Long et al. Genome Biology (2025) 26:239 Genome BIO'Ogy
https://doi.org/10.1186/513059-025-03701-8

METHODOLOGY Open Access

. ®
spVelo: RNA velocity inference G

for multi-batch spatial transcriptomics data

Wenxin Long'!, Tianyu Liu?*", Lingzhou Xue'” and Hongyu Zhao**"

"Wenxin Long and Tianyu Liu
contributed equally to this work. Abstract

RNA velocity has emerged as a powerful tool to interpret transcriptional dynamics

*Correspondence: ) g ’ -

lzxue@psu.edu; hongyu. and infer trajectory from snapshot datasets. However, current methods fail to utilize

zhao@yale.edu the spatial information inherent in spatial transcriptomics and lack scalability in multi-

' Department of Statistics, The batch datasets. Here, we introduce spVelo, a scalable framework for RNA velocity infer-

Beﬁnsy'za’;'a itfgegg;‘gjratSVA ence of multi-batch spatial transcriptomics data. spVelo supports several downstream
niversity Far " , . . . . . . . . .

2 Department of Biostatistics, Yale applications, including uncertainty quantification, complex trajectory pattern discov-

University, New Haven 06510, ery, driver marker identification, gene regulatory network inference, and temporal

3C|T,tUS(/;\ el b cell-cell communication inference. spVelo has the potential to provide deeper insights
nterdepartmental Frogram . . . . . . .

of Computational Biology into complex tissue organization and underscore biological mechanisms based on spa-

and Bioinformatics, Yale tially resolved patterns.

University, New Haven 06510, . . . . . . . .

CT.USA Keywords: RNA velocity, Spatial transcriptomics, Transcriptomics dynamics, Trajectory

inference, Variational inference

Background

Advances in sequencing technology have facilitated the reconstruction of cellular tra-
jectories, revealing underlying dynamic processes [1-3]. Trajectory inference methods
typically order cells along the pseudo-time axes based on similarities in their expression
patterns [4—7]. However, traditional trajectory inference methods usually require prior
knowledge of initial states or rely on certain assumptions, limiting the reliability and
interpretability of these methods [5].

Recently, RNA velocity has become an alternative approach for trajectory inference.
RNA velocity describes the rate of expression change for a single gene at a given time
point, based on spliced and unspliced counts of messenger RNA (mRNA) [8]. The
velocities of genes can then be used to estimate the future transcriptional states of cells,
offering a powerful tool for understanding cellular differentiation, lineage tracing, and
dynamical processes [9].

Current popular RNA velocity methods make different modeling assumptions. Velo-
cyto [8] used a steady state model, which assumes that each gene undergoes prolonged
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induction and repression phases reaching equilibrium, and all genes share a common
splicing rate. The likelihood-based dynamical model introduced in scVelo [10] relaxed
this steady-state assumption by generalizing to four transcriptional states. scVelo infers
the full set of transcriptional parameters and estimates a latent time per cell, per gene
by formulating the problem in an expectation-maximization (EM) framework. However,
the kinetics are still explained with a deterministic system of linear differential equations
with constant kinetic rate parameters. This assumption may not hold in complex bio-
logical systems where kinetic parameters can vary substantially among different genes,
leading to poor RNA velocity inference in complicated dynamical features such as tran-
scriptional boost [11], lineage-dependent kinetics, and weak unspliced signals [12]. Sev-
eral methods have been further developed to resolve these limitations: UniT Velo [13]
addressed this by modeling spliced gene expression using radial basis function (RBF)
instead of ODEs, allowing more flexible gene expression profile modeling, though it still
uses a unified latent time. LatentVelo [14] utilized neural ordinary differential equations
(neural ODEs [15]) on embedded latent space while performing batch effect correction.
The annotated mode of LatentVelo further added cell type information by modifying
the prior. veloVI [16] reformulated RNA velocity in a Bayesian deep generative frame-
work, inferring posterior distributions over kinetic parameters and latent cell states,
while allowing for gene-specific latent times coupled through a shared low-dimensional
representation.

While these methods have been successfully used to infer cellular dynamics [17, 18],
they also suffer from several limitations [12, 19]. For example, current RNA velocity
inference methods are confined to scRNA-seq data, which only captures the transcrip-
tional profiles, losing the spatial context [20]. Spatial transcriptomics, a rapidly emerg-
ing technology, addresses this limitation by measuring the spatial information of gene
expression. Spatial resolution determines the relative positions of cells and further
reflects the communication and transitory relationships between adjacent cells. Utilizing
spatial information can enable better inference of RNA velocity and trajectory, proven
by the ablation test in Additional file 1: Fig. S1. Furthermore, current methods are con-
fined to velocity inference in a single batch. This prevents the methods from utilizing the
information from the entire dataset, thus failing to capture the global dynamics.

To address these limitations, we present spVelo (spatial Velocity inference), a method
for estimating RNA velocity in multi-batch spatial transcriptomics data. spVelo combines
a Variational AutoEncoder (VAE) [21] for gene expression data with a Graph Attention
Network (GAT) [22] for spatial location. By further adding a Maximum Mean Discrep-
ancy (MMD) penalty [23] between latent spaces of different batches, spVelo is able to
perform RNA velocity inference in a multi-batch spatial dataset. We compare spVelo
with alternative methods using spatial data simulated from mouse pancreas data [24]
and real oral squamous cell carcinoma (OSCC) data [25]. spVelo outperforms the previ-
ous RNA velocity inference methods for inferring RNA velocity and trajectory. Then,
we demonstrate spVelo’s ability to perform batch effect correction on RNA velocity [14].
By leveraging the distributions of latent space, spVelo is able to quantify the uncertainty
of the inferred latent state. We further show that spVelo can discover complex trajec-
tory patterns, while other methods tend to predict a linear trajectory between cell types.
By visualizing predicted phase portraits, spVelo is able to fit the genes’ dynamics well.
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Additionally, spVelo can select biologically significant state driver markers that are vali-
dated through enrichment test using oncogenic gene sets from MSigDB [26, 27]. Finally,

we present spVelo’s downstream applications, providing new insight into RNA velocity.

