAL, GuidedBackprop,
GNNExplainer, InputXGradient, Saliency, Deconvolution, IntegratedGradients, two Random meth-
ods, the first where we sample from nodes, the second where we sample for substructures generated
by BRICS.

E VISUALIZATIONS

Figures 20, 22, 24, 26, 28, 30, and 32 display examples of explanations generated by the SEAL
model for the tasks in the synthetic dataset for the positive target class. The explanations for the
negative class, where the substructure is not present in the compound, are illustrated in Figures 21,
23, 25, 27, 29, 31, and 33. The explanations for the real-world datasets are available in Figures
34-37.
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Table 4: Model explanations performance using different type of masking strategy in SEAL ar-
chitecture for hERG dataset. Evaluating using Fidelity metrics at 10%, 20%, and 30% masking
thresholds.

Model Fidelity10+ ↑ Fidelity10− ↓ Fidelity20+ ↑ Fidelity20− ↓ Fidelity30+ ↑ Fidelity30− ↓
hERG

λ
=

2

SEAL-mask-abs 0.36 ± 0.01 0.18 ± 0.00 0.37 ± 0.02 0.18 ± 0.01 0.38 ± 0.02 0.15 ± 0.01
SEAL-mask 0.57 ± 0.01 0.00 ± 0.00 0.66 ± 0.01 0.00 ± 0.00 0.76 ± 0.01 0.00 ± 0.00
SEAL-abs 0.49 ± 0.04 0.46 ± 0.04 0.49 ± 0.04 0.46 ± 0.04 0.49 ± 0.04 0.44 ± 0.05
SEAL-zero 0.59 ± 0.05 0.45 ± 0.04 0.58 ± 0.10 0.43 ± 0.06 0.58 ± 0.12 0.40 ± 0.09

λ
=

1

SEAL-mask-abs 0.36 ± 0.01 0.18 ± 0.01 0.37 ± 0.02 0.18 ± 0.01 0.39 ± 0.02 0.15 ± 0.01
SEAL-mask 0.57 ± 0.02 0.00 ± 0.00 0.65 ± 0.02 0.00 ± 0.00 0.75 ± 0.01 0.00 ± 0.00
SEAL-abs 0.54 ± 0.04 0.48 ± 0.10 0.55 ± 0.03 0.47 ± 0.11 0.55 ± 0.03 0.45 ± 0.12
SEAL-zero 0.64 ± 0.03 0.44 ± 0.15 0.66 ± 0.06 0.41 ± 0.18 0.67 ± 0.10 0.38 ± 0.20

λ
=

0
.5

SEAL-mask-abs 0.37 ± 0.01 0.18 ± 0.01 0.37 ± 0.01 0.17 ± 0.00 0.39 ± 0.02 0.15 ± 0.01
SEAL-mask 0.57 ± 0.01 0.00 ± 0.00 0.66 ± 0.02 0.00 ± 0.00 0.76 ± 0.01 0.00 ± 0.00
SEAL-abs 0.52 ± 0.04 0.49 ± 0.05 0.52 ± 0.04 0.48 ± 0.06 0.52 ± 0.04 0.47 ± 0.07
SEAL-zero 0.62 ± 0.03 0.47 ± 0.08 0.62 ± 0.07 0.45 ± 0.10 0.61 ± 0.09 0.42 ± 0.11

λ
=

1
0
−
1 SEAL-mask-abs 0.37 ± 0.01 0.20 ± 0.02 0.38 ± 0.01 0.19 ± 0.01 0.40 ± 0.01 0.16 ± 0.01

SEAL-mask 0.59 ± 0.01 0.00 ± 0.00 0.68 ± 0.01 0.00 ± 0.00 0.77 ± 0.01 0.00 ± 0.00
SEAL-abs 0.50 ± 0.03 0.50 ± 0.03 0.51 ± 0.02 0.49 ± 0.04 0.51 ± 0.02 0.48 ± 0.04
SEAL-zero 0.59 ± 0.05 0.49 ± 0.04 0.60 ± 0.07 0.48 ± 0.05 0.58 ± 0.07 0.45 ± 0.07

λ
=

1
0
−
2 SEAL-mask-abs 0.37 ± 0.01 0.19 ± 0.02 0.38 ± 0.01 0.18 ± 0.01 0.39 ± 0.01 0.15 ± 0.01

SEAL-mask 0.59 ± 0.01 0.00 ± 0.00 0.68 ± 0.01 0.00 ± 0.00 0.78 ± 0.01 0.00 ± 0.00
SEAL-abs 0.47 ± 0.03 0.48 ± 0.03 0.48 ± 0.02 0.47 ± 0.03 0.49 ± 0.02 0.46 ± 0.04
SEAL-zero 0.59 ± 0.03 0.47 ± 0.05 0.58 ± 0.07 0.45 ± 0.07 0.56 ± 0.09 0.43 ± 0.09

λ
=

1
0
−
3 SEAL-mask-abs 0.38 ± 0.03 0.24 ± 0.01 0.39 ± 0.02 0.22 ± 0.01 0.41 ± 0.02 0.20 ± 0.02

SEAL-mask 0.63 ± 0.03 0.02 ± 0.01 0.72 ± 0.03 0.01 ± 0.01 0.80 ± 0.03 0.01 ± 0.01
SEAL-abs 0.43 ± 0.04 0.48 ± 0.01 0.45 ± 0.04 0.48 ± 0.01 0.47 ± 0.03 0.47 ± 0.02
SEAL-zero 0.58 ± 0.04 0.48 ± 0.01 0.59 ± 0.05 0.47 ± 0.02 0.57 ± 0.05 0.44 ± 0.04

λ
=

1
0
−
4 SEAL-mask-abs 0.42 ± 0.02 0.28 ± 0.04 0.44 ± 0.02 0.28 ± 0.04 0.46 ± 0.02 0.27 ± 0.03

SEAL-mask 0.63 ± 0.01 0.09 ± 0.03 0.71 ± 0.01 0.07 ± 0.02 0.78 ± 0.01 0.05 ± 0.02
SEAL-abs 0.46 ± 0.02 0.49 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 0.50 ± 0.02 0.49 ± 0.01
SEAL-zero 0.56 ± 0.05 0.49 ± 0.01 0.57 ± 0.05 0.48 ± 0.01 0.55 ± 0.06 0.47 ± 0.02

λ
=

0

SEAL-mask-abs 0.46 ± 0.02 0.32 ± 0.02 0.47 ± 0.01 0.32 ± 0.02 0.48 ± 0.01 0.31 ± 0.02
SEAL-mask 0.67 ± 0.02 0.15 ± 0.02 0.74 ± 0.02 0.15 ± 0.01 0.78 ± 0.03 0.14 ± 0.01
SEAL-abs 0.43 ± 0.02 0.49 ± 0.02 0.48 ± 0.02 0.49 ± 0.02 0.49 ± 0.02 0.48 ± 0.02
SEAL-zero 0.52 ± 0.02 0.49 ± 0.02 0.53 ± 0.02 0.48 ± 0.02 0.51 ± 0.02 0.48 ± 0.02
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Table 5: Model explanations performance using different type of masking strategy in SEAL archi-
tecture for CYP2C9 dataset. Evaluating using Fidelity metrics at 10%, 20%, and 30% masking
thresholds.

Model Fidelity10+ ↑ Fidelity10− ↓ Fidelity20+ ↑ Fidelity20− ↓ Fidelity30+ ↑ Fidelity30− ↓
CYP2C9

λ
=

2

SEAL-mask-abs 0.36 ± 0.01 0.19 ± 0.01 0.37 ± 0.01 0.18 ± 0.01 0.39 ± 0.02 0.15 ± 0.02
SEAL-mask 0.52 ± 0.02 0.04 ± 0.05 0.57 ± 0.03 0.03 ± 0.04 0.66 ± 0.03 0.01 ± 0.01
SEAL-abs 0.41 ± 0.11 0.40 ± 0.11 0.42 ± 0.11 0.39 ± 0.11 0.45 ± 0.10 0.38 ± 0.12
SEAL-zero 0.49 ± 0.08 0.37 ± 0.15 0.51 ± 0.08 0.35 ± 0.15 0.54 ± 0.07 0.32 ± 0.16

λ
=

1

SEAL-mask-abs 0.34 ± 0.02 0.20 ± 0.02 0.35 ± 0.01 0.19 ± 0.02 0.36 ± 0.02 0.16 ± 0.02
SEAL-mask 0.50 ± 0.02 0.05 ± 0.06 0.55 ± 0.02 0.04 ± 0.05 0.64 ± 0.03 0.01 ± 0.01
SEAL-abs 0.40 ± 0.13 0.40 ± 0.12 0.41 ± 0.13 0.40 ± 0.12 0.42 ± 0.13 0.38 ± 0.12
SEAL-zero 0.45 ± 0.10 0.39 ± 0.13 0.46 ± 0.11 0.38 ± 0.13 0.47 ± 0.11 0.35 ± 0.14

λ
=

0
.5

SEAL-mask-abs 0.35 ± 0.01 0.20 ± 0.02 0.36 ± 0.01 0.19 ± 0.02 0.37 ± 0.01 0.15 ± 0.01
SEAL-mask 0.50 ± 0.02 0.05 ± 0.04 0.56 ± 0.01 0.04 ± 0.03 0.64 ± 0.02 0.01 ± 0.01
SEAL-abs 0.35 ± 0.02 0.36 ± 0.04 0.37 ± 0.02 0.35 ± 0.04 0.40 ± 0.05 0.33 ± 0.05
SEAL-zero 0.44 ± 0.05 0.34 ± 0.05 0.46 ± 0.05 0.32 ± 0.05 0.48 ± 0.05 0.28 ± 0.05

λ
=

1
0
−
1 SEAL-mask-abs 0.38 ± 0.02 0.19 ± 0.02 0.38 ± 0.02 0.18 ± 0.02 0.38 ± 0.02 0.16 ± 0.01

SEAL-mask 0.57 ± 0.02 0.00 ± 0.00 0.63 ± 0.02 0.00 ± 0.00 0.72 ± 0.02 0.00 ± 0.00
SEAL-abs 0.53 ± 0.12 0.52 ± 0.10 0.55 ± 0.12 0.50 ± 0.10 0.57 ± 0.11 0.48 ± 0.10
SEAL-zero 0.56 ± 0.08 0.51 ± 0.11 0.59 ± 0.08 0.49 ± 0.10 0.60 ± 0.08 0.45 ± 0.12

λ
=

1
0
−
2 SEAL-mask-abs 0.35 ± 0.02 0.20 ± 0.02 0.36 ± 0.02 0.20 ± 0.01 0.36 ± 0.02 0.18 ± 0.01

SEAL-mask 0.53 ± 0.02 0.00 ± 0.00 0.60 ± 0.02 0.00 ± 0.00 0.69 ± 0.02 0.00 ± 0.00
SEAL-abs 0.47 ± 0.14 0.40 ± 0.08 0.48 ± 0.15 0.40 ± 0.08 0.50 ± 0.15 0.38 ± 0.08
SEAL-zero 0.50 ± 0.09 0.39 ± 0.12 0.52 ± 0.10 0.38 ± 0.12 0.53 ± 0.11 0.36 ± 0.14

