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Abstract

Recent advancements in large language mod-
els (LLMs) have shown promising ability to
perform commonsense reasoning, bringing
machine closer to human-like understanding.
However, deciphering the internal reasoning
processes of LLMs remains challenging due
to the complex interdependencies among gen-
erated tokens, especially in practical question-
answering. In this study, we introduce a two-
dimensional analysis framework—comprising
token back-tracing and individual token decod-
ing—to uncover how LLMs conduct common-
sense reasoning. Through explanatory analysis
of three typical reasoning datasets, we iden-
tify a consistent three-phase pattern: Subject
Augmentation and Broadcasting, Object Re-
trieval and Reranking, and Conclusion Fusion
and Generation. Our findings reveal that LLMs
do not lack relevant knowledge but struggle to
select the most accurate information based on
context during the retrieval and rerank phase.
Leveraging these findings, we apply represen-
tation engineering and selective fine-tuning to
target specific modules responsible for retrieval
and rerank errors. Experimental results show
large improvements in response accuracy for
both in-domain and out-of-domain settings, val-
idating the rationality of the interpreting result.

1 Introduction

Recent progress in large language models (LLMs)
have pushed machines closer to achieving human-
like capabilities (Krause and Stolzenburg, 2023;
Zhou et al., 2020). These models can not only
comprehend user queries, but also perform com-
monsense reasoning based on factual knowledge.
As a result, uncovering these abilities has become a
focal point of interest. It is crucial for interpreting
model behavior and analyzing unexpected errors
(e.g., reversal curse (Berglund et al., 2023)), ulti-
mately overcoming the limitations of LLMs.
Research on interpreting LLMs (Geva et al.,
2023; Wang et al., 2024; Dai et al., 2022; Xie
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Figure 1: Model inner reasoning process on common-
sense reasoning tasks.

et al., 2024) often simplifies reasoning by focusing
on factual triplets like “Ganesha is a Hindu god”.
These studies examine how models derive the ob-
ject (“Hindu’) from the subject (“Ganesha”) as
well as the relation (“is”’). However, in real-world
scenarios, model must go beyond these triplets
to understand the question, select relevant facts,
and synthesize information to provide an answer.
For example, when asked, “Is Ganesha associated
with Thor?”, the model must grasp the context, rec-
ognize that “Ganesha is a Hindu god” from all
Ganesha-related facts, and conclude they are not re-
lated. In contrast, for the question, “Does Ganesha
look like a tiger?”, the model in turn focuses on
appearance-related facts, such as “Ganesha is de-
picted with an elephant head”. Understanding how
models select appropriate factual knowledge and
analyze it to reach conclusions is crucial for com-
prehending their overall reasoning process. This
holistic approach should extend beyond simple
triplet analysis and can better reflect the complexity
of real-world reasoning tasks.

In this study, we aim to decipher the common-
sense reasoning process within the response of
LLMs. The challenge lies in the dense interconnec-
tivity of token generation, where each generated to-
ken is influenced by multiple preceding ones, lead-
ing to a recursive analytical complexity. To address
this, we break down the analysis into two dimen-
sions: token back-tracing and individual token de-
coding. Token back-tracing starts from the model’s
answer and traces back to the original question. It



identifies intermediate key tokens with significant
direct impact through causal analysis. This reveals
a chain of crucial information transfers between
tokens, as shown in Fig. 1. For individual token de-
coding, we adopt an “explain then verify” strategy
following Wang et al. (2023). Specifically, logit
attribution (nostalgebraist, 2021) is applied to ex-
amine information changes within modules across
layers. Then Sparse Autoencoder (SAE) (Gao et al.,
2024) and knockout (Wang et al., 2023) techniques
are used to verify by comparing the model’s behav-
ior with and without specific information.

Our interpreting analysis of three typical rea-
soning datasets revealed a consistent pattern in
models’ commonsense reasoning. The process un-
folds in three phases: 1) Subject augmentation
and broadcast: Firstly, the model generates exten-
sive subject-related information through attention
heads and MLP, and broadcasts it to subsequent
key positions (e.g., sentence endings); 2) Object
retrieval and rerank: the model retrieves the pre-
viously generated subject information with atten-
tion heads and reorders it using MLPs when pre-
dicting attributes.; and 3) Conclusion fusion and
generation: the attributes are further transported
to the conclusion through heads and generate cor-
responding conclusions, ultimately forming the an-
swer. Based on this pattern, we further analyzed
the failure cases of current models. One key find-
ing is that LLMs are not unaware of relevant facts,
but rather struggle to select the most accurate fact
during retrieval and rerank based on contextual
cues. This motivated us to develop a direct appli-
cation of interpretability findings: by identifying
specific modules through explanatory localization,
we employed selective fine-tuning and representa-
tion engineering to optimize the attribute retrieval
and rerank. Results show significant improvement
in model performance, simultaneously validating
the rationality of the interpretability results.

We summarize our contributions as follows: (1)
We focus on interpreting the process of common-
sense reasoning within LLMs into steps that are
comprehensible to humans. Through experimen-
tal analysis, we found that LLMs first augment
related facts and broadcast the information into the
proceeding key positions, subsequently retrieving
and re-ranking these facts to predict correct object,
and finally fusing and generating conclusions and
answers. (2) Building on the above observations,
we further identify that on commonsense reason-
ing tasks, LLMs often fail to retrieve and rerank

correct facts, leading to erroneous reasoning or con-
clusions. By selectively fine-tuning key heads and
MLPs, the performance of reasoning is enhanced,
especially for out-of-domain samples. It validates
the reliability of the interpreting results.

2 Related Works

2.1 Mechanistic Interpretability

Mechanistic interpretability aims to understand
model behavior by reverse-engineering the inter-
nal computational processes. One widely used
technique is logit attribution (nostalgebraist, 2021),
which projects internal vectors into the vocabu-
lary space to interpret the information encoded
within these representations. Several studies (Geva
et al., 2021b, 2022; Dar et al., 2023; Belrose et al.,
2023) have utilized this method to uncover a va-
riety of interpretability results. Another promi-
nent tool is activation patching (Meng et al., 2022;
Wang et al., 2023; Goldowsky-Dill et al., 2023;
Conmy et al., 2023), which applies causal inter-
ventions to internal model components using cor-
rupted inputs. By examining the resulting changes
in model predictions, this approach identifies criti-
cal modules and uncovers computational circuits.
Numerous works (Lieberum et al., 2023; Zhang
et al., 2024; Chen et al., 2024; Hanna et al., 2023)
have successfull identified task-specific modules in
LLMs using this method. In addition, sparse au-
toencoders (Bricken et al., 2023; Templeton et al.,
2024; Lieberum et al., 2024; Gao et al., 2024) have
been employed to decompose internal features into
interpretable feature combinations. In this work,
we integrate these tools to identify and analyze the
modules responsible for commonsense reasoning.

