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Abstract
Recent advancements in large language mod-001
els (LLMs) have shown promising ability to002
perform commonsense reasoning, bringing003
machine closer to human-like understanding.004
However, deciphering the internal reasoning005
processes of LLMs remains challenging due006
to the complex interdependencies among gen-007
erated tokens, especially in practical question-008
answering. In this study, we introduce a two-009
dimensional analysis framework—comprising010
token back-tracing and individual token decod-011
ing—to uncover how LLMs conduct common-012
sense reasoning. Through explanatory analysis013
of three typical reasoning datasets, we iden-014
tify a consistent three-phase pattern: Subject015
Augmentation and Broadcasting, Object Re-016
trieval and Reranking, and Conclusion Fusion017
and Generation. Our findings reveal that LLMs018
do not lack relevant knowledge but struggle to019
select the most accurate information based on020
context during the retrieval and rerank phase.021
Leveraging these findings, we apply represen-022
tation engineering and selective fine-tuning to023
target specific modules responsible for retrieval024
and rerank errors. Experimental results show025
large improvements in response accuracy for026
both in-domain and out-of-domain settings, val-027
idating the rationality of the interpreting result.028

1 Introduction029

Recent progress in large language models (LLMs)030

have pushed machines closer to achieving human-031

like capabilities (Krause and Stolzenburg, 2023;032

Zhou et al., 2020). These models can not only033

comprehend user queries, but also perform com-034

monsense reasoning based on factual knowledge.035

As a result, uncovering these abilities has become a036

focal point of interest. It is crucial for interpreting037

model behavior and analyzing unexpected errors038

(e.g., reversal curse (Berglund et al., 2023)), ulti-039

mately overcoming the limitations of LLMs.040

Research on interpreting LLMs (Geva et al.,041

2023; Wang et al., 2024; Dai et al., 2022; Xie042

Q: Is Ganesha associated with Thor? A: Ganesha is a Hindu god ... Thus ... So the answer is no.

Ganesha related knowledge:
god, Hindu, magic, ...

Subject augmentation Object retrieval and rerank

Conclusion fusion Answer generation

Figure 1: Model inner reasoning process on common-
sense reasoning tasks.

et al., 2024) often simplifies reasoning by focusing 043

on factual triplets like “Ganesha is a Hindu god”. 044

These studies examine how models derive the ob- 045

ject (“Hindu”) from the subject (“Ganesha”) as 046

well as the relation (“is”). However, in real-world 047

scenarios, model must go beyond these triplets 048

to understand the question, select relevant facts, 049

and synthesize information to provide an answer. 050

For example, when asked, “Is Ganesha associated 051

with Thor?”, the model must grasp the context, rec- 052

ognize that “Ganesha is a Hindu god” from all 053

Ganesha-related facts, and conclude they are not re- 054

lated. In contrast, for the question, “Does Ganesha 055

look like a tiger?”, the model in turn focuses on 056

appearance-related facts, such as “Ganesha is de- 057

picted with an elephant head”. Understanding how 058

models select appropriate factual knowledge and 059

analyze it to reach conclusions is crucial for com- 060

prehending their overall reasoning process. This 061

holistic approach should extend beyond simple 062

triplet analysis and can better reflect the complexity 063

of real-world reasoning tasks. 064

In this study, we aim to decipher the common- 065

sense reasoning process within the response of 066

LLMs. The challenge lies in the dense interconnec- 067

tivity of token generation, where each generated to- 068

ken is influenced by multiple preceding ones, lead- 069

ing to a recursive analytical complexity. To address 070

this, we break down the analysis into two dimen- 071

sions: token back-tracing and individual token de- 072

coding. Token back-tracing starts from the model’s 073

answer and traces back to the original question. It 074
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identifies intermediate key tokens with significant075

direct impact through causal analysis. This reveals076

a chain of crucial information transfers between077

tokens, as shown in Fig. 1. For individual token de-078

coding, we adopt an “explain then verify” strategy079

following Wang et al. (2023). Specifically, logit080

attribution (nostalgebraist, 2021) is applied to ex-081

amine information changes within modules across082

layers. Then Sparse Autoencoder (SAE) (Gao et al.,083

2024) and knockout (Wang et al., 2023) techniques084

are used to verify by comparing the model’s behav-085

ior with and without specific information.086

Our interpreting analysis of three typical rea-087

soning datasets revealed a consistent pattern in088

models’ commonsense reasoning. The process un-089

folds in three phases: 1) Subject augmentation090

and broadcast: Firstly, the model generates exten-091

sive subject-related information through attention092

heads and MLP, and broadcasts it to subsequent093

key positions (e.g., sentence endings); 2) Object094

retrieval and rerank: the model retrieves the pre-095

viously generated subject information with atten-096

tion heads and reorders it using MLPs when pre-097

dicting attributes.; and 3) Conclusion fusion and098

generation: the attributes are further transported099

to the conclusion through heads and generate cor-100

responding conclusions, ultimately forming the an-101

swer. Based on this pattern, we further analyzed102

the failure cases of current models. One key find-103

ing is that LLMs are not unaware of relevant facts,104

but rather struggle to select the most accurate fact105

during retrieval and rerank based on contextual106

cues. This motivated us to develop a direct appli-107

cation of interpretability findings: by identifying108

specific modules through explanatory localization,109

we employed selective fine-tuning and representa-110

tion engineering to optimize the attribute retrieval111

and rerank. Results show significant improvement112

in model performance, simultaneously validating113

the rationality of the interpretability results.114

We summarize our contributions as follows: (1)115

We focus on interpreting the process of common-116

sense reasoning within LLMs into steps that are117

comprehensible to humans. Through experimen-118

tal analysis, we found that LLMs first augment119

related facts and broadcast the information into the120

proceeding key positions, subsequently retrieving121

and re-ranking these facts to predict correct object,122

and finally fusing and generating conclusions and123

answers. (2) Building on the above observations,124

we further identify that on commonsense reason-125

ing tasks, LLMs often fail to retrieve and rerank126

correct facts, leading to erroneous reasoning or con- 127

clusions. By selectively fine-tuning key heads and 128

MLPs, the performance of reasoning is enhanced, 129

especially for out-of-domain samples. It validates 130

the reliability of the interpreting results. 131

2 Related Works 132

2.1 Mechanistic Interpretability 133

Mechanistic interpretability aims to understand 134

model behavior by reverse-engineering the inter- 135

nal computational processes. One widely used 136

technique is logit attribution (nostalgebraist, 2021), 137

which projects internal vectors into the vocabu- 138

lary space to interpret the information encoded 139

within these representations. Several studies (Geva 140

et al., 2021b, 2022; Dar et al., 2023; Belrose et al., 141

2023) have utilized this method to uncover a va- 142

riety of interpretability results. Another promi- 143

nent tool is activation patching (Meng et al., 2022; 144

Wang et al., 2023; Goldowsky-Dill et al., 2023; 145

Conmy et al., 2023), which applies causal inter- 146

ventions to internal model components using cor- 147

rupted inputs. By examining the resulting changes 148

in model predictions, this approach identifies criti- 149

cal modules and uncovers computational circuits. 150

Numerous works (Lieberum et al., 2023; Zhang 151

et al., 2024; Chen et al., 2024; Hanna et al., 2023) 152

have successfull identified task-specific modules in 153

LLMs using this method. In addition, sparse au- 154

toencoders (Bricken et al., 2023; Templeton et al., 155

2024; Lieberum et al., 2024; Gao et al., 2024) have 156

been employed to decompose internal features into 157

interpretable feature combinations. In this work, 158

we integrate these tools to identify and analyze the 159

modules responsible for commonsense reasoning. 160

2.2 Model reasoning ability Interpretation 161

Numerous studies have employed interpretability 162

tools to investigate model mechanisms in reasoning 163

tasks. Geva et al. (2023) explored factual knowl- 164

edge recall, finding that subject information is en- 165

riched in the subject token in early layers, while 166

relation information is passed to the final token, 167

which then uses attention heads to extract the cor- 168

responding attribute from the subject representa- 169

tion. Building on this, Wang et al. (2024); Dai 170

et al. (2022); Yu and Ananiadou (2024); Geva et al. 171

(2022) identified MLP neurons involved in factual 172

knowledge recall and demonstrated how modulat- 173

ing their activations can control model behavior. 174

Additionally, works such as Yu et al. (2024); Ortu 175
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A: Harry Potter is a fictional character ... So the answer is no..Q: Can Harry Potter book a flight on Asiana Airlines?

