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Abstract 

RNA velocity has emerged as a powerful tool to interpret transcriptional dynamics 
and infer trajectory from snapshot datasets. However, current methods fail to utilize 
the spatial information inherent in spatial transcriptomics and lack scalability in multi-
batch datasets. Here, we introduce spVelo, a scalable framework for RNA velocity infer-
ence of multi-batch spatial transcriptomics data. spVelo supports several downstream 
applications, including uncertainty quantification, complex trajectory pattern discov-
ery, driver marker identification, gene regulatory network inference, and temporal 
cell-cell communication inference. spVelo has the potential to provide deeper insights 
into complex tissue organization and underscore biological mechanisms based on spa-
tially resolved patterns.
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Background
Advances in sequencing technology have facilitated the reconstruction of cellular tra-
jectories, revealing underlying dynamic processes [1–3]. Trajectory inference methods 
typically order cells along the pseudo-time axes based on similarities in their expression 
patterns [4–7]. However, traditional trajectory inference methods usually require prior 
knowledge of initial states or rely on certain assumptions, limiting the reliability and 
interpretability of these methods [5].

Recently, RNA velocity has become an alternative approach for trajectory inference. 
RNA velocity describes the rate of expression change for a single gene at a given time 
point, based on spliced and unspliced counts of messenger RNA (mRNA) [8]. The 
velocities of genes can then be used to estimate the future transcriptional states of cells, 
offering a powerful tool for understanding cellular differentiation, lineage tracing, and 
dynamical processes [9].

Current popular RNA velocity methods make different modeling assumptions. Velo-
cyto [8] used a steady state model, which assumes that each gene undergoes prolonged 
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induction and repression phases reaching equilibrium, and all genes share a common 
splicing rate. The likelihood-based dynamical model introduced in scVelo [10] relaxed 
this steady-state assumption by generalizing to four transcriptional states. scVelo infers 
the full set of transcriptional parameters and estimates a latent time per cell, per gene 
by formulating the problem in an expectation-maximization (EM) framework. However, 
the kinetics are still explained with a deterministic system of linear differential equations 
with constant kinetic rate parameters. This assumption may not hold in complex bio-
logical systems where kinetic parameters can vary substantially among different genes, 
leading to poor RNA velocity inference in complicated dynamical features such as tran-
scriptional boost [11], lineage-dependent kinetics, and weak unspliced signals [12]. Sev-
eral methods have been further developed to resolve these limitations: UniTVelo [13] 
addressed this by modeling spliced gene expression using radial basis function (RBF) 
instead of ODEs, allowing more flexible gene expression profile modeling, though it still 
uses a unified latent time. LatentVelo [14] utilized neural ordinary differential equations 
(neural ODEs [15]) on embedded latent space while performing batch effect correction. 
The annotated mode of LatentVelo further added cell type information by modifying 
the prior. veloVI [16] reformulated RNA velocity in a Bayesian deep generative frame-
work, inferring posterior distributions over kinetic parameters and latent cell states, 
while allowing for gene-specific latent times coupled through a shared low-dimensional 
representation.

While these methods have been successfully used to infer cellular dynamics [17, 18], 
they also suffer from several limitations [12, 19]. For example, current RNA velocity 
inference methods are confined to scRNA-seq data, which only captures the transcrip-
tional profiles, losing the spatial context [20]. Spatial transcriptomics, a rapidly emerg-
ing technology, addresses this limitation by measuring the spatial information of gene 
expression. Spatial resolution determines the relative positions of cells and further 
reflects the communication and transitory relationships between adjacent cells. Utilizing 
spatial information can enable better inference of RNA velocity and trajectory, proven 
by the ablation test in Additional file 1: Fig. S1. Furthermore, current methods are con-
fined to velocity inference in a single batch. This prevents the methods from utilizing the 
information from the entire dataset, thus failing to capture the global dynamics.

To address these limitations, we present spVelo (spatial Velocity inference), a method 
for estimating RNA velocity in multi-batch spatial transcriptomics data. spVelo combines 
a Variational AutoEncoder (VAE) [21] for gene expression data with a Graph Attention 
Network (GAT) [22] for spatial location. By further adding a Maximum Mean Discrep-
ancy (MMD) penalty [23] between latent spaces of different batches, spVelo is able to 
perform RNA velocity inference in a multi-batch spatial dataset. We compare spVelo 
with alternative methods using spatial data simulated from mouse pancreas data [24] 
and real oral squamous cell carcinoma (OSCC) data [25]. spVelo outperforms the previ-
ous RNA velocity inference methods for inferring RNA velocity and trajectory. Then, 
we demonstrate spVelo’s ability to perform batch effect correction on RNA velocity [14]. 
By leveraging the distributions of latent space, spVelo is able to quantify the uncertainty 
of the inferred latent state. We further show that spVelo can discover complex trajec-
tory patterns, while other methods tend to predict a linear trajectory between cell types. 
By visualizing predicted phase portraits, spVelo is able to fit the genes’ dynamics well. 
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Additionally, spVelo can select biologically significant state driver markers that are vali-
dated through enrichment test using oncogenic gene sets from MSigDB [26, 27]. Finally, 
we present spVelo’s downstream applications, providing new insight into RNA velocity.

