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ABSTRACT

Networks are useful in understanding complex systems. Recently, discrete curva-
ture measures, adapted from smooth manifolds to discrete landscape of networks,
have been applied to network data analysis, such as community detection, with
encouraging results. A fundamental hypothesis made for using these curvature
measures is the diagonal-dominating principle: the curvature measures are con-
sistently larger within a community than between different communities. How-
ever, this principle may not hold under all statistical network models. We inves-
tigate three existing network curvatures, which satisfy the diagonal-dominating
principle under the stochastic block model (SBM) but not under its widely-used
degree-corrected version, the degree-corrected block model (DCBM). Observing
that these curvature measures are heavily influenced by degree heterogeneity, we
propose a new curvature measure, Degree-Corrected Ricci Curvature (DCRC),
specifically designed to account for degree heterogeneity. Theoretically, we prove
that DCRC always satisfies the diagonal-dominating principle under both SBM
and DCBM. We also provide large-deviation bounds and uncertainty quantifica-
tion. Empirically, we use DCRC to preprocess a network by filtering out low-
curvature edges; and we show that this preprocessing step can improve the perfor-
mance of state-of-art community detection algorithms.

1 INTRODUCTION

Networks are ubiquitous across various fields, ranging from biological systems (Koutrouli et al.,
2020) and social interactions (Ji et al., 2022) to technological infrastructures (Rosas-Casals et al.,
2007)) and cosmic formations (De Regt et al.|[2018). These networks provide a robust framework for
deciphering the complex relationships and dynamics inherent in diverse systems. Recent advance-
ments in network analysis have highlighted the significant role of discrete curvature (Sia et al.,
2019). Discrete curvature, adapting geometric concepts such as Ricci curvature (Ricci & Levi-
Civita, |1900; Do Carmo & Flaherty Francis, [1992)—traditionally applied to smooth manifolds—to
the discrete landscape of networks, has led to the development of various curvature measures, each
offering unique insights into network properties.

Specific forms of discrete curvature for edges, such as the Ollivier-Ricci Curvature (ORC, Ollivier,
20075 2009) and the Forman Ricci Curvature (FRC, [Forman| (2003)), have been pivotal in studying
network transport efficiency and robustness. They provide a gauge of how networks deviate from
being geometrically flat, which in turn offers insights into the overall connectivity and resilience of
the network. The Balanced Forman Curvature (BFC, Topping et al, 2021)), and Lower Ricci Curva-
ture (LRC, Park & Li,2025)), refinements of the FRC, have been particularly effective in pinpointing
bottleneck structures and critical connections within networks. The Jaccard curvature (Pal et al.,
2017), a similarity metric between nodes, provides a low-complexity approximation of ORC. Theo-
retical studies of network curvatures, especially for ORCs, have primarily focused on connections to
their continuous counterpart, the Ricci curvature of smooth manifolds (Lin & Yau, [2010;|Lin et al.,
2011 Bauer et al.| 2013} [Trillos & Weber, [2023). Their applications range from understanding in-
ternet topology (Ni et al.,|2015)) to differentiating cancer networks (Sandhu et al.l 2015)), addressing
challenges in graph neural networks (Nguyen et al.,2023)), and graph subsampling while preserving
its property (Wu et al.,[2023). There are also curvatures defined on nodes for planar graphs, such as
Bakry-Emery curvature (Pouryahya et al.||2016), Gaussian curvature (Narayan & Saniee, |2011)) and
Gromov curvature (Higuchi, 2001).
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Notably, these curvature-based methods have shown great potential in community detection (Sia
et al., 2019; |Park & Lil [2025), a critical area in network analysis. Community detection typically
focuses on identifying subgroups within networks where nodes are more densely connected inter-
nally than with the rest of the network (Dey et al.| 2022)). The utility of curvature measures in this
context lies in their ability to distinguish edges that span communities—typically exhibiting lower
curvature—from those within communities, which tend to have higher curvature. This distinction
has led to the development of methods that simplify community structures by iteratively removing
edges with the most negative curvature or, alternatively (Sia et al., 2019; [Fesser et al., [2023)), by re-
moving edges below a certain curvature threshold in a single step (Park & Li, [2025). These methods
complement traditional community detection techniques (Jin, |2015}; |Chen et al.| 2018} [Zhang et al.,
2020; Qin & Rohel 2013) and offer a novel approach to refining community structures.

Unfortunately, the fundamental assumption, we term as diagonal-dominating property, behind these
methods—the curvature measures tend to be higher within a community than across—may not
always hold. We present a simulation example in Figure[I] The first five panels present histograms of
several curvatures (the aforementioned BFC, FRC, Jaccard, LRC, as well as DCRC to be introduced)
of a sample network generated from the Stochastic Block Model (SBM), where curvatures within
community edges (blue) are indeed higher than those across communities (red).

SBM, while commonly used for its simplicity, does not capture the severe degree heterogeneity
in real networks (i.e., even in the same community, some nodes have much higher degrees than
others). Degree-Corrected Block Model (DCBM, [Karrer & Newman, 2011) generalizes SBM by
introducing node-wise degree parameters to capture the difference of popularity among nodes in the
same community, and this model has been adopted by many recent works in community detection
(Zhao et al.,2012;Jin, 2015} |Q1in & Rohel[2013; Wang et al.,|2020). The right five panels in FigureE]
reveal that the existing network curvature measures are inappropriate to use in the DCBM, because
they are heavily influenced by degree heterogeneity.
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Figure 1: Curvature histograms for SBM (left five) and DCBM (right five), respectively. A desirable
curvature should lead to well-separated histograms under both SBM and DCBM. Existing curvatures
(BFC, FRC, Jaccard, LRC) do not satisfy this requirement for DCBM, but our proposed DCRC does.

To address these shortcomings, we propose a novel curvature measure, the Degree-Corrected Ricci
Curvature (DCRC), specifically designed to handle degree heterogeneity effectively. DCRC not
only addresses the limitations observed with traditional curvature measures but also demonstrates
superior properties for community detection within DCBM frameworks. Our key contributions are:
Theory. To the best of our knowledge, this is the first theoretical study of network curvature under
random graph models, such as SBM and DCBM. We analyze when the diagonal-dominating prop-
erty holds, and provide the first theoretical guarantees for curvature-based community detection.
Our results also include large deviation bounds and asymptotic distribution that enables uncertainty
quantification for curvature-based downstream tasks.

Methodology. We introduce DCRC, a new curvature measure that removes the impact of degree het-
erogeneity via a simple normalization trick derived from theoretical analysis under DCBM. While
motivated by DCBM, the method generalizes to broader network settings.

Application. We demonstrate that DCRC-based preprocessing improves existing community detec-
tion methods on both simulated and real networks.

Code and data availability, proofs, and additional experimental details are provided in the Appendix.

2 LIMITATIONS OF EXISTING NETWORK CURVATURES

Existing network curvatures. The idea of using curvature to study discrete objects, specifically
networks, traces back to|Forman|(2003)), which introduced the later-called FRC. Later, the ORC was
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proposed (Ollivier, 2007), adapting Ricci curvature via optimal transpose. These notions have since
inspired a wide range of studies in graph theory, discrete geometry and differential geometry.

The use of curvature for community detection emerged with Sia et al.| (2019), who observed that in
simple random graphs such as those generated by the SBM, within-community edges tend to have
higher curvature than across-community edges. This property, which we refer to as the diagonal-
dominating property, motivates pruning-based strategies: by removing edges with the most neg-
ative curvature values, the remaining network better reflects the underlying community structure.
Subsequent works have introduced refinements of FRC, such as BFC and LRC, to improve scale-
invariance and scalability. Among these, FRC and LRC are more tractable and computationally
efficient; in contrast, BFC and ORC, while effective, are less amenable to theoretical analysis and
more computationally demanding.