Mid tokens End tokenStart token
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Decode semantic information
and pattern of module

Interpret the module encoding
target information content

Decode semantic information
and pattern of module

Interpret the module encoding
target information content
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!
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Q: Can Harry Potter ... A: Harry Potter ...
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$ Decoding semantic information

MLP

Feature 99851: references to characters and elements 
from the Harry Potter series
Feature 82918: concepts related to creation and 
storytelling in various media
Feature 102516: connections to ghostly or 
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Figure 2: Overview of interpreting pipeline: 1) Tracing back (horizontal): we use activation patching to identify
the head with causal effect and trace the origin of the information iteratively. 2) Decoding concept knowledge
(vertical): we use logit attribution to identify the key module for generating concepts during reasoning at the key
position and decode the semantic information within in it.

et al. (2024); Yu et al. (2023); Xie et al. (2024) ana-176

lyzed the balance between retrieved knowledge and177

parametric memory. Dutta et al. (2024); Hou et al.178

(2023) examined model mechanisms in reasoning179

generation tasks. These studies largely focus on el-180

ementary retrieval tasks, such as recalling a single181

fact o from a triplet (s, r, o). In this study, we fo-182

cus on interpreting the model reasoning process in183

more complicated commonsense reasoning tasks.184

3 Methods185

3.1 Preliminary186

In our experiments, we uncovered several key to-187

ken positions in the reasoning process through back188

tracing: Subject, Object, Answer. These tokens are189

observed special in experiments and therefore high-190

lighted for better comprehension. (1) Subject (S):191

The subject of inquiry in the question; this is a con-192

cept node in a knowledge graph (Speer et al., 2017),193

representing any entity, idea, or object relevant to194

commonsense (e.g., “Harry Potter” in Figure 2).195

(2) Object (O): The object, paired with S contains196

some factual knowledge, is also a concept node.197

These objects, according to their relevance as accu-198

rate fact for the question, can be categorized into199

predicted objects Op (e.g., “Harry Potter is a ‘fic-200

tional character’”) and candidate objects Oc (e.g.,201

“Harry Potter is a ‘wizard’”). (3) Answer (A): The202

answer to the question, which varies based on the203

type of question. It may be a binary judgment (e.g.,204

“yes/no”) or a selection (e.g., “(2) Kayla”). We205

denote the correct and false answers as At and Af .206

Furthermore, through back-tracing, we identified207

several positions that entail reasoning-related infor-208

mation: (4) Reasoning conjunctive adverb (R):209

we find conjunctive adverbs that connect reason-210

ing steps (e.g., “Thus”) encodes rich information 211

related to the answer. (5) Conclusion (C): terms 212

that convey the affirmative or negating essence of 213

the conclusion sentence, clarifying the stance to the 214

question. (e.g., “cannot” in “Thus, Harry Potter 215

cannot book a flight on Asiana Airlines.”) (6) Ques- 216

tion end (Qe): we find abundant subject-related 217

information is encoded at the end of question. 218

3.2 Methodology 219

As illustrated in Figure 2, the interpretation process 220

is divided into two orthogonal pipelines. 1) Token 221

back -racing: The horizontal pipeline traces the 222

path of tokens from the end to the start. Through 223

causal back-tracing, tokens that are strongly corre- 224

lated with a target token can be effectively identi- 225

fied, allowing us to focus on the most relevant in- 226

formation flows rather than exhaustively analyzing 227

the dense connections across all tokens. This ap- 228

proach helps identify the key relationships between 229

tokens, thereby pinpointing the crucial positions 230

of key tokens in commonsense reasoning (as de- 231

fined in §3.1). 2) Decode parametric concept or 232

attribute: The second pipeline, shown vertically, 233

analyzes the patterns within LLMs when generat- 234

ing a specific token, including inner behaviors and 235

activation characteristics. It explains the behavior 236

of modules (e.g., residual blocks, Attention heads, 237

and MLPs) by evaluating the information related to 238

the target content (e.g., At, Af , Op and Oc) within 239

modules’ output. Subsequently, it decodes the se- 240

mantic information and patterns encoded in these 241

modules into human-understandable formats. 242

Instantiation of tracing token-to-token path. We 243

employ activation patching (Wang et al., 2023) 244

as an effective tool for causal back-tracing. This 245
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method originates from causal mediation analy-246