2.2 Model reasoning ability Interpretation

Numerous studies have employed interpretability
tools to investigate model mechanisms in reasoning
tasks. Geva et al. (2023) explored factual knowl-
edge recall, finding that subject information is en-
riched in the subject token in early layers, while
relation information is passed to the final token,
which then uses attention heads to extract the cor-
responding attribute from the subject representa-
tion. Building on this, Wang et al. (2024); Dai
et al. (2022); Yu and Ananiadou (2024); Geva et al.
(2022) identified MLP neurons involved in factual
knowledge recall and demonstrated how modulat-
ing their activations can control model behavior.
Additionally, works such as Yu et al. (2024); Ortu
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et al. (2024); Yu et al. (2023); Xie et al. (2024) ana-
lyzed the balance between retrieved knowledge and
parametric memory. Dutta et al. (2024); Hou et al.
(2023) examined model mechanisms in reasoning
generation tasks. These studies largely focus on el-
ementary retrieval tasks, such as recalling a single
fact o from a triplet (s, r, 0). In this study, we fo-
cus on interpreting the model reasoning process in
more complicated commonsense reasoning tasks.

3 Methods

3.1 Preliminary

In our experiments, we uncovered several key to-
ken positions in the reasoning process through back
tracing: Subject, Object, Answer. These tokens are
observed special in experiments and therefore high-
lighted for better comprehension. (1) Subject (S):
The subject of inquiry in the question; this is a con-
cept node in a knowledge graph (Speer et al., 2017),
representing any entity, idea, or object relevant to
commonsense (e.g., “Harry Potter” in Figure 2).
(2) Object (O): The object, paired with S contains
some factual knowledge, is also a concept node.
These objects, according to their relevance as accu-
rate fact for the question, can be categorized into
predicted objects O, (e.g., “Harry Potter is a ‘fic-
tional character”’) and candidate objects O, (e.g.,
“Harry Potter is a ‘wizard”). (3) Answer (A): The
answer to the question, which varies based on the
type of question. It may be a binary judgment (e.g.,
“yes/no) or a selection (e.g., “(2) Kayla”). We
denote the correct and false answers as A; and Ay.

Furthermore, through back-tracing, we identified
several positions that entail reasoning-related infor-
mation: (4) Reasoning conjunctive adverb (R):
we find conjunctive adverbs that connect reason-

ing steps (e.g., “Thus”) encodes rich information
related to the answer. (5) Conclusion (C): terms
that convey the affirmative or negating essence of
the conclusion sentence, clarifying the stance to the
question. (e.g., “cannot” in “Thus, Harry Potter
cannot book a flight on Asiana Airlines.”) (6) Ques-
tion end (Q.): we find abundant subject-related
information is encoded at the end of question.

3.2 Methodology

As illustrated in Figure 2, the interpretation process
is divided into two orthogonal pipelines. 1) Token
back -racing: The horizontal pipeline traces the
path of tokens from the end to the start. Through
causal back-tracing, tokens that are strongly corre-
lated with a target token can be effectively identi-
fied, allowing us to focus on the most relevant in-
formation flows rather than exhaustively analyzing
the dense connections across all tokens. This ap-
proach helps identify the key relationships between
tokens, thereby pinpointing the crucial positions
of key tokens in commonsense reasoning (as de-
fined in §3.1). 2) Decode parametric concept or
attribute: The second pipeline, shown vertically,
analyzes the patterns within LLMs when generat-
ing a specific token, including inner behaviors and
activation characteristics. It explains the behavior
of modules (e.g., residual blocks, Attention heads,
and MLPs) by evaluating the information related to
the target content (e.g., Az, Ay, Op and O,) within
modules’ output. Subsequently, it decodes the se-
mantic information and patterns encoded in these
modules into human-understandable formats.

Instantiation of tracing token-to-token path. We
employ activation patching (Wang et al., 2023)
as an effective tool for causal back-tracing. This



method originates from causal mediation analy-
sis (Vig et al., 2020), where the results of direct
effect enable us to identify the significant heads
(the right side of Fig. 2). Heads with the Top-5
direct effect are considered contributors to gener-
ating a token. By examining the attention patterns
in these important heads, the top 2 previous tokens
with the highest attention scores are considered to
be correlated with the current token and serve as
the token to trace and analyze. This process can
then be iteratively applied to discover the transi-
tion path across tokens. Activation patching re-
lies on high-quality counterfactual data, which is
paired with original data to calculate the direct ef-
fect for each head. It must be carefully designed to
change specific semantics within a sentence mini-
mally, without disrupting other narrative settings.
We automatically generate this counterfactual data
by GPT-4 (OpenAl, 2023) (see §A.1).

Instantiation of decoding parametric concept or
attribute. We use logit attribution (nostalgebraist,
2021) to interpret the module behavior across lay-
ers. The method projects hidden states into the
vocabulary space using the model’s pretrained un-
embedding matrix and obtains its distribution on
vocabulary space. Therefore, the method reveals
the information contained in current hidden states
and explains the contribution of specific heads or
MLPs or residual blocks to the predicted token.
Specifically, we calculate the softmax probability
of the observed tokens (O,, O., A; or Ay) after
projection. The probabilities across layers will
form the curves (see examples in Figure 3a), indi-
cating the module’s inner reasoning process.

To validate the interpreting results obtained by
logit attribution, for MLP, we adopt Sparse Autoen-
coder (SAE) (Templeton et al., 2024) to decode
the semantic information embedded in the param-
eters and activations. (e.g., Information related to
“magic” is decoded in MLP of layer 8 when feeding
“Harry Potter” to the model.) Based on dictionary
learning, SAE translates the hidden states of LLMs
into several interpretable pieces, or termed features.
These features are activated on sparse token se-
quences with specific patterns, and most can be
interpreted by GPT-4 (Lieberum et al., 2024) into
concrete semantic descriptions. Regarding atten-
tion heads, we use probing to decode the semantic
information. We project the outputs of the heads
into the vocabulary space and examine the top-20
tokens in the head’s output distribution to decode

the semantic information. Furthermore, we applied
knockout (Wang et al., 2023) to verify identified
heads and MLPs. This method replaces the activa-
tions of modules with the average activation from
counterfactual data. Analyzing changes in model
performance allows us to validate the functional
roles of these key components.

3.3 Application of Interpreting Results

Two methods are adopted to explore the application
of interpreting results. 1) Selective supervised
fine-tuning (SSFT): Zhang et al. (2024); Chen
et al. (2024) proposed a method to enhance
model’s capability through updating a small set
of parameters. We directly use the same settings
without modification for effective verifications.
Specifically, given a sequence of attention heads
and MLPs ordered by their significance, denoted
as (MLP.ll), (Head.lg.hg), (Head.lg.hg), .
where [; represents the layer index and h;
represents the head index of the i*" ranked
head, only top K heads and top M MLPs are
exclusively updated during fine-tuning. We
optimize both the corresponding input mapping
matrix {VVl}l”, VVZZQ, ey T/VZ’LK } and the output
mapping matrix {OZHOE, ,Olh;} in top K
heads simultaneously. For the selected MLP
layer, we update all parameters in this layer. 2)
Representation engineering, which adjusts the
model’s internal hidden states to influence its
behavior, has proven to be an effective method
for modulating model performance (Zou et al.,
2023). Following the approach outlined in Xiao
et al. (2024); Templeton et al. (2024), we correct
the model’s erroneous behavior using:

hy = hy + kx;, (1)

where h; represents the original output of residual
block at layer [, x; is the feature direction corre-
sponding to the correct knowledge identified using
SAE, k is the steering magnitude which we set 5.