λ
=

1
0
−
3 SEAL-mask-abs 0.38 ± 0.02 0.22 ± 0.03 0.39 ± 0.01 0.21 ± 0.02 0.39 ± 0.02 0.20 ± 0.02

SEAL-mask 0.53 ± 0.02 0.06 ± 0.04 0.58 ± 0.02 0.05 ± 0.04 0.65 ± 0.02 0.04 ± 0.03
SEAL-abs 0.41 ± 0.09 0.38 ± 0.09 0.42 ± 0.10 0.37 ± 0.08 0.43 ± 0.09 0.36 ± 0.08
SEAL-zero 0.47 ± 0.06 0.36 ± 0.09 0.49 ± 0.08 0.35 ± 0.10 0.51 ± 0.09 0.31 ± 0.10

λ
=

1
0
−
4 SEAL-mask-abs 0.38 ± 0.03 0.26 ± 0.04 0.41 ± 0.04 0.25 ± 0.03 0.43 ± 0.04 0.24 ± 0.03

SEAL-mask 0.52 ± 0.02 0.13 ± 0.05 0.58 ± 0.02 0.11 ± 0.03 0.63 ± 0.03 0.10 ± 0.04
SEAL-abs 0.38 ± 0.07 0.41 ± 0.11 0.41 ± 0.09 0.39 ± 0.09 0.44 ± 0.10 0.36 ± 0.07
SEAL-zero 0.41 ± 0.05 0.40 ± 0.13 0.45 ± 0.06 0.38 ± 0.12 0.47 ± 0.07 0.34 ± 0.11

λ
=

0

SEAL-mask-abs 0.37 ± 0.01 0.25 ± 0.02 0.41 ± 0.02 0.23 ± 0.02 0.43 ± 0.03 0.22 ± 0.01
SEAL-mask 0.52 ± 0.00 0.11 ± 0.02 0.59 ± 0.01 0.09 ± 0.01 0.65 ± 0.01 0.07 ± 0.01
SEAL-abs 0.30 ± 0.01 0.32 ± 0.02 0.33 ± 0.01 0.31 ± 0.02 0.35 ± 0.02 0.29 ± 0.02
SEAL-zero 0.39 ± 0.02 0.28 ± 0.02 0.43 ± 0.02 0.26 ± 0.02 0.47 ± 0.03 0.21 ± 0.02
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Table 6: Model explanations performance using different type of masking strategy in SEAL archi-
tecture for Solubility dataset. Evaluating using Fidelity metrics at 10%, 20%, and 30% masking
thresholds.

Model Fidelity10+ ↑ Fidelity10− ↓ Fidelity20+ ↑ Fidelity20− ↓ Fidelity30+ ↑ Fidelity30− ↓
Solubility

λ
=

2

SEAL-mask-abs 0.45 ± 0.03 0.26 ± 0.10 0.46 ± 0.03 0.25 ± 0.10 0.49 ± 0.04 0.22 ± 0.09
SEAL-mask 0.42 ± 0.03 0.30 ± 0.10 0.45 ± 0.03 0.29 ± 0.09 0.49 ± 0.03 0.27 ± 0.08
SEAL-abs 1.12 ± 0.25 1.04 ± 0.42 1.20 ± 0.28 0.96 ± 0.38 1.34 ± 0.32 0.84 ± 0.33
SEAL-zero 0.98 ± 0.23 1.20 ± 0.47 1.07 ± 0.26 1.11 ± 0.42 1.21 ± 0.30 0.98 ± 0.37

λ
=

1

SEAL-mask-abs 0.44 ± 0.04 0.22 ± 0.04 0.46 ± 0.04 0.21 ± 0.04 0.48 ± 0.05 0.19 ± 0.04
SEAL-mask 0.41 ± 0.03 0.27 ± 0.04 0.44 ± 0.03 0.27 ± 0.04 0.47 ± 0.04 0.24 ± 0.04
SEAL-abs 1.04 ± 0.31 0.83 ± 0.39 1.11 ± 0.34 0.78 ± 0.36 1.22 ± 0.38 0.69 ± 0.31
SEAL-zero 0.90 ± 0.30 0.99 ± 0.42 0.98 ± 0.33 0.93 ± 0.38 1.10 ± 0.37 0.82 ± 0.33

λ
=

0
.5

SEAL-mask-abs 0.44 ± 0.02 0.22 ± 0.03 0.46 ± 0.02 0.21 ± 0.03 0.48 ± 0.02 0.19 ± 0.03
SEAL-mask 0.41 ± 0.03 0.26 ± 0.03 0.44 ± 0.02 0.26 ± 0.03 0.48 ± 0.03 0.24 ± 0.03
SEAL-abs 1.08 ± 0.31 0.89 ± 0.41 1.15 ± 0.33 0.83 ± 0.38 1.26 ± 0.37 0.74 ± 0.34
SEAL-zero 0.91 ± 0.26 1.08 ± 0.50 1.01 ± 0.28 1.00 ± 0.46 1.13 ± 0.33 0.89 ± 0.40

λ
=

1
0
−
1 SEAL-mask-abs 0.44 ± 0.05 0.27 ± 0.03 0.45 ± 0.06 0.25 ± 0.03 0.47 ± 0.06 0.23 ± 0.02

SEAL-mask 0.45 ± 0.04 0.24 ± 0.04 0.48 ± 0.04 0.24 ± 0.03 0.52 ± 0.04 0.23 ± 0.02
SEAL-abs 0.77 ± 0.20 0.67 ± 0.29 0.83 ± 0.23 0.62 ± 0.26 0.92 ± 0.27 0.55 ± 0.23
SEAL-zero 0.69 ± 0.20 0.78 ± 0.33 0.75 ± 0.23 0.73 ± 0.30 0.83 ± 0.25 0.65 ± 0.26

λ
=

1
0
−
2 SEAL-mask-abs 0.42 ± 0.02 0.23 ± 0.03 0.43 ± 0.02 0.22 ± 0.03 0.44 ± 0.02 0.20 ± 0.03

SEAL-mask 0.42 ± 0.01 0.21 ± 0.02 0.45 ± 0.02 0.21 ± 0.02 0.48 ± 0.01 0.21 ± 0.02
SEAL-abs 0.64 ± 0.12 0.50 ± 0.13 0.68 ± 0.13 0.49 ± 0.13 0.73 ± 0.14 0.46 ± 0.13
SEAL-zero 0.59 ± 0.11 0.48 ± 0.11 0.64 ± 0.12 0.47 ± 0.11 0.72 ± 0.14 0.44 ± 0.11

λ
=

1
0
−
3 SEAL-mask-abs 0.48 ± 0.04 0.29 ± 0.03 0.51 ± 0.04 0.25 ± 0.03 0.55 ± 0.05 0.22 ± 0.03

SEAL-mask 0.45 ± 0.04 0.33 ± 0.03 0.50 ± 0.05 0.31 ± 0.03 0.54 ± 0.05 0.27 ± 0.03
SEAL-abs 1.24 ± 0.20 1.26 ± 0.33 1.37 ± 0.21 1.14 ± 0.30 1.55 ± 0.25 0.98 ± 0.25
SEAL-zero 1.10 ± 0.23 1.43 ± 0.32 1.23 ± 0.25 1.29 ± 0.29 1.40 ± 0.27 1.11 ± 0.24

λ
=

1
0
−
4 SEAL-mask-abs 0.59 ± 0.06 0.41 ± 0.04 0.62 ± 0.06 0.39 ± 0.04 0.66 ± 0.06 0.36 ± 0.03

SEAL-mask 0.56 ± 0.06 0.47 ± 0.04 0.60 ± 0.06 0.45 ± 0.04 0.64 ± 0.07 0.42 ± 0.03
SEAL-abs 0.78 ± 0.14 0.64 ± 0.16 0.84 ± 0.15 0.58 ± 0.13 0.91 ± 0.17 0.52 ± 0.09
SEAL-zero 0.72 ± 0.10 0.73 ± 0.22 0.79 ± 0.10 0.66 ± 0.19 0.88 ± 0.12 0.58 ± 0.15

λ
=

0

SEAL-mask-abs 0.53 ± 0.06 0.46 ± 0.04 0.59 ± 0.06 0.42 ± 0.04 0.63 ± 0.07 0.37 ± 0.04
SEAL-mask 0.54 ± 0.05 0.47 ± 0.04 0.61 ± 0.05 0.43 ± 0.04 0.65 ± 0.06 0.38 ± 0.04
SEAL-abs 0.49 ± 0.03 0.55 ± 0.07 0.54 ± 0.04 0.53 ± 0.08 0.58 ± 0.05 0.48 ± 0.07
SEAL-zero 0.53 ± 0.03 0.49 ± 0.07 0.60 ± 0.03 0.46 ± 0.06 0.65 ± 0.04 0.41 ± 0.05
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F EXTENDED RELATED WORK

SEAL differs substantially from existing explainability approaches for graph neural networks.
Model-level explanation methods such as XGNN (Yuan et al., 2020) and MAGE (Yu & Gao, 2025)
operate by generating synthetic graphs rather than attributing predictions on a specific molecular
input, making them unsuitable for fragment-level interpretability. Among self-explainable GNNs,
including KerGNN (Feng et al., 2022a), ProtGNN (Zhang et al., 2022), and PGIB (Seo et al., 2023),
none provide instance-specific explanations at the level of molecular fragments, as they rely on
prototypes or kernels rather than decomposing a prediction across chemically meaningful substruc-
tures. The closest work is HiGNN (Zhu et al., 2022), whose hierarchical architecture makes post-
hoc inspection easier, but it does not enforce fragment-wise interpretability within the model and
therefore remains only partially interpretable. SME (Wu et al., 2023) also uses BRICS-derived
fragments but functions purely as a post-hoc masking explainer. Other common explainers such
as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), SubgraphX (Yuan et al.,
2021), and PGM-Explainer (Vu & Thai, 2020) identify important subgraphs by masking or per-
turbing the input graph, which alters molecular structures and often produces out-of-distribution
graphs. DEGREE (Feng et al., 2022b) is the only post-hoc method that yields a form of prediction
decomposition, though it is not fragment-based and still relies on the representations learned by a
standard GNN. Methods like FlowX (message-flow analysis, Gui et al. (2023)) and gradient-based
techniques operate on the original graph but their signals become unreliable under oversmoothing.
Importantly, none of these approaches, including hierarchical or prototype-based models, explicitly
address oversmoothing or regulate cross-fragment message mixing, whereas SEAL provides inher-
ent fragment-level interpretability and direct architectural control over information flow. For feature
comparison, see Figure 7.

Table 7: Comparison of XAI GNN models with emphasis on SEAL key features. ‘frag.‘ is a
fragment-based explanation, ‘interp.‘ is an inherently interpretable model, ‘instance‘ is an instance-
level explanation (as opposed to model-level), ‘molecular‘ is an explainer adapted to molecular
domain, ‘decomp.‘ is an explainer which decomposes prediction into subgraph contributions, ‘con-
trol‘ is an explainer with an oversmoothing control mechanism, and ‘original‘ is an explainer that
does not alter the original input graph.