sis (Vig et al., 2020), where the results of direct247

effect enable us to identify the significant heads248

(the right side of Fig. 2). Heads with the Top-5249

direct effect are considered contributors to gener-250

ating a token. By examining the attention patterns251

in these important heads, the top 2 previous tokens252

with the highest attention scores are considered to253

be correlated with the current token and serve as254

the token to trace and analyze. This process can255

then be iteratively applied to discover the transi-256

tion path across tokens. Activation patching re-257

lies on high-quality counterfactual data, which is258

paired with original data to calculate the direct ef-259

fect for each head. It must be carefully designed to260

change specific semantics within a sentence mini-261

mally, without disrupting other narrative settings.262

We automatically generate this counterfactual data263

by GPT-4 (OpenAI, 2023) (see §A.1).264

Instantiation of decoding parametric concept or265

attribute. We use logit attribution (nostalgebraist,266

2021) to interpret the module behavior across lay-267

ers. The method projects hidden states into the268

vocabulary space using the model’s pretrained un-269

embedding matrix and obtains its distribution on270

vocabulary space. Therefore, the method reveals271

the information contained in current hidden states272

and explains the contribution of specific heads or273

MLPs or residual blocks to the predicted token.274

Specifically, we calculate the softmax probability275

of the observed tokens (Op, Oc, At or Af ) after276

projection. The probabilities across layers will277

form the curves (see examples in Figure 3a), indi-278

cating the module’s inner reasoning process.279

To validate the interpreting results obtained by280

logit attribution, for MLP, we adopt Sparse Autoen-281

coder (SAE) (Templeton et al., 2024) to decode282

the semantic information embedded in the param-283

eters and activations. (e.g., Information related to284

“magic” is decoded in MLP of layer 8 when feeding285

“Harry Potter” to the model.) Based on dictionary286

learning, SAE translates the hidden states of LLMs287

into several interpretable pieces, or termed features.288

These features are activated on sparse token se-289

quences with specific patterns, and most can be290

interpreted by GPT-4 (Lieberum et al., 2024) into291

concrete semantic descriptions. Regarding atten-292

tion heads, we use probing to decode the semantic293

information. We project the outputs of the heads294

into the vocabulary space and examine the top-20295

tokens in the head’s output distribution to decode296

the semantic information. Furthermore, we applied 297

knockout (Wang et al., 2023) to verify identified 298

heads and MLPs. This method replaces the activa- 299

tions of modules with the average activation from 300

counterfactual data. Analyzing changes in model 301

performance allows us to validate the functional 302

roles of these key components. 303

3.3 Application of Interpreting Results 304

Two methods are adopted to explore the application 305

of interpreting results. 1) Selective supervised 306

fine-tuning (SSFT): Zhang et al. (2024); Chen 307

et al. (2024) proposed a method to enhance 308

model’s capability through updating a small set 309

of parameters. We directly use the same settings 310

without modification for effective verifications. 311

Specifically, given a sequence of attention heads 312

and MLPs ordered by their significance, denoted 313

as (MLP.l1), (Head.l2.h2), (Head.l3.h3), . . ., 314

where li represents the layer index and hi 315

represents the head index of the ith ranked 316

head, only top K heads and top M MLPs are 317

exclusively updated during fine-tuning. We 318

optimize both the corresponding input mapping 319

matrix {W h1
l1

,W h2
l2

, ...,W hK
lK

} and the output 320

mapping matrix {Oh1
l1
, Oh1

l2
, ..., OhK

lK
} in top K 321

heads simultaneously. For the selected MLP 322

layer, we update all parameters in this layer. 2) 323

Representation engineering, which adjusts the 324

model’s internal hidden states to influence its 325

behavior, has proven to be an effective method 326

for modulating model performance (Zou et al., 327

2023). Following the approach outlined in Xiao 328

et al. (2024); Templeton et al. (2024), we correct 329

the model’s erroneous behavior using: 330

h̃l = hl + kxt, (1) 331

where hl represents the original output of residual 332

block at layer l, xt is the feature direction corre- 333

sponding to the correct knowledge identified using 334

SAE, k is the steering magnitude which we set 5. 335

4 Experiments 336

4.1 Experiments Overview 337

The experiment results are presented in a back- 338

tracing manner. Consider a case from StrategyQA 339

where the question is “Q: Can Harry Potter book 340

a flight on Asiana Airlines?” and Gemma2-7B’s 341

output is “Harry Potter is a fictional character. Fic- 342

tional characters cannot book flights. Thus, Harry 343

Potter cannot book a flight on Asiana Airlines. So 344

4



the answer is no.”. We begin decoding the para-345

metric concept starting from A (i.e., “no”). By346

tracing back its proceeding tokens, we find it first347

passes through C (i.e., “cannot”), then transitions348

to R (i.e., “Thus”), and ultimately arrives at O (i.e.,349

“fictional”). We term this process as conclusion350

fusion and generation (§4.2). Diving deeper into351

O, our analysis of Op illuminates the underlying352

mechanisms of object retrieval and rerank (§4.3).353

Further tracing the origin of O leads us to S (i.e.,354

“Harry Potter”), uncovering the mechanisms of sub-355

ject augmentation and broadcast (§4.4). We ex-356

tend our investigation across different models and357

datasets in §4.5, and finally explore practical ap-358

plications of these reasoning mechanisms through359

SSFT and representation engineering (§4.6).360

Models We conducted experiments on two pop-361

ular open-sourced models, Gemma2-9B (Team362

et al., 2024) and Llama2-7B (Touvron et al., 2023).363

The results in the Section 4 primarily focus on364

Gemma2-9B, as Sparse Autoencoders (SAEs) have365

been trained for all its layers (including residual366

and MLP layers) (Lieberum et al., 2024), enabling367

comprehensive validation of our analyses. See Ap-368

pendix A.5 for results on Llama2-7B.369

Datasets We selected three widely used370

commonsense reasoning benchmark datasets:371

StrategyQA (Geva et al., 2021a), Com-372

monsenseQA (Talmor et al., 2018), and373

SocialIQA (Sap et al., 2019). These datasets focus374

on distinct dimensions of commonsense reasoning375

and see Tab. 13 and 14 for examples. The results376

are primarily reported on StrategyQA, with results377

for the other two datasets provided in §A.4. All378

metrics and curves are averaged over 100 samples.379

Prompts from Wei et al. (2022) and Li et al. (2024)380

are adopted to elicit model’s reasoning abilities.381

4.2 Conclusion Fusion and Generation382

We start from decoding the information of At and383

Af (i.e. “yes” and “no”) in residual blocks, at-384

tention layers, and MLP layers at the position of385

predicting A as shown in Figure 3a. The curves of386

residual blocks depicts how the model predicts A387

across layers while curves of attention and MLP388

layers depict the module contribution to the At and389

Af . The prediction of A can be divided into three390

stages: (i) Stage 1 (layers 0 − 24): Little to no391

answer-related information is present in residual392

blocks, attention and MLP layers, indicating the393

(a) (b)

Figure 3: (a) Logit attribution of At and Af at predict-
ing A. (b) Logit attribution of Op and Ol at predicting
O.

model is still processing the input. (ii) Stage 2 394

(layers 25− 33): Information related to the answer 395

increases, yet the probabilities for At and Af are 396

close across residual blocks. Within the modules, 397

attention heads begin to convey answer-related in- 398

formation from layer 25 and the MLP follows to 399

encode this information from layer 26. Notably, 400

the heads’ outputs show similar information for 401

both At and Af , but the MLPs’ outputs assign a 402

higher probability to At. In this stage, the model 403

start to generate an answer but has not yet identi- 404

fied the correct one. (iii) Stage 3: By layer 34, the 405

model distinguishes the correct answer At, with 406

its probability sharply rising and the Af ’s proba- 407

bility decreasing. At the same layer, the attention 408

output sharply spikes for At (probability near 1.0), 409

while the MLP output is much lower (around 0.1). 410

Afterward, the outputs of MLPs further increase 411

At’s probability (layers 36 − 38), leading to the 412

final prediction. As a conclusion, attention head is 413

responsible for the fusion of related information, 414

while the MLP enhances the probability of the cor- 415

rect answer, contributing to the generation of the 416

final answer. 417

We further investigated the semantic information 418

encoded in the outputs of MLP and attention heads 419

for verification. In attention heads, we found that in 420

stage 2 and 3, the key heads encoded information 421

related to both At and Af (see the outputs of heads 422

in Tab. 1). Meanwhile, numerous features related 423

to decision-making (see Tab. 1) are identified in 424

5



Head Top tokens in projection

28.06 yes, yeah, no, nil, Yes
32.07 Noah, node, Noah, no, Nora
34.09 denying, denied, denial, deny
35.14 ye, Ye, Yea, YE, yes, YES, Yeh

Table 1: Top-scoring tokens in the key attention heads
output when predicting A.

Layer ID Feature Explanation

27 76551 questions and answers related to
decision-making and assessments.

30 21336 affirmative and negative responses
to questions.

38 101266 answers presented in a structured
format, particularly in multiple-
choice or quiz contexts.

Table 2: Top-scoring features decoded by SAE in the
output of MLP when predicting A.