4 Experiments

4.1 Experiments Overview

The experiment results are presented in a back-
tracing manner. Consider a case from StrategyQA
where the question is “Q: Can Harry Potter book
a flight on Asiana Airlines?” and Gemma2-7B’s
output is “Harry Potter is a fictional character. Fic-
tional characters cannot book flights. Thus, Harry
Potter cannot book a flight on Asiana Airlines. So



the answer is no.”. We begin decoding the para-
metric concept starting from A (i.e., “no”). By
tracing back its proceeding tokens, we find it first
passes through C (i.e., “cannor”), then transitions
to R (i.e., “Thus”), and ultimately arrives at O (i.e.,
“fictional”’). We term this process as conclusion
fusion and generation (§4.2). Diving deeper into
O, our analysis of O, illuminates the underlying
mechanisms of object retrieval and rerank (§4.3).
Further tracing the origin of O leads us to S (i.e.,
“Harry Potter”), uncovering the mechanisms of sub-
ject augmentation and broadcast (§4.4). We ex-
tend our investigation across different models and
datasets in §4.5, and finally explore practical ap-
plications of these reasoning mechanisms through
SSFT and representation engineering (§4.6).

Models We conducted experiments on two pop-
ular open-sourced models, Gemma2-9B (Team
et al., 2024) and Llama2-7B (Touvron et al., 2023).
The results in the Section 4 primarily focus on
Gemma?2-9B, as Sparse Autoencoders (SAEs) have
been trained for all its layers (including residual
and MLP layers) (Lieberum et al., 2024), enabling
comprehensive validation of our analyses. See Ap-
pendix A.5 for results on Llama2-7B.

Datasets We selected three widely used
commonsense reasoning benchmark datasets:
StrategyQA (Geva et al., 2021a), Com-
monsenseQA (Talmor et al.,, 2018), and
SociallQA (Sap et al., 2019). These datasets focus
on distinct dimensions of commonsense reasoning
and see Tab. 13 and 14 for examples. The results
are primarily reported on StrategyQA, with results
for the other two datasets provided in §A.4. All
metrics and curves are averaged over 100 samples.
Prompts from Wei et al. (2022) and Li et al. (2024)
are adopted to elicit model’s reasoning abilities.

4.2 Conclusion Fusion and Generation

We start from decoding the information of .4; and
Ay (ie. “yes” and “no”) in residual blocks, at-
tention layers, and MLP layers at the position of
predicting A as shown in Figure 3a. The curves of
residual blocks depicts how the model predicts .4
across layers while curves of attention and MLP
layers depict the module contribution to the A; and
Ay. The prediction of A can be divided into three
stages: (i) Stage 1 (layers 0 — 24): Little to no
answer-related information is present in residual
blocks, attention and MLP layers, indicating the
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Figure 3: (a) Logit attribution of .A; and Ay at predict-
ing A. (b) Logit attribution of O, and O; at predicting
0.

model is still processing the input. (ii) Stage 2
(layers 25 — 33): Information related to the answer
increases, yet the probabilities for .4; and Ay are
close across residual blocks. Within the modules,
attention heads begin to convey answer-related in-
formation from layer 25 and the MLP follows to
encode this information from layer 26. Notably,
the heads’ outputs show similar information for
both A; and Ay, but the MLPs’ outputs assign a
higher probability to .4;. In this stage, the model
start to generate an answer but has not yet identi-
fied the correct one. (iii) Stage 3: By layer 34, the
model distinguishes the correct answer A;, with
its probability sharply rising and the A;’s proba-
bility decreasing. At the same layer, the attention
output sharply spikes for .A4; (probability near 1.0),
while the MLP output is much lower (around 0.1).
Afterward, the outputs of MLPs further increase
A;’s probability (layers 36 — 38), leading to the
final prediction. As a conclusion, attention head is
responsible for the fusion of related information,
while the MLP enhances the probability of the cor-
rect answer, contributing to the generation of the
final answer.

We further investigated the semantic information
encoded in the outputs of MLP and attention heads
for verification. In attention heads, we found that in
stage 2 and 3, the key heads encoded information
related to both .4; and A (see the outputs of heads
in Tab. 1). Meanwhile, numerous features related
to decision-making (see Tab. 1) are identified in



Head Top tokens in projection

28.06 yes, yeah, no, nil, Yes

32.07 Noah, node, Noah, no, Nora
34.09 denying, denied, denial, deny
35.14 ye, Ye, Yea, YE, yes, YES, Yeh

Table 1: Top-scoring tokens in the key attention heads
output when predicting A.

Layer ID Feature Explanation

27 76551 questions and answers related to
decision-making and assessments.

30 21336 affirmative and negative responses
to questions.

38 101266  answers presented in a structured

format, particularly in multiple-
choice or quiz contexts.

Table 2: Top-scoring features decoded by SAE in the
output of MLP when predicting A.

MLPs. Furthermore, knocking out these key heads
and MLPs significantly reduces the probability of
A, (see Fig. 19). These findings provide additional
evidence supporting the critical role of the MLP
and Attention layer in the answer generation pro-
cess.

Finally, we applied activation patching to iden-
tify key heads and trace the information for gen-
erating A. Tracing the information flow, the path
began at the conclusion S, progressed to the rea-
soning conjunctive adverb R, and finally arrived
at object O. In the process, we discovered that R
act as anchors for the fusion and transport of
conclusion-related information in the reasoning
process. For a detailed examination of the trace
from A to O, and an in-depth analysis of answer-
related information at R, refer to §A.3.

4.3 Object Retrieval and Rerank

The object information O decoded in the outputs of
the residual block, attention layers and MLP layers
are shown in Fig. 3b. We compare as many related
objects, including the predicted object O, and can-
didate object O,, as possible. For residual block,
the object information emerges at around layer 26.
However, Oy, is not dominant in the first place, as
the probabilities of O, and O, increase alternately.
For attention heads, O, and O, interleave, with
neither showing explicit dominance throughout the
whole layers. On the contrary, MLP shows obvious
preference on O,, where correct object information
is prominent across almost all layers. Notably, at

layer 37, O, is clearly dominant, while O. remains
minimal. This sharp spike aligns with a key tran-
sition point in the curve of residual block. From
these observations, it seems that 1) both O, and O,
are integrated during the process of object token
generation. 2) The attention heads initially retrieve
the information for both O, and O,, while MLPs
subsequently rerank O, to the top position.

To validate our finding, we knock out these key
heads and MLPs, as shown in Fig. 19. The decreas-
ing of probability of O, reveals the important role
of these modules. In addition, we also look into
the output of heads and MLP. As shown in Tab. 10,
attention heads encode a rich set of attribute in-
formation relevant to the subject (e.g., “British”,
“wizard”, “book’, and etc). Meanwhile, in Tab. 8,
the decoded features by MLP are strongly related
to “identity and character”. 1t is high correlated to
O,, but none of them is related to O.. These results
validates the function of retrieving and reranking
for attention head and MLP, respectively.