We now define the curvature notions rigorously and introduce the necessary notation. For clarity
and simplicity in presentation, this paper focuses on an unweighted graph G = (V, E), where V is
a set of nodes and E is a set of edges, but the framework can be generalized to a weighted graph
without significant complication. Let (ij) be an edge connecting node 4 and node j, we denote the
degree of i, i.e., the number of edges of node 7, by n;, the number of shared neighbors of ¢, 7, i.e.,
the number of triangles based on (i5), by n;;, and the size of union of neighbors of ¢ and j by u;;.
Among the various curvature measures, we define FRC and LRC below due to their scalability and
analytical tractability. We omit BFC and ORC, whose more intricate formulations make them less
suitable for theoretical analysis in our context.

Definition 1 (FRC, Jaccard, and LRC). The FRC, Jaccard, and LRC of edge (ij) are defined as

FRC(ij) =4 — n; —nj + 3n,;, Jaccard(ij) = %,

U

2 2
LRC(ij) = — + — —2+4+2—4 4 Mj
n;  n, max(n;,n;) min(n;,n,)

Limitations of FRC, Jaccard, and LRC. To understand the limitations of these curvatures, espe-
cially in the context of community detection, we investigate the diagonal-dominating property. If
this property holds, then removing edges with low curvature values making the underlying commu-
nity structure more distinct and easier to detect. As shown in the left half of Figure[I] this property
holds under SBM, which assumes homogeneous node degrees and provides a useful baseline for
analyzing community structure. However, this property may not hold in other settings—particularly
when there is degree heterogeneity. To examine this scenario, we recall the definition of DCBM.

Let A € R™ "™ be the adjacency matrix of an undirected network with n nodes. Suppose that the
nodes partition into K non-overlapping communities C1,Cs,...,Cx. For each node i, let m; €
{0, 1} be its membership vector, such that if i € Cy,, then 7;(k) = 1 and 7;(¢) = 0 for all £ # k.

Definition 2 (DCBM). Let 0; € (0,1) be the degree heterogeneity parameter of node i, and let
P ¢ REXK pe q symmetric nonnegative matrix with unit diagonals and P, < 1 for k # /.
The upper triangle of A (excluding the diagonal) contains independent Bernoulli random variables,
where

P(A(i,7) = 1) = 6,6, - 7, P, 1<i<ji<n. (1)

When 6; = 6 are constant, DCBM degenerates to SBM as a special case.

A motivating example. Consider a DCBM network of 2 communities with 100 nodes in each,
P = [1,0.5;0.5,1]. Let §; = 1 for all but the last node, where 6209 = [ controls the degree of
heterogeneity. To reduce the impact of randomness and simplify the experiment, we only consider
the population version of all curvatures, that is, replace all random variables, i.e., n;, n;, n;; by their
expectations. In this population version, we examine the difference between within-community
curvature and across-community curvature. If the difference is positive, the diagonal-dominating
property holds, which is desirable for curvature-based community detection. The detailed theoret-
ical derivation is delayed to Section [3] and we present the results in Figure [2] All curvatures are
rescaled to be comparable, without affecting the conclusion, as the main focus is whether the dif-
ference is positive or negative. We observe that when the network is homogeneous, i.e., = 1, all
curvatures admit the diagonal-dominating property. However, as [ increases, FRC, Jaccard, and
LRC quickly lose this property, because they, by design, fail to account for heterogeneity. In con-
trast, our proposed curvature DCRC, to be discussed in next section, remains diagonal-dominating
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Figure 2: Within-community curvature minus across-community curvature for FRC, Jaccard, LRC,
and DCRC (population version normalized by network size) versus degree heterogeneity 3.

regardless of the degree heterogeneity. Next, we will formally introduce DCRC and investigate its
theoretical properties in details.

3 DEGREE-CORRECTED RicCI CURVATURE (DCRC)

To address the limitations of existing curvatures, we propose DCRC, a new curvature.
Definition 3 (DCRC). The DCRC of edge (ij) is defined as DCRC(i, j) = —=i-.,

To see the rationale, we recall the definition of DCBM and introduce a Bernoulli probability matrix
Q € R™*", where Q;; = 6,0, - 7} Pm;. The DCBM framework implies that E[A] = Q — diag(£2).
We regard ) as the ‘signal’ matrix of A. When the networks are properly dense, A — (2 is negligible
compared to € (this will be made rigorous in our theory). Hence, n; = >, Ay = > j ;1. and

nij = > AiArj = Y Q. We combine them with the definition of €. It follows that

DORC(,j) ~ ok s 95N lmiPre) (m; Pre)

(50 20 (e 00) L OumiP) (9 2 B, Pr)

The effects of 6; and §; have been canceled in the numerator and denominator. This explains how
DCRC adjusts for degree heterogeneity. While degree parameters still exist in the denominator, they
are in terms of an aggregated effect of all d;’s, which is shared by all pairs of nodes (7, ). As a
result, when we apply DCRC, this aggregated effect of 6’s has little impact on the relative order
of curvatures within and between communities. The benefit of DCRC is further supported by the
example in Figure[2] As (3 increases, DCRC always maintains the diagonal-dominating property.

In the remaining of this section, we provide theoretical analysis of DCRC under the DCBM frame-
work, including population analysis, large deviation bounds, and asymptotic distribution.

3.1 The diagonal-dominating property of DCRC. To establish this property, we introduce a popu-
lation counterpart of DCRC. Write © = diag(61,6s,...,6,) € R™*™ and Il = |7y, 7o, ..., 7] €
R™* X We can re-write the DCBM model in a matrix form:

A=Q—diag(Q) + W, Q = OIIPIT'O, W =A—E[A]. 2)
We call €2 the “signal” matrix, which carries all information of the community memberships. Intro-

duce a vector n := K||0||'TI'©1,, € RX such that n(k) = K3 ice, 93)/110]11, and a diagonal
matrix G := [|0]| 2 II'©%IT € R *X such that G(k, k) = (Y, 07)/110]17, 1 < k < K. Define

. n; . nf = K=10;]|0|| (=, Pn)
D * = — th ! ! v
CRO™GJ) = T W {nz; — 0,6,0]2(x/PGPx;)

"
i1

3)

7,m},nj;) are the main-order terms in the expectation of
(ni, nj,n;j). Therefore, DCRC* serves as a population counterpart of DCRC. The following lemma
provides a simple, explicit form of DCRC*:

Theorem 1 (Population DCRC). Forany 1 <i # j <n,

i o K21I0)
DCRC™ (i, j) = ||0||2|
1

In Lemmabelow, we will show that (n},n%, n:

- My, with M = [diag(Pn)]”'PGP[diag(Pn)]™'.  (4)
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This theorem confirms that the population DCRC is not affected by the individual degree parameters
of node ¢ and node j. Furthermore, it implies: the diagonal dominating property holds for the
population DCRC, if the diagonal entries of M are larger than the off-diagonal entries of M.

The matrix M can be computed easily for given DCBM parameters. The following corollary gives
an interesting special case where the matrix P has only two parameters a and b and the community
sizes are balanced (the motivating example in Figure [2] belongs to this case with K = 2), a case
commonly studied in the DCBM literature. Our results imply that the diagonal dominating property
is always satisfied by the population DCRC in this case:

Corollary 1 (Diagonal-dominating). Under the DCBM model, suppose 0;’s are i.i.d. generated
from a distribution whose support is at o, hi o), for some a,, > 0 and a constant hy > 1, and
m;’s are Li.d. drawn from the uniform distribution over {ej,es, ... ,ex }. Asn — 0o, M converges
to My = K - [diag(P1x)] "' P?[diag(P1g)]~! in probability. Furthermore, when the diagonal
entries of P are equal to a and the off-diagonal entries are all equal to b, as long as a # b, the
diagonal entries of My are larger than the off-diagonal entries of My. As a result, DCRC* (3, j)
for two nodes in the same community must be larger than DCRC* (i, j) for two nodes in distinct
communities—the diagonal dominating property is satisfied.