Results
spVelo infers RNA velocity for multi-batch spatial transcriptomics data
spVelo first log-normalizes and smooths the data, and then filters uninformative genes
based on their contributions to cell development. Utilizing GO analysis in Additional
file 1: Fig. S2, we demonstrate that the filtered uninformative genes are less enriched
for tumor-related pathways (e.g., cytoplasmic translation, structural molecule activity),
compared to other informative genes. spVelo then models unspliced and spliced expres-
sion for each gene in a cell as a function of kinetic parameters (transcription, splicing,
and degradation rates), latent time, and latent transcriptional state. In each cell, each
gene’s latent times are tied via a low-dimensional latent variable, following the model
assumptions of veloVI [16].

spVelo models the gene expression data with a VAE including two orthogonal encod-
ers. The Multi-Layer Perceptron (MLP) encoder takes the unspliced and spliced expres-
sion as input, and outputs the posterior distributions of the latent variable. Then, spVelo
uses spatial location proximity and distance between batches as the input for a GAT
encoder. By adding up the latent space of the two encoders, spVelo can jointly model
the spatial location and gene expression data. Then, by variational posterior inference,
spVelo can estimate the kinetic rates and latent time, and then further infer velocity.
Additionally, we provide downstream applications including uncertainty quantifica-
tion, trajectory patterns discovery, state driver markers identification, Gene Regulatory
Network (GRN) inference, and temporal cell-cell communication (CCC) inference. A
detailed explanation of the spVelo model can be found in the Methods section, and the
model architecture is shown in Fig. 1. spVelo improves model performance and provides
interpretable results and downstream applications of RNA velocity, suggesting the effi-
cacy of its model design.

spVelo infers accurate velocity and trajectory

We first evaluated the performance of spVelo on a spatial dataset simulated from scRNA-
seq pancreas data [24] using scCube [28], and a real OSCC dataset [25]. We compared
the performance of velocity with other models, including stochastic mode and dynami-
cal mode of scVelo [10], veloVI [16], standard mode and annotated mode of LatentVelo
[14]. Since RNA velocity is defined as the time derivative of gene expression [8], and
we cannot directly measure the instantaneous rate of expression change at a single-cell
level, ground truth RNA velocities are unknown. As a result, we made use of the known
cell type labels to define transition relationships. To evaluate RNA velocity methods in
the absence of ground truth, we rely on several criteria that a good velocity field should
satisfy: (1) consistency within its local neighborhood; (2) alignment between predicted
future gene expression changes and the actual observed transcriptomic changes; and (3)
coherence between predicted cell movement direction and observed cell displacement
in PCA. We evaluated the performance of all methods based on the velocity confidence

score, transition score, and direction score. The velocity confidence score measures the
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Fig. 1 Overview of spVelo. spVelo jointly models the spatial location and gene expression data by using an
MLP encoder to encode information from the expression level, and a GAT encoder to encode spatial and
batch information. After posterior inference, the velocity matrix can be used for downstream applications

reliability of inferred velocities, the transition score assesses the probability of true cell-
to-cell transition, and the direction score evaluates the consistency of transition direc-
tions with known cell type transitions. The three scores are calculated respectively
using neighbors of expression data, spatial neighbors in each batch, and mutual near-
est neighbors between batches. These metrics are capable of comprehensively evaluating
estimated RNA velocity based on the criteria stated previously. Detailed explanations of
metrics can be found in the Methods section. Since all methods except LatentVelo are
restricted to inferring velocity on a per-batch basis, for fairness, we utilized scGen [29]
to correct batch effect prior to applying the velocity inference methods. These methods
are denoted as scGen + <method name> in Fig. 2. For comparing only the per-batch
scores (expr scores and spatial scores), we compared spVelo with both scGen-corrected
methods and original per-batch methods. Figure 2a and c show plots of the nine scores
for each method by averaging across different seeds and different batches, while Fig. 2b
and d show dotplots of only the six per-batch scores for all methods. Here, we did not
compare LatentVelo in the simulated pancreas dataset since it reported errors when the
input data were in the logcounts format.

Dotplots in Fig. 2a—d demonstrate that spVelo ranks high when compared to all
methods, especially in the direction score, which is the most important score for
evaluating velocity’s performance in trajectory inference. Overall, spVelo consist-
ently achieves the highest average scores across all datasets, as illustrated in the final
column. This highlights spVelo’s ability to accurately capture the underlying cellular
dynamics. All scores are visualized in Additional file 1: Fig. S3 and Additional file 1:
Fig. S4. We further performed an ablation test to remove spatial information from our
model. Results are visualized in Additional file 1: Fig. S1 and reveal that the integra-
tion of spatial information during model training significantly improves the perfor-
mance of velocity and trajectory inference.
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Fig.2 Compare results for simulated pancreas dataset and OSCC dataset. a Dotplot of comparing all scores

in simulated pancreas dataset. Each score is minmax-scaled across all methods. b Dotplot of comparing only

per-batch scores in simulated pancreas dataset. Each score is minmax-scaled across all methods. ¢ Dotplot
of comparing all scores in the OSCC dataset. Each score is minmax-scaled across all methods. d Dotplot

of comparing only per-batch scores in OSCC dataset. Each score is minmax-scaled across all methods. e
Pseudo-time scatter plot of latent time inferred by spVelo, compared with DPT pseudo-time and velocity
pseudo-time. f Pseudo-time violin plot of latent time inferred by spVelo, compared with DPT pseudo-time
and velocity pseudo-time. g Comparison of cosine similarity between the velocity of different batches in
MNN graph. h Streamline plot of trajectory and scatter plot of quantified uncertainty for sample 9 of OSCC
dataset. The red frame in the streamline plot indicates the lineage with high uncertainty cells

Furthermore, we examined the latent time estimated by spVelo and compared it with
pseudo-time inferred using Diffusion Pseudo-Time (DPT) [30] and pseudo-time inferred
using diffusion-based random walk on RNA velocity matrix. The results are shown
as the scatter plots and violin plots in Fig. 2e and f, and all other results are shown in
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Additional file 1: Fig. S5. The plots reveal that our inferred latent time is distinct between
different cell types and better matches with the ground truth.