Finally, we utilize activation patching to identify
the heads with causal effect (see Fig. 13a) and find
these heads focus on two critical token positions,
S and end of question. Therefore, we trace back to
S to investigate the origin of O.

4.4 Subject Augmentation and Broadcast

—— Predict attribute —— Latent attribute —— Predict atribute —— Latent attribute
Residual block Residual block
oot » 0.02
€ €
2 o005 a 001
o o
o 10 20 B w© o 10
o0 || Attention Attention

L ady

0 10 20 20 0 0 10 20 30 a0

8
0,005
/\ L 0.01
o — - —— o —
o 10 20
Layer Layer

(@) (b)

Figure 4: (a) Logit attribution of O, and O; at S. (b)
Logit attribution of O, and O; at the end of question.

Generally, in commonsense reasoning datasets,
the S always appears in both the question and the
rationale. Through analysis, we observe that the &
in the rationale can also be back-traced to the S in



the question. Therefore, we treat the position of S
in the question as a focal point for deeper analysis.

Figure 4a illustrates the information of O, and
O, decoded in the outputs. Notably, we observe
that: 1) In residual block, it contains obvious infor-
mation regarding both O, and O, across various
layers, with O, being more prominent at the end. 2)
another two curves show that both attention heads
and MLPs have a large influence on O, and O..
To further decode information, we identifies that
MLPs in layers 7 and 32 encode abundant features
related to O (see Tab. 9). Meanwhile, Probing
also reveals that heads in layers 29 and 39 rank the
O, at top. In addition to diminishing the impact
of the information from any previous token, we
also examine the three corresponding curves at the
position before S (for instance, “Question:
Harry Potter”). The results (green line in Fig. 4a)
reveal that the information regarding O is virtually
zero. It indicates that the emergence of O, and
O, is indeed contingent upon the appearance of
C and is independent of any previous tokens. In
conclusion, both the MLP and heads play essential
roles in assisting the model to associate and extend
from S to related O, and O;. We refer to this stage,
along with the contributions of the MLP and heads,
as subject augmentation.

Regarding the question’s end token position,
Fig. 4b also presents the three corresponding
curves. (1) In the residual, both O, and O; ap-
pear across multiple layers. On the contrary to
concept token position, O), has a greater presence
than ;. (2) The curves for the MLP and heads also
encapsulate information about both O,, and Oy, and
further enhance the importance of O),. These obser-
vations indicate that even at seemingly unrelated
token positions, the O corresponding to the S (or
the knowledge they encompass) can be broadcast.
The original order of O may be broadcast based
on the current context, ultimately influencing the
generation of O,,. We term this stage as subject
broadcasting.

4.5 Generalization of findings

We further analyzed the reasoning process of
Gemma2-9B on CommonsenseQA and SociallQA.
The results (see §A.4) indicate that the reasoning
process on these two datasets also consists of object
retrieval and reranking as well as conclusion fusion
and generation. However, the phenomenon of sub-
ject augmentation was not prominently observed in
the SociallQA and CommonsenseQA datasets. We

Models ID Task OOD Task
Strategy CSQA  SIQA  Wino
Gemma2-9B 70.7 75.7 73.0 61.2
+ SFT (9B) 79.0 74.3 70.9 60.3
+ SSFT (0.3B) 80.3 76.2 74.0 65.2
Llama2-7B 62.5 68.3 67.9 55.5
+ SFT (7B) 77.3 54.8 59.0 52.7
+ SSFT (0.2B) 78.5 64.1 63.2 61.1

Table 3: Results on four commonsense reasoning tasks
(i.e., StrategyQA, CSQA, Winogrande, and SociallQA)
before and after tuning on the StrategyQA dataset using
SFT and SSFT.

hypothesize that this is due to the explicit provision
of the required factual knowledge within the ques-
tion context, which diminishes the model’s need
to infer additional related facts. In addition, we
validated the proposed reasoning process on the
Llama2-7B model across three datasets, and sim-
ilar results are observed on this model. Detailed
results can be found in§A.5.

4.6 Application of Interpreting Results

Failure Case Analysis. Our analysis of Gemma2-
7B’s incorrect responses on StrategyQA reveals
four error types (Fig. 5): 1) Reference Errors: re-
trieving irrelevant or incorrect attributes; 2) Logic
Errors: insufficient knowledge to support conclu-
sions; 3) Conclusion Errors: wrong answers despite
correct reasoning; and 4) Concept Errors: misiden-
tification of target concepts to analyze. Reference
Errors dominate at 74% of all cases. Further prob-
ing reveals that these errors primarily stem from
reranking issues rather than knowledge gaps, as cor-
rect objects typically appear within the model’s top-
5 predicted tokens. Following Zhang et al. (2024)
and Chen et al. (2024), we propose enhancing com-
monsense reasoning by targeted training of specific
MLP and Attention heads involved in these tasks.
Experiment Setup. With the key Attention
heads and MLPs identified for generating attributes,
we conduct the selective supervised fine-tuning
(SSFT) experiment on StrategyQA task by only
updating the parameters of selected heads and
MLPs. Specifically, Following (Fu et al., 2023)
and (Huang et al., 2022), each sample in our
training data is organized with the format of
“{Few-shot CoT prompt} Q: {Question}. A:
{Rationale}". Considering the generalization,
we introduce another commonsense reasoning test
dataset, WinoGrande (Sakaguchi et al., 2021).
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Question: Would be a good tant to a

: Persephone is the Greek goddess of the underworld.
Landscape architects design gardens. Thus, Persephone would not be a good
consultant to a landscape architect. So the answer is no

pe architect?

Case of Logic Error

Question: Did Sony definitively win the video game war against Sega?

Logic Error Answer: Sony and Sega were both video game companies. Sony
and Sega were competitors. Thus, Sony did not win the video game war against
Sega. So the answer is no.

: Persephone is the Greek goddess of the .
Landscape architects design gardens. Thus, Persephone would not be a good
consultant to a landscape architect. So the answer is no.

Question: Does The Hague border multiple bodies of water?

: The Hague is in the Netherlands. The Netherlands
borders the North Sea. The North Sea is a body of water. Thus, The Hague
borders a body of water. So the answer is yes.

- Sony and Sega were both video game companies. Sony and
Sega were competitors.
Thus, Sony
won the video game war against Sega. So the answer is yes.

Case of Query Error

Question: Are the majority of Reddit users familiar with the Pledge of Allegiance?

Query Error Answer: The Pledge of Allegiance is a pledge to the United States.
Reddit is a social media site. Thus, the majority of Reddit users are not familiar
with the Pledge of Allegiance. So the answer is no.

: The Hague is in the Netherlands. The Netherlands borders the
North Sea. The North Sea is a body of water. Thus, The Hague borders a body of

: The Pledge of Allegiance is a pledge to the United States.

water. So the answer is

are from the United States. Thus, the majoritgf Reddit
users are familiar with the Pledge of Allegiance. So the answer is yes.

Figure 5: The distribution of the four types of errors encountered by Gemma?2-7B on StrategyQA. 1) Reference
Error: The model retrieves irrelevant or wrong attributes. 2) Logic Error: incomplete reasoning steps. 3) Conclusion
Error: reaches an incorrect answer but based on correct rationale. 4) Concept Error: incorrectly identifies the target
concept for analysis. We use GPT-4 to automatically classify the failure types and see Fig. 21 for the prompt.