3.2 Population analysis of DCRC. We formally analyze the asymptotic properties of DCRC™. This
requires a few technical conditions.

Assumption 1. There exist constants ci,Cq,co,Co,c3,C3 > 0 such that c; K70, <
Z?GCk 0; < C1K~Y0||1 and co K~|0]|* < Z?eck 9]2 < CoK Y02 for all k € [1,K], and
cs > 0 such that ¢z < Apin(PGP) < Anax(PGP) < Cs.

Assumption 2. There exists Cy € (0, 1) such that O pax < Cy. In addition, we have K0.,.«||0|| fl =
o(1) and K62, ]10] > = o(1).

Assumption 3. There exists cs > 0 such that for all k € [1, K], |e}, Pn| > cs.
Assumption 4. log(n)/[0min||0]l1] = o(1) and log(n)/[02,,110]1*] = o(1).

In Assumption[I] the first two inequalities imply that &' communities have balanced total degrees.
In the special case where 6;’s are all in the same order, these inequalities are satisfied as long as the
sizes of the K communities are of the same order. The third inequality in Assumption [I] implies
that PGP is well conditioned. In a special case where 6;’s are i.i.d. drawn from a distribution, this
reduces to requiring that the community matrix P is well-conditioned, which is a commonly used
assumption in the literature of SBM and DCBM (e.g., Jin, 2015). In Assumption 2] the requirement
that O1.x < Cjy is mild. To understand the other two requirements, we consider a simple case where
K is finite, in which these requirements translate to Opax < Y i ; 6; and 62, < >°" | 67, This
means that the degree parameter of any single node cannot be excessively dominant with respect to
other nodes, which is a mild condition. Assumption 4]is about network sparsity. Suppose all 6;’s
are at the order of ay,. Then, this assumption reduces to a,, > n~'/*[log(n)]*/4. It implies that

the average node degree has to grow with n at a speed of at least \/n log(n). As we will explain in
equation [5]and the text therein, this condition is essential for any curvature metrics to be useful and
cannot be further relaxed. Under these assumptions, we can calculate simplified expressions for the
moments of n;, n;, and n;;.

Lemma 1. Under the DCBM model in equation[I}equation 2} suppose that Assumptions [I}2] hold.
Consider two distinct nodes i and j. The following statements are true:

« E[n;] = K710,]|0||1(w}Pn) — 02, and Var(n;) = O(K_IGZ'HGHUT;Pn).
b E[n”\A” = 1] = 629j||9||2(7T;PGP7Tj) - Hlej(azz +9]2)7TZP7TJ
° Var(nij|Aij = 1) = O(HZGJHQHQ(?T;PGPTF]))

The following theorem examines the order the population DCRC. They will be useful for establish-
ing large-deviation bounds and asymptotic distributions:

Theorem 2 (Order of population DCRC). Under the DCBM model, suppose that Assumptions

2 2 2
hold. When i and j are in the same community, % < DCRC*(4,5) < %. When i
C1H9H1HPH1 C5||‘9H1
2K (P?) 1012
cillolz '

and j are in distinct communities, DCRC”* (4, j) <
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3.3 Large-deviation bounds for DCRC. We characterize the deviation of DCRC from its popula-
tion version. We first establish the following large deviation bounds for n;, n;, and n;;.

Lemma 2. Under the DCBM model, suppose that Assumptions[I}3| hold. Let § > 0. For i,j such
that i # j, with probability 1 — o(n=9%), the following hold conditionally on A;; = 1:

o 1/2
ni = K10,110l11 (v P)| < 2 1og(n) + [ 252 04]10]11 Tog ()]

o |nij — 0,0;]10112(x, PG Prj)| < 22 log(n) + |0 [206:6, (7. PG Pr;) log(n)]"/>.

Using the bounds in Lemma we are equipped to derive concentration bounds for DCRC(, j).
Theorem 3. Under the DCBM model, suppose that Assumptions [[{d| hold. Let § > 0. For i, j such
that i # j, define D;j = |[DCRC(i, j) — DCRC* (i, j)|. With probability 1 — o(n™°), the following
inequalities hold conditionally on A;; = 1:

« D.. < CCSK2H9H2([ log(n) }%+[ log(n)

1
.. E . . . . . .
ij S T2l 9:0,1002 (0,0, 1107 ] ) ifi and j are in the same community;

. cca K (P?) 1. |02 log(n) 1% log(n) AN . ..
Dy < <Kl ([53E1* + [amoibiors) "), i and j belong to distint

communities k and k (respectively).

If we compare the order of the above bounds with the order of the population DCRC in Theorem [2]
then we find that DCRC(%, j) will concentrate at DCRC™ (4, j) as long as the two terms inside the
brackets are o(1) as n — oo. This is equivalent to requiring

0.0,107 > log(n),  min{0,.0,}6] > log(n). 5)

When 6;’s are all at the same order, equation [5states that the average node degree should grow with
n at a speed faster than /n —since this order can be o(n), it permits moderately sparse networks.

Remark. This sparsity requirement is essential for the success of any curvature metrics. The effec-
tive sample size in all curvature metrics is determined by how many common neighbors two nodes
share, whose expectation is at the order of nafl if all 6;’s are at the order of «,,. In comparison, the
average node degree is at the order of na2. Therefore, if we want na:? to tend to infinity, we must
need na? to be at least /7 .

3.4 Asymptotic distribution of DCRC and uncertainty quantification. Finally, we determine the
asymptotic distribution of the DCRC in Theorem ] and [5] We introduce the following assumptions
on the network sparsity, which is akin to saying that Cy = o(1).

Assumption 5. 0., = o(1).
Assumption 6. Forall 1 <i <mn, K~'|0||10;7,Pn > 1 and 0,0;]0|*(7,PGPr;) > 1.

To clarify these assumptions, we remark that in the context of SBM (with 6; = v, forall 1 < i < n),
Assumption E] implies that na? > 1, which means that the network’s average degree na? must
satisfy na2 > /n. Therefore, we require that the network be sufficiently dense. This conditions
comes from the use of n,;, which counts the number of triangles passing by the edge (i, j); ensuring
that n;; > 1 requires the network to be sufficiently dense.
Theorem 4. Under the DCBM model in equation [I[}equation [2} suppose that Assumptions [I}
hold. Let s2 = izig Wi 170 (170;)
(Shoy i)

DCRC(i,j)—~DCRC*(4,j) £
DCFgc*(Lj)‘Sn J — N(O, 1).

Then, conditionally on A;; = 1, Ty, =

To apply Theorem ] for uncertainty quantification, we also introduce an estimator of the asymptotic
variance of DCRC(%, j) and establish the asymptotic normality of the self-normalized DCRC:

Theorem 5. Under the DCBM model in equation|[I}equation 2] suppose that Assumptions|[IH{6| hold.
Let 92 = DCRC(4, j)?/(A?);j. Then, conditionally on A;; =1, Ts , = DCRC(i’j);?CRC*(i’j) £
N(0,1).

From Theorem [5| we can derive a confidence interval for DCRC(4, ) and subsequently a threshold
for curvature-based clustering. In Appendix[D.I] we provide empirical support to Theoremsd]and[5]
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4 SIMULATIONS

We conducted simulations to verify the strength of DCRC on assisting existing community detection
algorithms. We simulated DCBM using parameter values specified in each experiment section. The
notations for DCBM are the same as in the previous sections, with the exception of vy, which denotes
the proportions of community sizes.

In the following experiments, each simulated graph is preprocessed by removing edges with curva-
ture values smaller than a certain threshold. Then, on the preprocessed graph, we apply six existing
representative community detection algorithms with diverse methodological approaches, which are
used in comparative evaluation (Jin et al., 2021)). These six methods are: Convexified Modularity
Maximization (CMM, |Chen et al.| [2018]), Latent Space Clustering via Distance (LSCD, Ma et al.,
2020), Normalized Spectral Clustering (OCCAM, |Zhang et al.,|2020), Regularized Spectral Cluster-
ing (RSC, Qin & Rohel 2013)), Spectral Clustering on Ratios-of-Eigenvectors (SCORE, Jin, [2015),
and its enhanced version, SCORE+ (Jin et al., [2021)). The performance of community detection is
evaluated by the clustering error rate (equation [25)).