Model frag. interp. instance molecular decomp. control original
SEAL (ours) Yes Yes Yes Yes Yes Yes Yes
HiGNN Yes Partially Yes Yes No No Yes
ProtGNN No Yes Yes No No No Yes
KerGNN No Yes Yes No No No Yes
PGIB No Yes Yes No No No No
GNNExplainer No No Yes No No No No
PGExplainer No No Yes No No No No
SubgraphX No No Yes No No No No
PGM-Explainer No No Yes No No No No
GraphSHAP No No Yes No No No No
FlowX No No Yes No No No Partially
Gradient Methods No No Yes No No No Yes
DEGREE No No Yes No Yes No Yes
SME Yes No Yes Yes No No No
MotifExplainer Yes No Yes No No No Partially
MAGE Yes No No No No No No
XGNN No No No No No No No

G COMPLEXITY ANALYSIS

We denote the standard GCN forward pass complexity as: O(L|E|F + LNF 2) where L is layers,
|E| is edges, N is nodes, and F is feature dimension. SEAL performs a node update using three
components: a root transformation W and aggregations over intra- and inter-fragment neighbors
with Wintra and Winter. The time complexity is therefore O(|E|F + 3NF 2) ≈ O(|E|F + NF 2),
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which is asymptotically equivalent to a standard GCN layer. The memory complexity is O(3F 2) ≈
O(F 2), due to the three weight matrices, which dominate the storage requirements, which is also
equivalent asymptotically to standard GCN.

Each of the methods listed in Table 8 has an asymptotic forward complexity approximately equiva-
lent to our SEAL layer and a standard GCN O(|E|F +NF 2). Some methods introduce additional
mechanisms that increase practical computational costs: for example, HiGNN uses fragment in-
teraction blocks, while prototype-based methods such as ProtGNN and PGIB adopt a technique to
resolve the time complexity issue in MCTS. Despite some cases, the core message-passing and lin-
ear transformations dominate the time complexity, so the asymptotic cost remains comparable to
SEAL and GCN. The comparison of the complexity of the explanation for each method is presented
in Table 8, where our SEAL method needs only constant time to obtain the explanation, as it is
directly interpretable from the sum of the contributions.

In Figure 12 we present the time measurement of each method, which consists of a single inference
run to obtain results and the explanation, averaged over all graphs. The tests were run on a CPU
with 64GB of RAM, without a GPU. Experiments were done on the same configurations (hidden
dimension equals 256, layers equals 3) for different models. Our model has an increased number
of parameters (405K) in comparison to GIN (334K) and GCN (136K). As we expected, SEAL
needs only a forward pass, which takes one of the smallest times (2.1 ms), since it is interpretable
from the design. Gradient-based methods require an additional backward pass, which increases
computational cost. Among self-explainable models, PGIB incorporates optimizations to reduce
MCTS overhead. Similarly, for ProtGNN, which offers variants both with and without MCTS, we
report results for the faster configuration, but it is worth noting that the version with MCTS was the
slowest explanation. Finally, while PGExplainer requires an initial training phase, its inference time
is significantly faster than GNNExplainer.

Table 8: Comparison of Explanation Complexity for the Gradients Based methods: Saliency, In-
putXGradients, GuidedBackprop, Deconvolution, Integrated Gradients. Masked-Based Methods:
GNNExplainer, PGExplainer. Self-Explainable: ProtGNN, PGIB. Fragment-Based Methods: SME,
HiGNN, SEAL. We use the following notation S Integration steps, T optimization epochs, W :
Complexity of MLP, M : Number of Prototypes, K Number of fragments produced by BRICS.

Method Explanation Complexity

Saliency O(L|E|F + LNF 2)
InputXGradients O(L|E|F + LNF 2)
GuidedBackprop O(L|E|F + LNF 2)
Deconvolution O(L|E|F + LNF 2)
IntegratedGradients O(S(L|E|F + LNF 2))

GNNExplainer O(T (L|E|F + LNF 2))
PGExplainer O(T (L|E|F + LNF 2) +O(T |E|W )

ProtGNN O(MF )
PGIB O(MF )

SME* O(2K(L|E|F + LNF 2))
HiGNN O(KF )

SEAL O(1)
*In practice, SME limits the exponential search space (2K ) to a fixed number of samples (e.g., 100)

H USE OF LLMS

In this study, large language models (LLMs) like Claude Sonnet 4 and ChatGPT 4o were used to
rewrite sections of the text. The authors reviewed and verified the generated content.
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Table 9: Hyperparameters found for SEAL, SEALAtom, GAT, GCN, GIN, ProtGNN, HiGNN, SME
and PGIB in synthetic dataset evaluation.

Model B P PAINS X indole rings-count rings-max

SEAL

Hidden dimensions 1024 1024 512 1024 512 1024 256
GNN layers 4 4 3 2 4 2 4
Learning rate 0.0001 0.003 0.003 0.003 0.0003 0.003 0.003
Dropout 0.4 0.1 0.1 0.1 0.1 0.1 0.2
λ 2 2 0 2 10−4 10−3 2

SEALAtom

Hidden dimensions 1024 1024 256 1024 256 512 1024
GNN layers 4 4 4 2 4 4 4
Learning rate 0.0001 0.003 0.003 0.003 0.003 0.0003 0.0003
Dropout 0.4 0.1 0.2 0.1 0.2 0.1 0.1
λ 2 2 0 2 10−4 10−4 2

GAT

Hidden dimensions 256 1024 256 1024 256 1024 256
GNN layers 3 4 3 4 3 4 3
Learning rate 0.0003 0.0001 0.0001 0.0001 0.0001 0.003 0.0001
Dropout 0.4 0.4 0 0.4 0 0.1 0

GCN

Hidden dimensions 1024 1024 512 1024 512 512 1024
GNN layers 4 4 4 4 4 4 4
Learning rate 0.0001 0.0001 0.0003 0.0001 0.0003 0.0003 0.0003
Dropout 0.4 0.4 0.1 0.4 0.1 0.1 0.1

GIN

Hidden dimensions 1024 1024 1024 1024 512 256 1024
GNN layers 4 4 4 4 4 3 4
Learning rate 0.0001 0.0001 0.0003 0.0001 0.0003 0.001 0.0003
Dropout 0.4 0.4 0.1 0.4 0.1 0.5 0.1

ProtGNN

Hidden dimensions 1024 1024 1024 1024 512 256 1024
GNN layers 4 4 4 4 4 3 4
Learning rate 0.0001 0.0001 0.0003 0.0001 0.0003 0.001 0.0003
Dropout 0.4 0.4 0.1 0.4 0.1 0.5 0.1

HiGNN

Hidden dimensions 128 128 256 128 128 256 128
GNN layers 4 4 4 4 4 4 4
Learning rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
Dropout 0.4 0.4 0.1 0.4 0.4 0.5 0.1

SME

Hidden dimensions 256 256 256 256 256 128 256
GNN layers 3 3 4 3 3 2 3
Learning rate 0.0003 0.0003 0.003 0.0003 0.0003 0.0001 0.0001
Dropout 0.3 0.3 0.2 0.3 0.3 0.4 0.2

PGIB

Hidden dimensions 256 256 1024 256 512 1024 256
GNN layers 3 3 4 3 4 4 4
Learning rate 0.0001 0.0001 0.0003 0.0001 0.0001 0.003 0.0001
Dropout 0.2 0.2 0.1 0.2 0.2 0.1 0.4
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Table 10: Hyperparameters found for SEAL, SEALAtom, GAT, GCN, GIN, ProtGNN, HiGNN,
SME and PGIB in real-world dataset evaluation.

Model CYP hERG Solubility MUTAG

SEALAtom

Hidden dimensions 512 1024 512 512
GNN layers 4 4 4 4
Learning rate 0.0003 0.0003 0.0003 0.0003
Dropout 0.1 0.1 0.1 0.1
λ 0 0 0 0

SEAL

Hidden dimensions 512 512 1024 256
GNN layers 4 4 4 3
Learning rate 0.0003 0.0003 0.003 0.0001
Dropout 0.1 0.1 0.1 0.0
λ 2.0 0.0001 0.0001 0.001

GAT

Hidden dimensions 256 256 128 256
GNN layers 3 3 3 3
Learning rate 0.0001 0.0001 0.0003 0.0001
Dropout 0 0 0.3 0.0

GCN

Hidden dimensions 256 1024 1024 1024
GNN layers 4 4 4 4
Learning rate 0.003 0.003 0.003 0.0003
Dropout 0.2 0.1 0.1 0.1

GIN

Hidden dimensions 512 512 1024 256
GNN layers 4 4 4 3
Learning rate 0.0003 0.0003 0.0003 0.0001
Dropout 0.1 0.1 0.1 0.0

ProtGNN

Hidden dimensions 256 256 - 1024
GNN layers 4 3 - 3
Learning rate 0.003 0.003 - 0.003
Dropout 0.2 0.5 - 0.0

HiGNN

Hidden dimensions 128 256 512 512
GNN layers 4 4 4 4
Learning rate 0.003 0.0003 0.0003 0.0003
Dropout 0.2 0.1 0.1 0.1

SME

Hidden dimensions 256 1024 1024 256
GNN layers 4 4 2 4
Learning rate 0.003 0.0001 0.0003 0.003
Dropout 0.4 0.3 0.4 0.2

PGIB

Hidden dimensions 512 512 - 1024
GNN layers 2 3 - 3
Learning rate 0.001 0.0001 - 0.001
Dropout 0.4 0.2 - 0.5
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Figure 12: Comparison of computational efficiency across different explanation approaches. Mea-
surement execution time (in ms) required for model inference and explanation generation. The
methods are categorized into: Gradient-based: Saliency, InputXGradient, GuidedBackprop, De-
convolution, Integrated Gradients, Masked-based: GNNExplainer, PGExplainer, Self-Explainable:
ProtGNN, PGIB, and Fragment-based: SME, HiGNN, and our SEAL.

