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ABSTRACT

The visual preference of users for products has been largely ignored

by the existing product search methods. In this work, we propose

a multi-modal personalized product search method, which aims

to search products which not only are relevant to the submitted

textual query, but also match the user preferences from both textual

and visual modalities. To achieve the goal, we first leverage the

also_view and buy_after_viewing products to construct the visual

and textual latent spaces, which are expected to preserve the visual

similarity and semantic similarity of products, respectively. We

then propose a translation-based search model (TranSearch) to 1)

learn a multi-modal latent space based on the pre-trained visual and

textual latent spaces; and 2) map the users, queries and products

into this space for direct matching. The TranSearchmodel is trained

based on a comparative learning strategy, such that the multi-modal

latent space is oriented to personalized ranking in the training stage.

Experiments have been conducted on real-world datasets to validate

the effectiveness of our method. The results demonstrate that our

method outperforms the state-of-the-art method by a large margin.
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1 INTRODUCTION

The ease of e-commerce has greatly changed the way of how peo-

ple purchase products. With the convenience of online shopping,

e-commerce users could find almost any product that they are in-

terested in by just a few clicks. Typically, current product search

engines (provided by e-commerce websites such as Amazon1 and

Taobao2) require users to formulate their shopping needs as a tex-

tual query (i.e., a few keywords), and then return a list of products

ranked according to their relevance to the query. The returned re-

sults provide both the meta information of each product (e.g., brand,

price, descriptions) and the visual appearance, as well as comments

from other users who have already purchased the product.

In order to purchase a desired product, a prudent user will screen

each product based on all the provided information carefully in

the ranking list, which is time-consuming. To enhance the user

experience and increase the user loyalty, it is important to rank

the products, which are not only relevant to the given query, but

also match the user preferences on different aspects (e.g., visual

preferences and quality requirements) at the top positions. However,

the design of such search engines is non-trivial, because 1) the

queries are often too short or even ambiguous, and thus they cannot

express user’s needs precisely; and 2) even for the same query, the

preferred products of users could be very different due to the distinct

user preferences on different aspects. In light of this, considering

the user preferences in product search or the personalized product

search, plays a pivotal role in boosting product search performance.

Traditional approaches on product search [8, 9, 34] often focus on

the simple matching between queries and products without leverag-

ing the user preference. However, ignoring the user preference will

lead to sub-optimal performance owing to the diverse user expecta-

tions. As pointed out in [1, 7, 33], the purchase behaviors in online

shopping could be highly personal. Based on this observation, Ai

et al. [1] introduced personalization into product search algorithm

and extended the model in [34] by adding the user preference to

the same latent space with queries and products (represented by

textual reviews). Indeed, textual reviews disclose product’s charac-

teristics on some aspects and thus could reflect user’s preferences

on those aspects. Taking a Clothing product for example, users may

comment on aspects such as material, size, whether it is comfortable

to wear or worth to buy. However, other aspects which could be

directly observed from the product images are seldom mentioned

in the reviews, such as style and color. As a result, relying merely

1https://www.amazon.com/.
2https://world.taobao.com/.
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on textual reviews can only capture the user’s partial preferences

while ignoring their visual preferences. For many products, such

as Clothing and Shoes, the visual appearance of products plays an

important role on user’s purchase behaviors [12, 13, 25]. For exam-

ple, a user who likes square collar T-shirt will not purchase a round

collar one, even if the latter one matches his/her requirement on

other aspects (e.g., brand, price, quality). Therefore, incorporating

user’s visual preference into personalized modeling can capture

the user preferences more comprehensively, and thus could further

enhance the product search performance.