We selectively fine-tune the top 32 Attention
heads (for knowledge retrieval) and top 1 MLP lay-
ers (for knowledge reranking) with a learning rate
of 1 x 10~* and a batch size of 32 for 2 epochs. For
supervised fine-tuning, a learning rate of 1 x 107
is utilized, while all other configurations remain
consistent with SSFT training. Experiments are
conducted on 8 NVIDIA A100 (80GB) GPUs.

Experiment Results. The comparative results
between SSFT and SFT are presented in Table
3. For the experiments of Gemma2-9B on Strate-
gyQA, both SSFT and SFT improved performance,
achieving gains of +8.3% and 49.6%, respectively.
While SFT shows a comparable enhancement for
the StrategyQA task, it adversely affected perfor-
mance on OOD tasks, with an average decrease
of —1.5%. In contrast, SSFT continued to bol-
ster the model’s reasoning ability across all OOD
commonsense reasoning tasks, improving the per-
formance by an average of +2.6%. These findings
suggest that selectively fine-tuning a small fraction
of key components for commonsense reasoning
can boost performance on ID tasks while main-
taining generalizability, highlighting the effective-
ness of our previous exploration. A similar trend
was observed in the Llama2-7B results. Through
mechanism analysis of the model before and after
SSFT, we further validate that SSFT enhances the
model’s knowledge retrieval and reranking capa-
bilities. (See Fig. 20). Additionally, we further
validate the effectiveness of SSFT through training
on two other datasets (Tab. 11 and 12).

Representation engineering results. We also
utilize representation engineering to correct the
model’s (Gemma2-9B) reasoning process on the
question, e.g., “Would Persephone be a suitable
consultant to a landscape architect?”’. The model
initially defaults to identifying “Persephone as the

Greek goddess of the underworld”, leading to an in-
correct assessment. The correct reference is “Perse-
phone is the Greek goddess of spring”. By intro-
ducing feature directions related to deities or nature
into the residual block at layer 37(object retrieval),
we strengthened the model’s tendency to associate
Persephone with spring. This tendency can largely
contribute to the correct answer, and rectify the
model’s response. As a result, 93% failure cases
can be rectified, illustrating the rationality of the
identified interpreting results.

5 Conclusion

In conclusion, our research sheds light on the intri-
cate dynamics of commonsense reasoning within
LLMs, revealing a structured process that paral-
lels human cognitive reasoning. By meticulously
analyzing the hidden states across various trans-
former layers and token positions, we identified
a multi-faceted mechanism that integrates knowl-
edge augmentation, retrieval, and answer genera-
tion—essentially resembling a retrieval-augmented
generation framework. Our findings underscore the
pivotal roles played by both attention heads and
MLPs in the manifestation of factual knowledge,
highlighting a dual approach to knowledge process-
ing. Furthermore, our experiments demonstrated
that while LLLMs often possess relevant factual
knowledge, they frequently struggle to retrieve the
correct information during inference. Through se-
lective fine-tuning of key components, we achieved
notable enhancements in reasoning performance
across diverse contexts, indicating that targeted ad-
justments can effectively optimize the reasoning
capabilities of LLMs.



6 Limitations

While the methods and findings presented in this
study provide valuable insights into the internal
mechanisms of large language models (LLMs),
there are several limitations:

Scope of Evaluation: The experiments primar-
ily focus on commonsense reasoning tasks, and
the results may not fully generalize to other types
of reasoning or NLP tasks. Future work could ex-
tend the methodology to explore how these internal
mechanisms behave across a wider range of tasks.

Model Dependency: Our analysis is based on
the specific architectures and pretrained models
used in this study. While the interpretability tools
such as logit attribution, activation patching, and
sparse autoencoders provide useful insights, the
observed behaviors may vary with different models
or architectures. The findings may be influenced by
the particular training data and the design choices
of the models.

Complexity of Causal Back-Tracing: The
causal back-tracing method, while effective in iden-
tifying key tokens and correlations, remains com-
putationally expensive and may require further op-
timization for large-scale models. Additionally, ac-
curately interpreting causal relationships in highly
complex networks like transformers is a non-trivial
task and may be subject to noise or inaccuracies,
especially in deep layers.

Interpretability Limitations: While we pro-
vide insights into model behavior by examining
attention heads, MLPs, and other components, the
level of interpretability remains limited. Fully un-
derstanding the underlying reasons for model de-
cisions, especially in tasks involving nuanced or
implicit commonsense knowledge, may still be out
of reach with current methods.

Human Evaluation: While the interpretability
tools offer a mechanistic view of the model, the
final conclusions and explanations are still subject
to human interpretation. There is a risk of oversim-
plification or misinterpretation when mapping com-
plex internal mechanisms to human-understandable
explanations, particularly in highly abstract or non-
linear decision-making processes.
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A Appendix

A.1 Activation patching details

Counterfactual data generation We use GPT-4
to assist in automatically generating the counter-
factual data required for activation patching, with
the prompt shown in Figure 6 and an example
in Table 5. Additionally, we implement a post-
processing step: if the predicted token for the coun-
terfactual data matches the prediction for the data
under investigation (which would fail to perturb the
model’s behavior), GPT-4 is prompted to regener-
ate the counterfactual data.

We conduct experiments to compare the perfor-
mance of “GPT-4” and “human”. we engaged ten
master’s students specializing in Natural Language
Processing as volunteers. Five students were manu-
ally executing all procedures, including generating
X, analyzing key component behaviors, and devel-
oping data templates. The remaining students then
compared their annotations with those generated by
GPT-4 to judge which more accurately represented
the component behavior. Overall, the results (Ta-
ble 4) demonstrate that GPT-4 is highly accepted by
human evaluators, with the combination of “GPT
wins" and “Ties" exceeding 80%, underscoring its
robust reliability. These indicate that GPT-4’s out-
puts are almost consistent with those generated by
humans.

Activation patching metric We use the rate of
change in the probability of the predicted token
before and after perturbation as the metric for path
patching.

Table 4: Comparison of differences between GPT-4 and
human annotations

GPT-4 Wins
8%

Ties

80%

Human Wins

12%

A.2 Dataset details

A.3 Details of tracing from answer A to
object O

We found that the attention heads responsible for
generating A primarily focus on the conclusion
token C, as demonstrated by the pattern of head
25.08 in Tab. 6. Therefore, we traced back to the
C, Fig. 7a shows the probabilities of 4; and Ay
in the residual block, attention, and MLP outputs
at the conclusion token position. It is evident that
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the model distinguishes the correct answer A; in
the deep layers, with both the attention and MLP
outputs containing substantial information related
to A;.

Next, we identified the heads for generating C us-
ing activation patching and discovered that the key
attention heads primarily focus on the reasoning
conjunctive adverb R (i.e., “Thus” in head 31.03
pattern in Tab. 6). We also observed that the at-
tention head outputs contain information related
to the correct answer Ay, such as "yes," "indeed,"
and "true." Based on these findings, we conducted
further probing at R to trace the origin of Ay.