To evaluate the ability of spVelo to correct batch effect in RNA velocity inference, we
calculated the cosine similarity between the velocity of mutual nearest neighbor cells in
different batches. The comparison result to LatentVelo is visualized in Fig. 2g. The box-
plot reveals that spVelo infers significantly more coherent velocity than LatentVelo. To
quantitatively show the contributions of spVelo's MMD penalty to velocity coherence
across batches, we further performed ablation studies by removing spVelo's MMD pen-
alty. More details can be found in Additional file 1: Text S1.1 and results are visualized in
Additional file 1: Fig. S6.

This shows that, with the MMD penalty between latent space of different batches,
spVelo is able to infer more coherent velocity between batches. The coherence in velocity
may also facilitate more accurate trajectory inference, since the aligned velocities better
reflect the true underlying biological processes rather than noise.

Following the suggestions of reviewers, we further considered proving spVelo’s con-
sistency across spatial datasets, despite differences in resolution and platform design.
We compared all methods on a new stereo-seq mousebrain dataset [31], processed with
bin size 60. More details can be found in Additional file 1: Text S2 and Additional file 1:
Table S1. Then, we also compared spVelo with existing spatially aware velocity inference
methods, including STT [32], SIRV [33], scGen+STT, and scGen+SIRV. The results can
be found in Additional file 1: Text S2 and Additional file 1: Table S2.

spVelo quantifies uncertainty for cell state

Since spVelo is a generative model, the distribution of its latent space can be used for
uncertainty quantification. Inspired by VeloVAE [34], we calculated differential entropy
on the variance of the latent space. Since the latent space is a low-dimension representa-
tion of cells, the differential entropy can be used as the uncertainty measurement for cell
state [35], where higher differential entropy indicates a higher uncertainty score.

We visualized the streamline plot of trajectory and the scatter plot of quantified
uncertainty for sample 9 of the OSCC dataset in Fig. 2h. Results of other samples are
visualized in Additional file 1: Fig. S7. The plots reveal that some edge cells show higher
uncertainty levels. These cells are mostly located at the starting area of the lineage in
the red frame, suggesting heterogeneity in the edge cells. This observation also matches
with the interpretation in VeloVAE that multi-potent progenitor cells have higher cell
state uncertainty [34]. To further prove high-uncertainty regions reflect meaningful bio-
logical heterogeneity rather than model instability, we conducted pathway enrichment
analysis using GSEA prerank. We divided cells from batch 9 into high- and low-uncer-
tainty groups (top and bottom 50%) and identified differentially expressed genes using
the Wilcoxon test. For the high-uncertainty group, we constructed a ranked gene list
based on the Wilcoxon test statistic and applied GSEA prerank with MSigDB (C2 col-
lection). The result is visualized in Additional file 1: Fig. S8. The pathways chosen in this
figure are EMT- and plasticity-associated gene sets, which play a central role in driving
cancer cell metastasis and lead to different signaling patterns and therapeutic responses
[36]. According to the figure, genes with lower Wilcoxon test statistics (i.e., differentially
expressed genes in low-uncertainty cells) are significantly enriched in the pathways,
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supporting the interpretation that high-uncertainty cells are more heterogeneous and
potentially multi-potent. As a result, the uncertainty quantification from spVelo allows
researchers to identify and examine the regions with high variability, and further under-
stand intricate biological mechanisms.

spVelo discovers complex trajectory patterns

In this section, we investigated the trajectory inferred using velocity from different
methods. From Fig. 3a, spVelo inferred a bifurcate trajectory from sample 12 of the
OSCC dataset. To validate the inferred bifurcate trajectory, we visualized how spliced
expression varies along with the latent time inferred by spVelo in scatter plots. Velocity
clusters were calculated by using Leiden clustering [37] on the inferred velocity matrix.
Expression data and latent time were calculated by averaging the top five markers of
edge (1) cells and edge (2) cells. From the visualized scatter plots in Fig. 3¢, markers of
edge (1) are upregulated in the first lineage (core (1), transitory (1), and edge (1) cells),
while markers of edge (2) are upregulated in the second lineage (core (1), transitory (2),
and edge (2) cells). For distinct comparison, we fitted two lines to the two lineages in
the first scatter plot. The t-test between the slopes of the two lines shows the statistical
significance of the difference between the two lineages, thereby validating the bifurcate
trajectory inferred by spVelo.

Additionally, for sample 4 of the OSCC dataset, spVelo inferred a converged trajec-
tory as shown in Fig. 3b. The clustered results indicated three edge sub-types. Similarly,
we visualized the scatter plots of averaged spliced expression and latent time in Fig. 3d.
However, upon closer examination, the expression patterns of edge (2) are more con-
sistent with transitory (2) cells, since they transition into edge (3). As a result, we re-
annotated edge (2) into transitory (2) and presented the scatter plots after re-annotation
in the lower half of Fig. 3e. In the left panel of Fig. 3e, the first lineage (core (1), transitory
(1), and edge (1) cells) expresses edgel markers at a higher level, while the second line-
age (transitory (2) and edge (3) cells) expresses at a lower level. The right panel of Fig. 3e
shows the opposite for edge3 markers. We further performed K-means clustering with
the concatenation of the latent time matrix and gene expression matrix as input and
n_clusters set as 3. From the visualization in Fig. 3f, previous edge (2) cells should
be separated from edge (3) cells. As a result, this updated information aligns the cell
classifications with expression dynamics and more accurately reflects the cell type tran-
sitions, further supporting spVelo’s capability in identifying complex cellular dynamics
and refining cell type classifications.