Table 11: AUROC score of various graph neural network architectures on the B-XAIC benchmark.
Model rings-count rings-max X P B Indole PAINS

AUROC ↑
GIN 1.00 ± 0.00 0.93 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
GCN 1.00 ± 0.00 0.82 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.97 ± 0.00
GAT 0.88 ± 0.01 0.75 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.92 ± 0.01
HIGNN 0.97 ± 0.00 0.91 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
ProtGNN 0.98 ± 0.01 0.68 ± 0.06 0.94 ± 0.03 0.98 ± 0.04 0.79 ± 0.19 0.98 ± 0.01 0.88 ± 0.10
SME 1.00 ± 0.00 0.86 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.98 ± 0.00
PGIB 0.83 ± 0.02 0.76 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00± 0.00 0.97 ± 0.00 0.90 ± 0.02
SEAL (λ = 2) 0.97 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00
SEAL (λ = 1) 0.97 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.01
SEAL (λ = 0.5) 0.97 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00
SEAL (λ = 10−1) 0.98 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.00
SEAL (λ = 10−2) 0.98 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.01
SEAL (λ = 10−3) 0.98 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
SEAL (λ = 10−4) 0.99 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
SEAL (λ = 0) 0.99 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
SEALAtom (λ = 2) 0.83 ± 0.01 0.66 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.01 0.71 ± 0.01
SEALAtom (λ = 1) 0.82 ± 0.01 0.66 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.01 0.71 ± 0.01
SEALAtom (λ = 0.5) 0.82 ± 0.02 0.66 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.01 0.71 ± 0.01
SEALAtom (λ = 10−1) 0.81 ± 0.02 0.65 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.01 0.71 ± 0.02
SEALAtom (λ = 10−2) 0.86 ± 0.02 0.66 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.02 0.70 ± 0.01
SEALAtom (λ = 10−3) 0.93 ± 0.01 0.69 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.03 0.82 ± 0.03
SEALAtom (λ = 10−4) 0.96 ± 0.02 0.74 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.01
SEALAtom (λ = 0) 0.97 ± 0.00 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
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Table 12: F1 score of various graph neural network architectures on the B-XAIC benchmark.
Model rings-count rings-max X P B Indole PAINS

F1 Score ↑
GIN 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.97± 0.00
GCN 0.98 ± 0.00 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.93 ± 0.00
GAT 0.79 ± 0.03 0.92 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.01 0.85 ± 0.01
HIGNN 0.92 ± 0.01 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.01 0.96 ± 0.01
ProtGNN 0.94 ± 0.01 0.92 ± 0.00 0.86 ± 0.01 0.94 ± 0.05 0.98 ± 0.01 0.91 ± 0.03 0.86 ± 0.05
SME 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.98 ± 0.00
PGIB 0.77 ± 0.01 0.89 ± 0.04 0.99 ± 0.00 1.00 ± 0.00 1.00± 0.00 0.91 ± 0.01 0.83 ± 0.02
SEAL (λ = 2) 0.90 ± 0.03 0.85 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.00 0.86 ± 0.00
SEAL (λ = 1) 0.86 ± 0.02 0.87 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.00 0.86 ± 0.01
SEAL (λ = 0.5) 0.87 ± 0.03 0.87 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.00 0.86 ± 0.01
SEAL (λ = 10−1) 0.88 ± 0.04 0.89 ± 0.01 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.00 0.86 ± 0.01
SEAL (λ = 10−2) 0.92 ± 0.01 0.90 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02 0.99 ± 0.00 0.86 ± 0.02
SEAL (λ = 10−3) 0.93 ± 0.02 0.91 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 0.93 ± 0.01
SEAL (λ = 10−4) 0.94 ± 0.01 0.91 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01 0.99 ± 0.00 0.95 ± 0.00
SEAL (λ = 0) 0.93 ± 0.01 0.88 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.01
SEALAtom (λ = 2) 0.66 ± 0.02 0.31 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.57 ± 0.02 0.54 ± 0.02
SEALAtom (λ = 1) 0.62 ± 0.02 0.31 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.58 ± 0.03 0.54 ± 0.02
SEALAtom (λ = 0.5) 0.62 ± 0.05 0.30 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.56 ± 0.03 0.54 ± 0.01
SEALAtom (λ = 10−1) 0.56 ± 0.09 0.27 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.55 ± 0.03 0.48 ± 0.06
SEALAtom (λ = 10−2) 0.68 ± 0.01 0.28 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.53 ± 0.05 0.46 ± 0.01
SEALAtom (λ = 10−3) 0.83 ± 0.01 0.32 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.07 0.62 ± 0.05
SEALAtom (λ = 10−4) 0.87 ± 0.04 0.35 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.85 ± 0.01
SEALAtom (λ = 0) 0.88 ± 0.01 0.68 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.01

Table 13: Accuracy score of various graph neural network architectures on the B-XAIC benchmark.
Model rings-count rings-max X P B Indole PAINS

Accuracy ↑
GIN 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.97 ± 0.00
GCN 0.98 ± 0.00 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.93 ± 0.00
GAT 0.81 ± 0.02 0.91 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.01 0.86 ± 0.01
HIGNN 0.92 ± 0.01 0.95 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.01 0.96 ± 0.01
ProtGNN 0.94 ± 0.01 0.94 ± 0.00 0.86 ± 0.01 0.95 ± 0.04 0.98 ± 0.00 0.91 ± 0.03 0.86 ± 0.04
SME 1.00 ± 0.00 0.95 ± 0.01 1.00± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.98 ± 0.00
PGIB 0.77 ± 0.01 0.89 ± 0.04 0.99 ± 0.00 1.00± 0.00 1.00 ± 0.00 0.91 ± 0.01 0.83 ± 0.02
SEAL (λ = 2) 0.93 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.91 ± 0.00
SEAL (λ = 1) 0.91 ± 0.02 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.91 ± 0.01
SEAL (λ = 0.5) 0.92 ± 0.02 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99± 0.00 0.91 ± 0.01
SEAL (λ = 10−1) 0.92 ± 0.03 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99± 0.00 0.91 ± 0.00
SEAL (λ = 10−2) 0.95 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.91 ± 0.01
SEAL (λ = 10−3) 0.96 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.95 ± 0.00
SEAL (λ = 10−4) 0.97 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.97 ± 0.00
SEAL (λ = 0) 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.97 ± 0.00
SEALAtom (λ = 2) 0.82 ± 0.01 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.72 ± 0.01 0.72 ± 0.01
SEALAtom (λ = 1) 0.81 ± 0.01 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.71 ± 0.00 0.71 ± 0.02
SEALAtom (λ = 0.5) 0.81 ± 0.01 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.71 ± 0.01 0.71 ± 0.01
SEALAtom (λ = 10−1) 0.80 ± 0.02 0.94 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.71 ± 0.01 0.73 ± 0.01
SEALAtom (λ = 10−2) 0.83 ± 0.01 0.94 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.72 ± 0.02 0.73 ± 0.00
SEALAtom (λ = 10−3) 0.91 ± 0.01 0.94 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.91 ± 0.05 0.79 ± 0.01
SEALAtom (λ = 10−4) 0.93 ± 0.02 0.94 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.91 ± 0.00
SEALAtom (λ = 0) 0.93 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.00
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Table 14: Performance of various model explanations on the B-XAIC benchmark. The subgraph
explanation (SE) metric is employed for positive examples containing the relevant pattern.
Model rings-count rings-max X P B Indole PAINS

SE ↑
Deconvolution 0.55 ± 0.24 0.36 ± 0.22 0.07 ± 0.00 0.90 ± 0.00 0.72 ± 0.01 0.36 ± 0.21 0.33 ± 0.01
GuidedBackprop 0.69 ± 0.05 0.67 ± 0.02 0.94 ± 0.01 0.85 ± 0.11 1.00 ± 0.00 0.85 ± 0.03 0.78 ± 0.02
IntegratedGrad 0.36 ± 0.00 0.64 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.84 ± 0.06 0.76 ± 0.02
Saliency 0.51 ± 0.04 0.66 ± 0.03 0.92 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.02 0.81 ± 0.01
InputXGradient 0.49 ± 0.03 0.48 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.05 0.54 ± 0.03
GNNExplainer 0.49 ± 0.01 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.01 0.53 ± 0.05 0.53 ± 0.03 0.54 ± 0.06
HiGNN 0.77 ± 0.00 0.75 ± 0.00 0.82 ± 0.00 0.82 ± 0.01 0.76 ± 0.01 0.78 ± 0.02 0.66 ± 0.02
ProtGNN 0.51 ± 0.04 0.61 ± 0.06 0.54 ± 0.11 0.99 ± 0.01 0.97 ± 0.02 0.73 ± 0.11 0.67 ± 0.10
PGExplainer 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.96 ± 0.02 0.74 ± 0.20
PGIB 0.64 ± 0.06 0.56 ± 0.01 0.86 ± 0.03 0.92 ± 0.02 0.93 ± 0.02 0.88 ± 0.02 0.73 ± 0.01
SMEAtom 0.81 ± 0.01 0.69 ± 0.01 0.71 ± 0.15 0.72 ± 0.20 1.00 ± 0.00 0.59 ± 0.04 0.70 ± 0.02
SMEBrics 0.78 ± 0.00 0.79 ± 0.01 0.75 ± 0.04 0.81 ± 0.01 0.77 ± 0.01 0.90 ± 0.00 0.78 ± 0.01
SMEMurcko 0.59 ± 0.00 0.52 ± 0.01 0.52 ± 0.01 0.56 ± 0.01 0.52 ± 0.01 0.54 ± 0.00 0.54 ± 0.00
SEAL (λ = 2) 1.00 ± 0.00 0.87 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.88 ± 0.01 0.96 ± 0.00 0.77 ± 0.00
SEAL (λ = 1) 1.00 ± 0.00 0.88 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.88 ± 0.01 0.96± 0.00 0.77 ± 0.01
SEAL (λ = 0.5) 1.00 ± 0.00 0.87 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.88 ± 0.01 0.96 ± 0.00 0.78 ± 0.01
SEAL (λ = 10−1) 1.00 ± 0.00 0.88 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.88 ± 0.01 0.96 ± 0.00 0.78 ± 0.01
SEAL (λ = 10−2) 1.00 ± 0.00 0.88 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.88 ± 0.01 0.96 ± 0.00 0.78 ± 0.01
SEAL (λ = 10−3) 0.98 ± 0.01 0.75 ± 0.04 1.00 ± 0.00 0.96 ± 0.04 0.88 ± 0.01 0.96 ± 0.00 0.80 ± 0.01
SEAL (λ = 10−4) 0.96 ± 0.01 0.60 ± 0.06 1.00 ± 0.00 0.96 ± 0.04 0.88 ± 0.01 0.96 ± 0.00 0.83 ± 0.02
SEAL (λ = 0) 0.87 ± 0.04 0.44 ± 0.03 1.00 ± 0.00 0.91 ± 0.04 0.88 ± 0.01 0.96 ± 0.00 0.83 ± 0.01
SEALAtom (λ = 2) 0.74 ± 0.07 0.54 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.62 ± 0.07 0.49 ± 0.03
SEALAtom (λ = 1) 0.70 ± 0.03 0.50 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.65 ± 0.06 0.46 ± 0.01
SEALAtom (λ = 0.5) 0.70 ± 0.06 0.53 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.62 ± 0.06 0.46 ± 0.01
SEALAtom (λ = 10−1) 0.75 ± 0.05 0.54 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.62 ± 0.07 0.48 ± 0.03
SEALAtom (λ = 10−2) 0.71 ± 0.01 0.58 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.60 ± 0.07 0.48 ± 0.02
SEALAtom (λ = 10−3) 0.66 ± 0.00 0.59 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.04 0.68 ± 0.06 0.58 ± 0.03
SEALAtom (λ = 10−4) 0.65 ± 0.00 0.56 ± 0.01 1.00 ± 0.00 0.98 ± 0.04 0.97 ± 0.06 0.71 ± 0.06 0.61 ± 0.01
SEALAtom (λ = 0) 0.61 ± 0.01 0.63 ± 0.01 0.95 ± 0.01 0.85 ± 0.08 0.91 ± 0.05 0.75 ± 0.01 0.64 ± 0.02
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Table 15: Performance of various model explanations on the B-XAIC benchmark. The null expla-
nation (NE) metric is employed for negative examples, checking uniform distribution.
Model rings-count rings-max X P B Indole PAINS