Through decoding information of A; and Ay at
‘R (Fig. 7b), we find that deep layers (30 — 34)
already encode rich information related to the cor-
rect answer A;. To trace the origin of the answer-
related information, we employed a modified acti-
vation patching to identify the key Attention heads.
Specifically, we iteratively corrupted the output of
each attention head from layer 0 — 30 using the
activation in counterfactual data, then identified the
key attention heads that have a significant negative
influence on the probability of .A; in residual block
(layer 30) output. Three key Attention heads (25.7,
25.8 and 25.9) are identified that primarily focus on
the position of attribute A (e.g., “company”). From
the observation above, we conclude a key finding:
reasoning conjunctive adverbs serve as an anchor
for gathering and transferring conclusion-related
information in reasoning process. Therefore, our
investigation continuously traces back to the posi-
tion of object O prediction.

A.4 Results on CommonsenseQA and
SociallQA

We further apply our interpreting method to
CommonsenseQA (Talmor et al., 2018) and So-
ciallQA (Sap et al., 2019) and find the model’s rea-
soning process within these two datasets consists of
attribute retrieval, attribute rerank, and answer
generation as shown in Fig. 8. Similarly, we start
by decoding the probability of .A; and Ay at the po-
sition of predicting answer 4;. The decoding curve
of CommonsenseQA is in Fig 10b and SociallQA
result is in Fig 12b. It is observed that the informa-
tion trend in residual block, Attention, and MLP
is similar across the two datasets. Specifically, the
probability of A; increases significantly at layer 30,
while Attention output encodes A; related infor-
mation before layer 30 and .4; relate information
emerges in MLP at layer around 32. Therefore, we



Prompt Template for Counterfactual Data Generation

<Inputs><topic> The particular topic being studied</topic>

<Instructions Structure>

. Ensure the output is formatted in the specified JSON structure.
/Instructions Structure>

<Instructions>

Here is the first predicted word:
<first_word_predicted>{$FIRST_WORD_PREDICTED}</first_word_predicted>

Follow these steps carefully to complete the task:

specific word choice by the model.

of the sentence's meaning if it helps influence the output.
3. *xProvide Analysis and Modificationx:

</Instructions>

<input_sentence> The original sentence provided for analysis</input_sentence>
<predicted_content> The specific words reflecting model behavior</predicted_content>
<first_word_predicted> The first word initially predicted by the model</first_word_predicted></Inputs>

1. Instruct the assistant to begin by analyzing the original input sentence and why it leads to the specific predicted word.

2. Guide the assistant to think about changes that could alter the model's prediction.

3. Instruct the assistant to provide the reason for the model's original prediction.

4. Request the assistant to modify the original sentence so that the model’s prediction changes.

5. Instruct the assistant to explain the modification's rationale, focusing on why the modified sentence now influences a different predicted outcome.
6
<

Your task is to analyze and modify a sentence to influence the predictive behavior of a language model. You will be given a topic, an input sentence,
the specific words predicted by the model, and the model’s first predicted word.

Here is the topic and input sentence to modify: <topic>{$TOPIC}</topic> <input_sentence>{$INPUT_SENTENCE}</input_sentence>

Here are the words generated by model given the input sentence: <predicted_content>{$PREDICTED_CONTENT}</predicted_content>

1. *%xAnalyze the Original Prediction**: Start by understanding the **input sentence*x and why it leads the model to predict the
*xfirst_word_predictedxx as the output under the specific **topic**x. Consider the context, tone, or structure of the sentence that prompts this

2. *xPlan the Modification**: Think about how you could change the *xinput_sentencexx minimally (by changing only 3-4 words) to alter the

model's behavior so that it no longer predicts the original word or instead predicts a word with an opposite meaning. It's acceptable to change some

- Write the **reason for the original prediction*x based on your analysis in Step 1.
- Rewrite the *xinput_sentence** in a modified form that will change or flip the model's predicted word.
- Explain your **reason for the modification**, focusing on how the changes you made will influence the model to predict a different word.

4. *%Qutput the Final Resultx*: Format your response in JSON, as shown below:

T json
{
"Reason for original prediction”: "Explain why the original input caused the model to predict the initial word.”,
"Modified input”: "Write the modified sentence here."”,
"Reason for modification”: "Explain why the modified input will lead to a different prediction from the model."”
3

Make sure each section is clear and precise. End your response with this JSON structure.

Figure 6: Prompt for using GPT-4 to generate counterfactual data in activation patching.

conclude the answer generation process as follows:
attention is responsible for copying and generat-
ing A; related information and MLP is responsible
for augmenting this information. Through back-
tracing, we identified the key heads for generating
the correct answer (see key head distribution in
Fig 9b and 11b). As shown in Tab. 7, we find the
head output encodes rich information related to the
correct answer and mainly attends to the object in
rationale and choices in question. Therefore, we
first trace back to the position of C.

Since both datasets are in the form of multiple-
choice questions, the answer (object) is already
provided as one of the options. Therefore, we treat
the correct answer as the predicted object O, and
the other options as candidate objects O.. The
logit attribution curves for A; and Ay are shown
in Fig 10a and 12a for CommonsenseQA and So-
ciallQA respectively. As shown in the figure, the
attention output contains both O, and O,, while

13

the MLP output only contains the O,,. This find-
ing aligns with our previous discovery on Strate-
gyQA regarding the object retrieval and rerank-
ing mechanism: attention heads first aggregate all
relevant objects, and then the MLP ranks these ob-
jects based on their relevance, selecting the O, for
the final output. These results further validate the
generalizability of our approach and findings.

Finally, we used activation patching to identify
the key attention heads responsible for generating
O,. The distribution of important heads is shown
in Fig. 9a and 11a. We found that the key heads
primarily focus on the options in the question (see
head pattern of 34.14 in Tab. 7), which serve as
the source for all objects. With this, the complete
reasoning process is concluded.



Table 5: Example of probing data X,. and counterfactual data X . generated by GPT-4. Counterfactual data change
the model (Gemma2-9B) prediction behavior by applying minimal change to the probing data.

Data  Model Input

Model Predict

X Question: Kendall opened their mouth to speak and what came out shocked

aggressive

everyone. How would you describe Kendall? (1) a very quiet person (2) a
very passive person (3) a very aggressive and talkative person Answer: Kendall
opened their mouth to speak and what came out shocked everyone. Thus, Kendall

isavery __

Xe Question: Kendall opened their mouth to speak and what came out was softer

quiet

than expected. How would you describe Kendall? (1) a very quiet person (2) a
very passive person (3) a very aggressive and talkative person Answer: Kendall
opened their mouth to speak and what came out was softer than expected. Thus,

Kendall is a very __

Pos. Head Attention score

Projection

Q: Is Canon Inc. a Kabushiki gaisha?<newline>
A: Canon Inc. is a

(@) 25.02

Q: Is Canon Inc. a Kabushiki gaisha@<newline>
A: Canon Inc. is a Japanese company. Japanese companies are Kabushiki gaisha. Thus

R 25.08

Q: Is Canon Inc. a Kabushiki gaisha?<newline>

S 31.03

Q: Is Canon Inc. a Kabushiki gaisha?<newline>

A 25.08

Japan, Japanese, Jepang,
Japodn, japan, Tokyo
confirmation, confirmacion,
Personendaten, verification
yes, Yes, indeed

YES, true, Indeed
confirmation, confirmacion,
confirmer, verification

A: Canon Inc. is a Japanese company. Japanese companies are Kabushiki gaisha. Thus, Canon Inc. is

A: Canon Inc. is a Japanese company. Japanese companies are Kabushiki gaisha. Thus, Canon Inc. is a Kabushiki gaisha. So the answer is

Table 6: Attention score of the key attention heads (on StrategyQA in Gemma2-9B) on different tokens and top-k
tokens after projecting the output of heads into the vocabulary space. The attention heads are obtained according to
the activation patching result in Figure 13. The term Head 25.02 denotes the 2nd head in the attention layer of the

25th layer of the model.