MLPs. Furthermore, knocking out these key heads425

and MLPs significantly reduces the probability of426

At (see Fig. 19). These findings provide additional427

evidence supporting the critical role of the MLP428

and Attention layer in the answer generation pro-429

cess.430

Finally, we applied activation patching to iden-431

tify key heads and trace the information for gen-432

erating A. Tracing the information flow, the path433

began at the conclusion S, progressed to the rea-434

soning conjunctive adverb R, and finally arrived435

at object O. In the process, we discovered that R436

act as anchors for the fusion and transport of437

conclusion-related information in the reasoning438

process. For a detailed examination of the trace439

from A to O, and an in-depth analysis of answer-440

related information at R, refer to §A.3.441

4.3 Object Retrieval and Rerank442

The object information O decoded in the outputs of443

the residual block, attention layers and MLP layers444

are shown in Fig. 3b. We compare as many related445

objects, including the predicted object Op and can-446

didate object Oc, as possible. For residual block,447

the object information emerges at around layer 26.448

However, Op is not dominant in the first place, as449

the probabilities of Op and Oc increase alternately.450

For attention heads, Op and Oc interleave, with451

neither showing explicit dominance throughout the452

whole layers. On the contrary, MLP shows obvious453

preference on Op, where correct object information454

is prominent across almost all layers. Notably, at455

layer 37, Op is clearly dominant, while Oc remains 456

minimal. This sharp spike aligns with a key tran- 457

sition point in the curve of residual block. From 458

these observations, it seems that 1) both Op and Oc 459

are integrated during the process of object token 460

generation. 2) The attention heads initially retrieve 461

the information for both Op and Oc, while MLPs 462

subsequently rerank Op to the top position. 463

To validate our finding, we knock out these key 464

heads and MLPs, as shown in Fig. 19. The decreas- 465

ing of probability of Op reveals the important role 466

of these modules. In addition, we also look into 467

the output of heads and MLP. As shown in Tab. 10, 468

attention heads encode a rich set of attribute in- 469

formation relevant to the subject (e.g., “British”, 470

“wizard”, “book”, and etc). Meanwhile, in Tab. 8, 471

the decoded features by MLP are strongly related 472

to “identity and character”. It is high correlated to 473

Op, but none of them is related to Oc. These results 474

validates the function of retrieving and reranking 475

for attention head and MLP, respectively. 476

Finally, we utilize activation patching to identify 477

the heads with causal effect (see Fig. 13a) and find 478

these heads focus on two critical token positions, 479

S and end of question. Therefore, we trace back to 480

S to investigate the origin of O. 481

4.4 Subject Augmentation and Broadcast 482

(a) (b)

Figure 4: (a) Logit attribution of Op and Ol at S. (b)
Logit attribution of Op and Ol at the end of question.

Generally, in commonsense reasoning datasets, 483

the S always appears in both the question and the 484

rationale. Through analysis, we observe that the S 485

in the rationale can also be back-traced to the S in 486
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the question. Therefore, we treat the position of S487

in the question as a focal point for deeper analysis.488

Figure 4a illustrates the information of Op and489

Oc decoded in the outputs. Notably, we observe490

that: 1) In residual block, it contains obvious infor-491

mation regarding both Op and Oc across various492

layers, with Oc being more prominent at the end. 2)493

another two curves show that both attention heads494

and MLPs have a large influence on Op and Oc.495

To further decode information, we identifies that496

MLPs in layers 7 and 32 encode abundant features497

related to O (see Tab. 9). Meanwhile, Probing498

also reveals that heads in layers 29 and 39 rank the499

Oc at top. In addition to diminishing the impact500

of the information from any previous token, we501

also examine the three corresponding curves at the502

position before S (for instance, “Question: Can503

Harry Potter”). The results (green line in Fig. 4a)504

reveal that the information regarding O is virtually505

zero. It indicates that the emergence of Op and506

Ol is indeed contingent upon the appearance of507

C and is independent of any previous tokens. In508

conclusion, both the MLP and heads play essential509

roles in assisting the model to associate and extend510

from S to related Op and Ol. We refer to this stage,511

along with the contributions of the MLP and heads,512

as subject augmentation.513

Regarding the question’s end token position,514

Fig. 4b also presents the three corresponding515

curves. (1) In the residual, both Op and Ol ap-516

pear across multiple layers. On the contrary to517

concept token position, Op has a greater presence518

than Ol. (2) The curves for the MLP and heads also519

encapsulate information about both Op and Ol, and520

further enhance the importance of Op. These obser-521

vations indicate that even at seemingly unrelated522

token positions, the O corresponding to the S (or523

the knowledge they encompass) can be broadcast.524

The original order of O may be broadcast based525

on the current context, ultimately influencing the526

generation of Op. We term this stage as subject527

broadcasting.528

4.5 Generalization of findings529

We further analyzed the reasoning process of530

Gemma2-9B on CommonsenseQA and SocialIQA.531

The results (see §A.4) indicate that the reasoning532

process on these two datasets also consists of object533

retrieval and reranking as well as conclusion fusion534

and generation. However, the phenomenon of sub-535

ject augmentation was not prominently observed in536

the SocialIQA and CommonsenseQA datasets. We537

Models ID Task OOD Task

Strategy CSQA SIQA Wino

Gemma2-9B 70.7 75.7 73.0 61.2
+ SFT (9B) 79.0 74.3 70.9 60.3
+ SSFT (0.3B) 80.3 76.2 74.0 65.2

Llama2-7B 62.5 68.3 67.9 55.5
+ SFT (7B) 77.3 54.8 59.0 52.7
+ SSFT (0.2B) 78.5 64.1 63.2 61.1

Table 3: Results on four commonsense reasoning tasks
(i.e., StrategyQA, CSQA, Winogrande, and SocialIQA)
before and after tuning on the StrategyQA dataset using
SFT and SSFT.

hypothesize that this is due to the explicit provision 538

of the required factual knowledge within the ques- 539

tion context, which diminishes the model’s need 540

to infer additional related facts. In addition, we 541

validated the proposed reasoning process on the 542

Llama2-7B model across three datasets, and sim- 543

ilar results are observed on this model. Detailed 544

results can be found in§A.5. 545

4.6 Application of Interpreting Results 546

Failure Case Analysis. Our analysis of Gemma2- 547

7B’s incorrect responses on StrategyQA reveals 548

four error types (Fig. 5): 1) Reference Errors: re- 549

trieving irrelevant or incorrect attributes; 2) Logic 550

Errors: insufficient knowledge to support conclu- 551

sions; 3) Conclusion Errors: wrong answers despite 552

correct reasoning; and 4) Concept Errors: misiden- 553

tification of target concepts to analyze. Reference 554

Errors dominate at 74% of all cases. Further prob- 555

ing reveals that these errors primarily stem from 556

reranking issues rather than knowledge gaps, as cor- 557

rect objects typically appear within the model’s top- 558

5 predicted tokens. Following Zhang et al. (2024) 559

and Chen et al. (2024), we propose enhancing com- 560

monsense reasoning by targeted training of specific 561

MLP and Attention heads involved in these tasks. 562

Experiment Setup. With the key Attention 563

heads and MLPs identified for generating attributes, 564

we conduct the selective supervised fine-tuning 565

(SSFT) experiment on StrategyQA task by only 566

updating the parameters of selected heads and 567

MLPs. Specifically, Following (Fu et al., 2023) 568

and (Huang et al., 2022), each sample in our 569

training data is organized with the format of 570

“{Few-shot CoT prompt} Q: {Question}. A: 571

{Rationale}". Considering the generalization, 572

we introduce another commonsense reasoning test 573

dataset, WinoGrande (Sakaguchi et al., 2021). 574
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Question: Are the majority of Reddit users familiar with the Pledge of Allegiance?

Query Error Answer: The Pledge of Allegiance is a pledge to the United States. 
Reddit is a social media site. Thus, the majority of Reddit users are not familiar 
with the Pledge of Allegiance. So the answer is no.❌

Correct Answer: The Pledge of Allegiance is a pledge to the United States. The 
majority of Reddit users are from the United States. Thus, the majority of Reddit 
users are familiar with the Pledge of Allegiance. So the answer is yes. ✅

Question: Does The Hague border multiple bodies of water?