Results
spVelo infers RNA velocity for multi‑batch spatial transcriptomics data

spVelo first log-normalizes and smooths the data, and then filters uninformative genes 
based on their contributions to cell development. Utilizing GO analysis in Additional 
file  1: Fig. S2, we demonstrate that the filtered uninformative genes are less enriched 
for tumor-related pathways (e.g., cytoplasmic translation, structural molecule activity), 
compared to other informative genes. spVelo then models unspliced and spliced expres-
sion for each gene in a cell as a function of kinetic parameters (transcription, splicing, 
and degradation rates), latent time, and latent transcriptional state. In each cell, each 
gene’s latent times are tied via a low-dimensional latent variable, following the model 
assumptions of veloVI [16].

spVelo models the gene expression data with a VAE including two orthogonal encod-
ers. The Multi-Layer Perceptron (MLP) encoder takes the unspliced and spliced expres-
sion as input, and outputs the posterior distributions of the latent variable. Then, spVelo 
uses spatial location proximity and distance between batches as the input for a GAT 
encoder. By adding up the latent space of the two encoders, spVelo can jointly model 
the spatial location and gene expression data. Then, by variational posterior inference, 
spVelo can estimate the kinetic rates and latent time, and then further infer velocity. 
Additionally, we provide downstream applications including uncertainty quantifica-
tion, trajectory patterns discovery, state driver markers identification, Gene Regulatory 
Network (GRN) inference, and temporal cell-cell communication (CCC) inference. A 
detailed explanation of the spVelo model can be found in the Methods section, and the 
model architecture is shown in Fig. 1. spVelo improves model performance and provides 
interpretable results and downstream applications of RNA velocity, suggesting the effi-
cacy of its model design.

spVelo infers accurate velocity and trajectory

We first evaluated the performance of spVelo on a spatial dataset simulated from scRNA-
seq pancreas data [24] using scCube [28], and a real OSCC dataset [25]. We compared 
the performance of velocity with other models, including stochastic mode and dynami-
cal mode of scVelo [10], veloVI [16], standard mode and annotated mode of LatentVelo 
[14]. Since RNA velocity is defined as the time derivative of gene expression [8], and 
we cannot directly measure the instantaneous rate of expression change at a single-cell 
level, ground truth RNA velocities are unknown. As a result, we made use of the known 
cell type labels to define transition relationships. To evaluate RNA velocity methods in 
the absence of ground truth, we rely on several criteria that a good velocity field should 
satisfy: (1) consistency within its local neighborhood; (2) alignment between predicted 
future gene expression changes and the actual observed transcriptomic changes; and (3) 
coherence between predicted cell movement direction and observed cell displacement 
in PCA. We evaluated the performance of all methods based on the velocity confidence 
score, transition score, and direction score. The velocity confidence score measures the 
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reliability of inferred velocities, the transition score assesses the probability of true cell-
to-cell transition, and the direction score evaluates the consistency of transition direc-
tions with known cell type transitions. The three scores are calculated respectively 
using neighbors of expression data, spatial neighbors in each batch, and mutual near-
est neighbors between batches. These metrics are capable of comprehensively evaluating 
estimated RNA velocity based on the criteria stated previously. Detailed explanations of 
metrics can be found in the Methods section. Since all methods except LatentVelo are 
restricted to inferring velocity on a per-batch basis, for fairness, we utilized scGen [29] 
to correct batch effect prior to applying the velocity inference methods. These methods 
are denoted as scGen + <method name> in Fig. 2. For comparing only the per-batch 
scores (expr scores and spatial scores), we compared spVelo with both scGen-corrected 
methods and original per-batch methods. Figure 2a and c show plots of the nine scores 
for each method by averaging across different seeds and different batches, while Fig. 2b 
and d show dotplots of only the six per-batch scores for all methods. Here, we did not 
compare LatentVelo in the simulated pancreas dataset since it reported errors when the 
input data were in the logcounts format.

Dotplots in Fig.  2a–d demonstrate that spVelo ranks high when compared to all 
methods, especially in the direction score, which is the most important score for 
evaluating velocity’s performance in trajectory inference. Overall, spVelo consist-
ently achieves the highest average scores across all datasets, as illustrated in the final 
column. This highlights spVelo’s ability to accurately capture the underlying cellular 
dynamics. All scores are visualized in Additional file 1: Fig. S3 and Additional file 1: 
Fig. S4. We further performed an ablation test to remove spatial information from our 
model. Results are visualized in Additional file 1: Fig. S1 and reveal that the integra-
tion of spatial information during model training significantly improves the perfor-
mance of velocity and trajectory inference.

Fig. 1  Overview of spVelo. spVelo jointly models the spatial location and gene expression data by using an 
MLP encoder to encode information from the expression level, and a GAT encoder to encode spatial and 
batch information. After posterior inference, the velocity matrix can be used for downstream applications
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Furthermore, we examined the latent time estimated by spVelo and compared it with 
pseudo-time inferred using Diffusion Pseudo-Time (DPT) [30] and pseudo-time inferred 
using diffusion-based random walk on RNA velocity matrix. The results are shown 
as the scatter plots and violin plots in Fig. 2e and f, and all other results are shown in 

Fig. 2  Compare results for simulated pancreas dataset and OSCC dataset. a Dotplot of comparing all scores 
in simulated pancreas dataset. Each score is minmax-scaled across all methods. b Dotplot of comparing only 
per-batch scores in simulated pancreas dataset. Each score is minmax-scaled across all methods. c Dotplot 
of comparing all scores in the OSCC dataset. Each score is minmax-scaled across all methods. d Dotplot 
of comparing only per-batch scores in OSCC dataset. Each score is minmax-scaled across all methods. e 
Pseudo-time scatter plot of latent time inferred by spVelo, compared with DPT pseudo-time and velocity 
pseudo-time. f Pseudo-time violin plot of latent time inferred by spVelo, compared with DPT pseudo-time 
and velocity pseudo-time. g Comparison of cosine similarity between the velocity of different batches in 
MNN graph. h Streamline plot of trajectory and scatter plot of quantified uncertainty for sample 9 of OSCC 
dataset. The red frame in the streamline plot indicates the lineage with high uncertainty cells
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Additional file 1: Fig. S5. The plots reveal that our inferred latent time is distinct between 
different cell types and better matches with the ground truth.