NE ↑
Deconvolution 0.56 ± 0.06 0.82 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.82 ± 0.01 0.80 ± 0.01 0.81 ± 0.01
GuidedBackprop 0.32 ± 0.08 0.19 ± 0.03 0.35 ± 0.10 0.51 ± 0.04 0.45 ± 0.03 0.33 ± 0.05 0.28 ± 0.02
IntegratedGradients 0.81 ± 0.08 0.75 ± 0.06 0.19 ± 0.10 0.36 ± 0.37 0.22 ± 0.07 0.31 ± 0.13 0.42 ± 0.25
Saliency 0.48 ± 0.05 0.41 ± 0.03 0.37 ± 0.05 0.55 ± 0.03 0.50 ± 0.08 0.42 ± 0.03 0.35 ± 0.04
InputXGradient 0.53 ± 0.05 0.49 ± 0.02 0.23 ± 0.07 0.69 ± 0.16 0.39 ± 0.14 0.49 ± 0.01 0.40 ± 0.04
GNNExplainer 0.80 ± 0.07 0.92 ± 0.06 0.65 ± 0.02 0.67 ± 0.01 0.67 ± 0.00 0.73 ± 0.09 0.55 ± 0.26
HiGNN 0.56 ± 0.06 0.31 ± 0.02 0.19 ± 0.01 0.14 ± 0.00 0.16 ± 0.00 0.38 ± 0.03 0.58 ± 0.09
ProtGNN 0.43 ± 0.12 0.40 ± 0.03 0.53 ± 0.18 0.64 ± 0.33 0.33 ± 0.06 0.46 ± 0.06 0.40 ± 0.05
PGExplainer 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.16 ± 0.09 0.42 ± 0.42
PGIB 0.42 ± 0.04 0.31 ± 0.05 0.32 ± 0.04 0.36 ± 0.06 0.34 ± 0.05 0.33 ± 0.03 0.26 ± 0.02
SMEAtom 0.54 ± 0.11 0.07 ± 0.01 0.33 ± 0.11 0.54 ± 0.11 0.48 ± 0.09 0.03 ± 0.01 0.03 ± 0.01
SMEBrics 0.70 ± 0.05 0.57 ± 0.00 0.81 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.74 ± 0.00 0.67 ± 0.01
SMEMurcko 1.00 ± 0.00 0.20 ± 0.00 0.46 ± 0.01 0.34 ± 0.01 0.38 ± 0.00 0.33 ± 0.01 0.30 ± 0.01
SEAL (λ = 2) 0.44 ± 0.05 0.72 ± 0.02 0.32 ± 0.09 0.16 ± 0.06 0.44 ± 0.02 0.64 ± 0.04 0.61 ± 0.01
SEAL (λ = 1) 0.42 ± 0.05 0.73 ± 0.02 0.36 ± 0.09 0.18 ± 0.18 0.45 ± 0.03 0.63 ± 0.03 0.62 ± 0.01
SEAL (λ = 0.5) 0.45 ± 0.04 0.73 ± 0.01 0.38 ± 0.08 0.21 ± 0.16 0.46 ± 0.05 0.63 ± 0.04 0.63 ± 0.01
SEAL (λ = 10−1) 0.53 ± 0.06 0.72 ± 0.02 0.32 ± 0.05 0.22 ± 0.07 0.48 ± 0.05 0.68 ± 0.03 0.63 ± 0.01
SEAL (λ = 10−2) 0.48 ± 0.04 0.72 ± 0.02 0.51 ± 0.05 0.09 ± 0.05 0.49 ± 0.04 0.63 ± 0.02 0.63 ± 0.01
SEAL (λ = 10−3) 0.71 ± 0.10 0.74 ± 0.01 0.36 ± 0.07 0.10 ± 0.01 0.43 ± 0.07 0.69 ± 0.05 0.65 ± 0.01
SEAL (λ = 10−4) 0.70 ± 0.05 0.73 ± 0.01 0.33 ± 0.09 0.10 ± 0.02 0.26 ± 0.06 0.65 ± 0.05 0.70 ± 0.03
SEAL (λ = 0) 0.59 ± 0.06 0.70 ± 0.02 0.60 ± 0.07 0.16 ± 0.08 0.38 ± 0.12 0.57 ± 0.05 0.68 ± 0.01
SEALAtom (λ = 2) 0.59 ± 0.02 0.11 ± 0.01 0.18 ± 0.10 0.08 ± 0.06 0.03 ± 0.02 0.09 ± 0.01 0.00 ± 0.00
SEALAtom (λ = 1) 0.59 ± 0.04 0.14 ± 0.05 0.16 ± 0.12 0.11 ± 0.06 0.06 ± 0.02 0.09 ± 0.01 0.00 ± 0.00
SEALAtom (λ = 0.5) 0.59 ± 0.02 0.13 ± 0.05 0.11 ± 0.11 0.12 ± 0.01 0.06 ± 0.02 0.09 ± 0.01 0.00 ± 0.00
SEALAtom (λ = 10−1) 0.60 ± 0.02 0.07 ± 0.03 0.12 ± 0.09 0.09 ± 0.06 0.02 ± 0.00 0.09 ± 0.01 0.00 ± 0.00
SEALAtom (λ = 10−2) 0.58 ± 0.05 0.06 ± 0.05 0.23 ± 0.06 0.14 ± 0.12 0.05 ± 0.03 0.13 ± 0.05 0.00 ± 0.00
SEALAtom (λ = 10−3) 0.48 ± 0.08 0.09 ± 0.02 0.22 ± 0.04 0.09 ± 0.06 0.04 ± 0.03 0.05 ± 0.03 0.08 ± 0.05
SEALAtom (λ = 10−4) 0.34 ± 0.04 0.06 ± 0.04 0.14 ± 0.07 0.05 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.05 ± 0.01
SEALAtom (λ = 0) 0.40 ± 0.05 0.08 ± 0.02 0.41 ± 0.23 0.35 ± 0.29 0.29 ± 0.12 0.06 ± 0.01 0.08 ± 0.01
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Table 16: Comparison of model performance on real-world datasets (hERG and CYP2C9). Results
are reported for both Random and Scaffold splitting strategies.

Random Scaffold

Model AUROC ↑ F1 ↑ Accuracy ↑ AUROC ↑ F1 ↑ Accuracy ↑

hE
R

G

GIN 0.86 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.02 0.70 ± 0.04 0.72 ± 0.02
GAT 0.70 ± 0.01 0.64 ± 0.01 0.65 ± 0.01 0.75 ± 0.02 0.66 ± 0.04 0.71 ± 0.02
GCN 0.81 ± 0.03 0.73 ± 0.02 0.73 ± 0.02 0.76 ± 0.02 0.67 ± 0.04 0.71 ± 0.03
HiGNN 0.87 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.80 ± 0.01 0.72 ± 0.01 0.72 ± 0.01
ProtGNN 0.76 ± 0.06 0.69 ± 0.05 0.69 ± 0.05 0.76 ± 0.05 0.69 ± 0.05 0.70 ± 0.05
SME 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.77 ± 0.01 0.77 ± 0.01
PGIB 0.75 ± 0.02 0.68 ± 0.02 0.68 ± 0.02 0.74 ± 0.01 0.67 ± 0.01 0.67 ± 0.01
SEAL (λ = 2) 0.81 ± 0.01 0.71 ± 0.03 0.74 ± 0.01 0.76 ± 0.02 0.67 ± 0.02 0.71 ± 0.01
SEAL (λ = 1) 0.81 ± 0.01 0.73 ± 0.02 0.75 ± 0.01 0.76 ± 0.01 0.67 ± 0.04 0.71 ± 0.01
SEAL (λ = 0.5) 0.81 ± 0.01 0.73 ± 0.02 0.75 ± 0.01 0.76 ± 0.02 0.68 ± 0.04 0.71 ± 0.01
SEAL (λ = 10−1) 0.79 ± 0.01 0.70 ± 0.02 0.73 ± 0.01 0.76 ± 0.02 0.67 ± 0.04 0.71 ± 0.02
SEAL (λ = 10−2) 0.80 ± 0.00 0.70 ± 0.02 0.73 ± 0.01 0.75 ± 0.01 0.65 ± 0.04 0.70 ± 0.01
SEAL (λ = 10−3) 0.81 ± 0.03 0.71 ± 0.03 0.74 ± 0.02 0.78 ± 0.02 0.69 ± 0.03 0.72 ± 0.01
SEAL (λ = 10−4) 0.85 ± 0.01 0.76 ± 0.01 0.77 ± 0.00 0.81 ± 0.01 0.71 ± 0.03 0.74 ± 0.02
SEAL (λ = 0) 0.85 ± 0.01 0.76 ± 0.01 0.78 ± 0.01 0.80 ± 0.02 0.71 ± 0.03 0.74 ± 0.01
SEALAtom (λ = 2) 0.65 ± 0.01 0.49 ± 0.06 0.62 ± 0.01 0.66 ± 0.02 0.50 ± 0.10 0.63 ± 0.03
SEALAtom (λ = 1) 0.65 ± 0.01 0.50 ± 0.08 0.62 ± 0.02 0.66 ± 0.02 0.53 ± 0.11 0.63 ± 0.02
SEALAtom (λ = 0.5) 0.65 ± 0.01 0.50 ± 0.05 0.62 ± 0.01 0.65 ± 0.01 0.52 ± 0.10 0.63 ± 0.03
SEALAtom (λ = 10−1) 0.66 ± 0.01 0.51 ± 0.05 0.63 ± 0.01 0.66 ± 0.01 0.52 ± 0.10 0.63 ± 0.03
SEALAtom (λ = 10−2) 0.65 ± 0.01 0.53 ± 0.02 0.63 ± 0.01 0.66 ± 0.01 0.51 ± 0.10 0.63 ± 0.03
SEALAtom (λ = 10−3) 0.71 ± 0.01 0.60 ± 0.01 0.67 ± 0.01 0.66 ± 0.03 0.54 ± 0.08 0.64 ± 0.03
SEALAtom (λ = 10−4) 0.75 ± 0.01 0.63 ± 0.01 0.69 ± 0.01 0.71 ± 0.02 0.62 ± 0.05 0.68 ± 0.02
SEALAtom (λ = 0) 0.84 ± 0.01 0.75 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.68 ± 0.05 0.72 ± 0.02