Conclusion Error Answer: The Hague is in the Netherlands. The Netherlands 
borders the North Sea. The North Sea is a body of water. Thus, The Hague 
borders a body of water. So the answer is yes.❌

Correct Answer: The Hague is in the Netherlands. The Netherlands borders the 
North Sea. The North Sea is a body of water. Thus, The Hague borders a body of 
water. So the answer is no. ✅

Question: Did Sony definitively win the video game war against Sega?

Logic Error Answer: Sony and Sega were both video game companies. Sony 
and Sega were competitors. Thus, Sony did not win the video game war against 
Sega. So the answer is no.❌

Correct Answer: Sony and Sega were both video game companies. Sony and 
Sega were competitors. At the height of the console wars, Sega Saturn sold 
9.5 million units while Sony Playstation sold 102 million units. Thus, Sony 
won the video game war against Sega. So the answer is yes.✅

Question: Would Persephone be a good consultant to a landscape architect?

Reference Error Answer: Persephone is the Greek goddess of the underworld. 
Landscape architects design gardens. Thus, Persephone would not be a good 
consultant to a landscape architect. So the answer is no.❌

Correct Answer: Persephone is the Greek goddess of the vegetation. 
Landscape architects design gardens. Thus, Persephone would not be a good 
consultant to a landscape architect. So the answer is no.✅

Case of Reference Error

Case of Conclusion Error

Case of Logic Error

Case of Query Error
74%

20%

5%

1%

Reference Error Logic Error
Conclusion Error Query Error

Figure 5: The distribution of the four types of errors encountered by Gemma2-7B on StrategyQA. 1) Reference
Error: The model retrieves irrelevant or wrong attributes. 2) Logic Error: incomplete reasoning steps. 3) Conclusion
Error: reaches an incorrect answer but based on correct rationale. 4) Concept Error: incorrectly identifies the target
concept for analysis. We use GPT-4 to automatically classify the failure types and see Fig. 21 for the prompt.

We selectively fine-tune the top 32 Attention575

heads (for knowledge retrieval) and top 1 MLP lay-576

ers (for knowledge reranking) with a learning rate577

of 1×10−4 and a batch size of 32 for 2 epochs. For578

supervised fine-tuning, a learning rate of 1× 10−5579

is utilized, while all other configurations remain580

consistent with SSFT training. Experiments are581

conducted on 8 NVIDIA A100 (80GB) GPUs.582

Experiment Results. The comparative results583

between SSFT and SFT are presented in Table584

3. For the experiments of Gemma2-9B on Strate-585

gyQA, both SSFT and SFT improved performance,586

achieving gains of +8.3% and +9.6%, respectively.587

While SFT shows a comparable enhancement for588

the StrategyQA task, it adversely affected perfor-589

mance on OOD tasks, with an average decrease590

of −1.5%. In contrast, SSFT continued to bol-591

ster the model’s reasoning ability across all OOD592

commonsense reasoning tasks, improving the per-593

formance by an average of +2.6%. These findings594

suggest that selectively fine-tuning a small fraction595

of key components for commonsense reasoning596

can boost performance on ID tasks while main-597

taining generalizability, highlighting the effective-598

ness of our previous exploration. A similar trend599

was observed in the Llama2-7B results. Through600

mechanism analysis of the model before and after601

SSFT, we further validate that SSFT enhances the602

model’s knowledge retrieval and reranking capa-603

bilities. (See Fig. 20). Additionally, we further604

validate the effectiveness of SSFT through training605

on two other datasets (Tab. 11 and 12).606

Representation engineering results. We also607

utilize representation engineering to correct the608

model’s (Gemma2-9B) reasoning process on the609

question, e.g., “Would Persephone be a suitable610

consultant to a landscape architect?”. The model611

initially defaults to identifying “Persephone as the612

Greek goddess of the underworld”, leading to an in- 613

correct assessment. The correct reference is “Perse- 614

phone is the Greek goddess of spring”. By intro- 615

ducing feature directions related to deities or nature 616

into the residual block at layer 37(object retrieval), 617

we strengthened the model’s tendency to associate 618

Persephone with spring. This tendency can largely 619

contribute to the correct answer, and rectify the 620

model’s response. As a result, 93% failure cases 621

can be rectified, illustrating the rationality of the 622

identified interpreting results. 623

5 Conclusion 624

In conclusion, our research sheds light on the intri- 625

cate dynamics of commonsense reasoning within 626

LLMs, revealing a structured process that paral- 627

lels human cognitive reasoning. By meticulously 628

analyzing the hidden states across various trans- 629

former layers and token positions, we identified 630

a multi-faceted mechanism that integrates knowl- 631

edge augmentation, retrieval, and answer genera- 632

tion—essentially resembling a retrieval-augmented 633

generation framework. Our findings underscore the 634

pivotal roles played by both attention heads and 635

MLPs in the manifestation of factual knowledge, 636

highlighting a dual approach to knowledge process- 637

ing. Furthermore, our experiments demonstrated 638

that while LLMs often possess relevant factual 639

knowledge, they frequently struggle to retrieve the 640

correct information during inference. Through se- 641

lective fine-tuning of key components, we achieved 642

notable enhancements in reasoning performance 643

across diverse contexts, indicating that targeted ad- 644

justments can effectively optimize the reasoning 645

capabilities of LLMs. 646
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6 Limitations647

While the methods and findings presented in this648

study provide valuable insights into the internal649

mechanisms of large language models (LLMs),650

there are several limitations:651

Scope of Evaluation: The experiments primar-652

ily focus on commonsense reasoning tasks, and653

the results may not fully generalize to other types654

of reasoning or NLP tasks. Future work could ex-655

tend the methodology to explore how these internal656

mechanisms behave across a wider range of tasks.657

Model Dependency: Our analysis is based on658

the specific architectures and pretrained models659

used in this study. While the interpretability tools660

such as logit attribution, activation patching, and661

sparse autoencoders provide useful insights, the662

observed behaviors may vary with different models663

or architectures. The findings may be influenced by664

the particular training data and the design choices665

of the models.666

Complexity of Causal Back-Tracing: The667

causal back-tracing method, while effective in iden-668

tifying key tokens and correlations, remains com-669

putationally expensive and may require further op-670

timization for large-scale models. Additionally, ac-671

curately interpreting causal relationships in highly672

complex networks like transformers is a non-trivial673

task and may be subject to noise or inaccuracies,674

especially in deep layers.675

Interpretability Limitations: While we pro-676

vide insights into model behavior by examining677

attention heads, MLPs, and other components, the678

level of interpretability remains limited. Fully un-679

derstanding the underlying reasons for model de-680

cisions, especially in tasks involving nuanced or681

implicit commonsense knowledge, may still be out682

of reach with current methods.683

Human Evaluation: While the interpretability684

tools offer a mechanistic view of the model, the685

final conclusions and explanations are still subject686

to human interpretation. There is a risk of oversim-687

plification or misinterpretation when mapping com-688

plex internal mechanisms to human-understandable689

explanations, particularly in highly abstract or non-690

linear decision-making processes.691
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A Appendix936