To evaluate the ability of spVelo to correct batch effect in RNA velocity inference, we 
calculated the cosine similarity between the velocity of mutual nearest neighbor cells in 
different batches. The comparison result to LatentVelo is visualized in Fig. 2g. The box-
plot reveals that spVelo infers significantly more coherent velocity than LatentVelo. To 
quantitatively show the contributions of spVelo’s MMD penalty to velocity coherence 
across batches, we further performed ablation studies by removing spVelo’s MMD pen-
alty. More details can be found in Additional file 1: Text S1.1 and results are visualized in 
Additional file 1: Fig. S6.

This shows that, with the MMD penalty between latent space of different batches, 
spVelo is able to infer more coherent velocity between batches. The coherence in velocity 
may also facilitate more accurate trajectory inference, since the aligned velocities better 
reflect the true underlying biological processes rather than noise.

Following the suggestions of reviewers, we further considered proving spVelo’s con-
sistency across spatial datasets, despite differences in resolution and platform design. 
We compared all methods on a new stereo-seq mousebrain dataset [31], processed with 
bin size 60. More details can be found in Additional file 1: Text S2 and Additional file 1: 
Table S1. Then, we also compared spVelo with existing spatially aware velocity inference 
methods, including STT [32], SIRV [33], scGen+STT, and scGen+SIRV. The results can 
be found in Additional file 1: Text S2 and Additional file 1: Table S2.

spVelo quantifies uncertainty for cell state

Since spVelo is a generative model, the distribution of its latent space can be used for 
uncertainty quantification. Inspired by VeloVAE [34], we calculated differential entropy 
on the variance of the latent space. Since the latent space is a low-dimension representa-
tion of cells, the differential entropy can be used as the uncertainty measurement for cell 
state [35], where higher differential entropy indicates a higher uncertainty score.

We visualized the streamline plot of trajectory and the scatter plot of quantified 
uncertainty for sample 9 of the OSCC dataset in Fig. 2h. Results of other samples are 
visualized in Additional file 1: Fig. S7. The plots reveal that some edge cells show higher 
uncertainty levels. These cells are mostly located at the starting area of the lineage in 
the red frame, suggesting heterogeneity in the edge cells. This observation also matches 
with the interpretation in VeloVAE that multi-potent progenitor cells have higher cell 
state uncertainty [34]. To further prove high-uncertainty regions reflect meaningful bio-
logical heterogeneity rather than model instability, we conducted pathway enrichment 
analysis using GSEA prerank. We divided cells from batch 9 into high- and low-uncer-
tainty groups (top and bottom 50%) and identified differentially expressed genes using 
the Wilcoxon test. For the high-uncertainty group, we constructed a ranked gene list 
based on the Wilcoxon test statistic and applied GSEA prerank with MSigDB (C2 col-
lection). The result is visualized in Additional file 1: Fig. S8. The pathways chosen in this 
figure are EMT- and plasticity-associated gene sets, which play a central role in driving 
cancer cell metastasis and lead to different signaling patterns and therapeutic responses 
[36]. According to the figure, genes with lower Wilcoxon test statistics (i.e., differentially 
expressed genes in low-uncertainty cells) are significantly enriched in the pathways, 
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supporting the interpretation that high-uncertainty cells are more heterogeneous and 
potentially multi-potent. As a result, the uncertainty quantification from spVelo allows 
researchers to identify and examine the regions with high variability, and further under-
stand intricate biological mechanisms.

spVelo discovers complex trajectory patterns

In this section, we investigated the trajectory inferred using velocity from different 
methods. From Fig.  3a, spVelo inferred a bifurcate trajectory from sample 12 of the 
OSCC dataset. To validate the inferred bifurcate trajectory, we visualized how spliced 
expression varies along with the latent time inferred by spVelo in scatter plots. Velocity 
clusters were calculated by using Leiden clustering [37] on the inferred velocity matrix. 
Expression data and latent time were calculated by averaging the top five markers of 
edge (1) cells and edge (2) cells. From the visualized scatter plots in Fig. 3c, markers of 
edge (1) are upregulated in the first lineage (core (1), transitory (1), and edge (1) cells), 
while markers of edge (2) are upregulated in the second lineage (core (1), transitory (2), 
and edge (2) cells). For distinct comparison, we fitted two lines to the two lineages in 
the first scatter plot. The t-test between the slopes of the two lines shows the statistical 
significance of the difference between the two lineages, thereby validating the bifurcate 
trajectory inferred by spVelo.

Additionally, for sample 4 of the OSCC dataset, spVelo inferred a converged trajec-
tory as shown in Fig. 3b. The clustered results indicated three edge sub-types. Similarly, 
we visualized the scatter plots of averaged spliced expression and latent time in Fig. 3d. 
However, upon closer examination, the expression patterns of edge (2) are more con-
sistent with transitory (2) cells, since they transition into edge (3). As a result, we re-
annotated edge (2) into transitory (2) and presented the scatter plots after re-annotation 
in the lower half of Fig. 3e. In the left panel of Fig. 3e, the first lineage (core (1), transitory 
(1), and edge (1) cells) expresses edge1 markers at a higher level, while the second line-
age (transitory (2) and edge (3) cells) expresses at a lower level. The right panel of Fig. 3e 
shows the opposite for edge3 markers. We further performed K-means clustering with 
the concatenation of the latent time matrix and gene expression matrix as input and 
n_clusters set as 3. From the visualization in Fig. 3f, previous edge (2) cells should 
be separated from edge (3) cells. As a result, this updated information aligns the cell 
classifications with expression dynamics and more accurately reflects the cell type tran-
sitions, further supporting spVelo’s capability in identifying complex cellular dynamics 
and refining cell type classifications.