In this paper, we aim to develop a personalized product search

method, which considers the user preferences from both textual

and visual modalities when ranking products. To design such a

method, it involves two research problems: 1) How to model the

multi-modal user preferences; and 2) Given a textual query q of

a user u, how to measure the relevance of a product p with re-

spect to the query q and the user u’s multi-modal preferences. Note

that solving those problems step by step is not an optimal solu-

tion. For example, a typical sequential method is: 1) representing

products multi-modal features (with multi-modal feature fusion

methods); 2) extracting the multi-modal user preferences based on

their purchased products; and 3) measuring “the relevance between

the query and a product (<query, product>)” and “the relevance

between the user preference and a product <user, product>” sep-

arately, and then using a combination or re-ranking method to

obtain the final product list.3 The problem of the above sequential

method is two-folds: on the one hand, the constructed multi-modal

feature space using above method is not ranking oriented, result-

ing in sub-optimal ranking results; on the other hand, measuring

the relevance of <query, product> and <user, product> separately

cannot fully capture the complex interactions among <user, query,

product>, as measuring the relevance of one pair (e.g., <query, prod-

uct>) totally ignores the other one (e.g., <user, product>). Therefore,

how to design a unified solution for constructing a multi-modal and

ranking-oriented feature space and performing product ranking in

this space is a challenging problem.

To solve the above problem, we proposed a Translation-based

Product Search (dubbed as TranSearch) method. In our method, a

useru’s preference, a textual query q, and a product p are embedded

into a latent multi-modal feature space and represented as vectors �u,
�q, and �p, respectively. In this space, our method translates the query
�q with the user preference �u to be approximately equal to the final

bought product �p. The multi-modal feature space is initialized based

on the textual and visual features of products, and then learned via

the training process. To this end, our model can elegantly solve the

personalized ranking problem that involves the complex interaction

between <user, query, product>. Besides, the multi-modal feature

space is also trained towards the personalized ranking. However,

a practical problem is that in the training stage we need a large

number of triplets <user, query, product>, which is usually very

sparse. To tackle this problem, we adopt a pre-training strategy to

first construct a visual and a textual feature spaces based on the rich

data of also_view and buy_after_viewing [25]. The also_view and

buy_after_viewing indicate the two products may be substitutable

3The combination method could be the combination of relevance score; the re-ranking
method is to first rank the products based on one type of relevance and then re-ranking
the top results based on the other type of relevance.

and closely related. Therefore, the constructed visual feature space

is expected to preserve the visual similarity between products;

and similarly, the textual feature space is expected to preserve the

similarity between products from textual features. After the pre-

training stage, in our TranSearchmodel , the two pre-trained feature

spaces are fused and refined. At the same time, the users, queries,

and products are mapped to this space for personalized product

ranking.

To verify the effectiveness of our proposed model, we empirically

evaluate TranSearch and compare its performance with state-of-the-

art methods on the public Amazon product dataset4. Experimental

results show that our approach can outperform the baselines sig-

nificantly. Besides, we also quantitatively and qualitatively analyze

the effectiveness of integrating textual and visual modality in pref-

erence modeling for product search.

In summary, the main contributions of this work are as follows:

• We propose a multi-modal translation-based method for per-

sonalized product search. To the best of our knowledge, this

is the first work that models the user preferences from both

textual and visual modalities for personalized product search.

• We propose a two-stage framework to solve the data sparsity

problem in personalized product search. In the first stage, we

leverage the rich data of also_view and buy_after_viewing to

pre-train a product’s textual and visual feature spaces; and then

in the second state, we fuse the two feature spaces and refine

the fused feature space based on a comparative learning method

to achieve the better product ranking results.

• We have conducted extensive experiments on the real-world

Amazon dataset to demonstrate the effectiveness of our pro-

posed TranSearch model. Moreover, we released the codes and

involved parameter settings to facilitate others to repeat this

work5.

2 RELATEDWORK

2.1 Product Search

With the popularity of online shopping nowadays, the online prod-

uct search attracts more and more attentions. Typically, the e-

commerce product inventory information (e.g., product entity spec-

ifications) is structured and stored in relational databases. To fill

the gap between the free-form keyword queries and the struc-

tured product entities, Duan et al. [8, 9] proposed a probabilistic

retrieval model. The proposed method mines and analyzes the

product search log data to solve the semantic mismatch between

queries and structured product entities. In recent years, influenced

by the development of online review platforms, researchers have

attempted to extract information from the textual reviews to repre-

sent products by leveraging representation learning methods (e.g.,

word2vec [6, 26]). More specifically, Gysel et al. [34] introduced a

latent semantic entity model to learn the distributed representa-

tions of words and entities (i.e., products and queries). A common

problem of aforementioned methods is that they ignore the user’s

personal preference in product search. In fact, the user preference

could be very different given the same query. Without personaliza-

tion, the search engine will return the same list to distinct users,

4http://jmcauley.ucsd.edu/data/amazon/.
5https://github.com/guoyang9/TranSearch.
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barely satisfying the diverse user needs. Some researchers have

realized the importance of personalization in product search. For

example, Duan et al. [7] and Su et al. [33] analyzed the user intent

and satisfaction for product search. Recently, a personalized prod-

uct search model has been proposed by Ai et al. [1]. They extended

the model in [34] by mapping the user’s personal preference into

the same latent space with queries and products.