A.5 Experiment results on Llama2-7B

On Llama2-7B, we apply the same method to in-
terpret the reasoning process in StrategyQA (see
Fig. 14, CommonsenseQA (Fig. 17) and SociallQA
(Fig. 12. Three phases of reasoning, i.e. subject
augmentation and broadcast, object retrieval
and rerank, conclusion fusion and generation
are observed on StrategyQA. Similarly, object re-
trieval and rerank and conclusion generation are
observed on CommonsenseQA and SociallQA.
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Figure 7: Logit attribution results on StrategyQA of
Gemma2-9B. (a) Probability of A; and Ay when pre-
dicting C. (b) Probability of .4, and .A; when at R.



[ Attribute retrieval

@ Attribute rerank

------ —

A: Helping others is a good thing. It can bring usih niand happiness. So the answer is: (A) satisfaction.

@ Answer generation

Figure 8: Model inner reasoning process on CommonsenseQA.

. . .
Pos. Head Attention score Projection

<newline>Question: A crane uses many a steel cable when working a what?<newline> . .

(A) abaft (B) ship (C) winch (D) construction site (E) building<newline> Constl'uctlon, Konstruktlon,
O 34 1 4 Answer: A crane is a machine that is used to lift and move heavy objects. It is usually used in i

autorytatywna, Construction

<newline>Question: A crane uses many a steel cable when working a what?<newline> . M

(A) abaft (B) ship (C) winch (D) site (E) building<newline> COI’lStI'LICtIOI’l, COHStructlonS,
A 3 1 . 1 5 Answer: A crane is a machine that is used to lift and move heavy objects. It is usually used in construction sites. So the answer is: (D)

struction, traction, construccioén

Table 7: Attention score of the key attention heads (on CommonsenseQA in Gemma2-9B) on different tokens
and top-k tokens after projecting the output of heads into the vocabulary space. The attention heads are obtained
according to the activation patching result in Figure 9. The term Head 34.14 denotes the 14nd head in the attention

layer of the 34th layer of the model.
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(a) Trace back at A (to O)

10
head

(b) Trace back at O (to choices)

Figure 9: Distribution of key heads (Gemma2-9B) dur-
ing tracing back at different token positions on Common-
senseQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.

ID Feature Explanation

115620  Phrases related to confrontation and dynam-
ics involving identity.

99851 References to characters and elements from
the Harry Potter series.

82918 Concepts related to creation and storytelling
in various media.

114490  Elements related to character dynamics and

development in storytelling.

Table 8: Top-scoring features decoded by SAE in the
output of MLP at layer 37 when predicting O.

Latent attribute ‘— Correct answer False answer

Residual block

‘— Predict attribute

.
:
:
, _ o

o 10

Prob,
Prob,

20 30 0 0 10

Prob.

L
Prob.
- 2
—

Prob.
Prob.

20
Layer

(b)

Figure 10: Logit attribution results on Common-
senseQA of Gemma2-9B. (a) Probability of O, and
O, at the position of predicting O. (b) Probability of
Aj; and Ay at the position of predicting A.

Layer ID Feature Explanation

7 106518 References to specific characters
and items from a fictional universe.

7 113897  References to characters and loca-
tions from the Harry Potter series.

32 5548 References to specific characters
and events from the Harry Potter se-
ries.

32 94534 References to the concept of "world"

or "global" themes

Table 9: Top-scoring features decoded by SAE in the
output of MLP at layer 7 and 37 at S.
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Figure 11: Distribution of key heads (Gemma2-9B)
during tracing back at different token positions on So-
ciallQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.
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Figure 12: Logit attribution results on SociallQA of
Gemma2-9B. (a) Probability of O, and O, at the posi-
tion of predicting O. (b) Probability of A; and Ay at

the position of predicting .A.

Head Top tokens in projection

25.01 Hogwarts, wizard, wizards, children,
25.02 Brito, British, London, Westminster
29.06 book, chapters, books, Book, bookId
29.14 wizards, wizard, Hogwarts, Harry

Table 10: Top-scoring tokens in the key attention heads
output when predicting O. (i.e., “fictional character”

for “Harry Potter”.)
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Table 11: SSFT results using CommonsenseQA as the training dataset.

ID Task OOD Task
CSQA Winogrande  StrategyQA  SociallQA Average
Models Tuned =\ 0 A Acc. A  Acc. A Acc. A Acc. A
Params.

Gemma2-9B - 75.7 - 61.2 - 70.7 - 73.0 - 683 -
+ SFT 9B 81.3 +5.6 598 -14 71.0 +0.3 774 -56 66.1 -2.2
+ SSFT 0.2B 82.1 +6.4 65.1 +3.9 70.7 - 743 +1.3  70.0 +1.7

Llama2-7B - 61.1 - 62.5 - 53.4 - 60.2 - 587 -
+ SFT 6.7B 723 +11.2 57.8 4.7 53.5 +0.1 557 -3.0 562 -25
+ SSFT 0.2B 73.5 +12.4 63.1 +0.6 562 +2.8 63.2 +3.0 61.8 +3.1

Table 12: SSFT results using SociallQA as the training dataset.
ID Task OOD Task
SociallQA Winogrande  StrategyQA CSQA Average
Models Tuned Ace. A Ace. A Ace. A Ace. A Ace. A
Params.

Gemma2-9B - 73.0 - 61.2 - 70.7 - 757 - 69.2 -
+ SFT 9B 80.2 +7.2 59.0 -22 720 +1.3 72.1 3.6 677 -1.5
+ SSFT 0.2B 81.1 +8.1 642 +3.0 709 +0.2 770 +1.3 70.7 +1.5

Llama2-7B - 61.1 - 62.5 - 53.4 - 60.2 - 58.7 -
+ SFT 6.7B 723 +11.2 57.8 4.7 53.5 +0.1 557 -3.0 562 -2.5
+ SSFT 0.2B 73.5 +12.4 63.1 +0.6 562 +2.8 632 +3.0 61.8 +3.1

Table 13: Examples of Reasoning Cases from CommonsenseQA and SociallQA Datasets. The answer is generated
by Gemma2-9B. In CommonsenseQA and SociallQA, the entities are often abstract names or professions with
no specific meaning. Therefore, we treat the options in the context as attributes, the final predicted option as the
predicted attribute, and the remaining options as candidate objects.