The trajectory plots of all OSCC samples on UMAP embedding are visualized in Addi-
tional file 1: Fig. S7 and trajectory plots on spatial coordinates are visualized in Addi-
tional file 1: Fig. S9. The trajectory plots of simulated pancreas dataset are visualized in 
Additional file 1: Fig. S10.

spVelo improves genes’ fit and selects biologically important state driver markers

Multiple rate kinetics (MURK) genes are defined as genes with transcriptional boosts 
[11]. Their expression levels increase rapidly during specific cellular states. Models 
with simple assumptions may fail to capture their complex dynamics. These upregulat-
ing boosts would lead to downregulation estimations, and may further lead to reversed 
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estimations of cellular transitions [12]. Possible solutions include manually removing 
the MURK genes that violate the model assumption [11]. However, this removal risks 
the loss of biologically informative genes that are crucial for velocity and trajectory 
inference.

To address this limitation, we evaluated the capacity of spVelo in inferring the kinetic 
rates of MURK genes. In Fig.  4a, we visualized phase portraits of five MURK genes 
from the OSCC dataset, showing the robustness of spVelo in capturing the non-linear 

Fig. 3  spVelo discovers complex trajectory patterns. a UMAP of bifurcate trajectory in sample 12 from the 
OSCC dataset. b UMAP of converged trajectory in sample 4 from OSCC dataset before re-annotation. c Scatter 
plot of how spliced expression varies along with the latent time inferred by spVelo in sample 12. Each dot 
represents a cell, and expression and latent time are calculated by averaging the top five markers of edge (1) 
cells and edge (2) cells. Linear regression lines are fitted for each lineage in the first scatter plot, with a p value 
indicating the significance of slope difference. d Scatter plot of how spliced expression varies along with the 
latent time inferred by spVelo before re-annotation in sample 4. Each dot represents a cell, and expression 
and latent time are calculated by averaging the top five markers of edge (1), edge (2), and edge (3) cells. e 
Scatter plot of how spliced expression varies along with the latent time inferred by spVelo after re-annotation 
in sample 4. Each dot represents a cell, and expression and latent time are calculated by averaging the 
updated top five markers of edge (1) and edge (3) cells. f UMAP of K-means clustering
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dynamics and estimating complex kinetics. By fitting the MURK genes, spVelo provides 
a more accurate representation of the underlying biological process. We also visualized 
phase portraits of state driver markers selected from the simulated pancreas dataset in 
Fig. 4b. This further demonstrates spVelo’s ability to accurately fit genes’ dynamics.

Furthermore, we examined the biological significance of state driver markers selected 
by spVelo. Based on the velocity estimation, state driver markers are defined as genes 
pivotal in driving cellular state transitions. Here we utilized a t-test on the estimated 
velocity matrix to select state driver markers and used oncogenic gene sets from MsigDB 
[26, 27] for gene set enrichment analysis (GSEA). We visualized the GSEA results 
through a dotplot in Fig.  4c. The first column of the dotplot is state-driver markers 
selected from transitory and edge cells, and the second column is the same number of 
randomly selected genes from the dataset, serving as a control group. The dotplot dem-
onstrates that the state driver markers are significantly enriched in oncogenic pathways 
compared to the random gene set, proving spVelo’s ability to select state driver markers 
that play a crucial role in cancer progression. These state driver markers can potentially 
serve as targets for therapeutic intervention.

spVelo infers gene regulatory networks by in silico gene deletion

Gene regulatory network (GRN) inference is a popular area since it is critical for under-
standing transcription. Traditional GRN inference methods largely rely on static gene 
expression data [38, 39]. However, gene regulation is a highly complex and dynamic pro-
cess, so traditional methods may be unable to capture the true underlying regulatory 
relationships and lead to false-positive and false-negative predictions. For example, for 
the co-expression methods, expression levels of genes may not correlate with those of 

Fig. 4  spVelo fits genes’ dynamics well. a Phase portraits of five MURK genes from the OSCC dataset. b Phase 
portraits of state driver markers selected from the simulated pancreas dataset. c spVelo selects biologically 
significant state driver markers, verified by gene set enrichment analysis using MSigDB
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their regulating TFs due to the time delay between TF binding and expression accumu-
lation [40, 41]. Here we present spVelo’s downstream application in GRN inference. By 
integrating RNA velocity information in GRN inference, spVelo can predict future gene 
expression change, revealing true causal relationships. Inspired by [42], we employed 
an in silico gene deletion approach. We inferred the velocity before and after remov-
ing EGFR, a gene known for prompting OSCC cell proliferation, metastasis, invasion, 
and apoptosis resistance [25, 43, 44]. To quantify the impact of EGFR deletion, we calcu-
lated the gene-wise cosine similarity between the two velocity matrices obtained before 
and after in silico perturbation. The comparison between EGFR target genes and target 
genes of other genes is visualized in Fig. 5a. The boxplot reveals that direct EGFR tar-
gets (defined by the transcription factor target gene sets from MsigDB [26, 27]) are more 
impacted by the in silico deletion of EGFR compared to other target genes. The results 
suggest that with in silico perturbation, spVelo may identify regulatory relationships and 
enable the identification of critical genes driving biological processes, thus contributing 
to understanding the mechanisms underlying disease progression.