However, existing methods ignore the user’s visual preference in

product search. The importance of visual preference in product pur-

chasing behaviors has been verified in previous works. For example,

Macauley et al. [13, 25] considered the user’s visual preference in

recommender system to improve the product recommendation per-

formance. Therefore, we believe that modeling the user’s visual

preference in product search could improve the search accuracy.

Thus, in this paper, we propose a multi-modal preference model-

ing method for personalized product search, which has not been

studied yet.

2.2 Multi-modal Deep Learning in IR

Deep learning techniques have been widely used in the multi-modal

feature fusion [10, 16, 21–23, 27, 28, 37, 39, 40, 42] and recently been

applied in the IR problems [5, 32, 43]. A comprehensive review of

DL in multi-modal fusion and IR is out of the scope of this paper,

we mainly focus on the deep multi-modal IR, which is most related

to our work.

The key problem of deep multi-modal IR is to find an effec-

tive mapping mechanism to project data from different modalities

into a common latent space and then match the query with the

items in this latent space [36]. Previous methods (including deep

cross-modal and intra-modal IRs) can be broadly categorized into

hashing- and semantic-based ones. The former approaches [3, 4]

map modalities in the original space to a Hamming space using

hash functions, such that the distance between queries and items

can be computed in this Hamming space. The latter [2, 18, 36]

project the multi-modal data into a low-dimensional space by learn-

ing a mapping function, and then compute the semantic matching

with the given query in this latent space. In [32] and [31], a fused

multi-modal representation is generated from a learned probability

density over the multi-modal space through Deep Boltzmann Ma-

chines and Deep Belief Networks, respectively. In [18], Laenen et

al. introduced a multi-modal fashion search paradigm by using the

e-commerce data. Nevertheless, in their problem setting, a query

is comprised of keywords and images, which is inconsistent with

current e-commerce product search scenarios that users typically

provide only text queries. Besides, they have not considered the

user preferences in their model.

3 PRELIMINARY

3.1 Research Problem

Given a textual query from a user, our target is to return a ranked

list of products, which are ranked based on their relevance with

respect to the query and the user preferences from both textual

and visual modalities. In our problem setting, each product has

its textual reviews and images. To achieve better search results,

we embed users, their queries, and products (including visual and

textual features) into the same latent space, so that the products

could be directly matched with a given query and the correspond-

ing user in this space. Therefore, we need to first preprocess the

visual and textual product modalities, followed by the multi-modal

feature fusion and user preference modeling, and finally a ranking

mechanism. It is worth noting that the query and product textual

modality are preprocessed in the same way in order to maintain

their semantic relationship.

Before describing our proposed model, we first elaborate the

textual and visual feature pre-processing.

3.2 Feature Preprocessing

Textual Modality. The PV-DM model [19] is adopted to extract

textual vector representation for queries and products. PV-DM is

an unsupervised method to learn continuous distributed vector

representations for textual documents. It takes word sequence in-

formation into consideration and can preserve the semantic features

of words. PV-DM takes text documents as inputs and outputs their

vector representations in a latent semantic space. In our model, the

textual modality of products is user reviews. And the queries only

contain the textual modality. The textual modality of products and

queries are mapped into the same latent space via PV-DM to learn

their vector representations, which are then used as the inputs to

our model.

Visual Modality. In general, each product has its own visual

appearance and users have their unique tastes or preferences on the

appearances of products, especially for the ones whose visual ap-

pearances are important features to attract customers, e.g., clothing.

In this work, the dataset we adopted contains one image for each

product and the visual features [25] of the image. To be specific,

the visual features are extracted via the Caffe reference model [15].