%H.%% ++$%++%é+;$é+$é$ﬂ.#
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Figure 3: Relative performance of DCRC compared to BFC, FRC, ' rate change across DCRC per-

Jaccard, and LRC, faceted by algorithms and curvatures. centile threshold.

Experiment 1 - Comparison of five curvatures: In this experiment, we generated a hundred in-
dependent graphs with total node number n = 150, & = 3 communities of size proportion to
~ = (0.1,0.2,0.7), degree heterogeneity parameter 6 ~ Unif(0.5,1.5), and a probability matrix P
with diagonal entries equal to 0.6 and off-diagonal entries equal to 0.3. We first compared the perfor-
mances of DCRC-based preprocessing method from other curvature-based preprocessing methods.
We omitted ORC from the following analyses due to its high computational cost (cubic in number
of nodes). After computing edge curvatures on the graph, we removed edges with DCRC values
below a tuned threshold in percentile. Figure [3]shows the relative performance of DCRC compared
with other curvature measures. Relative performance is defined as the difference between the im-
provement (of clustering error) over the baseline achieved by DCRC-based preprocessing and that
achieved by an alternative curvature-based preprocessing. The x-axis lists the curvature measures
being compared with DCRC, and values greater than zero indicate that DCRC provides greater
improvement. Stars above each box plot indicate whether the mean relative performance is signifi-
cantly greater than zero, based on a one-sample t-test, with 1-3 stars corresponding to p-values less
than 0.05,0.01,0.001. Overall, DCRC demonstrates significant improvement over most curvature-
based preprocessing methods, with the exception of BFC under CMM and FRC under OCCAM.
Even in these cases, however, the median remains above zero, indicating that DCRC outperforms
the alternative curvature measure in more than half of the replicates.

Experiment 2 - Robustness of DCRC preprocessing to thresholds: Secondly, we evaluated the
performance change of DCRC preprocessing across different percentile threshold. We conducted
the same pipeline as Experiment 1. Figure [ depicts the change in clustering error rate from that of
the raw graph. Since we are using clustering error rate as performance metric, negative values in the
plot indicate performance improvement over the baseline community detection algorithm. It appears
that the results are initially unstable across all algorithms but begin to stabilize around 5% percentile.
The performance of OCCAM shows the least improvement, while SCORE benefits the most from
DCRC-based preprocessing. A key observation is that most algorithm exhibit either comparable or
improved performance compared to the baseline after the 5% percentile threshold, demonstrating
robustness of DCRC-based preprocessing to the choice of cutoff. We compared the performance of
DCRC with other curvature measures across various threshold in Figure
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Experiment 3 - Performance of DCRC across varying DCBM settings: For the third experiment,
we accessed the performance of DCRC preprocessing across different DCBM graph configurations.
The parameters used for generating different DCBM graphs is provided in Table [ST|and the distri-
bution of DCRC for each graph configuration is given in Figure [S2} For each graph configuration,
we generated a hundred independent graphs and followed the same procedure as in Experiment 1.
Figure [5| presents the improvement in community detection performance achieved by DCRC-based
preprocessing relative to the baseline. While the magnitude of improvement varies across differ-
ent DCBM graph conditions, DCRC consistently provides significant gains across all seven graph
settings and six community detection algorithms considered in this experiment.
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Figure 5: Improvement of DCRC over baseline, faceted by algorithms and graphs.

Appendix [D.T| contains additional simulations for varying node size and number of communities.

5 APPLICATIONS

We assessed the practical utility of our DCRC through an application to real-world datasets: the Cal-
tech, Simmons, and Political blog datasets. The Caltech and Simmons datasets represent Facebook
social networks in September 2005 at California Institute of Technology and Simmons University,
respectively (Red et al.,[2011). The nodes indicate Facebook users at each university, and the edges
represent “friend” relationship between two different users. For the following analysis, we used the
community structure suggested by Red et al.|(2011)) as the ground truth community structure. As a
different case, Political blog dataset is a single-day snapshot of citations among different political
blogs in 2005 gathered by |Adamic & Glance| (2005). Each node represents a political blog and an
edge denotes that at least one of the blogs cited the other. The community membership of each node
is assigned from the blog’s ideology classification.

For real-world dataset analysis, we use both the DCRC value and its estimated variance for DCRC
preprocessing step since real data is noisier with edges that are false positive or false negative.
Hence, we preprocessed the network data by deleting edges characterized by both low DCRC value
and low variability, aiming to eliminate more reliable across-community edges. For other curvature
measures, however, we only use the curvature value as the threshold, since the variance of these
curvatures is not given in literature, further highlighting our theoretical contribution. Then, we use
the same six community detection algorithms as before and report the clustering error rate.

Facebook network at California Institute of Technology: Caltech dataset has 590 nodes and
12,822 edges, with eight communities. Table[I]shows the result of applying different curvature pre-
processing method to six community detection algorithms. Bold values show the best performance
across different curvature metrics in a specific community detection algorithm, and the underlined
value indicates the best performance across all curvature and all algorithms. Comparing the cluster-
ing error rate between curvatures, DCRC-based preprocessing achieves the lowest error rate com-
pared to other curvatures. Although DCRC is not the best when applied with LSCD, it shows a
significant performance improvement over the baseline. In fact, DCRC is the only curvature among
the five that consistently improves all six algorithms.

Facebook network at Simmons University: Simmons dataset has 1,137 nodes and 24,257 edges
with four communities. As shown in the second row of Table T} although the FRC achieves the best
overall performance, it does not consistently guarantee improvement over the baseline (see CMM).
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Table 1: Clustering error rate comparison by curvature on three real networks
Dataset Curvature CMM LSCD OCCAM RSC SCORE SCORE+

Baseline 125.0  100.0 195.0 213.0 179.0 100.0

BFC 98.0 94.0 199.0 158.0 138.0 105.0

Caltech FRC 87.0 103.0 157.0 170.0 148.0 102.0
Jaccard 94.0 99.0 190.0 154.0 150.0 114.0

LRC 97.0 93.0 197.0 155.0 137.0 104.0

DCRC 82.0 97.0 118.0 131.0 134.0 94.0

Baseline 139.0 1350 267.0 359.0 268.0 127.0

BFC 140.0  131.0 231.0 359.0  227.0 125.0

Simmons FRC 139.0 127.0 217.0 311.0  218.0 120.0
Jaccard 140.0  136.0 262.0 326.0 224.0 125.0

LRC 137.0  132.0 238.0 355.0 229.0 125.0

DCRC 131.0 131.0 222.0 281.0 213.0 123.0

Baseline 61.0 60.0 59.0 394.0 58.0 51.0

BFC 61.0 59.0 58.0 307.0 59.0 58.0

Polblog  FRC 62.0 58.0 59.0 377.0 59.0 52.0
Jaccard 60.0 58.0 57.0 176.0 55.0 52.0

LRC 61.0 58.0 59.0 351.0 63.0 57.0

DCRC 57.0 51.0 54.0 55.0 52.0 50.0

However, DCRC consistently improves the performance over the baseline and achieves the best or
second-best performance across all community detection algorithms.

Political blog citation network: Political blog dataset contains 12,222 nodes and 16,714 edges
with two communities (liberal vs. conservative). As reported in the third row of Table |I} DCRC
exceeds the other curvatures in all settings. For certain methods such as CMM, OCCAM, and
SCORE-H+, curvature-based preprocessing generally yields marginal benefit. This pattern is probably
due to the dataset’s relatively simple community structure. Importantly, DCRC-based preprocess-
ing consistently benefits all six community detection algorithms, significantly improves RSC, and
achieves the best overall results when combined with SCORE+.