spVelo enables temporal cell‑cell communication inference

Inspired by CytoSignal and VeloCytoSignal [45], we inferred cell-cell communication 
(CCC) and temporal CCC using spVelo. Detailed steps of CCC inference can be found 

Fig. 5  Downstream applications of spVelo. a The Y-axis is the cosine similarity calculated of each gene’s 
velocity before and after in silico perturbation. The boxplot compares the cosine similarity between EGFR 
target genes and other target genes. b 3D plot of inferred cell-cell communication. The opacity of each line 
is proportional to the cell-cell communication score of the corresponding sender and receiver cells. For 
clarity and interpretability of the plot, we only use the top 0.1% of the scores to visualize. c Temporal cell-cell 
communication inferred with velocity from spVelo. From left to right: spatial scatter plot of sample 2 from 
OSCC, scatter plot with sender communication rate, scatter plot with receptor communication rate
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in the Methods section. Here we used the ligand-receptor gene pair (ANXA1, EGFR) for 
CCC inference. The inferred spot-level CCC is visualized in Fig. 5b, where lines between 
sender and receptor cells indicate communications between them. From Fig.  5b, few 
core cells are receptors. Additionally, in receivers, edge cells communicate with greater 
numbers of senders and higher communication scores; while in senders, core and transi-
tory cells have more outgoing lines. These conclusions are consistent with the cell transi-
tion ground truth provided by [25].

Given the significance of CCC in dynamical processes, we quantified spatial-temporal 
changes in signaling activities to understand the role of CCC in cell state transition. Pre-
vious methods use samples sequenced at different time points or estimate pseudo-times 
from RNA-seq datasets to infer temporal CCC [46]. However, even if we detect the 
mRNAs for ligands and receptors, that does not guarantee that the cells are communi-
cating at that moment. Proteins might still be missing, inactive, stored, or taking time to 
build up [47]. By incorporating RNA velocity, spVelo can overcome this problem by pre-
dicting expression change in receptor or downstream genes, therefore showing whether 
cells are actively communicating. Here we inferred temporal CCC and visualized the 
sender and receptor communication rate in Fig. 5c, and the other results are shown in 
Additional file 1: Fig. S11. Figure 5c reveals that sender communication rates are higher 
in core and transitory cells, while receptor communication rates are higher in transi-
tory and edge cells. The enrichment of sender cells in core and transitory state might 
imply the higher proportion of cancer stem cells, which aligns well with one scRNA-
seq study in OSCC samples [48] The higher receptor communication rate in the edge 
state represents more stable cancer development progress, which also aligns well with 
research focusing on late-stage cancer [49]. As a result, this result aligns with ground 
truth, demonstrating that spVelo effectively captures temporal dynamics in cell-cell 
communications. This helps elucidate the signaling networks in both static and develop-
mental contexts, enabling researchers to better understand the timing of critical cellular 
interactions.

Conclusions
RNA velocity has emerged as a new approach for inferring cellular trajectory and under-
standing dynamical processes. Meanwhile, spatially resolved transcriptomics combines 
gene expression with spatial context, offering insights into cellular architectures. How-
ever, existing RNA velocity methods fail to utilize these spatial insights, particularly in 
large-scale, multi-batch datasets. Here, we introduce spVelo, a novel RNA velocity infer-
ence method for multi-batch spatial transcriptomics datasets. Our extensive analysis 
proves its accuracy and interpretability in velocity and trajectory inference.

Existing methods exhibit several limitations when applied to large-scale spatial datasets. 
All methods are developed for scRNA-seq and are unable to utilize the spatial informa-
tion. Among the compared methods, scVelo suffers from strict assumptions and simple 
modeling, making it unable to capture complex dynamics. This results in oversimplified or 
inaccurate trajectory inference. On the other hand, veloVI presents a complex VAE-based 
model with a time-dependent transcriptional rate. However, it fails to infer RNA velocity 
from multi-batch datasets. LatentVelo is scalable to multi-batch datasets by incorporating 
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batch information into its model, yet fails to infer coherent velocity between batches and 
infers an inaccurate trajectory.

spVelo overcomes the above limitations. With its design of combining VAE with GAT, 
spVelo is capable of leveraging the information from both spatial location and expres-
sion data. Additionally, by introducing an MMD penalty between batches, spVelo can 
infer coherent velocity from multi-batch datasets. Consequently, spVelo more accurately 
infers velocity and trajectory from large-scale datasets, effectively capturing the underly-
ing dynamics of tissues.

We further provided downstream applications utilizing the velocity inferred by spVelo. 
Firstly, we demonstrated that the generative modeling of spVelo enables interpretable 
uncertainty quantification. Secondly, we discovered complex trajectory patterns and 
further discovered possible cell type refinement. Thirdly, we selected state driver mark-
ers and proved their biological significance. Fourthly, we inferred the Gene Regulatory 
Network utilizing an in silico gene deletion approach. Finally, we inferred temporal cell-
cell communications that are consistent with the ground truth. Therefore, RNA velocity 
inferred by spVelo offers new biological insight into cellular dynamics and exhibits great 
promise for future explorations.