The trajectory plots of all OSCC samples on UMAP embedding are visualized in Addi-
tional file 1: Fig. S7 and trajectory plots on spatial coordinates are visualized in Addi-
tional file 1: Fig. S9. The trajectory plots of simulated pancreas dataset are visualized in
Additional file 1: Fig. S10.

spVelo improves genes'’ fit and selects biologically important state driver markers

Multiple rate kinetics (MURK) genes are defined as genes with transcriptional boosts
[11]. Their expression levels increase rapidly during specific cellular states. Models
with simple assumptions may fail to capture their complex dynamics. These upregulat-
ing boosts would lead to downregulation estimations, and may further lead to reversed
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Fig. 3 spVelo discovers complex trajectory patterns. a UMAP of bifurcate trajectory in sample 12 from the
OSCC dataset. b UMAP of converged trajectory in sample 4 from OSCC dataset before re-annotation. ¢ Scatter
plot of how spliced expression varies along with the latent time inferred by spVelo in sample 12. Each dot
represents a cell, and expression and latent time are calculated by averaging the top five markers of edge (1)
cells and edge (2) cells. Linear regression lines are fitted for each lineage in the first scatter plot, with a p value
indicating the significance of slope difference. d Scatter plot of how spliced expression varies along with the
latent time inferred by spVelo before re-annotation in sample 4. Each dot represents a cell, and expression
and latent time are calculated by averaging the top five markers of edge (1), edge (2), and edge (3) cells. e
Scatter plot of how spliced expression varies along with the latent time inferred by spVelo after re-annotation
in sample 4. Each dot represents a cell, and expression and latent time are calculated by averaging the
updated top five markers of edge (1) and edge (3) cells. f UMAP of K-means clustering

estimations of cellular transitions [12]. Possible solutions include manually removing
the MURK genes that violate the model assumption [11]. However, this removal risks
the loss of biologically informative genes that are crucial for velocity and trajectory
inference.

To address this limitation, we evaluated the capacity of spVelo in inferring the kinetic
rates of MURK genes. In Fig. 4a, we visualized phase portraits of five MURK genes
from the OSCC dataset, showing the robustness of spVelo in capturing the non-linear
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Fig. 4 spVelo fits genes dynamics well. a Phase portraits of five MURK genes from the OSCC dataset. b Phase
portraits of state driver markers selected from the simulated pancreas dataset. ¢ spVelo selects biologically
significant state driver markers, verified by gene set enrichment analysis using MSigDB

dynamics and estimating complex kinetics. By fitting the MURK genes, spVelo provides
a more accurate representation of the underlying biological process. We also visualized
phase portraits of state driver markers selected from the simulated pancreas dataset in
Fig. 4b. This further demonstrates spVelo’s ability to accurately fit genes’ dynamics.

Furthermore, we examined the biological significance of state driver markers selected
by spVelo. Based on the velocity estimation, state driver markers are defined as genes
pivotal in driving cellular state transitions. Here we utilized a t-test on the estimated
velocity matrix to select state driver markers and used oncogenic gene sets from MsigDB
[26, 27] for gene set enrichment analysis (GSEA). We visualized the GSEA results
through a dotplot in Fig. 4c. The first column of the dotplot is state-driver markers
selected from transitory and edge cells, and the second column is the same number of
randomly selected genes from the dataset, serving as a control group. The dotplot dem-
onstrates that the state driver markers are significantly enriched in oncogenic pathways
compared to the random gene set, proving spVelo’s ability to select state driver markers
that play a crucial role in cancer progression. These state driver markers can potentially
serve as targets for therapeutic intervention.

spVelo infers gene regulatory networks by in silico gene deletion

Gene regulatory network (GRN) inference is a popular area since it is critical for under-
standing transcription. Traditional GRN inference methods largely rely on static gene
expression data [38, 39]. However, gene regulation is a highly complex and dynamic pro-
cess, so traditional methods may be unable to capture the true underlying regulatory
relationships and lead to false-positive and false-negative predictions. For example, for
the co-expression methods, expression levels of genes may not correlate with those of
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their regulating TFs due to the time delay between TF binding and expression accumu-
lation [40, 41]. Here we present spVelo’s downstream application in GRN inference. By
integrating RNA velocity information in GRN inference, spVelo can predict future gene
expression change, revealing true causal relationships. Inspired by [42], we employed
an in silico gene deletion approach. We inferred the velocity before and after remov-
ing EGFR, a gene known for prompting OSCC cell proliferation, metastasis, invasion,
and apoptosis resistance [25, 43, 44]. To quantify the impact of EGFR deletion, we calcu-
lated the gene-wise cosine similarity between the two velocity matrices obtained before
and after in silico perturbation. The comparison between EGER target genes and target
genes of other genes is visualized in Fig. 5a. The boxplot reveals that direct EGFR tar-
gets (defined by the transcription factor target gene sets from MsigDB [26, 27]) are more
impacted by the in silico deletion of EGFR compared to other target genes. The results
suggest that with in silico perturbation, spVelo may identify regulatory relationships and
enable the identification of critical genes driving biological processes, thus contributing
to understanding the mechanisms underlying disease progression.

spVelo enables temporal cell-cell communication inference

Inspired by CytoSignal and VeloCytoSignal [45], we inferred cell-cell communication
(CCC) and temporal CCC using spVelo. Detailed steps of CCC inference can be found

In-silico perturbation b Cell-cell communication
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0.00 o . cgre
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o
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Fig. 5 Downstream applications of spVelo. a The Y-axis is the cosine similarity calculated of each gene's
velocity before and after in silico perturbation. The boxplot compares the cosine similarity between EGFR
target genes and other target genes. b 3D plot of inferred cell-cell communication. The opacity of each line
is proportional to the cell-cell communication score of the corresponding sender and receiver cells. For
clarity and interpretability of the plot, we only use the top 0.1% of the scores to visualize. ¢ Temporal cell-cell
communication inferred with velocity from spVelo. From left to right: spatial scatter plot of sample 2 from
OSCC, scatter plot with sender communication rate, scatter plot with receptor communication rate
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in the Methods section. Here we used the ligand-receptor gene pair (ANXA1, EGFR) for
CCC inference. The inferred spot-level CCC is visualized in Fig. 5b, where lines between
sender and receptor cells indicate communications between them. From Fig. 5b, few
core cells are receptors. Additionally, in receivers, edge cells communicate with greater
numbers of senders and higher communication scores; while in senders, core and transi-
tory cells have more outgoing lines. These conclusions are consistent with the cell transi-
tion ground truth provided by [25].