A.1 Activation patching details937

Counterfactual data generation We use GPT-4938

to assist in automatically generating the counter-939

factual data required for activation patching, with940

the prompt shown in Figure 6 and an example941

in Table 5. Additionally, we implement a post-942

processing step: if the predicted token for the coun-943

terfactual data matches the prediction for the data944

under investigation (which would fail to perturb the945

model’s behavior), GPT-4 is prompted to regener-946

ate the counterfactual data.947

We conduct experiments to compare the perfor-948

mance of “GPT-4” and “human”. we engaged ten949

master’s students specializing in Natural Language950

Processing as volunteers. Five students were manu-951

ally executing all procedures, including generating952

Xc, analyzing key component behaviors, and devel-953

oping data templates. The remaining students then954

compared their annotations with those generated by955

GPT-4 to judge which more accurately represented956

the component behavior. Overall, the results (Ta-957

ble 4) demonstrate that GPT-4 is highly accepted by958

human evaluators, with the combination of “GPT959

wins" and “Ties" exceeding 80%, underscoring its960

robust reliability. These indicate that GPT-4’s out-961

puts are almost consistent with those generated by962

humans.963

Activation patching metric We use the rate of964

change in the probability of the predicted token965

before and after perturbation as the metric for path966

patching.967

Table 4: Comparison of differences between GPT-4 and
human annotations

GPT-4 Wins Human Wins Ties

8% 12% 80%

A.2 Dataset details968

A.3 Details of tracing from answer A to969

object O970

We found that the attention heads responsible for971

generating A primarily focus on the conclusion972

token C, as demonstrated by the pattern of head973

25.08 in Tab. 6. Therefore, we traced back to the974

C, Fig. 7a shows the probabilities of At and Af975

in the residual block, attention, and MLP outputs976

at the conclusion token position. It is evident that977

the model distinguishes the correct answer At in 978

the deep layers, with both the attention and MLP 979

outputs containing substantial information related 980

to At. 981

Next, we identified the heads for generating C us- 982

ing activation patching and discovered that the key 983

attention heads primarily focus on the reasoning 984

conjunctive adverb R (i.e., “Thus” in head 31.03 985

pattern in Tab. 6). We also observed that the at- 986

tention head outputs contain information related 987

to the correct answer At, such as "yes," "indeed," 988

and "true." Based on these findings, we conducted 989

further probing at R to trace the origin of At. 990

Through decoding information of At and Af at 991

R (Fig. 7b), we find that deep layers (30 − 34) 992

already encode rich information related to the cor- 993

rect answer At. To trace the origin of the answer- 994

related information, we employed a modified acti- 995

vation patching to identify the key Attention heads. 996

Specifically, we iteratively corrupted the output of 997

each attention head from layer 0 − 30 using the 998

activation in counterfactual data, then identified the 999

key attention heads that have a significant negative 1000

influence on the probability of At in residual block 1001

(layer 30) output. Three key Attention heads (25.7, 1002

25.8 and 25.9) are identified that primarily focus on 1003

the position of attribute A (e.g., “company”). From 1004

the observation above, we conclude a key finding: 1005

reasoning conjunctive adverbs serve as an anchor 1006

for gathering and transferring conclusion-related 1007

information in reasoning process. Therefore, our 1008

investigation continuously traces back to the posi- 1009

tion of object O prediction. 1010

A.4 Results on CommonsenseQA and 1011

SocialIQA 1012

We further apply our interpreting method to 1013

CommonsenseQA (Talmor et al., 2018) and So- 1014

cialIQA (Sap et al., 2019) and find the model’s rea- 1015

soning process within these two datasets consists of 1016

attribute retrieval, attribute rerank, and answer 1017

generation as shown in Fig. 8. Similarly, we start 1018

by decoding the probability of At and Af at the po- 1019

sition of predicting answer At. The decoding curve 1020

of CommonsenseQA is in Fig 10b and SocialIQA 1021

result is in Fig 12b. It is observed that the informa- 1022

tion trend in residual block, Attention, and MLP 1023

is similar across the two datasets. Specifically, the 1024

probability of At increases significantly at layer 30, 1025

while Attention output encodes At related infor- 1026

mation before layer 30 and At relate information 1027

emerges in MLP at layer around 32. Therefore, we 1028

12



Prompt Template for Counterfactual Data Generation

<Inputs><topic> The particular topic being studied</topic>
<input_sentence> The original sentence provided for analysis</input_sentence>
<predicted_content> The specific words reflecting model behavior</predicted_content>
<first_word_predicted> The first word initially predicted by the model</first_word_predicted></Inputs>

<Instructions Structure>
1. Instruct the assistant to begin by analyzing the original input sentence and why it leads to the specific predicted word.
2. Guide the assistant to think about changes that could alter the model's prediction.
3. Instruct the assistant to provide the reason for the model's original prediction.
4. Request the assistant to modify the original sentence so that the model’s prediction changes.
5. Instruct the assistant to explain the modification's rationale, focusing on why the modified sentence now influences a different predicted outcome.
6. Ensure the output is formatted in the specified JSON structure.
</Instructions Structure>

<Instructions>
Your task is to analyze and modify a sentence to influence the predictive behavior of a language model. You will be given a topic, an input sentence,
the specific words predicted by the model, and the model’s first predicted word.

Here is the topic and input sentence to modify: <topic>{$TOPIC}</topic> <input_sentence>{$INPUT_SENTENCE}</input_sentence>

Here are the words generated by model given the input sentence: <predicted_content>{$PREDICTED_CONTENT}</predicted_content>

Here is the first predicted word:
<first_word_predicted>{$FIRST_WORD_PREDICTED}</first_word_predicted>

Follow these steps carefully to complete the task:

1. **Analyze the Original Prediction**: Start by understanding the **input sentence** and why it leads the model to predict the
**first_word_predicted** as the output under the specific **topic**. Consider the context, tone, or structure of the sentence that prompts this
specific word choice by the model.

2. **Plan the Modification**: Think about how you could change the **input_sentence** minimally (by changing only 3-4 words) to alter the
model's behavior so that it no longer predicts the original word or instead predicts a word with an opposite meaning. It's acceptable to change some
of the sentence's meaning if it helps influence the output.

3. **Provide Analysis and Modification**:
- Write the **reason for the original prediction** based on your analysis in Step 1.
- Rewrite the **input_sentence** in a modified form that will change or flip the model's predicted word.
- Explain your **reason for the modification**, focusing on how the changes you made will influence the model to predict a different word.

4. **Output the Final Result**: Format your response in JSON, as shown below:

```json
{

"Reason for original prediction": "Explain why the original input caused the model to predict the initial word.",
"Modified input": "Write the modified sentence here.",
"Reason for modification": "Explain why the modified input will lead to a different prediction from the model."

}
```
Make sure each section is clear and precise. End your response with this JSON structure.
</Instructions>

Figure 6: Prompt for using GPT-4 to generate counterfactual data in activation patching.

conclude the answer generation process as follows:1029

attention is responsible for copying and generat-1030

ing At related information and MLP is responsible1031

for augmenting this information. Through back-1032

tracing, we identified the key heads for generating1033

the correct answer (see key head distribution in1034

Fig 9b and 11b). As shown in Tab. 7, we find the1035

head output encodes rich information related to the1036

correct answer and mainly attends to the object in1037

rationale and choices in question. Therefore, we1038

first trace back to the position of C.1039

Since both datasets are in the form of multiple-1040

choice questions, the answer (object) is already1041

provided as one of the options. Therefore, we treat1042

the correct answer as the predicted object Op and1043

the other options as candidate objects Oc. The1044

logit attribution curves for At and Af are shown1045

in Fig 10a and 12a for CommonsenseQA and So-1046

cialIQA respectively. As shown in the figure, the1047

attention output contains both Op and Oc, while1048

the MLP output only contains the Op. This find- 1049

ing aligns with our previous discovery on Strate- 1050

gyQA regarding the object retrieval and rerank- 1051

ing mechanism: attention heads first aggregate all 1052

relevant objects, and then the MLP ranks these ob- 1053

jects based on their relevance, selecting the Op for 1054

the final output. These results further validate the 1055

generalizability of our approach and findings. 1056

Finally, we used activation patching to identify 1057

the key attention heads responsible for generating 1058

Op. The distribution of important heads is shown 1059

in Fig. 9a and 11a. We found that the key heads 1060

primarily focus on the options in the question (see 1061

head pattern of 34.14 in Tab. 7), which serve as 1062

the source for all objects. With this, the complete 1063

reasoning process is concluded. 1064
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Table 5: Example of probing data Xr and counterfactual data Xc generated by GPT-4. Counterfactual data change
the model (Gemma2-9B) prediction behavior by applying minimal change to the probing data.