C
Y

P2
C

9

GIN 0.86 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.83 ± 0.01 0.65 ± 0.03 0.79 ± 0.02
GAT 0.68 ± 0.01 0.67 ± 0.01 0.69 ± 0.01 0.67 ± 0.02 0.21 ± 0.11 0.70 ± 0.05
GCN 0.84 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.80 ± 0.02 0.57 ± 0.03 0.77 ± 0.04
HiGNN 0.85 ± 0.00 0.76 ± 0.02 0.75 ± 0.02 0.84 ± 0.01 0.75 ± 0.04 0.74 ± 0.04
ProtGNN 0.85 ± 0.00 0.77 ± 0.01 0.77 ± 0.01 0.83 ± 0.01 0.78 ± 0.02 0.78 ± 0.02
SME 0.80 ± 0.02 0.82 ± 0.01 0.82 ± 0.01 0.80 ± 0.01 0.81 ± 0.02 0.80 ± 0.02
PGIB 0.75 ± 0.02 0.72 ± 0.01 0.72 ± 0.01 0.79 ± 0.02 0.74 ± 0.03 0.74 ± 0.03
SEAL (λ = 2) 0.81 ± 0.01 0.65 ± 0.02 0.78 ± 0.01 0.79 ± 0.02 0.64 ± 0.01 0.75 ± 0.02
SEAL (λ = 1) 0.81 ± 0.01 0.64 ± 0.03 0.78 ± 0.01 0.79 ± 0.02 0.65 ± 0.02 0.76 ± 0.02
SEAL (λ = 0.5) 0.81 ± 0.00 0.64 ± 0.02 0.78 ± 0.01 0.78 ± 0.01 0.63 ± 0.03 0.75 ± 0.02
SEAL (λ = 10−1) 0.79 ± 0.01 0.59 ± 0.03 0.76 ± 0.01 0.80 ± 0.02 0.64 ± 0.02 0.76 ± 0.01
SEAL (λ = 10−2) 0.79 ± 0.01 0.58 ± 0.03 0.76 ± 0.01 0.78 ± 0.01 0.61 ± 0.02 0.77 ± 0.01
SEAL (λ = 10−3) 0.83 ± 0.01 0.64 ± 0.03 0.78 ± 0.01 0.79 ± 0.01 0.62 ± 0.01 0.77 ± 0.02
SEAL (λ = 10−4) 0.83 ± 0.00 0.64 ± 0.04 0.78 ± 0.01 0.80 ± 0.01 0.62 ± 0.03 0.77 ± 0.02
SEAL (λ = 0) 0.83 ± 0.01 0.64 ± 0.03 0.79 ± 0.01 0.82 ± 0.01 0.65 ± 0.03 0.78 ± 0.02
SEALAtom (λ = 2) 0.63 ± 0.03 0.43 ± 0.07 0.70 ± 0.01 0.63 ± 0.02 0.40 ± 0.04 0.69 ± 0.03
SEALAtom (λ = 1) 0.64 ± 0.01 0.38 ± 0.06 0.70 ± 0.01 0.62 ± 0.02 0.35 ± 0.06 0.69 ± 0.04
SEALAtom (λ = 0.5) 0.62 ± 0.01 0.31 ± 0.04 0.69 ± 0.01 0.62 ± 0.01 0.33 ± 0.03 0.69 ± 0.04
SEALAtom (λ = 10−1) 0.61 ± 0.00 0.31 ± 0.04 0.68 ± 0.01 0.61 ± 0.01 0.32 ± 0.01 0.69 ± 0.04
SEALAtom (λ = 10−2) 0.70 ± 0.02 0.45 ± 0.06 0.72 ± 0.01 0.67 ± 0.02 0.46 ± 0.06 0.71 ± 0.03
SEALAtom (λ = 10−3) 0.73 ± 0.01 0.49 ± 0.03 0.74 ± 0.01 0.72 ± 0.01 0.52 ± 0.03 0.73 ± 0.03
SEALAtom (λ = 10−4) 0.80 ± 0.01 0.60 ± 0.02 0.77 ± 0.01 0.75 ± 0.02 0.60 ± 0.03 0.74 ± 0.02
SEALAtom (λ = 0) 0.82 ± 0.01 0.60 ± 0.03 0.77 ± 0.01 0.76 ± 0.02 0.61 ± 0.03 0.73 ± 0.03
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Table 17: Comparison of model performance on real-world datasets (MUTAG).
Model AUROC ↑ F1 ↑ Accuracy ↑

M
U

TA
G

GIN 0.87 ± 0.01 0.81 ± 0.00 0.81 ± 0.01
GAT 0.78 ± 0.00 0.72 ± 0.01 0.72 ± 0.01
GCN 0.82 ± 0.02 0.75 ± 0.01 0.75 ± 0.01
HIGNN 0.87 ± 0.01 0.80 ± 0.02 0.80 ± 0.02
ProtGNN 0.86 ± 0.01 0.78 ± 0.01 0.78 ± 0.01
SME 0.81 ± 0.01 0.81 ± 0.01 0.81 ± 0.01
PGIB 0.83 ± 0.02 0.75 ± 0.03 0.75 ± 0.03
SEAL (λ = 2) 0.81 ± 0.02 0.75 ± 0.01 0.75 ± 0.01
SEAL (λ = 1) 0.81 ± 0.01 0.75 ± 0.02 0.75 ± 0.01
SEAL (λ = 0.5) 0.81 ± 0.01 0.75 ± 0.02 0.75 ± 0.01
SEAL (λ = 10−1) 0.81 ± 0.01 0.76 ± 0.01 0.75 ± 0.01
SEAL (λ = 10−2) 0.84 ± 0.01 0.79 ± 0.01 0.79 ± 0.01
SEAL (λ = 10−3) 0.85 ± 0.01 0.80 ± 0.02 0.79 ± 0.01
SEAL (λ = 10−4) 0.85 ± 0.00 0.79 ± 0.01 0.78 ± 0.01
SEAL (λ = 0) 0.84 ± 0.01 0.77 ± 0.03 0.77 ± 0.02
SEALAtom (λ = 2) 0.56 ± 0.03 0.38 ± 0.13 0.53 ± 0.03
SEALAtom (λ = 1) 0.55 ± 0.04 0.36 ± 0.13 0.53 ± 0.03
SEALAtom (λ = 0.5) 0.55 ± 0.04 0.38 ± 0.13 0.53 ± 0.04
SEALAtom (λ = 10−1) 0.55 ± 0.05 0.39 ± 0.11 0.53 ± 0.04
SEALAtom (λ = 10−2) 0.69 ± 0.02 0.62 ± 0.03 0.66 ± 0.01
SEALAtom (λ = 10−3) 0.70 ± 0.03 0.61 ± 0.06 0.66 ± 0.03
SEALAtom (λ = 10−4) 0.75 ± 0.01 0.68 ± 0.02 0.70 ± 0.01
SEALAtom (λ = 0) 0.79 ± 0.02 0.73 ± 0.03 0.73 ± 0.02

Table 18: Comparison of model performance on real-world datasets (Solubility). Results are re-
ported for both Random and Scaffold splitting strategies.

Random Scaffold

Model MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

So
lu

bi
lit

y

GIN 0.41 ± 0.01 0.60 ± 0.02 0.58 ± 0.03 0.82 ± 0.06
GAT 0.57 ± 0.01 0.75 ± 0.03 0.60 ± 0.02 0.82 ± 0.03
GCN 0.49 ± 0.02 0.67 ± 0.03 0.59 ± 0.03 0.82 ± 0.04
HiGNN 0.38 ± 0.05 0.55 ± 0.07 0.53 ± 0.06 0.72 ± 0.06
SME 0.32 ± 0.01 0.46 ± 0.01 0.39 ± 0.02 0.54 ± 0.02
SEAL (λ = 2) 0.54 ± 0.04 0.73 ± 0.05 0.69 ± 0.06 0.90 ± 0.05
SEAL (λ = 1) 0.53 ± 0.05 0.73 ± 0.05 0.66 ± 0.03 0.88 ± 0.05
SEAL (λ = 0.5) 0.54 ± 0.05 0.73 ± 0.05 0.67 ± 0.03 0.88 ± 0.03
SEAL (λ = 10−1) 0.54 ± 0.05 0.73 ± 0.06 0.66 ± 0.02 0.87 ± 0.02
SEAL (λ = 10−2) 0.53 ± 0.05 0.73 ± 0.04 0.63 ± 0.02 0.84 ± 0.03
SEAL (λ = 10−3) 0.48 ± 0.01 0.68 ± 0.04 0.61 ± 0.02 0.82 ± 0.02
SEAL (λ = 10−4) 0.47 ± 0.01 0.66 ± 0.04 0.60 ± 0.03 0.81 ± 0.03
SEAL (λ = 0) 0.45 ± 0.01 0.66 ± 0.03 0.59 ± 0.02 0.80 ± 0.02
SEALAtom (λ = 2) 0.64 ± 0.01 0.81 ± 0.01 0.72 ± 0.03 0.93 ± 0.03
SEALAtom (λ = 1) 0.63 ± 0.01 0.80 ± 0.01 0.70 ± 0.03 0.92 ± 0.03
SEALAtom (λ = 0.5) 0.61 ± 0.00 0.78 ± 0.01 0.68 ± 0.04 0.90 ± 0.05
SEALAtom (λ = 10−1) 0.58 ± 0.01 0.76 ± 0.01 0.66 ± 0.02 0.88 ± 0.04
SEALAtom (λ = 10−2) 0.53 ± 0.01 0.72 ± 0.01 0.63 ± 0.02 0.87 ± 0.04
SEALAtom (λ = 10−3) 0.49 ± 0.01 0.69 ± 0.01 0.60 ± 0.02 0.85 ± 0.05
SEALAtom (λ = 10−4) 0.48 ± 0.01 0.66 ± 0.01 0.59 ± 0.02 0.82 ± 0.04
SEALAtom (λ = 0) 0.47 ± 0.01 0.65 ± 0.03 0.61 ± 0.02 0.81 ± 0.03
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Table 19: Performance of model explanations on real-world datasets (CYP2C9). Explanations are
evaluated using Fidelity metrics at 10%, 20%, and 30% masking thresholds, representing the pro-
portion of most important atoms (nodes) either removed or retained during the evaluation.

Model Fidelity10+ ↑ Fidelity10− ↓ Fidelity20+ ↑ Fidelity20− ↓ Fidelity30+ ↑ Fidelity30− ↓