Given the significance of CCC in dynamical processes, we quantified spatial-temporal
changes in signaling activities to understand the role of CCC in cell state transition. Pre-
vious methods use samples sequenced at different time points or estimate pseudo-times
from RNA-seq datasets to infer temporal CCC [46]. However, even if we detect the
mRNAs for ligands and receptors, that does not guarantee that the cells are communi-
cating at that moment. Proteins might still be missing, inactive, stored, or taking time to
build up [47]. By incorporating RNA velocity, spVelo can overcome this problem by pre-
dicting expression change in receptor or downstream genes, therefore showing whether
cells are actively communicating. Here we inferred temporal CCC and visualized the
sender and receptor communication rate in Fig. 5¢, and the other results are shown in
Additional file 1: Fig. S11. Figure 5c reveals that sender communication rates are higher
in core and transitory cells, while receptor communication rates are higher in transi-
tory and edge cells. The enrichment of sender cells in core and transitory state might
imply the higher proportion of cancer stem cells, which aligns well with one scRNA-
seq study in OSCC samples [48] The higher receptor communication rate in the edge
state represents more stable cancer development progress, which also aligns well with
research focusing on late-stage cancer [49]. As a result, this result aligns with ground
truth, demonstrating that spVelo effectively captures temporal dynamics in cell-cell
communications. This helps elucidate the signaling networks in both static and develop-
mental contexts, enabling researchers to better understand the timing of critical cellular

interactions.

Conclusions

RNA velocity has emerged as a new approach for inferring cellular trajectory and under-
standing dynamical processes. Meanwhile, spatially resolved transcriptomics combines
gene expression with spatial context, offering insights into cellular architectures. How-
ever, existing RNA velocity methods fail to utilize these spatial insights, particularly in
large-scale, multi-batch datasets. Here, we introduce spVelo, a novel RNA velocity infer-
ence method for multi-batch spatial transcriptomics datasets. Our extensive analysis
proves its accuracy and interpretability in velocity and trajectory inference.

Existing methods exhibit several limitations when applied to large-scale spatial datasets.
All methods are developed for scRNA-seq and are unable to utilize the spatial informa-
tion. Among the compared methods, scVelo suffers from strict assumptions and simple
modeling, making it unable to capture complex dynamics. This results in oversimplified or
inaccurate trajectory inference. On the other hand, veloVI presents a complex VAE-based
model with a time-dependent transcriptional rate. However, it fails to infer RNA velocity
from multi-batch datasets. LatentVelo is scalable to multi-batch datasets by incorporating
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batch information into its model, yet fails to infer coherent velocity between batches and
infers an inaccurate trajectory.

spVelo overcomes the above limitations. With its design of combining VAE with GAT,
spVelo is capable of leveraging the information from both spatial location and expres-
sion data. Additionally, by introducing an MMD penalty between batches, spVelo can
infer coherent velocity from multi-batch datasets. Consequently, spVelo more accurately
infers velocity and trajectory from large-scale datasets, effectively capturing the underly-
ing dynamics of tissues.

We further provided downstream applications utilizing the velocity inferred by spVelo.
Firstly, we demonstrated that the generative modeling of spVelo enables interpretable
uncertainty quantification. Secondly, we discovered complex trajectory patterns and
further discovered possible cell type refinement. Thirdly, we selected state driver mark-
ers and proved their biological significance. Fourthly, we inferred the Gene Regulatory
Network utilizing an in silico gene deletion approach. Finally, we inferred temporal cell-
cell communications that are consistent with the ground truth. Therefore, RNA velocity
inferred by spVelo offers new biological insight into cellular dynamics and exhibits great
promise for future explorations.

Methods
Problem definition

In the RNA velocity inference problem, we denote the spliced expression matrix as SN*¢

and the unspliced expression matrix as L/N*C

, where N represents the number of cells
and G represents the number of genes. We use XV *2 to represent the spatial locations
of the cells. With these as input, spVelo aims to learn a model M, which can infer the
cell-by-gene velocity matrix as VN*@ = M(S, U, X). The model can simultaneously
infer cell-gene-specific latent time £, transcriptional state k, and kinetic rates including
gene-state-specific transcription rate ag, gene-specific splicing rate B¢, and gene-spe-
cific degradation rate y,. Here transcriptional state k € {1, 2, 3,4}, where k = 1 indicates
induction, k = 2 indicates the induction steady state, kK = 3 indicates repression, and

k = 4 indicates the repression steady state.

spVelo model specification
Following [10] and [16], spVelo assumes that for each gene, cells first go through an
induction state where spliced and unspliced expression increases. Then, cells reach an
induction steady state, and then at a switching time, the system switches to a repression
state where spliced and unspliced expression decreases. Finally, cells reach a repression
steady state with no expression.

By solving the ordinary differential equations [10], the estimated unspliced and spliced
abundance at time ¢, for cell # and gene g is defined as:

_ 40 o _ _40
5O (tyg, K) e Pelbe o) SO (7 P, (1)
g

0
0 Ogk — u 0 0
5 (tyg, k) =0 77 4 S (1 - e*ngﬂ) | ok et (ﬂg“ﬂg*tgﬂ - e*f’g“"g’%k)),
8 Ve Ye — B
2)
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where tgk denotes the initial time of the system in state k. ugk and sgg denotes the esti-

mated initial unspliced and spliced expression of gene g in state £, i.e., ugk =u® (tgk, k)

and sgok =3© (tgk, k).