The architecture has 5 convolutional layers followed by 3 fully con-

nected layers, and has been pre-trained on 1.2 million ImageNet

(ILSVRC2010) images. In this work, we take the output of the sec-

ond fully connected layer, resulting in a 4096-D feature vector as

the visual features for each product.

4 OUR PROPOSED METHOD

In order to return a personalized ranking list for a query from a user,

we map the users, queries, and products into the same latent space,

where the products could be directly matched with the queries

and user preferences. However, directly training a model (as the

one shown in Figure 2) may suffer from the data sparsity problem

of <user, query, product> triplets. Insufficient data may hinder the

learning of a desired feature space, resulting in inferior performance

(as demonstrated in Section 6.2). To deal with the problem, we

adopt a pre-training stage (shown in Figure 1), which leverages the

abundant also_viewed and buy_after_viewing product data to first

learn good feature spaces for visual and textual modalities. Then

the learned feature space is used to extracted products’ visual and

textual features, which are used in our personalized product search

model, called Translation-based product search (TranSearch) model.

In our TranSearch model, the feature space will be refined towards

personalized product ranking.

4.1 Feature Space Construction

To construct desired feature space to preserve the visual or semantic

similarity between products, we take advantage of the rich data
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of also_viewed and buy_after_viewing product sets6, in which a

product is paired with another product. In both sets, the paired

products are similar either visually or semantically based on user’s

also_viewed or buy_after_viewing behaviors.We adopt the advanced

deep autoencoder networks to learn the feature space, which has

been proven to be effective in many latent space learning tasks [35].

There are two components in the autoencoder networks: the

encoder and decoder [30]. The former can learn a new representa-

tion where an input can be reproduced by the latter. As shown in

Figure 1, in our network, the inputs are pa , pa+ and pa−, among

them, pa and pa+ are the feature vectors of a paired products in

also_viewed or buy_after_viewing product sets, pa− is the feature

vector of an irrelevant product with respect to pa . The autoen-

coder network is to construct a latent feature space, in which the

relationship of fa , fa+, and fa− is preserved, namely:

d(fa, fa+) < d(fa, fa−), (1)

whered is a pair-wise distance function which can be cosine similar-

ity, dot product, Euclidean and Manhattan distances. In our experi-

ments, we observed that Euclidean distance yields relatively better

performance. Accordingly, this autoencoder network is trained by

minimizing the reconstruction errors with constraints of observed

product relationships. The objective function is:

Lpre =
∑

[max(0,γpre + d(fa, fa+) − d(fa, fa−))

+β(L(pa, p̂a ) + L(pa+, p̂a+) + L(pa−, p̂a−))]

+λpre ‖Θpre ‖,

(2)

where γpre is the margin parameter that regularizes the gap be-

tween the squared Euclidean distance among the relevant products,

irrelevant products and the anchor products, β is the trade-off be-

tween the reconstruction error and relationship constraint error,

λpre is the �2 regularization hyperparameter, and Θ denotes all

the parameters in our pre-training model. In this way, the decoder

recovers the raw input pa to p̂a to minimize the reconstruction

error as follows,

Lr ec (pa, p̂a ) =
1

2
‖pa − p̂a ‖. (3)

Without loss of generality, both the visual and textual latent spaces

are constructed through this autoencoder framework and con-

strained to the same dimension k . After the feature space con-

struction, we can obtain a semantic space learned from the textual

reviews and a visual space learned from the product visual appear-

ance. The two spaces could preserve the relevance of products from

different perspectives. For example, the textual space may preserve

the semantic similarity of two products based on their reviews, such

as their materials and brands; and the visual space could preserve

the visual similarity among products, such as style and color.

4.2 Translation-based Product Search

Personalized search needs to match the product’s features and user

preferences from both textual and visual modalities. Notice that

matching them on eachmodality separately and then combing them

ignores the interactions between the visual and textual features,

which may lead to sub-optimal results. Besides, the query is only

6More details can be found on Section 5.1.
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Figure 1: The architecture of our pre-trained model.

in the text modality, which cannot be directly matched with the

products of two modalities. Therefore, we need to design a multi-

modal fusion method and map both the user preferences and query

into the same space. To achieve this goal, we propose a TranSearch

model, comprised of three components: Multi-modal Feature Fu-

sion, Embedding, and Comparative Learning. In the next, we will

introduce each component in sequence.