C
Y

P2
C

9

Deconvolution 0.34 ± 0.03 0.37 ± 0.03 0.35 ± 0.03 0.36 ± 0.03 0.36 ± 0.03 0.35 ± 0.03
GuidedBackprop 0.36 ± 0.03 0.37 ± 0.04 0.36 ± 0.03 0.36 ± 0.03 0.36 ± 0.03 0.35 ± 0.03
IntegratedGradients 0.61 ± 0.19 0.28 ± 0.15 0.63 ± 0.21 0.27 ± 0.15 0.60 ± 0.23 0.24 ± 0.15
Saliency 0.38 ± 0.05 0.36 ± 0.03 0.38 ± 0.05 0.35 ± 0.03 0.39 ± 0.06 0.34 ± 0.03
InputXGradient 0.35 ± 0.03 0.41 ± 0.11 0.35 ± 0.04 0.40 ± 0.10 0.35 ± 0.04 0.39 ± 0.09
GNNExplainer 0.41 ± 0.07 0.32 ± 0.06 0.42 ± 0.08 0.31 ± 0.08 0.42 ± 0.09 0.28 ± 0.09
HiGNN 0.22 ± 0.04 0.37 ± 0.10 0.25 ± 0.05 0.36 ± 0.09 0.31 ± 0.07 0.31 ± 0.08
ProtGNN 0.42 ± 0.10 0.48 ± 0.13 0.46 ± 0.12 0.47 ± 0.13 0.49 ± 0.13 0.45 ± 0.13
PGExplainer 0.35 ± 0.03 0.40 ± 0.09 0.35 ± 0.03 0.39 ± 0.09 0.36 ± 0.03 0.38 ± 0.06
SMEAtom 0.31 ± 0.03 0.33 ± 0.02 0.32 ± 0.02 0.33 ± 0.02 0.33 ± 0.02 0.32 ± 0.02
SMEBrics 0.31 ± 0.03 0.33 ± 0.02 0.32 ± 0.03 0.32 ± 0.02 0.33 ± 0.02 0.32 ± 0.03
SMEMurcko 0.30 ± 0.03 0.33 ± 0.02 0.31 ± 0.04 0.32 ± 0.02 0.32 ± 0.03 0.32 ± 0.02
PGIB 0.30 ± 0.05 0.30 ± 0.04 0.31 ± 0.05 0.29 ± 0.05 0.32 ± 0.04 0.27 ± 0.06
SEAL (λ = 2) 0.52 ± 0.02 0.04 ± 0.05 0.57 ± 0.03 0.03 ± 0.04 0.66 ± 0.03 0.01 ± 0.01
SEAL (λ = 1) 0.50 ± 0.02 0.05 ± 0.06 0.55 ± 0.02 0.04 ± 0.05 0.64 ± 0.03 0.01 ± 0.01
SEAL (λ = 0.5) 0.50 ± 0.02 0.05 ± 0.04 0.56 ± 0.01 0.04 ± 0.03 0.64 ± 0.02 0.01 ± 0.01
SEAL (λ = 10−1) 0.57 ± 0.02 0.00 ± 0.00 0.63 ± 0.02 0.00 ± 0.00 0.72 ± 0.02 0.00 ± 0.00
SEAL (λ = 10−2) 0.53 ± 0.02 0.00± 0.00 0.60 ± 0.02 0.00 ± 0.00 0.69 ± 0.02 0.00 ± 0.00
SEAL (λ = 10−3) 0.53 ± 0.02 0.06 ± 0.04 0.58 ± 0.02 0.05 ± 0.04 0.65 ± 0.02 0.04 ± 0.03
SEAL (λ = 10−4) 0.52 ± 0.02 0.13 ± 0.05 0.58 ± 0.02 0.11 ± 0.03 0.63 ± 0.03 0.10 ± 0.04
SEAL (λ = 0) 0.52 ± 0.00 0.11 ± 0.02 0.59 ± 0.01 0.09 ± 0.01 0.65 ± 0.01 0.07 ± 0.01
SEALAtom (λ = 2) 0.43 ± 0.08 0.14 ± 0.06 0.44 ± 0.08 0.10 ± 0.05 0.44 ± 0.08 0.05 ± 0.03
SEALAtom (λ = 1) 0.34 ± 0.09 0.16 ± 0.06 0.35 ± 0.09 0.12 ± 0.05 0.35 ± 0.09 0.06 ± 0.03
SEALAtom (λ = 0.5) 0.38 ± 0.09 0.07 ± 0.07 0.39 ± 0.10 0.05 ± 0.05 0.38 ± 0.09 0.02 ± 0.03
SEALAtom (λ = 10−1) 0.52 ± 0.15 0.02 ± 0.01 0.55 ± 0.17 0.01 ± 0.01 0.53 ± 0.18 0.00 ± 0.00
SEALAtom (λ = 10−2) 0.35 ± 0.03 0.24 ± 0.08 0.35 ± 0.03 0.23 ± 0.08 0.34 ± 0.03 0.19 ± 0.08
SEALAtom (λ = 10−3) 0.34 ± 0.04 0.24 ± 0.07 0.33 ± 0.04 0.23 ± 0.07 0.33 ± 0.04 0.21 ± 0.07
SEALAtom (λ = 10−4) 0.44 ± 0.05 0.17 ± 0.04 0.44 ± 0.05 0.17 ± 0.05 0.44 ± 0.06 0.17 ± 0.07
SEALAtom (λ = 0) 0.57 ± 0.04 0.20 ± 0.03 0.58 ± 0.04 0.18 ± 0.04 0.57 ± 0.04 0.17 ± 0.05
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Table 20: Performance of model explanations on real-world datasets (hERG). Explanations are eval-
uated using Fidelity metrics at 10%, 20%, and 30% masking thresholds, representing the proportion
of most important atoms (nodes) either removed or retained during the evaluation.

Model Fidelity10+ ↑ Fidelity10− ↓ Fidelity20+ ↑ Fidelity20− ↓ Fidelity30+ ↑ Fidelity30− ↓

hE
R

G

Deconvolution 0.44 ± 0.04 0.48 ± 0.02 0.48 ± 0.02 0.48 ± 0.02 0.49 ± 0.02 0.46 ± 0.03
GuidedBackprop 0.45 ± 0.02 0.48 ± 0.02 0.48 ± 0.03 0.48 ± 0.02 0.48 ± 0.02 0.47 ± 0.02
IntegratedGradients 0.55 ± 0.13 0.44 ± 0.06 0.58 ± 0.18 0.41 ± 0.11 0.59 ± 0.19 0.38 ± 0.12
Saliency 0.43 ± 0.02 0.48 ± 0.02 0.46 ± 0.02 0.47 ± 0.03 0.48 ± 0.02 0.47 ± 0.02
InputXGradient 0.40 ± 0.04 0.49 ± 0.02 0.43 ± 0.04 0.49 ± 0.02 0.46 ± 0.03 0.49 ± 0.03
GNNExplainer 0.46 ± 0.03 0.47 ± 0.03 0.50 ± 0.06 0.45 ± 0.05 0.52 ± 0.07 0.44 ± 0.05
HIGNN 0.34 ± 0.04 0.47 ± 0.04 0.41 ± 0.06 0.46 ± 0.04 0.45 ± 0.05 0.45 ± 0.05
ProtGNN 0.40 ± 0.06 0.42 ± 0.07 0.42 ± 0.07 0.42 ± 0.07 0.43 ± 0.07 0.42 ± 0.07
PGExplainer 0.35 ± 0.04 0.48 ± 0.03 0.41 ± 0.04 0.47 ± 0.04 0.45 ± 0.03 0.46 ± 0.04
SMEAtom 0.41 ± 0.00 0.52 ± 0.04 0.45 ± 0.02 0.51 ± 0.04 0.48 ± 0.03 0.51 ± 0.03
SMEBrics 0.38 ± 0.02 0.52 ± 0.04 0.45 ± 0.03 0.52 ± 0.04 0.49 ± 0.04 0.51 ± 0.04
SMEMurcko 0.38 ± 0.02 0.52 ± 0.04 0.44 ± 0.03 0.52 ± 0.04 0.49 ± 0.04 0.50 ± 0.03
PGIB 0.36 ± 0.03 0.43 ± 0.07 0.39 ± 0.04 0.41 ± 0.07 0.42 ± 0.04 0.38 ± 0.07
SEAL (λ = 2) 0.57 ± 0.01 0.00 ± 0.00 0.66 ± 0.01 0.00 ± 0.00 0.76 ± 0.01 0.00 ± 0.00
SEAL (λ = 1) 0.57 ± 0.02 0.00 ± 0.00 0.65 ± 0.02 0.00 ± 0.00 0.75 ± 0.01 0.00 ± 0.00
SEAL (λ = 0.5) 0.57 ± 0.01 0.00 ± 0.00 0.66 ± 0.02 0.00 ± 0.00 0.76 ± 0.01 0.00 ± 0.00
SEAL (λ = 10−1) 0.59 ± 0.01 0.00 ± 0.00 0.68 ± 0.01 0.00 ± 0.00 0.77 ± 0.01 0.00 ± 0.00
SEAL (λ = 10−2) 0.59 ± 0.01 0.00 ± 0.00 0.68 ± 0.01 0.00 ± 0.00 0.78 ± 0.01 0.00 ± 0.00
SEAL (λ = 10−3) 0.63 ± 0.03 0.02 ± 0.01 0.72 ± 0.03 0.01 ± 0.01 0.80 ± 0.03 0.01 ± 0.01
SEAL (λ = 10−4) 0.63 ± 0.01 0.09 ± 0.03 0.71 ± 0.01 0.07 ± 0.02 0.78 ± 0.01 0.05 ± 0.02
SEAL (λ = 0) 0.67 ± 0.02 0.15 ± 0.02 0.74 ± 0.02 0.15 ± 0.01 0.78 ± 0.03 0.14 ± 0.01
SEALAtom (λ = 2) 0.78 ± 0.01 0.01 ± 0.01 0.86 ± 0.01 0.00 ± 0.00 0.87 ± 0.03 0.00 ± 0.00
SEALAtom (λ = 1) 0.78 ± 0.03 0.01 ± 0.01 0.87 ± 0.02 0.00 ± 0.00 0.89 ± 0.01 0.00 ± 0.00
SEALAtom (λ = 0.5) 0.77 ± 0.03 0.05 ± 0.03 0.86 ± 0.02 0.00 ± 0.00 0.85 ± 0.03 0.00 ± 0.00
SEALAtom (λ = 10−1) 0.78 ± 0.01 0.01 ± 0.01 0.87 ± 0.01 0.00 ± 0.00 0.89 ± 0.01 0.00 ± 0.00
SEALAtom (λ = 10−2) 0.77 ± 0.01 0.00 ± 0.00 0.83 ± 0.01 0.00 ± 0.00 0.87 ± 0.01 0.00 ± 0.00
SEALAtom (λ = 10−3) 0.83 ± 0.02 0.02 ± 0.02 0.89 ± 0.03 0.01 ± 0.00 0.91 ± 0.03 0.01 ± 0.01
SEALAtom (λ = 10−4) 0.55 ± 0.08 0.57 ± 0.15 0.54 ± 0.10 0.58 ± 0.15 0.50 ± 0.12 0.54 ± 0.13
SEALAtom (λ = 0) 0.73 ± 0.02 0.23 ± 0.16 0.74 ± 0.02 0.28 ± 0.14 0.71 ± 0.05 0.30 ± 0.12
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Table 21: Performance of model explanations on real-world datasets (Solubility). Explanations
are evaluated using Fidelity metrics at 10%, 20%, and 30% masking thresholds, representing the
proportion of most important atoms (nodes) either removed or retained during the evaluation.