Data Model Input Model Predict

Xr Question: Kendall opened their mouth to speak and what came out shocked
everyone. How would you describe Kendall? (1) a very quiet person (2) a
very passive person (3) a very aggressive and talkative person Answer: Kendall
opened their mouth to speak and what came out shocked everyone. Thus, Kendall
is a very __

aggressive

Xc Question: Kendall opened their mouth to speak and what came out was softer
than expected. How would you describe Kendall? (1) a very quiet person (2) a
very passive person (3) a very aggressive and talkative person Answer: Kendall
opened their mouth to speak and what came out was softer than expected. Thus,
Kendall is a very __

quiet

Pos. Head Attention score Projection

O 25.02
Japan, Japanese, Jepang,
Japón, japan, Tokyo

R 25.08
confirmation, confirmación,
Personendaten, verification

S 31.03
yes, Yes, indeed
YES, true, Indeed

A 25.08
confirmation, confirmación,
confirmer, verification

Table 6: Attention score of the key attention heads (on StrategyQA in Gemma2-9B) on different tokens and top-k
tokens after projecting the output of heads into the vocabulary space. The attention heads are obtained according to
the activation patching result in Figure 13. The term Head 25.02 denotes the 2nd head in the attention layer of the
25th layer of the model.

A.5 Experiment results on Llama2-7B1065

On Llama2-7B, we apply the same method to in-1066

terpret the reasoning process in StrategyQA (see1067

Fig. 14, CommonsenseQA (Fig. 17) and SocialIQA1068

(Fig. 12. Three phases of reasoning, i.e. subject1069

augmentation and broadcast, object retrieval1070

and rerank, conclusion fusion and generation1071

are observed on StrategyQA. Similarly, object re-1072

trieval and rerank and conclusion generation are1073

observed on CommonsenseQA and SocialIQA.1074

(a) (b)

Figure 7: Logit attribution results on StrategyQA of
Gemma2-9B. (a) Probability of At and Af when pre-
dicting C. (b) Probability of At and Af when at R.
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Q: She was always helping at the senior center, it brought her what? (A) satisfaction ... (D) pay (E) happiness A: Helping others is a good thing. It can bring us satisfaction and happiness. So the answer is: (A) satisfaction.

Attribute retrieval Attribute rerank Answer generation

Figure 8: Model inner reasoning process on CommonsenseQA.

Pos. Head Attention score Projection

O 34.14
construction, Konstruktion,
autorytatywna, Construction

A 31.15
construction, constructions,
struction, traction, construcción

Table 7: Attention score of the key attention heads (on CommonsenseQA in Gemma2-9B) on different tokens
and top-k tokens after projecting the output of heads into the vocabulary space. The attention heads are obtained
according to the activation patching result in Figure 9. The term Head 34.14 denotes the 14nd head in the attention
layer of the 34th layer of the model.

(a) Trace back at A (to O) (b) Trace back at O (to choices)

Figure 9: Distribution of key heads (Gemma2-9B) dur-
ing tracing back at different token positions on Common-
senseQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.

ID Feature Explanation

115620 Phrases related to confrontation and dynam-
ics involving identity.

99851 References to characters and elements from
the Harry Potter series.

82918 Concepts related to creation and storytelling
in various media.

114490 Elements related to character dynamics and
development in storytelling.

Table 8: Top-scoring features decoded by SAE in the
output of MLP at layer 37 when predicting O.

(a) (b)

Figure 10: Logit attribution results on Common-
senseQA of Gemma2-9B. (a) Probability of Op and
Oc at the position of predicting O. (b) Probability of
Al and Af at the position of predicting A.

Layer ID Feature Explanation

7 106518 References to specific characters
and items from a fictional universe.

7 113897 References to characters and loca-
tions from the Harry Potter series.

32 5548 References to specific characters
and events from the Harry Potter se-
ries.

32 94534 References to the concept of "world"
or "global" themes

Table 9: Top-scoring features decoded by SAE in the
output of MLP at layer 7 and 37 at S.
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(a) Trace back at A (to O) (b) Trace back at O (to choices)

Figure 11: Distribution of key heads (Gemma2-9B)
during tracing back at different token positions on So-
cialIQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.

(a) (b)

Figure 12: Logit attribution results on SocialIQA of
Gemma2-9B. (a) Probability of Op and Oc at the posi-
tion of predicting O. (b) Probability of Al and Af at
the position of predicting A.

Head Top tokens in projection

25.01 Hogwarts, wizard, wizards, children,
25.02 Brito, British, London, Westminster
29.06 book, chapters, books, Book, bookId
29.14 wizards, wizard, Hogwarts, Harry

Table 10: Top-scoring tokens in the key attention heads
output when predicting O. (i.e., “fictional character”
for “Harry Potter”.)
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Table 11: SSFT results using CommonsenseQA as the training dataset.

ID Task OOD Task

CSQA Winogrande StrategyQA SocialIQA Average

Models Tuned
Params. Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Gemma2-9B - 75.7 - 61.2 - 70.7 - 73.0 - 68.3 -
+ SFT 9B 81.3 +5.6 59.8 -1.4 71.0 +0.3 77.4 -5.6 66.1 -2.2
+ SSFT 0.2B 82.1 +6.4 65.1 +3.9 70.7 - 74.3 +1.3 70.0 +1.7

Llama2-7B - 61.1 - 62.5 - 53.4 - 60.2 - 58.7 -
+ SFT 6.7B 72.3 +11.2 57.8 -4.7 53.5 +0.1 55.7 -3.0 56.2 -2.5
+ SSFT 0.2B 73.5 +12.4 63.1 +0.6 56.2 +2.8 63.2 +3.0 61.8 +3.1

Table 12: SSFT results using SocialIQA as the training dataset.

ID Task OOD Task

SocialIQA Winogrande StrategyQA CSQA Average

Models Tuned
Params. Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Gemma2-9B - 73.0 - 61.2 - 70.7 - 75.7 - 69.2 -
+ SFT 9B 80.2 +7.2 59.0 -2.2 72.0 +1.3 72.1 -3.6 67.7 -1.5
+ SSFT 0.2B 81.1 +8.1 64.2 +3.0 70.9 +0.2 77.0 +1.3 70.7 +1.5

Llama2-7B - 61.1 - 62.5 - 53.4 - 60.2 - 58.7 -
+ SFT 6.7B 72.3 +11.2 57.8 -4.7 53.5 +0.1 55.7 -3.0 56.2 -2.5
+ SSFT 0.2B 73.5 +12.4 63.1 +0.6 56.2 +2.8 63.2 +3.0 61.8 +3.1

Table 13: Examples of Reasoning Cases from CommonsenseQA and SocialIQA Datasets. The answer is generated
by Gemma2-9B. In CommonsenseQA and SocialIQA, the entities are often abstract names or professions with
no specific meaning. Therefore, we treat the options in the context as attributes, the final predicted option as the
predicted attribute, and the remaining options as candidate objects.