4.2.1 Multi-modal Feature Fusion. This component first concate-

nates the visual and textual features together, and then leverages a

deep neural network (DNN) to fuse them in a complex non-linear

way. The concatenation operation is:

c0 = [f v ; f t ], (4)

where f v and f t are the visual and textual features obtained by

our autoencoder model in Figure 1, respectively.

To model the interactions between the visual and textual features

and obtain better fusion features, we refer to DNNs, which intro-

duces multi-layer of non-linear interactions and has been proven

to be very effective in the feature fusion tasks [41]. Specifically, the

fully connected layers are:

c1 = ϕ(W1c0 + b1),

c2 = ϕ(W2c1 + b2),

......,

cL = ϕ(WLcL−1 + bL),

(5)

whereWl and bl denote the weight matrix and bias vector for the

l-th fully connected layer, respectively. ϕ(·) is the activation func-

tion, which could be sigmoid, hyperbolic tangent (tanh), rectified

linear unit (ReLU) , leaky ReLU or exponential linear unit (ELU). In

our experiment, we find that the ELU function can achieve better

performance. To be more specific, our network structure follows

a tower pattern, where the bottom layer is the widest and each
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Figure 2: The architecture of our proposed TranSearch model.

successive layer has a smaller number of neurons [14]. Ultimately,

the output from the last layer cL has the dimension of k , equal to
the visual and textual inputs.

After fusing the two features together, we then leverage another

embedding matrixWT ∈ Rk×k to map products into a latent space,

p = ϕ(WT cL + bT ). (6)

In this way, we can obtain the product representation e .

4.2.2 Embedding. User Embedding. Each user is represented as

a one-hot vector and then converted into a dense representation ū
via the embedding method. We use the same embedding matrixWT

with the products to translate the user into the same latent space

with products,

u = ϕ(WT ū + bT ), (7)

where ū is the dense embedding representation, ϕ is the activation

function of ELU, and u is the final user preference representation.

Query Embedding. Similar to the user embedding, we first

convert the query into k-dimensional, and then project it into the

same latent space with the users and products,

q̃ = ϕ(Wqq̄ + bq ),

......,

q = ϕ(WT q̃ + bT ),

(8)

where q̄ is the query representation learned via PV-DM framework.

It is transformed into k dimensional q̃ via Wq . Finally, we can

obtain the query representation q byWT . Notice that u, q, and
p are embedded into the latent space using the same embedding

matrixWT .

4.2.3 Comparative Learning. After embedding the users, queries

and products into the same latent space, we then rank the candidate

products according to an effective ranking mechanism. Let p+ and

p− be the feature vectors of a positive product and a negative

product, respectively. The corresponding purchased product with

respect to the query is regarded as the positive product. A negative

product is randomly sampled from other non-purchased products.

And then we argue that the positive product representation p+

should be closer than the negative one p− to the desired product

representation pt , where pt is inferred by:

pt = u + q. (9)

Our objective is to minimize a margin-based ranking criterion:

L =
∑

[max(0,γ + d(pt ,p+) − d(pt ,p−)] + λ‖Θ‖, (10)

where γ is the margin parameter that regularizes the gap between

the d(pt ,p+) and d(pt ,p−), λ is the �2 regularization hyperparame-

ter, and Θ denotes all the parameters in our model.

To this end, our model learns user preference representation,

query representation, and product representation based on a learning-

to-rank framework, leading to better personalized product ranking.

Besides, the fusion of multi-modal feature is refined to the ranking

orientation simultaneously. In implementation, we train the model

via the Adam [17] optimization method.