Transcription rate « is assumed to be time-dependent with parameters o, o1, A

&) J o1 — (a1 —ag)e %, k e (1,2},
) = { 0, k € (3,4). (3)

For future conciseness, we still write the gene-state-specific transcription rate ozg<>(t) as
g

For k = 1 (induction state), we have ”21 =0, sgl =0, g1 > 0, and tgl = 0 by definition.
Thus (6) and (7) can be simplified into

- o 1 _

M(g)(tng,k = 1) :é(l —e ﬁglng), (4)

5@ (tng k =1) ;:@(1 — e Velne) #(e—ygtng _ e—’f}gtng)' )
Ve Ye — Bg

For k = 2 (induction steady state), the unspliced and spliced expression is defined as the
limit of the induction state as time approaches oc:

_ . _ (04
#® (tyg, k =2) 1= tnilinoo i1 (tyg, k= 1) = ﬂigl, (6)
5O (tyg k =2) 1= lim 5O (tyg,k =1) = £

ngr ._t,,g—>oo ner - yg ) (7)

For k = 3 (repression state), we have a3 = 0 and tgl = t5, where tg is the gene-specific
switching time from the induction phase to the repression phase. Thus (6) and (7) can be
expressed as

0
7@ (tng, k = 3) ;:ugge—ﬂg(tng—tgs), o

0

u

E(g) (tng»k =3) Zzsggeiyg(t"gi‘gs) — ﬁg & (eiyg(t”git&) — eiﬁg(t"gi&))- (9)
Y — ,Bg

Similarly, k = 4 (repression steady state) is defined as the limit of the repression state,

resulting in

#© (tyg, k = 4) :=0, (10)

5@ (tyg, k = 4) :=0. (11)
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spVelo generative process
The generative modeling of spVelo combines a Variational AutoEncoder (VAE) [21]
inspired by [16], with a Graph Attention Network (GAT) [22]. We explored several
types of Graph Neural Networks (GNNs) for modeling cell-cell relationships, includ-
ing GCN [50] and GraphSAGE [51]. Among them, GAT consistently showed the best
performance, which motivated us to adopt GAT as the backbone of our model. More
details can be found in Additional file 1: Text S1.2, and comparison results can be
found in Additional file 1: Fig. S12.

We assume the following generative process to model the underlying dynamics of
the unspliced expression u,s and spliced expression s,

For each cell n and gene g, we use a low-dimensional latent variable z, to summarize
the latent state of each cell (default d = 10). z, is the sum of the latent space from
VAE and GAT, modeling both expression data and spatial location. Let

z/AE ~Normal(0, I), (12)

28T —GAT(Z/AE  e), (13)

2y =2VAE + 7G4, (14)
GAT

where e denotes the edges input to GAT. In GAT modeling, z,7*" is constructed based
on a graph structure where edges represent relationships between cells. The edges are
composed of two parts: The first part of the edges is calculated using k Nearest Neigh-
bors (kNN) on the spatial coordinates. We compute the edges in each batch and con-
catenate across all batches. The second part of the edges is calculated across different
batches using Mutual Nearest Neighbors (MNN) on the expression data. The distance of
MNN is defined as the optimal transport (OT) matrix, quantifying the correspondence
between samples in different batches [52]. The metric cost matrix in the OT problem is
calculated as the Euclidean distance between batches. By combining the two parts of the
edges, the GAT module effectively captures spatial information together with relation-
ships between batches. The number of neighbors for both parts is set as 15. More details
of tuning weights between spatial and mnn edges can be found in Additional file 1: Text
S1.3, and comparison results can be found in Additional file 1: Fig. S13.

We then use a Dirichlet distribution to model state assignment probability ;.
The settings are based on veloVI. We further performed ablation studies for Dirichlet
prior distribution parameters in Additional file 1: Text S1.4 and visualized results in
Additional file 1: Fig. S14. The state k;; is then defined as the state with the highest
state assignment probability.

mug ~Dirichlet(0.25, 0.25, 0.25, 0.25), (15)

kng ~Categorical (7). (16)

Latent time £, is modeled as a state-specific function of latent state z:
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(1) e
(&) ) Prg Ly , ifk =1, as)
" (tmax — t;) X p;gg) + tg ifk =3,

where .4, := 20 fixes the time scale across genes. /i : R? — (0,1)%is parameterized as
a state-specific fully connected neural network.

Finally, we assume the observed expression data are sampled from normal distribu-

tions as
_ ky,
ung ~Normal (u(g) (t,(,g g), kng), (ckaé‘)z) , (19)
_ ky,
Sng ~Normal (s(g) (t,(,g g), kng), (ckag)z), (20)

where ¢; is a state-dependent scaling factor on the variance. As default, ¢, = 1 for
k = 1,2, 3 except for ¢4 = 0.11n the repression steady state.

spVelo posterior inference

Variational posterior Let 0 be the set of parameters including kinetic rates (o, 8, ),
switching time ¢°, and neural network parameters. We use variational inference [21] to
approximate the posterior distribution. The posterior distribution is posited as

N G
4@ | u,8) = || 46 @n | nrs0) [ | 49 Crng | 20, (21)
n=1 g=1

where dependencies are specified using neural networks with parameter set ¢.
Integrating over the choice of transcriptional state ky,, the likelihoods for spliced and

unspliced transcript abundances are Gaussian mixture models:

- (kng)
Po(Ung | Zn, Tn) = Z nngkngNormal (u(g) (tmgg ) kng); (Cko'gu)z) (22)
kng€{1,2,3,4)
- (Kng)
Po(Sng | 2, 7Tn) = Z nngkngNormal (S(g) (tmgg ’ ng); (CkUgS)Z) (23)
Kng€(1,2,3,4)

Optimization The objective function is composed of three terms
‘Cvelo(e! ¢; u, S) = £e1b0(91 ¢; u, S) + j“Cswitch(e; u, S) + )“Cbatch(z)! (24)

where L, is the negative evidence lower bound [53] of logpg (1, s), Lewitch is @ penalty
that regularizes the location of transcriptional switch in the phase portrait, and Lpaep is
an MMD penalty that regularizes the latent space between different batches. As default,
the penalty weight 4 = 2. In more detail, we denote by, by as a pair of different batch
IDs, z;, as the latent space of batch b, and u* and s* as the median unspliced and spliced
expression for each gene,

Page 15 of 23



Long et al. Genome Biology ~ (2025) 26:239

ﬁelbo(ei o u,s) = Z _qug(z,,,ﬂ,,\un,sn) [lOgPé) (Un> Sn | Zn, 7))
n

+ KL(q@n | tn5) | p(2))

+ Egyculinsn) | O KL(Gp(tug | 20) | () |

Loiten (03 1,5) =y <(u§3 - u§)2 + (9 - s;‘)z), (26)

g

Chaeh(2) = ) MMD? (23, 2p,), @)
by,ba

MMD*(U, V) 2;712 SN k(uiui) - % SN kv + % SS kwvp).

i=1 i'=1 i=1 j=1 j=1j=1
(28)

_ llx—yl?
202

width parameter and ||x — y||is the Euclidean distance between x and y.