6 DISCUSSION

This study discusses how existing network curvature measures fail to account for degree hetero-
geneity. This is important, as it is natural for nodes to exhibit heterogeneous behavior in many
real-world networks. Our main contribution is the introduction and the theoretical validation of
DCRC, a novel network curvature that effectively addresses degree heterogeneity. Supported by
rigorous theoretical guarantees, we proposed DCRC-based preprocessing that improves community
detection performance. This is further evidenced by empirical results from both simulations and
real-world datasets. The simulation experiments highlight DCRC’s superior performance on DCBM
graphs compared to previous curvature measures and demonstrate its effectiveness across six differ-
ent community detection algorithms under a range of DCBM setting. The real-world analyses fur-
ther affirm these findings, as DCRC-based preprocessing consistently achieves top-tier performance
across most community detection algorithms on three real-world network dataset.

Several limitations of this study should be noted, since it provides promising future research direc-
tions. First, DCRC is defined only on an undirected, unweighted graph. As can be observed from
gene networks to bank transaction networks, many real-world networks involve either directed or
weighted edges. Hence, extending the definition of DCRC to directed and weighted graphs could
significantly broaden its applicability to various real-world networks.Second, our analysis focuses on
networks with discrete (non-overlapping) community memberships, while many real-world network
exhibit overlapping structure. For example, genes often function in several biological pathways, and
individuals typically belong to multiple social groups. Extending theoretical or empirical investi-
gations of DCRC and other curvatures on networks with overlapping memberships will provide us
with a method to reveal hidden structure that is not detected under hard clustering and allow for
more informative analysis on real-world problems. Third, we mainly focus on community detection
of network data in our study. By extending the study of various curvatures on different network
analysis tasks, such as link prediction and network comparison, future research could give more
comprehensive understanding of graph curvature measures.
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A DATA AND CODE AVAILABILITY

Code is available at: https://anonymous.4open.science/r/dcrc—-638C4

B PROOFS

Throughout the proofs, for a given node i € [[1,n] in the following proofs, we interchangeably use
the notation 7; and e ;) to denote the (degenerate) membership vector of node i, where z(i) €
[1, K] maps i to its corresponding network community.

B.1 PRoOOF oF LEMMA[I]

Mean of n;,. We have, for all i € [1,n]:

DA = Q5 — Qi = €L, — €]Qe;.
j#i j=1
Therefore

E[n] = €;Q1,, — 07 = 0;m; PI'O1,, — 07 = K~ 10,(|0]|1 (e ;) Pn) — 67
Furthermore, from Assumptionm we see that:

€01, =0, ZZ(’W 0) Py > cK16,]6]1.
ke j=1
Therefore, using Assumption 2] we have
6? KO max

< =o0(1).
aat, < o, oW

It follows that
E[n;] =< K~'0:]10]l1(e ;) Pn)-

Variance of n;,. We also have, for all i € [1,n]:

Var Tll = Var ZA” = ZV&I‘(AU‘) = ZQU(l — Qlj) S iQ” = 6;9]_”
j=1

i i i
Therefore,
Var(n;) < K10; 1611 (¢ Pn)-

Mean of n;;. We have, forall ¢, j € [1,n] with i # j:

Elnij|Aij = 1] Z A | = D7 Q= (9%)i5 — Qi (s + Q).
k#1,j k#1,j
Note that:
(Q%);; = e,0%; = e,OIIPI'O*IIPII'O¢; = ||0||20;0,7, PG Pr;.
Hence,

ElnijlAij = 1] = 0,0, 101> (% iy PG Pes(jy) — 0:05(07 + 07) Poiy- ()
Furthermore, from Assumptions mand@ we see that:

0,0,(02 + 9 (i) 2 262
( ) (1)2(5) S > emax — 0(1)
G, 10 (L PG Pe-iy) = T (PGP)

It follows that
E[nij|Aij = 1] = oiajHGHQ(e;(i)PGPez(j))'
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Variance of n;;. We have, for all 4, j € [1,n] with i # j:

n
Var(nij|Aij = 1) = Var Z AikAjk = Z Val"(AikAjk)
k+#i,j§ k#i,j
> Qa1 — Qi) < > Qi
k#i,j k#i,j

Therefore, it follows that

Var(nij|Aij = 1) < C@lej||9||2(6/Z(1)PGP62(J))

B.2 PROOF OF THEOREM/[I]

In equation|3} we have defined DCRC*(i, j) := n};/(nin}), where (n},n},n};) are the respective

major terms in (En;, Enj, En;;). By Lemma ni = K'60;(0||1 - 7j Py and ny; = 0:0,]60]|> -
7, PGPrj. We assume that z(:) = k and z(j) = ¢ without loss of generality. It follows that

K2|0|>  «PGPr;  KZ?|0|*> €, PGPe,

DCRC*(i,j) = : -
GO =T e en = R (P (e,Pa)
_ K¥lof diag(Pn)~t],, (PGP)y, [diag(Pn)~*
- ||0||% : [ lag( 77) ]kk ( )k@ [ lag( n) }[Z
K2 9 2 ) B ) B K2 0 2
= ||;|II2H - [diag(Pn)~" - (PGP) - diag(Pn) '], = 9””2| - M.
1 1
This proves the claim. O

B.3 PROOF OF LEMMA[II

In the definition of M, only GG and n are random quantities under the assumptions of this lemma.
Therefore, we first study G and 7.

Consider G. By definition, G is a diagonal matrix, with
Tiec, # _ nT Y0 (0g202) 1{2() =k} _ Vi
10112 n=t Y (an?67) X

We recall that (o, 2)67 are i.i.d. variables whose support is in [1, h?]. Let wy = E[a;;%62]. Since

Var(a,,202) < oo, by law of large numbers,

Gk, k) =

X — wo, in probability.

Moreover, 1{z(i) = k} are i.i.d. Bernoulli variables with a mean of 1/K, and z(4) is independent
of 6;. It follows that (v, 26?) - 1{z(i) = k} are i.i.d. variables whose mean is wy/K and whose
variance is finite. Using law of large numbers again,

Y — wo/K, in probability.
We conclude that G(k, k) — K in probability, foreach 1 < k < K.
Consider 7. By definition,

iy = K Tice b Ko S (0200 1) =)
16l n LS (an 6:) W

Let w; = E[a, 16;]. We can similarly show that
Wy — w1, in proability, and Zr — K - (w1 /K), in probability.
We conclude that (k) — 1 in probability, foreach 1 < k < K.
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We now show the claims. Our analysis of G and 7 has suggested that G — K - Ix and n — 1k in
probability. It follows that

M = [diag(Pn)]~' PGP[diag(Pn)] ™" — Mo := [diag(P1x)]”' (K - P*)[diag(P1x)]™"
This proves the first claim about M.

When the diagonals of P and a and the off-diagonals are b, we can write P = b1 1% + (a —b)I .
It follows that

Plg =blg(Txlk) +(a—b)lk = [a+ (K —1)b] - 1k,
P? =blg1 P+ (a—b)P=b-[2a+ (K —2)b] - 11 + (a — b)*Ik.
We plug them into the definition of M. It is easy to see that for all k # ¢,
b-[2a+ (K — 2)b] + (a — b)? b-[2a + (K — 2)b]
[a+ (K —1)b)? ’ [a+ (K —1)b]?

M(k, k) = M(k,0) =

The diagonal entries of M are strictly larger than the off-diagonal entries by a constant (a — b)?.
Since |M — My|| = op(1), we conclude that with probability tending to 1, the diagonal entries of
M are strictly larger than the off-diagonal entries. [

B.4 PROOF OF THEOREM[Z]

We first obtain bounds for e, ( i)Pn and €/, PGPe ) depending on the community memberships
of 7 and j.