Methods
Problem definition

In the RNA velocity inference problem, we denote the spliced expression matrix as SN×G 
and the unspliced expression matrix as UN×G , where N represents the number of cells 
and G represents the number of genes. We use XN×2 to represent the spatial locations 
of the cells. With these as input, spVelo aims to learn a model M, which can infer the 
cell-by-gene velocity matrix as VN×G = M(S,U ,X) . The model can simultaneously 
infer cell-gene-specific latent time tng , transcriptional state k, and kinetic rates including 
gene-state-specific transcription rate αgk , gene-specific splicing rate βg , and gene-spe-
cific degradation rate γg . Here transcriptional state k ∈ {1, 2, 3, 4} , where k = 1 indicates 
induction, k = 2 indicates the induction steady state, k = 3 indicates repression, and 
k = 4 indicates the repression steady state.

spVelo model specification

Following [10] and [16], spVelo assumes that for each gene, cells first go through an 
induction state where spliced and unspliced expression increases. Then, cells reach an 
induction steady state, and then at a switching time, the system switches to a repression 
state where spliced and unspliced expression decreases. Finally, cells reach a repression 
steady state with no expression.

By solving the ordinary differential equations [10], the estimated unspliced and spliced 
abundance at time tng for cell n and gene g is defined as:

(1)ū(g)(tng , k) :=u0gke
−βg (tng−t0gk ) +

αgk

βg
1− e

−βg (tng−t0gk ) ,

(2)

s̄(g)(tng , k) :=s0gke
−γg τ +

αgk

γg

(

1− e
−γg (tng−t0gk )

)

+
αgk − βgu

0
gk

γg − βg

(

e
−γg (tng−t0gk ) − e

−βg (tng−t0gk )
)

,



Page 13 of 23Long et al. Genome Biology          (2025) 26:239 	

where t0gk denotes the initial time of the system in state k. u0gk and s0ng denotes the esti-
mated initial unspliced and spliced expression of gene g in state k, i.e., u0gk = ū(g)

(

t0gk , k
)

 

and s0gk = s̄(g)
(

t0gk , k
)

.

Transcription rate α is assumed to be time-dependent with parameters α0 , α1 , �α:

For future conciseness, we still write the gene-state-specific transcription rate α(k)
g (t) as 

αgk.
For k = 1 (induction state), we have u0g1 = 0 , s0g1 = 0 , αg1 > 0 , and t0g1 = 0 by definition. 

Thus (6) and (7) can be simplified into

For k = 2 (induction steady state), the unspliced and spliced expression is defined as the 
limit of the induction state as time approaches ∞:

For k = 3 (repression state), we have αg3 = 0 and t0g1 = tsg , where tsg is the gene-specific 
switching time from the induction phase to the repression phase. Thus (6) and (7) can be 
expressed as

Similarly, k = 4 (repression steady state) is defined as the limit of the repression state, 
resulting in

(3)α(k)(t) =

{

α1 − (α1 − α0)e
−�α t , k ∈ {1, 2},

0, k ∈ {3, 4}.

(4)ū(g)(tng , k = 1) :=
αg1

βg

(

1− e−βg tng
)

,

(5)s̄(g)(tng , k = 1) :=
αg1

γg

(

1− e−γg tng
)

+
αg1

γg − βg

(

e−γg tng − e−βg tng
)

.

(6)ū(g)(tng , k = 2) := lim
tng→∞

ū(g)(tng , k = 1) =
αg1

βg
,

(7)s̄(g)(tng , k = 2) := lim
tng→∞

s̄(g)(tng , k = 1) =
αg1

γg
.

(8)ū(g)(tng , k = 3) :=u0g3e
−βg (tng−t0g3),

(9)s̄(g)(tng , k = 3) :=s0g3e
−γg (tng−t0g3) −

βgu
0
g3

γg − βg

(

e
−γg (tng−t0g3) − e

−βg (tng−t0g3)
)

.

(10)ū(g)(tng , k = 4) :=0,

(11)s̄(g)(tng , k = 4) :=0.
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spVelo generative process

The generative modeling of spVelo combines a Variational AutoEncoder (VAE) [21] 
inspired by [16], with a Graph Attention Network (GAT) [22]. We explored several 
types of Graph Neural Networks (GNNs) for modeling cell-cell relationships, includ-
ing GCN [50] and GraphSAGE [51]. Among them, GAT consistently showed the best 
performance, which motivated us to adopt GAT as the backbone of our model. More 
details can be found in Additional file  1: Text S1.2, and comparison results can be 
found in Additional file 1: Fig. S12.

We assume the following generative process to model the underlying dynamics of 
the unspliced expression ung and spliced expression sng:

For each cell n and gene g, we use a low-dimensional latent variable zn to summarize 
the latent state of each cell (default d = 10 ). zn is the sum of the latent space from 
VAE and GAT, modeling both expression data and spatial location. Let

where e denotes the edges input to GAT. In GAT modeling, zGATn  is constructed based 
on a graph structure where edges represent relationships between cells. The edges are 
composed of two parts: The first part of the edges is calculated using k Nearest Neigh-
bors (kNN) on the spatial coordinates. We compute the edges in each batch and con-
catenate across all batches. The second part of the edges is calculated across different 
batches using Mutual Nearest Neighbors (MNN) on the expression data. The distance of 
MNN is defined as the optimal transport (OT) matrix, quantifying the correspondence 
between samples in different batches [52]. The metric cost matrix in the OT problem is 
calculated as the Euclidean distance between batches. By combining the two parts of the 
edges, the GAT module effectively captures spatial information together with relation-
ships between batches. The number of neighbors for both parts is set as 15. More details 
of tuning weights between spatial and mnn edges can be found in Additional file 1: Text 
S1.3, and comparison results can be found in Additional file 1: Fig. S13.

We then use a Dirichlet distribution to model state assignment probability πng . 
The settings are based on veloVI. We further performed ablation studies for Dirichlet 
prior distribution parameters in Additional file 1: Text S1.4 and visualized results in 
Additional file 1: Fig. S14. The state kng is then defined as the state with the highest 
state assignment probability.