5 EXPERIMENTAL SETUP

5.1 Datasets

Weexperimented on the public Amazon product dataset. The dataset

contains product reviews and metadata (e.g., product images) from

Amazon. In our experiments, we adopted the 5-core version pro-

vided by McAuley et al. [24], whereby the remaining users and

products both have at least 5 reviews. Besides, we selected four

categories: Office Products,Women’s Clothing, Men’s Clothing, and

Toys & Games. Following the strategy in [25], we extracted the

user’s product purchasing behaviors based on their reviews, i.e., the

products they reviewed are the ones they purchased. The dataset

provides four categories of relations: 1) also_viewed (e.g., users who

viewed X also viewed Y); 2) buy_after_viewing (e.g., users who
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Table 1: Statistics over the four 5-core evaluation datasets. A_V represents also_viewed product pairs and B_A_V represents

buy_after_viewing product pairs.

Datasets #Users #Products #Queries #Feedback
#<U, Q, P> Av. Query Av. Review Av. (#A_V +

Triplets Length Length #B_A_V)

Men’s Clothing 21,530 5,254 681 65,402 171,619 6.67 37.78 4.2

Women’s Clothing 35,245 14,659 1,245 179,193 441,171 6.77 32.04 6.6

Toys & Games 19,412 11,838 396 166,600 168,298 6.93 89.63 19.5

Office Products 4,905 2,406 292 53,081 53,421 8.41 136.39 8.1

Table 2: Performance comparisons between TranSearch and baselines over four Amazon datasets. Symbols † denotes the sta-

tistical significance with two-sided t-test of p < 0.01, compared to the best baseline. The best performance is highlighted in

boldface.

Men’s Clothing Women’s Clothing Toys & Games Office Products

Model HR MRR NDCG HR MRR NDCG HR MRR NDCG HR MRR NDCG

QL 0.157 0.050 0.073 0.126 0.038 0.057 0.111 0.031 0.048 0.352 0.092 0.149

UQL 0.167 0.051 0.076 0.126 0.038 0.057 0.121 0.032 0.051 0.352 0.092 0.149

LSE 0.047 0.008 0.017 0.031 0.007 0.012 0.055 0.015 0.024 0.362 0.099 0.159

HEM 0.182 0.050 0.079 0.109 0.029 0.048 0.277 0.070 0.117 0.747 0.261 0.375

TranSearch 0.332† 0.093† 0.145† 0.197† 0.051† 0.083† 0.282† 0.075 0.120† 0.813† 0.284† 0.401†

viewed X eventually bought Y); 3) also_bought (e.g., users who

bought X also bought Y); and 4) bought_together (e.g., users bought

X and Y simultaneously) [25]. Critically, categories 1 and 2 indicate

that two products may be substitutable, namely, they are similar

in some way (visually or semantically). According to Amazon’s

own technical report [20], the aforementioned relationships are

collected by ranking products according to the cosine similarity of

the sets of users who purchased/viewed them. Based on that, we

extracted categories 1 and 2 to form the related product set for our

pre-training model (in Figure 1). Besides, we removed the words

with low frequency. The basic statistics of our used datasets are

shown in Table 1.

5.2 Experimental Settings

Query Extraction. As Rowley described in [29], a typical scenario

of the product searching is to use a producer’s name, a brand or

a set of terms which describe the category of the product as the

query in retrieval. Based on this observation and following the

strategy of [1, 34], for each product a user purchased, we extracted

the corresponding search query from the categories to which the

product belongs. The query extraction procedure is detailed as

follows.We first obtained the category information for each product

from its metadata. And then we concatenated the terms from a

single hierarchy of categories to form a string. Finally, we removed

the punctuation, stop words and duplicate words from this string.

While eliminating the duplicate words, we maintained the terms

from the sub-categories, since these terms carry more important

information compared to their parent-categories. For example, in

the dataset of Women’s Clothing, the extracted query for Women

→ Accessories→ Sunglasses→ Eyewear Accessories→ Sunglasses

would be “women eyewear accessories sunglasses”.

Data Split. We partitioned each of the four datasets into two

sets: the training and testing sets. Specifically, we first constructed

the user-product pairs from the user reviews, and then extracted the

queries for these products. We finally obtained the valid user-query-

product triplets. For each dataset, we randomly selected 80% user-

query-product triplets of each user for training, and the remaining

20% for testing. For our TranSearch model, we trained it on the

training set and reported the final results on the testing set. Note

that in the testing stage, we have not used the reviews, because

in real scenarios the reviews is unavailable before the purchase

behaviors.