When ¢ and j belong to the same community k, we have:

(Z 0 )PM < Ci||Pl|x,

ueC

2| p2 5 €
¢, ;yPGPe,j) = |0”2 Z (Z 0 ) P>

ueC

/ o
PN = eGP = el Z
=1

When ¢ and j belong to distinct communities & and « (respectively, with k& # k), we have:

ey Pn = ol Z(ZQ )PMZCM

ueC,

2
elz(j)PGPez(j) - ||9||2 Z (Z 0 > Pk@Pné < 02( ) kk

= u€eCy

As aresult, when ¢, j € Ci, we can lower bound the population Degree-Corrected Ricci Curvature
as follows:

K2[16]7(¢!, 1>PGPezu>> L oK
0130 o, Py Pn) = CRIGTZIPTE
We can also upper bound it, using Assumption [3}

K2(0]%(el(y PG Pe.(;)) _ GsK2|0))
HCANZICAN D R

DCRC*(i,5) =

DCRC*(i,j) =

Conversely, when ¢ € C, and j € C,;, with k # K, we upper bound the population Degree-Corrected
Ricci Curvature as follows:

SURC ; PGP _ exK (P2 6]
[0 Py P~ AT

DCRC*(i,7) =
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B.5 PROOF OF LEMMA[2]

Concentration of n;. Noting that |A;; — €2;;| < 1, we can apply Bernstein’s inequality to obtain
that for all 4 € [1,n], with probability 1 — o(n=°):

25(62(1')1377)

20
C_ 1l < 22

1/2
A log(n)] :

Therefore, since |n; — e/Q1,| < |n; — E[n;]| + e/Qe; with e/Qe; = 02, we have with probability
1 —o(n™%):

26(e’ .,y Pn)

. 26
< —
ny— K710,10]11 (¢l Po)| < 5 log(m) + | —1

1/2
031011 log(n)] :

Concentration of n;;. Noting that |A;xAjr — Qx| < 1, we can apply Bernstein’s inequality
to obtain that for all i, j € [1,n], with probability 1 — o(n~?):
26 1/2
[nij = Elni;]| < 3 log(n) + 6] [zaeiej(e;(i)mpez(j)) 1og(n)] .
Note that
|nij = (9%)i)] < Inij — Elnig]] + Qi (i + Q)
< |nij — Elnij]| + 6:0;(67 + 67).
Therefore, we have with probability 1 — o(n~?):
20 1/2
niy = 0:6;10]2(€l o PGPe-(5))| < 5 log(n) + 0] [200,0,(€l ) PGPes ;) log(m)|
L]

B.6 PROOF OF THEOREM[3]

To simplify notations, we denote:
nij = 9i9j||9\| (e z(i)PGPez(j))v
and
A; = (n; — ng) /i,
Aij = (nij — Tig) /Mg
We can therefore write:
’Ilij _ ﬁij

o Mij Ay A+ (4
Tonng (1 + A )(
Based on Theorem we know that with probability 1 — o(n~?),

1/2

L+4,)4,
1+4,)

NN n;iM;

)

_ 2K 4§ log(n ) 2K log(n )
A < 30: 110111 (€, ; Pm) le [101]]1 (e’ €20 Pn)

€2

1/2
N 26 log(n) N 26 log(n) /
T = 300,10 (¢ PGPery)) | 80,0, PGPery) |

Using Assumptions|[T} 3] and @] we obtain that

A < C'log(n) [C’log(n)]l/2 [C’log(n)]l/2 —o(1)
" lolh 01611 0|61l ’
A< C'log(n) [Clog(n)}1/2< [Clog(n)]l/Zzo(l)
0000012 [6:0; 0112 0,010 '
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Notice that DCRC* (i, j) = 75/ (Rin;). It follows that:

M5 popce,g)| < o porery) - [0 1T [ st )
nin; ha=e RN A min{6;, 0,116 | )

It follows from Theorem [2]that if 7 and j belong to the same community:

c@www.{mw]m+[ log(n) T“
=&l 0:0;116] min{6;, 0; 1[0 ] )

Tlij

A

- DC’RC*(i,j)‘

nin;

and if ¢ and j belong to distinct communities k and « (respectively):

nw_mmw@ﬁ<wﬂﬂﬁmW?<F%W}m+{MW@}W>

nin; - cil10113 0:051/011> min{6;, 0;}(16]11
O
B.7 PROOF OF THEOREM[4]
Fix ¢ and j. We introduce the following random variables:
n; n; Ngj — N5
U=~ U=~ Vy=—r>" (©)
1 7 1)
Recall that DCRC(4, j) = n;/(nin;) and DCRC* (4, j) = nj;/(ninj). It follows that
DCRC(i, j) = —22 L [DCRC* (i, 4) + Vi) - !
’ n:‘n;‘ UiU] ’ * UZUJ ’
and
. . DCRC*(4,j) - (1 — U;U;) Vi
DCRC — DCRC* = : Qb e
Therefore, we have the following expression:
DCRC(i,j) — DCRC*(4,5) 1 —U;U; Vi o 1
= .[1 + IQ X Ig.
To show that the left hand side converges to A/(0, 1), we only need to show the following results:
L0, L5 MN01), ;-1 0)

Given equation |/} the claim of this theorem follows from elementary probability.

We now show equation[7} The first and third claims are both about U;Uj, so we show them together.
From Lemma 1| and the proof of Theorem 2| n; = 6;0||1, E[n;] = n} — 62, and Var(n;) =
O6;119]1)- As a result,

E[(n; —n})?] = Var(n;) + (E[n] —n})* = 0(8:]10]11) + 0(6}) = O(6:]]]1).

It follows that

E[(U; —1)%] = E[(n(in;)?) - O(eiulenl) =o(l), (8)

where in the last equality we have used 6;]|6]|; — oo (which is guaranteed by our assumption). The

above implies that U; . Similarly, we can show that U; £ 1. It follows that

1 P
1. 9
0.0, — &)

I3 =
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This proves the third claim in equation [/} To show the first claim in equation [7] we recall the
definition of s,, and comparing it with n;;. It follows that

1

Si = W Z QkZQkJ<1 — Q]”)(l — Qk:g)

U7 ki
1

= Z [Q0i 5 — Qi — Wi + Q0]
Y7 kg
1

= (nn)2 {n;} = D [9R + 2 — OR8] } (10)
v k#i,j

Note that ;; < 6,0; for all 4, j. Additionally, by Lemma and Theorem [2} n}; = 0,0;]|0]>. We
combine these observations to obtain:

nij — O x 03005 _ niy — COGIION3 _ nf;-[L—o()]  C~
(n};)? - (nf;)? - (ni;)2 00510012

1] 1] 1]

2
n =

(1)

S

where in the third inequality in equation [I 1| we have used [|0]|3 < Omax||0]|* = o(1) - [|0]>. We
combine equation [[T| with equation[§] It follows that

0;0;110||?
s B0~ 17 = o %) — 0(8.) = o)
A
Similarly, we can show that s,, 2 E[(U; — 1)?] = o(1). We immediately conclude that
U;—1 p Ui—1 p

— 0, and — 0. (12)
Sn Sn

Notice that

1-UU; 1 1-U; 1 1-U;
= = X + — X .
Here, U; and U; converge to 1 in probability, and (1 — U;)/s,, and (1 — U;)/s, converge to 0 in
probability. It follows that

I

L 0. 13)

This proves the first claim in equation[7}

It remains to show the second claim in equation|/| Note that:

I Vi _(ngj —ng)/(niny)  ng —ng;
2= * (s - * * ook - .
DCRC*(4,j) - sn ny;/(ning) - sn nj; - Sn

We use the expression of s2 in equation It yields that

*
nij — nij

\/Ek;&i’j Qi s (1 — Qg ) (1 — Qi)

Meanwhile, we can decompose n;; as follows:

I

ni; = Z A Ay = Z (Qir + Wig) Q5 + W)
k=1

k#i,j
= Qi+ > QWi+ Y Wl + Y Wi
k#i,j k#i,j k#i,j k#i,j

= E[ni;] + J1 + J2 + Js.
Combining the above results gives
(Bl =) + i+ Ja+ s
VSt Qs (1= Q) (1= )

I (14)
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We note that Js3 is a sum of independent, mean-zero random variables; furthermore,
Var(Wix Wi;) = Qi (1 — Qi) (1 — Q). We immediately have

Var(Js) = Y Qi (1 — Qi) (1 — Q).
k#i,j
Using this and equation 10} we have s? = Var(J3)/ (n;‘j)Q; and in equation |11} we have seen that
5% > [1 — o(1)]/n};. Combining these statements gives Var(.J3) > n;; - [1 — o(1)]. Meanwhile, it
is easy to see that Var(Js) < >, Qi Q; < n;;. Hence, we re-write equation as
(E[nig] —=ni;) + 1+ J2a+ J3

Iy, = , where  Var(J3) ~ n}; < 0,0;]0]°. 15
2 ) (Ja) ~ i < 0:6; 6], (15)

By Lemma Elni;] —nj; < C0;0;(67 + 67). It follows that
Efni;] —nt  C0,60,(6% + 6 3
[ris] = i < 507+ 95) _ Ofhnax =o(1). (16)

VVar(Js) — 0elle2 9]

Moreover,
Var(Jp) = Y Q50 (1 — Q) < C > (0:604)20x0; < C0;0,]|0]3 = o(1) - Var(J3).
ki,j )
Similarly, we can show that Var(.Jz) = o(1) - Var(.J3). Combining these results gives
Ji+J
Nty P.oo. (17
Var(J3)
We plug equation [T6equation[I7]into equation[I3] It is seen that
J-
I = op(1) + 5 (18)

\/ VaI‘(Jg) .

We now study Js. It is the sum of (n — 2) independent but not identically distributed random
variables. We apply Lyapunov’s central limit theorem with § = 2 (it requires evaluating the sum of
(2 + 9)th moments of these variables). By direct calculations,

S EWAW] < C Y 0:0,040; < C0:0;]0)>.
k#i,j k

As aresult,
s EWAW) _ o oi0,l02
[Var(J3)]? =~ (6:05116]1%) ’
where the last equality is because our assumptions imply that 62, ||0||*> — oc. This has verified the
Lyapunov’s condition. We immediately conclude that
s
Var(J3)
The second claim in equation [/| follows from combining equation |19 with equation This com-
pletes the proofs. O

5 N(0,1). (19)

B.8 PROOF OF THEOREM[3]

By Theorem[4]
DCRC(i,j) — DCRC*(i,§) ¢

0,1 20
DCRC™(i, j)sn = NOD), 20)
where the variance can be estimated using:
1
2 2
0, = DCRC(i, §)
(AQ)U

19



Under review as a conference paper at ICLR 2026

Let’s now show that ¥y, is a consistent estimator of DCRC™ (3, j)s,. We have:
O, DCRC(i,j) 1 DCRC(i,j) 1 Sn

DCRC*(i:j)sn ~ DCRC*(i.J)  (42)]%, DCRC*(@.d) (42)}[%5, s’

21

where we have introduced the quantity s,, := [((22)”- — Qi (Qy + ij)} 2 We will now show
that each factor in the above expression converges to 1 as n — oo.

First, recognize that

1/2
1
Sn = o Z Qkiij(l — ka)(l — Qk])
W\ k#4,j
1/2

1 1 1
< Qi Qe < — =

1ij I;:J ’ ()2 0:0;]|0]2(m; PG Prj)

1

< —— =9(1
= esOminllOf? o).

using Assumption E} Therefore, combining the fact that s,, = o(1) with Equation we obtain
from Slutsky’s lemma that:
DCRC(i,j) P
DCRC*(i,j) n—oo

(22)

. ~ . . —1/2
Second, we examine the factor (AQ);j/ *3,. For convenience, we denote 8, := [(A%);] 2 Note
that

E {(Zkﬂj AiAjr — Qiijk)1 ~ Var (Zk#d Az‘kAjk)

2
E ( (Az)l.] _ 1) —
02); — Qi (s + Qi 2 2
()i = iy i) (Zz#m Qz‘ijk) (Zkyﬁi,j Qikﬂjk)
 Dwpig Var(AiwAje) g Qarlln(1 — Qi)
= 2 = 2
(Zk;éi,j Q7kQJk) (Zk#i,j Qiijk)
1 1

< = — =o(1).
Do Uik 0 — Qi (R + Q) o

Therefore, we obtain from Markov’s inequality that (A2);;/ [(Q2);; — Qi (Qi +Q;5)] — 1,

which implies that 32 /32 2 1, and therefore that

1 §n P
— =ty (23)
(42)}/%5,
Third, we examine the factor 5,,/s,. Note that
s2 1
2 e Z Qir Qi (1 — Qir Q) | - Z Qi
" K k4, ki,
2 02
_ [1 (i + Q) kg VUi (R + Q)
n;‘j n;“j n;“j
0202,
— [10(1)2’6#73*“% 1= 0(1)].
ny;

Here we will use the assumption that for all u € [1,n], 6,, = o(1). This implies that 2;;; = o(1),
and therefore:

2
Sno_ 4 _
5= L—o(l) — L. 4)
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We can now combine equations and equation [21|to obtain that ¥, is a consistent estimator of
DCRC*(i,7)sn:
f}n P

1.
DCRC*(i,j)sn n—oo

Then, an additional application of Slutsky’s lemma yields:
DCRC(i,j) — DCRC*(i,j
(i, ) _1522,.7) £, N(0,1).
DCRC(i,j) - (A2),.

)

C DCRC-BASED PREPROCESSING ALGORITHM

In addition to introducing the novel DCRC measure, we propose a DCRC-based graph preprocessing
method, adapted from the approach inPark & L1i|(2025)), described in Algorithm Here, f denotes
a function applied to the DCRC value. In the simulation studies, we used the identity function,
meaning edges were removed only if their DCRC value was below a specified threshold. For the
real data analysis, the function incorporated both the DCRC value and its variance estimate.

Algorithm S1: DCRC-based preprocessing method for community detection

Input: Raw network data: G = (V, E)

Output: Preprocessed network data G’ = (V, E')

Calculate the DCRC for all edges;

Remove all edges based on specified criteria (o) based on DCRC:
E':={(i,j) € E: f(DCRC(i,j)) > a}

D ADDITIONAL EXPERIMENTS AND DETAILS

The clustering error rate employed in this paper is as follows, widely used in multiple literature (Jin,
2015 Gao et al., 2018} |Jin et al., 2021)).

n

1
Clustering Error Rate = min — 1{7(4;) # 4;}. (25)

T:permutation over {1,2,.... K} N 4 7
i=

All experiments presented in the paper were conducted using a computing cluster, utilizing nodes
equipped with AMD EPYC 9354 32-Core Processors and up to 200 GB per node. The total compu-
tation time is estimated as follows: approximately 1 hour for Experiments 1 and 2, about 1 hour and
40 minutes for Experiment 3, and roughly 46 hours for the real data analysis.

D.1 SIMULATION

The graphs used in these additional results are the same as those specified in the main paper.

Additional Results for Experiment 1 & 2: Figure |S1|illustrates the performance of various cur-
vature metrics on different community detection algorithms across a range of percentile thresholds.
From the figure, we observe that certain curvature metrics outperform DCRC at specific thresholds -
for example, FRC in CMM and BFC in OCCAM. However, DCRC consistently achieves the lowest
clustering error rate across a wide range of thresholds, whereas the performance of other curvature
metrics tend to fluctuate more significantly. These results suggest that DCRC offers more stable
and reliable improvements to community detection performance compared to other curvature-based
preprocessing methods.