Model Fidelity10+ ↑ Fidelity10− ↓ Fidelity20+ ↑ Fidelity20− ↓ Fidelity30+ ↑ Fidelity30− ↓

So
lu

bi
lit

y

Deconvolution 2.56 ± 0.87 4.09 ± 1.17 2.82 ± 0.94 3.96 ± 1.13 3.20 ± 1.03 3.79 ± 1.08
GuidedBackprop 3.77 ± 1.10 3.30 ± 1.11 4.02 ± 1.19 3.09 ± 1.04 4.24 ± 1.29 2.80 ± 0.96
IntegratedGradients 2.33 ± 0.80 4.62 ± 1.58 2.56 ± 0.87 4.54 ± 1.56 2.88 ± 0.96 4.39 ± 1.50
Saliency 3.22 ± 0.99 3.68 ± 1.20 3.46 ± 1.07 3.50 ± 1.15 3.75 ± 1.15 3.23 ± 1.06
InputXGradient 3.14 ± 0.93 3.50 ± 1.06 3.41 ± 1.02 3.33 ± 1.00 3.74 ± 1.14 3.09 ± 0.93
GNNExplainer 3.56 ± 1.24 3.64 ± 0.99 3.90 ± 1.34 3.47 ± 0.93 4.25 ± 1.48 3.24 ± 0.85
HIGNN 0.46 ± 0.08 0.43 ± 0.09 0.49 ± 0.08 0.40 ± 0.09 0.53 ± 0.09 0.36 ± 0.08
PGExplainer 3.21 ± 1.05 3.49 ± 0.97 3.44 ± 1.13 3.29 ± 0.90 3.72 ± 1.20 3.02 ± 0.81
SMEAtom 1.01 ± 0.65 1.18 ± 1.05 1.07 ± 0.70 1.11 ± 0.97 1.17 ± 0.85 0.99 ± 0.79
SMEBrics 0.96 ± 0.57 1.01 ± 0.69 1.02 ± 0.60 0.95 ± 0.60 1.09 ± 0.69 0.87 ± 0.50
SMEMurcko 0.98 ± 0.59 1.09 ± 0.85 1.04 ± 0.63 1.01 ± 0.75 1.12 ± 0.74 0.91 ± 0.60
SEAL (λ = 2) 1.12 ± 0.25 1.04 ± 0.42 1.20 ± 0.28 0.96 ± 0.38 1.34 ± 0.32 0.84 ± 0.33
SEAL (λ = 1) 1.04 ± 0.31 0.83 ± 0.39 1.11 ± 0.34 0.78 ± 0.36 1.22 ± 0.38 0.69 ± 0.31
SEAL (λ = 0.5) 1.08 ± 0.31 0.89 ± 0.41 1.15 ± 0.33 0.83 ± 0.38 1.26 ± 0.37 0.74 ± 0.34
SEAL (λ = 10−1) 0.77 ± 0.20 0.67 ± 0.29 0.83 ± 0.23 0.62 ± 0.26 0.92 ± 0.27 0.55 ± 0.23
SEAL (λ = 10−2) 0.64 ± 0.12 0.50 ± 0.13 0.68 ± 0.13 0.49 ± 0.13 0.73 ± 0.14 0.46 ± 0.13
SEAL (λ = 10−3) 1.24 ± 0.20 1.26 ± 0.33 1.37 ± 0.21 1.14 ± 0.30 1.55 ± 0.25 0.98 ± 0.25
SEAL (λ = 10−4) 0.78 ± 0.14 0.64 ± 0.16 0.84 ± 0.15 0.58 ± 0.13 0.91 ± 0.17 0.52 ± 0.09
SEAL (λ = 0) 0.49 ± 0.03 0.55 ± 0.07 0.54 ± 0.04 0.53 ± 0.08 0.58 ± 0.05 0.48 ± 0.07
SEALAtom (λ = 2) 0.41 ± 0.04 0.65 ± 0.15 0.44 ± 0.04 0.63 ± 0.15 0.46 ± 0.05 0.58 ± 0.13
SEALAtom (λ = 1) 0.38 ± 0.02 0.56 ± 0.14 0.41 ± 0.02 0.54 ± 0.13 0.43 ± 0.03 0.50 ± 0.12
SEALAtom (λ = 0.5) 0.39 ± 0.03 0.33 ± 0.11 0.41 ± 0.04 0.32 ± 0.12 0.43 ± 0.04 0.30 ± 0.12
SEALAtom (λ = 10−1) 0.37 ± 0.03 0.28 ± 0.10 0.40 ± 0.04 0.25 ± 0.11 0.41 ± 0.05 0.22 ± 0.10
SEALAtom (λ = 10−2) 0.86 ± 0.34 1.19 ± 0.53 0.93 ± 0.36 1.03 ± 0.45 1.01 ± 0.41 0.83 ± 0.34
SEALAtom (λ = 10−3) 0.80 ± 0.42 0.81 ± 0.48 0.86 ± 0.46 0.70 ± 0.38 0.93 ± 0.55 0.57 ± 0.27
SEALAtom (λ = 10−4) 0.97 ± 0.37 0.95 ± 0.46 1.04 ± 0.41 0.82 ± 0.34 1.15 ± 0.48 0.68 ± 0.22
SEALAtom (λ = 0) 0.69 ± 0.10 0.54 ± 0.10 0.74 ± 0.11 0.51 ± 0.08 0.79 ± 0.12 0.47 ± 0.06
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Table 22: Performance of model explanations on real-world datasets (MUTAG). Explanations are
evaluated using Subgraph Explanation (SE) and Null Explanation (NE) metrics.

Model SE ↑ NE ↑

M
U

TA
G

Deconvolution 0.84 ± 0.01 0.77± 0.02
GuidedBackprop 0.38 ± 0.11 0.60 ± 0.07
IntegratedGradients 0.56 ± 0.18 0.53 ± 0.03
Saliency 0.48 ± 0.07 0.63 ± 0.03
InputXGradient 0.45 ± 0.06 0.63 ± 0.06
GNNExplainer 0.48 ± 0.03 0.72 ± 0.02
ProtGNN 0.47 ± 0.06 0.65 ± 0.03
HiGNN 0.55 ± 0.00 0.70 ± 0.02
PGExplainer 0.29 ± 0.08 0.68 ± 0.03
SMEAtom 0.76 ± 0.04 0.36 ± 0.07
SMEBrics 0.55 ± 0.00 0.77 ± 0.01
SMEMurcko 0.47 ± 0.03 0.60 ± 0.03
PGIB 0.46 ± 0.05 0.50 ± 0.04
SEAL (λ = 2) 0.85 ± 0.02 0.54 ± 0.02
SEAL (λ = 1) 0.85 ± 0.02 0.55 ± 0.01
SEAL (λ = 0.5) 0.85 ± 0.02 0.54 ± 0.01
SEAL (λ = 10−1) 0.84 ± 0.02 0.55 ± 0.01
SEAL (λ = 10−2) 0.87 ± 0.02 0.53 ± 0.02
SEAL (λ = 10−3) 0.88 ± 0.01 0.52 ± 0.02
SEAL (λ = 10−4) 0.90 ± 0.01 0.53 ± 0.02
SEAL (λ = 0) 0.91 ± 0.01 0.51 ± 0.02
SEALAtom (λ = 2) 0.65 ± 0.02 0.24 ± 0.02
SEALAtom (λ = 1) 0.65 ± 0.02 0.24 ± 0.02
SEALAtom (λ = 0.5) 0.65 ± 0.01 0.24 ± 0.02
SEALAtom (λ = 10−1) 0.65 ± 0.01 0.25 ± 0.02
SEALAtom (λ = 10−2) 0.97 ± 0.00 0.27 ± 0.02
SEALAtom (λ = 10−3) 0.97 ± 0.00 0.25 ± 0.03
SEALAtom (λ = 10−4) 0.86 ± 0.02 0.42 ± 0.02
SEALAtom (λ = 0) 0.71 ± 0.05 0.47 ± 0.03
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Figure 13: Node-level explanation examples from user study, The red color indicates that the high-
lighted atoms had a positive contribution to the compound’s solubility.
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Figure 14: Node-level explanation examples from user study, The red color indicates that the high-
lighted atoms had a positive contribution to the compound’s solubility.
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Figure 15: Node-level explanation examples from user study, The red color indicates that the high-
lighted atoms had a positive contribution to the compound’s solubility.
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Figure 16: Node-level explanation examples from user study, The red color indicates that the high-
lighted atoms had a positive contribution to the compound’s solubility.
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Figure 17: Node-level explanation examples from user study, The red color indicates that the high-
lighted atoms had a positive contribution to the compound’s solubility.
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Figure 18: Node-level explanation examples from user study, The red color indicates that the high-
lighted atoms had a positive contribution to the compound’s solubility.
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Figure 19: Node-level explanation examples from user study, The red color indicates that the high-
lighted atoms had a positive contribution to the compound’s solubility.

SEAL GT SEAL GT SEAL GT

Figure 20: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
the Boron (B) task for the positive target class. The red color indicates that the highlighted atoms
had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.
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Figure 21: Node-level explanation examples of the SEAL method evaluated on the Boron (B) task
for the negative target class. The red color indicates that the highlighted atoms had a positive con-
tribution to the compound’s positive prediction. Blue as a negative contribution.

SEAL GT SEAL GT SEAL GT

Figure 22: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
Halogens (X) task for the positive target class. The red color indicates that the highlighted atoms
had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 23: Node-level explanation examples of the SEAL method evaluated on the Halogens (X)
task for the negative target class. The red color indicates that the highlighted atoms had a positive
contribution to the compound’s positive prediction. Blue as a negative contribution.
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SEAL GT SEAL GT SEAL GT

Figure 24: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
the rings-max task for the positive target class. The red color indicates that the highlighted atoms
had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 25: Node-level explanation examples of the SEAL method evaluated on the rings-max task
for the negative target class. The red color indicates that the highlighted atoms had a positive con-
tribution to the compound’s positive prediction. Blue as a negative contribution.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

SEAL GT SEAL GT SEAL GT

Figure 26: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
the rings-count task for the positive target class. The red color indicates that the highlighted atoms
had a positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 27: Node-level explanation examples of the SEAL method evaluated on the rings-count
task for the negative target class. The red color indicates that the highlighted atoms had a positive
contribution to the compound’s positive prediction. Blue as a negative contribution.
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SEAL GT SEAL GT SEAL GT

Figure 28: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
the PAINS task for the positive target class. The red color indicates that the highlighted atoms had a
positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 29: Node-level explanation examples of the SEAL method evaluated on the PAINS task for
the negative target class. The red color indicates that the highlighted atoms had a positive contribu-
tion to the compound’s positive prediction. Blue as a negative contribution.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

SEAL GT SEAL GT SEAL GT

Figure 30: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
the indole task for the positive target class. The red color indicates that the highlighted atoms had a
positive contribution to the compound’s positive prediction. Blue as a negative contribution.

Figure 31: Node-level explanation examples of the SEAL method evaluated on the indole task for the
negative target class. The red color indicates that the highlighted atoms had a positive contribution
to the compound’s positive prediction. Blue as a negative contribution.
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Figure 32: Node-level explanation examples of the SEAL method and Ground-Truth evaluated on
the Phosphorus (P) task for the positive target class. The red color indicates that the highlighted
atoms had a positive contribution to the compound’s positive prediction. Blue as a negative contri-
bution.

Figure 33: Node-level explanation examples of the SEAL method evaluated on the Phosphorus (P)
task for the negative target class. The red color indicates that the highlighted atoms had a positive
contribution to the compound’s positive prediction. Blue as a negative contribution.
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Figure 34: Node-level explanation examples of the SEAL method evaluated on the hERG dataset.
The red color indicates that the highlighted atoms had a positive contribution to the positive predic-
tion. Blue as a negative contribution.
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Figure 35: Node-level explanation examples of the SEAL method evaluated on the CYP2C9 dataset.
The red color indicates that the highlighted atoms had a positive contribution to the positive predic-
tion. Blue as a negative contribution.
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Figure 36: Node-level explanation examples of the SEAL method evaluated on the aqueous solu-
bility dataset. The red color indicates that the highlighted atoms had a positive contribution to the
positive prediction. Blue as a negative contribution.
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Figure 37: Node-level explanation examples of the SEAL method evaluated on the MUTAG dataset.
The red color indicates that the highlighted atoms had a positive contribution to the positive predic-
tion. Blue as a negative contribution.

51


	Introduction
	Related Work
	SEAL
	Local pooling and contribution
	Intrafragment and interfragment message passing

	Results
	Synthetic dataset benchmark
	Evaluation on real-world datasets
	User study

	Conclusions
	Training details
	Experimental details
	Data preprocessing

	Extended results
	Ablation study
	Masking strategy
	Zero-Init
	 contribution

	User study
	Visualizations
	Extended Related Work
	blueComplexity Analysis
	Use of LLMs