Parameter Settings.At the pre-training autoencoder phase, for

each anchor product, a positive product is paired with 20 randomly

sampled negative ones to learn a better feature space. The parame-

ters are initialized by the xavier method [11] and the optimization

method is Adam [17]. The number of layers for both encoder and

decoder is 2.

We carefully tuned the dimension of the final latent vector from

16 to 512. In the training stage of TranSearch, the parameters are

also initialized with the xavier and then optimized with the Adam.

The learning rate is tuned in the range of [0.00001, 0.0001, 0.001,

0.01], regularizer is [0.000001, 0.00001, 0.0001, 0.001], and themargin

parameter is [0.001, 0.01, 0.1, 1]. The number of negative samples

for each positive training data is set to 5 and the batch size is 512.

Evaluation Metrics.We applied three standard metrics in eval-

uation: Hit Ratio (HR), Mean Reciprocal Rank (MRR), and Nor-

malized Discounted Cumulative Gain (NDCG), where the first one

indicates the percentage of queries which are hit correctly, while
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the other two consider the position of positive items in the ranking

list. Without special specification, we truncated the ranking list at

20 for all the three metrics.

5.3 Compared Baselines

We compared the proposed TranSearch model with different re-

trieval approaches from two categories: 1) traditional methods

based on bag-of-words representations, such as Query-likelihood

Model [38] and Extended Query Likelihood with User Models [1]; and

2) representation learning approaches based on the latent space

modeling, such as Latent Semantic Entity [34] and Hierarchical

Embedding Model (HEM) [1].

Query-likelihood Model (QL). It first estimates a language

model for each document, and then ranks the documents by the like-

lihood of generating the query according to the estimatedmodel [38].

Extended Query Likelihood with User Models (UQL). It

was first introduced to personalized product search by Ai et al. [1].

Specifically, it extends QL by choosing the most frequent words7 of

reviews submitted by a user, then leverages a coefficient parameter

to control the weights between the user and query.

Latent Semantic Entity (LSE). This method is specially de-

signed for product search [34]. It projects words and products into

the same latent space and learns a mapping function between them.

Then the objective is to directly maximize the similarity between

the products vector representation and n-gram’s latent vector rep-

resentation of its corresponding reviews.

Hierarchical Embedding Model (HEM). This model (HEM)

proposed by [1] is the state-of-the-art approach for the personalized

product search. It extends LSE [34] by adding the element of user

preference to the product search. Similar to UQL, HEM also uses a

coefficient to control the weight between the query model and the

user model. HEM learns the distributed representations of queries,

users and products by maximizing the likelihood of observed user-

query-product triplets.

6 EXPERIMENTAL RESULTS

In this section, we report and analyze the experimental results. In

particular, we focused on the following research questions:

• RQ1: Can our model outperform the state-of-the-art product

search baselines?

• RQ2: Are the integration of the two modalities and the pre-

training stage helpful to the final results?

• RQ3: How does the embedding size of users, queries and prod-

ucts affect the model performance?

6.1 Performance Comparison (RQ1)

Table 2 shows the performance of our TranSearch model and the

baselines on four Amazon datasets. We also conducted pairwise

significance test between our model and the baseline with the best

performance. The key observations are as follows:

• Overall, our proposed method outperforms all the baselines

across the four datasets consistently and significantly. The per-

formance of Office Products is much better than the other three

ones, which is mainly because the number of products and

7Here, we define words appearing more than 50 times as the most frequent words.

Figure 3: Comparison of variants of our model.

users in Office Products is smaller; The better performance of

Men’s Clothing overWomen’s Clothing maybe because the taste

of women for clothing is more dynamic or complicated.

• For both traditional bag-of-words (i.e., QL and UQL) and state-

of-the-art representation learning methods (i.e., LSE and HEM),

personalized product search consistently surpasses the non-

personalized ones. This demonstrates the importance of the

personalization in the product search.

• On the strongly visual related datasets Men’s Clothing and

Women’s Clothing, our method exceeds the state-of-the-art base-

line HEM by a large margin. For example, the improvement of

NDCG over Men’s Clothing is 0.066 (84%), Women’s Clothing is

0.035 (73%), while Toys & Games is 0.003 (3%) and Office Prod-

ucts is 0.026 (7%). This indicates that for those datasets where

the user’s visual preference is more important, incorporating

the visual modality of products can boost the product search

performance more greatly.