Additional Results for Experiment 3: Table |[S1| summarizes the parameters of the seven DCBM
graphs used in the main text. In the Parameters column, (x, y) indicate the range of the Uniform
distribution from which each 6; is randomly sampled. A specifies the diagonal entry of the P matrix,
while B denotes the off-diagonal entry. Each graph has total n = 150 nodes with £ = 3 communities
where community size ratio is 1:2:7.
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Figure S1: Comparison of curvature performance at various quantile thresholds for six community
detection algorithms.

Figure |§_7| shows the distribution of BFC, FRC, LRC, and DCRC for a single instance of each of
the seven graphs listed in Table[ST] In each histogram, red bars represent across-community edges,
while and blue bars indicate within-community edges. In Graph 1, 3, and 4, DCRC demonstrates
clearer separation between across-community edges and within-community edges compared to the
other curvature metrics. Notably, FRC values exhibit more overlap between edge types than others.
In the remaining histograms, although there is a substantial overlap between across- and within-
community edges - highlighting the difficulty of community detection in these graphs - the DCRC-
based preprocessing method still leads to improved community detection performance.

Table S1: Parameters used to generate seven DCBM graphs in Experiment 3.

Dataset Iz)z:,r;n:itg;s
Graph 1 (0.5, 1.5, 0.6, 0.3)
Graph2 (0.5, 1.5, 0.18, 0.06)
Graph 3 (0.5, 1.5,0.9,0.3)
Graph4  (0.5,2.5,0.6,0.3)
Graph 5 (0.1, 0.8,0.9,0.3)
Graph 6  (0.5,2.5,0.6,0.3)
Graph 7 (0.1, 0.8, 0.6, 0.3)
Metrics n Mean SD QQ Corr
1000 -0.072  0.997 0.998
Tym 3000 -0.039 1.000 0.999
5000 -0.029 1.003 1.000
1000 -0.259 1.096 0.968
T5., 3000 -0.131 0.957 0.993
5000 -0.099 0.940 0.997

Table S2: Summary statistics from the simulations for Theorem 4 and Theorem 5. For a DCBM net-
work with n total nodes, the sample mean, standard deviation, and QQ plot correlation are reported
in the table.

Experiment 4 - Simulation for Theorem 4 and Theorem 5: For empirical validation of Theorem
4 and Theorem 5, we generated three DCBM networks with increasing total node counts (n =
1000, 3000, 5000), holding (K, z,y, A, B) = (2,1,1,0.07,0.1) and v = (0.5,0.5). As shown in
Figure |S_'§L the distribution of 7} ,, and T5 ,, converges to standard normal distribution as the total
number of counts increases.
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Figure S2: Curvature histograms for seven graphs used in Experiment 3.

Table [S2] presents summary statistics, where we can observe that the sample mean of normalized
DCRC values approaches zero and its standard deviation converges to one as n increases. Moreover,
the correlation of QQ plot quantiles approaches one as the total number of nodes increases. Hence,

23



Under review as a conference paper at ICLR 2026

n =1000 n = 3000 n = 5000
(a) (b) (c) (d) (e) U]

04

03 04
03 04

03

Density
0.2
Density

0.2
02
Density
Density
0.
Density
2

Density
0.2

0

00 o1
0

00 o1
0

0

4 2 0 2 4 8 6 4 2 0 2 4 4 2 0 2 4 8 6 4 2 0 2 4 4 2 0 2 4 8 6 4 2 0 2 4
Tan Tsn Tan Tsn Tan Tsn

Figure S3: Simulated distributions of the metrics from Theorem E (T4,n) and Theorem |5 (15, ,,)

across increasing network sizes n. The overlaid solid line is the standard normal distribution,
N(0,1).

these results empirically validate the asymptotic normality property of DCRC in Theorem 4 and
Theorem 5.

Experiment 5 - Additional Results for Varying Total Node Number: We evaluated our method
on DCBM networks with increasing numbers of nodes, each with eight communities in size ratios
(0.04,0.07,0.11,0.14,0.18,0.21,0.25,0.29). Following the notation of Table we set the het-
erogeneity and probability matrix parameters to (z,y, 4, B) = (0.5,1.5,0.6,0.3) and follow the
pipeline in Experiment 1. To further show the robustness, we generated a hundred independent
graphs per configuration, and presented the improvement of clustering error rate due to DCRC-
based preprocessing relative to the baseline in Figure[S4] Each improvement was normalized by its
total node number, for fair comparison between different graph sizes. The results show that DCRC
significantly improves all six methods across all three node sizes.
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Figure S4: Box plots illustrating the performance improvement, quantified as the reduction in the
clustering error rate, from DCRC-based preprocessing over the baseline as total number of nodes
changes.
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Figure S5: Box plots summarizing the performance improvement, quantified as the reduction in the
clustering error rate, from DCRC-based preprocessing over the baseline as total community number
changes.

Experiment 6 - Additional Results for Varying Community Number: We assessed our method
on DCBM networks with increasing numbers of community, keeping n = 300 fixed. Following the
notation of Supplement Table[S1} we set (z,y, A, B) = (0.5,1.5,0.6,0.3) and carried out the exper-
iments as in Experiment 1. Specifically, we tried K = 3, 4, 8, to match the number of communities

24



Under review as a conference paper at ICLR 2026

in real dataset used in our manuscript, with community ratio (0.1,0.2,0.7), (0.10, 0.20,0.30, 0.40),
and (0.04,0.07,0.11,0.14,0.18,0.21,0.25,0.29). For each configuration, we generated a hundred
independent graphs and report the distribution of improvement of clustering error relative to the
baseline in Figure[S5] DCBM significantly improves all community detection methods by reducing
mismatch counts regardless of the number of communities, except for OCCAM with k£ = 3. How-
ever, the extend of improvement varies across methods and number of communities, likely due to
differences in the nature of the existing community detection methods.

D.2 REAL DATA

Figures[S6] and[S8]illustrate the change in clustering error rate from the baseline across different
threshold line. Since real data does not exactly follow the DCBM model, we also utilized the
variability of DCRC values in the threshold. This threshold enables the removal of edges with
both low DCRC values and low variability, increasing the likelihood of eliminating consistently low
DCRC edges. The detailed procedure is as follows: each threshold line is drawn on a scatter plot
where x-axis represents DCRC value and y-axis represents the standard deviation of DCRC(, 5).
Edges lying below the threshold line are removed from the graph during preprocessing. The Theta
in the y-axis of those figures indicates the angle between the threshold line and the x-axis, while
the Intercept represents its x-intercept. In the heatmaps, red regions indicate improvement over the
baseline, while blue regions indicate a decline in performance. From each heatmap, we observe that
after a certain combination of slope and x-intercept, the community detection results either improve
or remain comparable to the baseline. The values reported in Table [I] of the main text highlight
the best improvements achieved through DCRC-based preprocessing for each community detection
algorithm.
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Figure S6: Heatmap of clustering error rate differences from baseline on the Caltech dataset, across
combinations of angle of the threshold line and x-intercept.

25



Under review as a conference paper at ICLR 2026

Difference
om baseline
S

iference Difference
from baseline  sc og o0 : from baseline
& H o

Theta (degree)
Theta (degree)

0020 =% 0000 o005 om0 oo
Intercept (DCRC value)

SCOREPLUS

Theta (degree)
Theta (degree)

%

o000 o0
Inercept (DCRC

Figure S7: Heatmap of clustering error rate differences from baseline on the Simmons dataset, across
combinations of angle of the threshold line x-intercept.
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Figure S8: Heatmap of clustering error rate differences from baseline on the Political blog dataset,
across combinations of angle of the threshold line x-intercept.

26



	Introduction
	Limitations of existing network curvatures
	Degree-Corrected Ricci Curvature (DCRC)
	Simulations
	Applications
	Discussion
	Data and Code Availability
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Theorem 4 
	Proof of Theorem 5

	DCRC-Based Preprocessing Algorithm
	Additional Experiments and Details
	Simulation
	Real Data


