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Abstract

In this demo, we present a real-time API recommender sys-
tem powered by an automated planner. Our tool generates
multiple API recommendations for over 600 APIs within a
bound of 5 seconds. By inputting a partial list of APIs, our
tool dynamically fills in missing components to create a more
functional or complete workflow. While this task has been
historically perceived as solely a data-driven endeavor, we
demonstrate how a planner can be harnessed to utilize both
association information and structural dependencies between
different APIs. As part of the demonstration, we also report
on data gathered from the initial deployment of the tool.

Introduction
Lowering the effort and expertise needed for workflow con-
struction is an area of active research for automation tools
(Chakraborti et al. 2022). In the past, we have shown how
declarative specifications can assist a user in constructing so-
phisticated workflows using a planner, in the context of goal-
oriented conversational agents (Muise et al. 2019; Sreedha-
ran et al. 2020; Chakraborti et al. 2021) and through the
composition of units of automation in the form of APIs and
“skills” (Chakraborti et al. 2020). Specifically for API-based
automation, our efforts have largely been confined to natu-
ral language interactions (Brachman et al. 2022, 2023) that
serve as a jump-off point to a more sophisticated build ex-
perience in a graphical interface. In this demo, we focus on
this latter build experience where the user is in the process
of adding to a workflow under construction with the help of
recommendations from the system.

The API Recommendation Task
A series of interconnected APIs can form a comprehensive
workflow to accomplish complex tasks like processing job
applications, handling event registrations, or managing file
sets, among other high-level objectives. The API recommen-
dation task involves recommending, given an existing se-
quence of APIs, new APIs that can be added to the sequence.
Through multiple iterations of recommendations and adop-
tion, a user can build out from scratch new workflows that
automate their own processes. Unlike the plan completion
task (Tian, Zhuo, and Kambhampati 2016), here the task
is decidedly human-in-the-loop and not merely a sequence

completion task. During the recommendation process, it is
essential to offer multiple alternative approaches for com-
pleting a workflow. Each option should represent distinct
high-level tasks while allowing users the flexibility to either
accept or reject these suggested recommendations. The rec-
ommended APIs can come in two forms:

PBA or Previous Best Action refers to the recommendation of
APIs before a given position in a sequence of APIs. In
this demo, we focus exclusively on the PBA task.

NBA or Next Best Action refers to the recommendation of
APIs at the end of a sequence of APIs.

Related Work The API recommendation problem has
parallels to web service composition (Lemos, Daniel, and
Benatallah 2015), where planning-based approaches have
found a natural home (Srivastava and Koehler 2003). This
includes modeling of ontological knowledge (Hoffmann
et al. 2007; Sirbu and Hoffmann 2008) for the planner as
well as compiling user preferences (Sohrabi, Prokoshyna,
and McIlraith 2006) into the reasoning problem up front. On
the other hand, the tool being presented serves as a recom-
mender system, thereby requiring the ability of the planner
to come up with multiple alternative suggestions per request,
as well as operate in a human-in-the-loop setting where new
user inputs are folded in interactively – these considerations,
along with how we compile similarity and historical data
into the planning task, makes this a unique deployment.

Modeling Considerations for the Planner
While computing what can be a good recommendation for a
PBA task, the following considerations come to mind:

1. Whether this single API or a series of new ones can gen-
erate inputs for subsequent APIs within an existing se-
quence. Notably, if multiple new APIs are introduced, all
those in the candidate prefix sequence should be consid-
ered as potential recommendation candidates;

2. Whether the API, by its description or name, is relevant
to the topic of the other APIs in the sequence; and

3. Whether the user has historically executed that API in
that context in the past.

The first criterion is a planning task: computing the least
sized sequence that can satisfy all the data requirements (in-
puts to the subsequent APIs) of a flow. While typically the



Figure 1: A user is building a workflow involving file operations using the Dropbox API. The planner in the tool assists the user
by suggesting one or more APIs to add to the workflow under construction. Video: https://youtu.be/o75mNgXIwSs.

(API) recommendation task has been approached purely as
a learning task, a planner gives us two potential advantages.
First, compilation of association probability and usage data
into the cost model allows us to model both data-driven char-
acteristics as well as those that require logical reasoning e.g.
piping information across components. While purely learn-
ing approaches can do the former, they are typically quite
poor at the latter. Second, since not all the considerations are
dependent on past usage data or knowledge acquired from
generic data, we are not fully hamstrung by the cold start
problem of traditional recommender systems.

Based on the mentioned factors, a PDDL (Planning Do-
main Definition Language) specification is dynamically cre-
ated from the input data using tarski (Francés, Ramirez,
and Collaborators 2018). Subsequently, various sequences
are generated through the K∗ planner (Lee, Katz, and
Sohrabi 2023), preserving orders only between the actions
that are associated with APIs (Katz et al. 2024). The input
data includes Open API Specs as well as a collection of as-
sociated APIs, represented by pairings of API names. These
associated APIs were derived through two methods: from
user-defined sequences or from semantically similar APIs
based on the API name, path, and the operation (see https://
swagger.io/docs/specification/paths-and-operations). These
were identified by a compact (∼100Mb) sentence trans-
former model. Following this, the generated plans are fur-
ther processed to offer multiple suggestions for the desired
position within the developing workflow.

Example Interaction Figure 1 shows a sample interac-
tion in the tool. The user has begun constructing a workflow
with the Dropbox (download file) API. The PBA request

Measurement Initial Deployment

Recommendations per day 800+ per day
Percentage PBA (versus NBA) request 33%
Percentage adoption of recommendation 50%
Time taken to produce recommendations 2-3 seconds
Length of sequences built 2 (majority) - 6

Table 1: Preliminary usage data from first deployment.

produces several possible APIs to appear before it, such as
fetching files or creating one – which are all within the space
of Dropbox APIs that can precede the download operation
already specified – or involving different APIs that may be
part of known business processes (such as hiring) usually as-
sociated with the usage of the already selected API. The user
selects the one they want (or use the search bar to discover
other APIs if their desired API is not among the recommen-
dations) and continue completing their workflow.

PBA in Action Table 1 presents some preliminary data
gathered during the first months of use of the tool. A 33%
rate for PBA requests demonstrates the importance of the
PBA use case (and points to how users think about the se-
quencing task as either goal-directed or backward from the
goal). A 50% hit rate is promising but also indicates poten-
tial room for improvement.

Demonstration Logistics During the demo session, the
audience will be able to play with the tool, create their own
workflows, and explore the generated suggestions. They will
also be able to investigate the modeling nuances in the
PDDL specifications generated by the tool.
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