6.2 Model Ablation (RQ2)

To verify the effectiveness of the fusion of modalities and the pre-

training, we compared our TranSearch model with three variants:

• TranSearcht : It ignores the visual modality and only takes the

textual modality into consideration.

• TranSearchv : In contrast to TranSearcht , it removes the tex-

tual modality in TranSearch and only considers the visual

modality.

• TranSearchwop : Instead of pre-training the visual and textual

modalities, it takes the raw visual and textual features as inputs

in TranSearch and trains on the user-query-product triplets data

in an end-to-end way.

Modality Comparison. As we can see in Figure 3, the integra-

tion of visual and textual modalities outperforms the single modal-

ity ones over all the four datasets. In this experiment, TranSearcht
achieves better results than TranSearchv . This indicates that even

for strongly visual related datasets Men’s Clothing and Women’s
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Figure 4: The influence of latent embedding size.

Clothing, the textual modality is still very important, since it pro-

vides users with crucial information such as price or material.

Utility of Pre-training. To demonstrate the utility of the pre-

training for our TranSearch framework, we compared the perfor-

mance of TranSearchwop and TranSearch. As shown in Figure 3, on

all the four datasets, the TranSearch achieves superior performance,

demonstrating the usefulness of the pre-training stage. An interest-

ing observation is that on the datasets ofMen’s Clothing and Toys &

Games, the TranSearchwop even performs worse than TranSearcht .

One possible reason is that the training samples are too sparse to

train the model well, which further validates the importance of

pre-training.

6.3 Influence of Embedding Size (RQ3)

To analyze the effect of the embedding size on the baselines of LSE

and HEM, our model and its two variants, we show the results

of these models with different embedding sizes over all datasets.

Figure 4 shows the performance variation with the increase of the

embedding sizes. It can be observed for all the methods, with the

increase of the embedding size, the performance improves firstly,

and then starts to deteriorate. Generally, the larger embedding size

will lead to better representation capability, while it will result in

over-fitting when the embedding size is too large. From the Figure 4,

we can see that 128 is a good embedding size for our model.

6.4 Case Analysis (RQ4)

In this subsection, we will give some examples to illustrate the

advantage of our method considering visual preference than the

best baseline method HEM, which only models user preference

from textual modality.

From Figure 5, we can observe that for each query submitted

by a specific user (e.g., user1: Women clothing active pants), our

method could return the desired product at a higher rank in the

return list. Besides, all the top results returned by our method is

relatively more relevant than HEM. For example, for the first query,

Women clothing active pants, the HEM returns three top clothes

User1: Women clothing 
active pants

User2: Men clothing 
novelty hoodies

User3: Pretend play 
construction tools

User4: School technical 
drawing compasses

TranSearch HEM TranSearch HEM TranSearch HEM TranSearch HEM

Figure 5: Search results of four query examples on four

distinct Amazon datasets. The first row represents differ-

ent users with their example queries; the second row repre-

sents our model and the state-of-the-art baseline, followed

by their top 5 results for the given query, where the products

with the red box are the purchased ones.

for the user who wants pants. The return of less relevant results

at the top positions may result in the decline of trust towards the

system. Besides, because of the consideration of the user’s visual

preference, the returned results of our method looks more visually

similar. This indicates that our method could return the products

with visual appearances preferred by the users, which may increase

the user satisfaction for the product search engine.

7 CONCLUSION

In this paper, we proposed a translation-based personalized prod-

uct search model TranSearch, which models the user preferences

from both visual and textual modalities. Different from the previous

works that mainly focus on the textual modality in product search,

we argue that the visual preference of users also plays an important

role in product selection. In particular, we adopted a pre-training

stage to construct the visual and textual feature spaces for products

firstly. In the next step, we proposed a translation-based compar-

ative learning framework to refine the feature space and map the

users, queries, and products into this space for the personalized

product ranking. To the best of our knowledge, this is the first at-

tempt of considering the visual preference in personalized product

search. Comprehensive experiments have been conducted to verify

the effectiveness of the proposed method.
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