Dataset CommonsenseQA SocialIQA

Question The artist was sitting quietly pondering, then
suddenly he began to paint when what struck
him? (A) sadness (B) anxiety (C) inspiration (D)
discomfort (E) insights

remy had a good talk with aubrey so aubrey un-
derstood remy better now. How would Remy
feel as a result? (1) unsatisfied (2) calm (3) anx-
ious

Answer The artist was sitting quietly pondering, then
suddenly he began to paint when inspiration
struck him. So the answer is: (C) inspiration.

Remy had a good talk with Aubrey. Thus,
Aubrey understands Remy better. Remy will
feel calm as a result. So the answer is: (2) calm.

Answer Type Multiple Choice Multiple Choice
Answer Token (C) inspiration (2) clam
Concept artist Remy
Predicted Object inspiration calm
Candidate Object sadness, anxiety, discomfort unsatisfied, anxious
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(a) Trace back at O (to S) (b) Trace back at R (to O) (c) Trace back at C (to R) (d) Trace back at A (to C)

Figure 13: Distribution of key heads during tracing back at different token positions on StrategyQA (averaged on
100 samples). The red squares indicate heads that have a significant positive impact on predicting the output token.

(a) (b) (c) (d) (e) (f)

Figure 14: Logit attribution results on StrategyQA of Llama2-7B. (a) Probability of Op and Oc at C. (b) Probability
of Op and Oc at the end of question. (c) Probability of Op and Oc at O prediction. (d) Probability of Al and Af at
R. (e) Probability of Al and Af at S prediction. (d) Probability of Al and Af at A prediction.

Table 14: Examples of Reasoning Cases from StrategyQA Datasets. The answer is generated by Gemma2-9B.

Dataset StrategyQA

Question Is Ganesha associated with a Norse god?

Answer Ganesha is a Hindu god. Norse gods are associated with Norse mythology. Thus, Ganesha is
not associated with a Norse god. So the answer is no.

Answer Type Yes / No
Answer Token no
Concept Ganesha
Predicted Object Hindu
Candidate Object elephant, deity, god
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(a) (b)

Figure 15: Logit attribution results on SocialIQA of
Llama2-7B. (a) Probability of Op and Oc at the position
of predicting O. (b) Probability of Al and Af at the
position of predicting A.

(a) Trace back at O (b) Trace back at A (to O)

Figure 16: Distribution of key heads (Llama2-7B) dur-
ing tracing back at different token positions on So-
cialIQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.

(a) (b)

Figure 17: Logit attribution results on Common-
senseQA of Llama2-7B. (a) Probability of Op and Oc

at the position of predicting O. (b) Probability of Al

and Af at the position of predicting A.

(a) Trace back at O (b) Trace back at A (to O)

Figure 18: Distribution of key heads (Llama2-7B) dur-
ing tracing back at different token positions on Common-
senseQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.
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(a) Knockout top 10 heads when predicting A

(b) Knockout top 10 heads when predicting O

(c) Knockout top 3 MLPs when predicting O

Figure 19: Knockout results on Gemma2-9B: (a) De-
crease in probability of At when cumulatively intervene
the top 10 heads for generating A. (b) Decrease in prob-
ability of Op when cumulatively intervene the top 10
heads for generating O. (b) Decrease in probability of
Op when cumulatively intervene the top 3 MLPs for
generating O.
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Question: John cannot run the entire length of the track, he had been used 
to the field. The _ is short.
(1) track (2) field
Answer: A person who cannot run the entire length of a track likely feels 
uncomfortable or out of practice on a surface that is different from what 
they are used to. If John had been used to the field, it suggests that he is 
more accustomed to that environment. Therefore, the track must be

Input

longer than the field, making it difficult for him to run its entire length.✅SSFT model output

shorter than the field, as he struggles to run its entire length.❌Base model output

(a) Case study: output of SSFT and Base model

(b) Probing attention layer output for
“shorter” and “longer” on SSFT model

(c) Probing attention layer output for
“shorter” and “longer” on Base model

(d) Probing MLP layer output for “shorter”
and “longer” on SSFT model

(e) Probing MLP layer output for “shorter”
and “longer” on Base model

Figure 20: Comparison between the SSFT and Base models: (a) Case study highlights that the SSFT model correctly
predicts the answer, while the Base model fails. (b, c) Probing results for attention layers show enhanced knowledge
retrieval in the SSFT model compared to the Base model. (d, e) Probing results for MLP layers demonstrate
improved reranking capability in the SSFT model. These findings confirm that the identified modules—attention
heads for knowledge retrieval and MLP layers for reranking—are critical for accurate reasoning and were effectively
strengthened through SSFT.
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Prompt Template for Failure Case Classification

I am testing the accuracy of a large language model's responses on the multi-hop reasoning dataset, StrategyQA. Your task is to
classify the errors in the model's answers based on specific error types. For each question, I will provide the input question,
the model's answer, the correct answer and the reasoning steps needed for the correct answer. Your goal is to accurately classify
the errors using the following four error types:

1. **Entity Selection Error**: This occurs when the model picks the wrong entity from the input, leading to incorrect reasoning
in subsequent steps.
# Example 1:
Input:
```json
{

"question": "Are the majority of Reddit users familiar with the Pledge of Allegiance?",
"model_answer": "The Pledge of Allegiance is a pledge to the United States. Reddit is a social media site. Thus,
the majority of Reddit users are not familiar with the Pledge of Allegiance. So the answer is no.",
"correct_answer": "yes",
"decomposition": [

"What country do most Reddit users come from?",
"What country is the Pledge of Allegiance associated with?",
"Is #1 the same as #2?"

]
}
```
Classification: {"type": "Entity Selection Error", "explanation": "The model incorrectly selected Reddit as the entity
it spoke about, while the correct entity for reasoning should be 'Reddit users.' Therefore, this question should
be classified as an 'Entity Selection Error'".}

2. **Knowledge Retrieval Error**: This occurs when the model retrieves irrelevant, incomplete, or incorrect knowledge,
leading to flawed conclusions in the reasoning process.
# Example 1:
...

# Example 2:
...

3. **Conclusion Misalignment Error**: This occurs when the model's reasoning steps are correct, but the final conclusion is wrong.
# Example 1:
...

4. **Reasoning Logic Error**: This occurs when the logical connection between the reasoning steps and the final
conclusion breaks down. In this error, even if individual reasoning steps are correct, they fail to coherently lead
to the intended conclusion, causing the reasoning process to result in an illogical or incorrect outcome.
# Example 1:
...

Instructions: If the error does not fit into any of these four categories, please suggest a new category with a clear explanation.

For each input, I will provide the question, the model's answer, the correct answer, and the decomposition of reasoning steps.
You should return your classification and a brief explanation as
follows:
```json
{"type": "Entity Selection Error" or "Knowledge Retrieval Error" or "Conclusion Misalignment Error" or
"Incomplete Reasoning Error", "explanation": "Explain why this question belongs to the chosen category."}
```
Classficiation:

Figure 21: Prompt for using GPT-4 to automatically classify the category of failure case.
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