Here k(x, y) denotes a Gaussian kernel, i.e., k(x,y) = exp < ), where o is a band-
To optimize L], we use stochastic gradients [21] and Adam optimizer with weight
decay [54]. We set the number of epochs as 2000. We present our results of hyper-parame-
ter tuning in Additional file 1: Fig. S15.
Velocity inference After fitting the parameters, the cell-gene-specific state assignment is
calculated as the posterior mean:

Ting = gy nlinsn) [Eap(ruglen) [7ng] |- (29)

The cell-gene-specific latent time is calculated as

~(kng) e
5 — By s [E% (tuglzn) [tng ¢ H (30)

RNA velocity is calculated as a function of the variational posterior

@ (t(k),k) = ds® ¢, k)

e = Bein® (19, k) — 35 (¢, k). (31)

(k)

Uncertainty quantification
Uncertainty of the latent state is calculated as the differential entropy of the latent space:

h(z) = %log ((27te)d det():)), (32)

where d is the dimension (default as 10) and X is the variance matrix of the latent space.
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Temporal cell-cell communication inference
The spatial interaction score is defined as the co-expression of ligand and receptor
genes within close spatial proximity. Here we select a ligand-receptor gene pair from
OmniPath [55] and denote the spliced expression matrix as S, and denote a pair of
ligand and receptor genes as / and r.

For cells i and j, we calculate the LRscore as:

LRscore(i,j) = Sy x Sjp x I{djj < q}. (33)
For cell types A and B, we calculate the LRscore as:

LRscore(A, B) = Z Z Sip X Sjp x H{dﬁ < q}’ (34)

ieCy jeCp

where C4 refers to all cells in cell type A, and S;; refers to the expression value of gene /
in cell i. In the indicator function, d;; refers to the Euclidean distance between the spa-
tial location of cell i and cell j, and g refers to a user-defined threshold, set as 30. After
calculating scores between cell types, we randomly permuted cell types 50 times and
performed False Discovery Rate (FDR) correction.

The spatial-temporal interaction score is defined as the time derivative of LRscore
and calculated as follows:
dLRsc;re(l,]) _ d;t,r N ddS;l %S| x H{dij - q} -
=(Sil X er + Vi x Sjr) X H{dlj < q},

LRvelo(i, ) = Sy x

where V refers to the inferred velocity matrix.

Metrics explanations
To evaluate the performance of inferred velocity, we calculated three different types
of scores, inspired by VeloAE [56]. For each pair of cell types (4, B), the scores are cal-
culated for the boundary scores, referring to cells of cell type A with cell type B in the
neighborhood, i.e., C4—.p = {c €Cy |3 €Cp ﬂN(c)}. Here C4 denotes all the cells
of cell type A and N(c) denotes the neighbor cells of c.

1. Confidence score: Confidence score for cell ¢ from cell type A with regard to cell
type B is defined as

1 V. Vy
Confidence(c) = ——————— Z IR 36
¢ € CaNN@I 2ty Vel - Ve (36)

where V, is the velocity vector of cell ¢. This is calculated using scv.tl.velocity
confidence. Then, the confidence score for cell type A is calculated as the average of
Confidence(c) for all ¢ € C4_, . It summarizes the consistency of the inferred velocity,
and a higher confidence score represents better consistency.

2. Transition score: Transition score for cell ¢ from cell type A with regard to cell
type B is defined as
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T tion(c) 1 -
ransition(c) = ————— E el
Ic' € C5 NN ()] ce (37)

¢’eCpNN (c)
Here 7, denotes the cell-to-cell transition probabilities calculated from the velocity
graph 7. with row-normalization z, and kernel width o. This is calculated using scv.

tl.velocity graphand scv.utils.get transition matrix.

(Sc’ - Sc) . Vc

T =C08L(Sy — 8¢, V) = —————,
“ ST TSy = Sl Vel

(38)

Tee! :;16 exp (e /o), (39)
where S, refers to the spliced gene expression of cell c. Transition score for cell type A is
calculated as the average of Transition(c) for all ¢ € C4_, g, measuring how well the cor-
responding change in gene expression matches the predicted change. A higher transition
score represents a better match.

3. Direction score: Direction score for cell ¢ from cell type A with regard to cell type
Bis defined as

, 1 (X —x¢) - Ve
PO = 7 e G N©] C,GC;:N(C) e — wellvell (40)
Here x. and x, are vectors representing cells ¢ and ¢’ in a low-dimensional Principal
Component Analysis (PCA) space via [57] (number of principal components default as
30). xs — x. is the displacement in this space, and V. is the projection of velocity into
PCA space, calculated using scv.tl.velocity embedding. Denoting 7. as the
transition probability matrix, we have

- KXot — Xe¢ - 1\ %y —x
S Y Z# (” B n) e = ell’ (41)

Direction score for cell type A is calculated as the average of Dir(c) for all ¢ € C4_,,
measuring how well the corresponding change in PCA embedding matches the pre-
dicted change. A higher direction score represents a better match.