Dataset CommonsenseQA SociallQA

Question The artist was sitting quietly pondering, then remy had a good talk with aubrey so aubrey un-
suddenly he began to paint when what struck  derstood remy better now. How would Remy
him? (A) sadness (B) anxiety (C) inspiration (D)  feel as a result? (1) unsatisfied (2) calm (3) anx-
discomfort (E) insights ious

Answer The artist was sitting quietly pondering, then Remy had a good talk with Aubrey. Thus,
suddenly he began to paint when inspiration Aubrey understands Remy better. Remy will
struck him. So the answer is: (C) inspiration. feel calm as a result. So the answer is: (2) calm.

Answer Type Multiple Choice Multiple Choice

Answer Token (C) inspiration (2) clam

Concept artist Remy

Predicted Object  inspiration calm

Candidate Object  sadness, anxiety, discomfort unsatisfied, anxious

17



-5
g 2 g
& K]
25 | .
|
30
35
| |
40 | |
0 10
head
(a) Trace back at O (to S)

10

15

20

25

30

35

40

head

--20

. -

10

(b) Trace back at R (to O)

layer

10

15

20

25

30,

35

40

0 10
head

(c) Trace back at C (to R)

a- - B
- n
25
30. |
n
35
| |
40 - |
0 10
head
(d) Trace back at A (to C)

Figure 13: Distribution of key heads during tracing back at different token positions on StrategyQA (averaged on
100 samples). The red squares indicate heads that have a significant positive impact on predicting the output token.
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Figure 14: Logit attribution results on StrategyQA of Llama2-7B. (a) Probability of O, and O, at C. (b) Probability
of O, and O, at the end of question. (c) Probability of O, and O, at O prediction. (d) Probability of .A; and A at
R. (e) Probability of A; and A¢ at S prediction. (d) Probability of A; and Ay at A prediction.

Table 14: Examples of Reasoning Cases from StrategyQA Datasets. The answer is generated by Gemma2-9B.

Dataset StrategyQA

Question Is Ganesha associated with a Norse god?

Answer Ganesha is a Hindu god. Norse gods are associated with Norse mythology. Thus, Ganesha is
not associated with a Norse god. So the answer is no.

Answer Type Yes / No

Answer Token no

Concept Ganesha

Predicted Object  Hindu

Candidate Object elephant, deity, god
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Figure 15: Logit attribution results on SociallQA of
Llama2-7B. (a) Probability of O, and O, at the position
of predicting O. (b) Probability of 4; and A, at the
position of predicting A.
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Figure 16: Distribution of key heads (Llama2-7B) dur-
ing tracing back at different token positions on So-
ciallQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.
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Figure 17: Logit attribution results on Common-
senseQA of Llama2-7B. (a) Probability of O, and O,
at the position of predicting O. (b) Probability of A;
and Ay at the position of predicting .A.
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Figure 18: Distribution of key heads (Llama2-7B) dur-
ing tracing back at different token positions on Common-
senseQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.
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Figure 19: Knockout results on Gemma2-9B: (a) De-
crease in probability of .A; when cumulatively intervene
the top 10 heads for generating A. (b) Decrease in prob-
ability of O, when cumulatively intervene the top 10
heads for generating O. (b) Decrease in probability of
O, when cumulatively intervene the top 3 MLPs for
generating O.
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Input Question: John cannot run the entire length of the track, he had been used
to the field. The _ is short.
(1) track (2) field
Answer: A person who cannot run the entire length of a track likely feels
uncomfortable or out of practice on a surface that is different from what
they are used to. If John had been used to the field, it suggests that he is
more accustomed to that environment. Therefore, the track must be

SSFT model output

longer than the field, making it difficult for him to run its entire length.

Base model output

shorter than the field, as he struggles to run its entire length. X

(a) Case study: output of SSFT and Base model

Probing Prob of Attributes on Attention

0 5 10 15 20 25 30
Layer

(b) Probing attention layer output for
“shorter” and “longer” on SSFT model

Probing Prob of Attributes on MLP

0 ol D S

0 5 10 15 20 25 30
Layer

(d) Probing MLP layer output for “shorter”

and “longer” on SSFT model

Figure 20: Comparison between the SSFT and Base models: (a) Case study highlights that the SSFT model correctly
predicts the answer, while the Base model fails. (b, ¢) Probing results for attention layers show enhanced knowledge
retrieval in the SSFT model compared to the Base model. (d, e) Probing results for MLP layers demonstrate
improved reranking capability in the SSFT model. These findings confirm that the identified modules—attention
heads for knowledge retrieval and MLP layers for reranking—are critical for accurate reasoning and were effectively

strengthened through SSFT.
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mpt Template for Failure Case Cl

I am testing the accuracy of a large language model's responses on the multi-hop reasoning dataset, StrategyQA. Your task is to
classify the errors in the model's answers based on specific error types. For each question, I will provide the input question,
the model's answer, the correct answer and the reasoning steps needed for the correct answer. Your goal is to accurately classify
the errors using the following four error types:

1. *xEntity Selection Errorx*: This occurs when the model picks the wrong entity from the input, leading to incorrect reasoning
in subsequent steps.
# Example 1:
Input:
T json
{
"question”: "Are the majority of Reddit users familiar with the Pledge of Allegiance?”,
"model_answer”: "The Pledge of Allegiance is a pledge to the United States. Reddit is a social media site. Thus,
the majority of Reddit users are not familiar with the Pledge of Allegiance. So the answer is no.”,
"correct_answer"”: "
"decomposition”: [
"What country do most Reddit users come from?”,
"What country is the Pledge of Allegiance associated with?",
"Is #1 the same as #2?"

yes~,

Classification: {"type": "Entity Selection Error”, "explanation”: "The model incorrectly selected Reddit as the entity
it spoke about, while the correct entity for reasoning should be 'Reddit users.' Therefore, this question should
be classified as an 'Entity Selection Error'”.}

2. xxKnowledge Retrieval Errorxx: This occurs when the model retrieves irrelevant, incomplete, or incorrect knowledge,
leading to flawed conclusions in the reasoning process.
# Example 1:

# Example 2:

3. **Conclusion Misalignment Error**: This occurs when the model's reasoning steps are correct, but the final conclusion is wrong.
# Example 1:

4. **Reasoning Logic Error*x: This occurs when the logical connection between the reasoning steps and the final
conclusion breaks down. In this error, even if individual reasoning steps are correct, they fail to coherently lead
to the intended conclusion, causing the reasoning process to result in an illogical or incorrect outcome.

# Example 1:

Instructions: If the error does not fit into any of these four categories, please suggest a new category with a clear explanation.

For each input, I will provide the question, the model's answer, the correct answer, and the decomposition of reasoning steps.
You should return your classification and a brief explanation as

follows:

T json

{"type": "Entity Selection Error” or "Knowledge Retrieval Error” or "Conclusion Misalignment Error” or
"Incomplete Reasoning Error”, "explanation”: "Explain why this question belongs to the chosen category."}
Classficiation:

Figure 21: Prompt for using GPT-4 to automatically classify the category of failure case.
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