Latent time tng is modeled as a state-specific function of latent state zn:

(12)zVAEn ∼Normal(0, Id),

(13)zGATn =GAT(zVAEn , e),

(14)zn =zVAEn + zGATn ,

(15)πng ∼Dirichlet(0.25, 0.25, 0.25, 0.25),

(16)kng ∼Categorical(πng ).
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where tmax := 20 fixes the time scale across genes. hk : Rd → (0, 1)G is parameterized as 
a state-specific fully connected neural network.

Finally, we assume the observed expression data are sampled from normal distribu-
tions as

where ck is a state-dependent scaling factor on the variance. As default, ck = 1 for 
k = 1, 2, 3 except for c4 = 0.1 in the repression steady state.

spVelo posterior inference

Variational posterior Let θ be the set of parameters including kinetic rates ( α , β , γ ), 
switching time ts , and neural network parameters. We use variational inference [21] to 
approximate the posterior distribution. The posterior distribution is posited as

where dependencies are specified using neural networks with parameter set φ.
Integrating over the choice of transcriptional state kng , the likelihoods for spliced and 

unspliced transcript abundances are Gaussian mixture models:

Optimization The objective function is composed of three terms

where Lelbo is the negative evidence lower bound [53] of logpθ (u, s) , Lswitch is a penalty 
that regularizes the location of transcriptional switch in the phase portrait, and Lbatch is 
an MMD penalty that regularizes the latent space between different batches. As default, 
the penalty weight � = 2 . In more detail, we denote b1, b2 as a pair of different batch 
IDs, zb as the latent space of batch b, and u∗ and s∗ as the median unspliced and spliced 
expression for each gene,

(17)ρ(k)
ng =[hk(zn)]g ,

(18)t(k)ng =

{

ρ
(1)
ng t

s
g if k = 1,

(tmax − tsg )× ρ
(3)
ng + tsg if k = 3,

(19)ung ∼Normal
(

ū(g)(t
(kng )
ng , kng ), (ckσ

u
g )

2
)

,

(20)sng ∼Normal
(

s̄(g)(t
(kng )
ng , kng ), (ckσ

s
g )

2
)

,

(21)qφ(z,π | u, s) :=

N
∏

n=1

qφ(zn | un, sn)

G
∏

g=1

qφ(πng | zn),

(22)pθ (ung | zn,πn) =
∑

kng∈{1,2,3,4}

πngkngNormal
(

ū(g)
(

t
(kng )
tng , kng

)

, (ckσ
u
g )

2
)

(23)pθ (sng | zn,πn) =
∑

kng∈{1,2,3,4}

πngkngNormal
(

s̄(g)
(

t
(kng )
tng , kng

)

, (ckσ
s
g )

2
)

(24)Lvelo(θ ,φ;u, s) = Lelbo(θ ,φ;u, s)+ �Lswitch(θ;u, s)+ �Lbatch(z),
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Here k(x, y) denotes a Gaussian kernel, i.e., k(x, y) = exp
(

−
�x−y�2

2σ 2

)

 , where σ is a band-

width parameter and �x − y� is the Euclidean distance between x and y.
To optimize Lvelo , we use stochastic gradients [21] and Adam optimizer with weight 

decay [54]. We set the number of epochs as 2000. We present our results of hyper-parame-
ter tuning in Additional file 1: Fig. S15.

Velocity inference After fitting the parameters, the cell-gene-specific state assignment is 
calculated as the posterior mean:

The cell-gene-specific latent time is calculated as

RNA velocity is calculated as a function of the variational posterior

Uncertainty quantification

Uncertainty of the latent state is calculated as the differential entropy of the latent space:

where d is the dimension (default as 10) and � is the variance matrix of the latent space.

(25)

Lelbo(θ ,φ;u, s) =
�

n

−Eqφ(zn,πn|un,sn)[log pθ (un, sn | zn,πn)]

+ KL
�

qφ(zn | un, sn) � p(z)
�

+ Eqφ(zn|un,sn)





�

g

KL
�

qφ(πng | zn) � p(πng )
�



,

(26)Lswitch(θ;u, s) =
∑

g

(

(

u0g3 − u∗g

)2
+

(

s0g3 − s∗g

)2
)

,

(27)Lbatch(z) =
∑

b1,b2

MMD2(zb1 , zb2),

(28)

MMD2(U ,V ) =
1

n2

n
∑

i=1

n
∑

i′=1

k(ui,ui′)−
2

nm

n
∑

i=1

m
∑

j=1

k(ui, vj)+
1

m2

m
∑

j=1

m
∑

j′=1

k(vj , vj′).

(29)π̃ng = Eqφ(zn|un,sn)

[

Eqφ(πng |zn)

[

πng

]]

.

(30)t̃
(kng )
ng = Eqφ(zn|un,sn)

[

Eqφ(πng |zn)

[

t
(kng )
ng

]]

.

(31)v(g)
(

t(k), k
)

:=
ds̄(g)(t, k)

dt

∣

∣

∣

∣

∣

t(k)

= βg ū
(g)

(

t(k), k
)

− γg s̄
(g)

(

t(k), k
)

.

(32)h(z) =
1

2
log

(

(2πe)d det(�)

)

,
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Temporal cell‑cell communication inference

The spatial interaction score is defined as the co-expression of ligand and receptor 
genes within close spatial proximity. Here we select a ligand-receptor gene pair from 
OmniPath [55] and denote the spliced expression matrix as S, and denote a pair of 
ligand and receptor genes as l and r.