With ground truth cell type transition information as input, the confidence scores are
calculated as the average score of all correct cell type transition pairs, while transition
scores and direction scores are calculated by averaging scores of correct cell type transi-
tion pairs while incorporating a penalty for incorrect transitions by using their negated
scores. The correct cell type pairs are defined as a pair of cell types with known transi-
tion relationships from the first cell type to the second. For the simulated pancreas data-
set, the list of cell type pairs is defined as [(‘Ductal, ‘Ngn3 low EP’), (‘Ngn3 low EP; ‘Ngn3
high EP’), (‘Ngn3 high EP; ‘Pre-endocrine’), (‘Pre-endocrine;, ‘Delta’), (‘Pre-endocrine;,
‘Beta’), (‘Pre-endocrine; ‘Epsilon’), (‘Pre-endocrine; ‘Alpha’)], as defined in [10, 24]. For
the OSCC dataset, the list of cell type pairs is defined as [(‘core; ‘transitory’), (‘transitory,
‘edge’), (‘core; ‘edge’)], as defined in [25]. More discussions of the metrics can be found in
Additional file 1: Text S3.
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From the equations, the three scores are all calculated based on local neighborhoods.
We compute the kNN graph, spatial graph, and MNN graph respectively, incorporating
different information in model comparison. As default, the neighbor size is set as 30.

Inspired by LatentVelo [14], we also measure the cosine similarity of MNN cells in
different batches to evaluate batch effect correction of RNA velocity. Let Cj, be all the
cells in batch b and NMNN (¢) be MNN of cell ¢, the velocity coherence score for cell ¢ is

defined as:
B
Coh(c) =———— (42)
|B|(|B| D et ||vb1 ||||vb2||
1 > v
Vy, = !y
b= e ¢, N NMAN () ¢ (43)

c/eC,NNMNN ()

where B denotes the set of batches in the dataset and (b1, b3) denotes a pair of different
batch IDs. Then, the final velocity coherence score is calculated as the average of 100
randomly selected cells.

Baseline model explanations

In the model comparison process, we consider eight baseline methods (settings) in total
for comparison, including standard and annotated mode of LatentVelo, stochastic and
dynamical mode of scVelo, veloVI, and scGen-corrected scVelo and veloVI. The order of
these methods (settings) is random.

LatentVelo [14] uses a VAE that embeds unspliced and spliced abundances of RNA
into the latent space, and dynamics on the latent space are described as a neural ODE.
By learning a shared latent space for multiple batches, LatentVelo enables batch effect
correction from a dynamic view. The annotated mode of LatentVelo incorporates cell
type information by modifying the prior.

The stochastic mode of scVelo [10] treats transcription, splicing, and degradation as
probabilistic events and approximates the Markov process using moment equations.
By using both first- and second-order moments, scVelo (stochastic) can utilize both
relationships and covariation between unspliced and spliced mRNA abundances. The
dynamical mode of scVelo solves the ODEs with a likelihood-based expectation-max-
imization framework, iteratively estimating the parameters of kinetic rates, transcrip-
tional state, and cell-internal latent time.

veloVI [16] treats unspliced and spliced abundances of RNA for each gene as a func-
tion of kinetic parameters, latent time, and latent transcriptional state. It further treats
latent time as tied via a low-dimensional latent variable. veloVI uses a VAE architecture
and outputs a posterior distribution over estimated velocity.

For batch effect correction settings, since current RNA velocity methods require cell-
by-gene spliced and unspliced counts as input, only batch effect correction methods
that return a corrected and reconstructed gene matrix can be used. As a result, we used
scGen [29] for batch effect correction, as recommended by scIB [58].

In the scGen-corrected models, we followed the approach taken by [14, 59]. Since

we need to simultaneously correct spliced and unspliced counts, we perform batch
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effect correction on the sum of these counts. Denote the spliced and unspliced counts
S

S+u-

scGen batch effect correction is performed on log-normalized M with the default set-

as S and U, we define the sum matrix as M = S + U, and the ratio matrix as R =

tings, and we get the corrected matrix M. To recover corrected spliced and unspliced
expression, we multiply M with R or 1 — R.

Scorrected =M x R (44)

Ucorrected :M x (1—R) (45)

Then, RNA velocity is estimated as before.

Experiment design

For the simulated dataset, we followed the tutorial from scCube [28] and generated
random spatial patterns for cell types with a reference-free strategy. We also consid-
ered scDesign3 [60] for the simulation. Extra analysis of data simulation can be found
in Additional file 1: Text S4 and Additional file 1: Fig. S16. We used the scRNA-seq
pancreas dataset [24] for this simulation. For the real OSCC dataset, we filtered all
noncancer (nc) cells, following the preprocessing step in [25].

For both the simulated pancreas dataset and the real OSCC dataset, we followed the
pre-processing guidelines from scVelo [10]. We normalized the count matrices to the
median of total molecules across cells and filtered genes with less than 20 expressed
counts commonly for spliced and unspliced mRNA, followed by log-transforming the
data and selecting the top 2000 highly variable genes. Then, we calculated a nearest
neighbor graph (with 30 neighbors) based on Euclidean distances in principal com-
ponent analysis space (with 30 principal components) on spliced logcounts. We com-
puted first- and second-order moments (means and uncentered variances) for each
cell across its 30 nearest neighbors.

Following [16], we min-max scaled the unspliced and spliced expression to the unit
interval and applied the steady-state scVelo model. Finally, we filtered the genes with
negative steady-state ratio and R? statistic below a user-defined threshold (default as
0.2). We further performed ablation studies for the R? threshold in Additional file 1:
Text S1.5 and visualized results in Additional file 1: Fig. S17. Then, the remaining
genes are used for velocity inference.

In model comparison, we followed the tutorials of all methods. To prove the scal-
ability of spVelo on larger datasets, we further performed simulation for two different
conditions, including large number of slices and large number of cells per slice. More
details can be found in Additional file 1: Text S5 and results are visualized in Addi-
tional file 1: Fig. S18.
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Github (https://github.com/VivLon/spVelo) [64] and Zenodo (https://zenodo.org/records/15343924) [65]. We follow the
MIT license for usage. The simulated pancreas dataset has also been deposited at Zenodo.
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