For cells i and j, we calculate the LRscore as:

For cell types A and B, we calculate the LRscore as:

where CA refers to all cells in cell type A, and Sil refers to the expression value of gene l 
in cell i. In the indicator function, dij refers to the Euclidean distance between the spa-
tial location of cell i and cell j, and q refers to a user-defined threshold, set as 30. After 
calculating scores between cell types, we randomly permuted cell types 50 times and 
performed False Discovery Rate (FDR) correction.

The spatial-temporal interaction score is defined as the time derivative of LRscore 
and calculated as follows:

where V refers to the inferred velocity matrix.

Metrics explanations

To evaluate the performance of inferred velocity, we calculated three different types 
of scores, inspired by VeloAE [56]. For each pair of cell types (A, B), the scores are cal-
culated for the boundary scores, referring to cells of cell type A with cell type B in the 
neighborhood, i.e., CA→B =

{

c ∈ CA | ∃c′ ∈ CB ∩ N (c)
}

 . Here CA denotes all the cells 
of cell type A and N(c) denotes the neighbor cells of c.

1. Confidence score: Confidence score for cell c from cell type A with regard to cell 
type B is defined as

where Vc is the velocity vector of cell c. This is calculated using scv.tl.velocity_
confidence. Then, the confidence score for cell type A is calculated as the average of 
Confidence(c) for all c ∈ CA→B . It summarizes the consistency of the inferred velocity, 
and a higher confidence score represents better consistency.

2. Transition score: Transition score for cell c from cell type A with regard to cell 
type B is defined as

(33)LRscore(i, j) = Sil × Sjr × I
{

dij < q
}

.

(34)LRscore(A,B) =
∑

i∈CA

∑

j∈CB

Sil × Sjr × I
{

dij < q
}

,

(35)
LRvelo(i, j) =

d LRscore(i, j)

dt
=

[

Sil ×
d Sjr

dt
+

d Sil

dt
× Sjr

]

× I
{

dij < q
}

=
(

Sil × Vjr + Vil × Sjr
)

× I
{

dij < q
}

,

(36)Confidence(c) =
1

|c′ ∈ CB ∩ N (c)|

∑

c′∈CB∩N (c)

Vc · Vc′

�Vc� · �Vc′ �
,
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Here π̃cc′ denotes the cell-to-cell transition probabilities calculated from the velocity 
graph πcc′ with row-normalization zc and kernel width σ . This is calculated using scv.
tl.velocity_graph and scv.utils.get_transition_matrix.

where Sc refers to the spliced gene expression of cell c. Transition score for cell type A is 
calculated as the average of Transition(c) for all c ∈ CA→B , measuring how well the cor-
responding change in gene expression matches the predicted change. A higher transition 
score represents a better match.

3. Direction score: Direction score for cell c from cell type A with regard to cell type 
B is defined as

Here xc and xc′ are vectors representing cells c and c′ in a low-dimensional Principal 
Component Analysis (PCA) space via [57] (number of principal components default as 
30). xc′ − xc is the displacement in this space, and ṽc is the projection of velocity into 
PCA space, calculated using scv.tl.velocity_embedding. Denoting π̃cc′ as the 
transition probability matrix, we have

Direction score for cell type A is calculated as the average of Dir(c) for all c ∈ CA→B , 
measuring how well the corresponding change in PCA embedding matches the pre-
dicted change. A higher direction score represents a better match.

With ground truth cell type transition information as input, the confidence scores are 
calculated as the average score of all correct cell type transition pairs, while transition 
scores and direction scores are calculated by averaging scores of correct cell type transi-
tion pairs while incorporating a penalty for incorrect transitions by using their negated 
scores. The correct cell type pairs are defined as a pair of cell types with known transi-
tion relationships from the first cell type to the second. For the simulated pancreas data-
set, the list of cell type pairs is defined as [(‘Ductal’, ‘Ngn3 low EP’), (‘Ngn3 low EP’, ‘Ngn3 
high EP’), (‘Ngn3 high EP’, ‘Pre-endocrine’), (‘Pre-endocrine’, ‘Delta’), (‘Pre-endocrine’, 
‘Beta’), (‘Pre-endocrine’, ‘Epsilon’), (‘Pre-endocrine’, ‘Alpha’)], as defined in [10, 24]. For 
the OSCC dataset, the list of cell type pairs is defined as [(‘core’, ‘transitory’), (‘transitory’, 
‘edge’), (‘core’, ‘edge’)], as defined in [25]. More discussions of the metrics can be found in 
Additional file 1: Text S3.

(37)Transition(c) =
1

|c′ ∈ CB ∩ N (c)|

∑

c′∈CB∩N (c)

π̃cc′ .

(38)πcc′ = cos∠(Sc′ − Sc,Vc) =
(Sc′ − Sc) · Vc

�Sc′ − Sc��Vc�
,

(39)π̃cc′ =
1

zc
exp(πcc′/σ),

(40)Dir(c) =
1

|c′ ∈ CB ∩ N (c)|

∑

c′∈CB∩N (c)

(xc′ − xc) · ṽc

�xc′ − xc��ṽc�
.

(41)ṽc = Eπ̃c [
xc′ − xc

�xc′ − xc�
] =

∑

c′ �=c

(

π̃cc′ −
1

n

)

xc′ − xc

�xc′ − xc�
.
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From the equations, the three scores are all calculated based on local neighborhoods. 
We compute the kNN graph, spatial graph, and MNN graph respectively, incorporating 
different information in model comparison. As default, the neighbor size is set as 30.

Inspired by LatentVelo [14], we also measure the cosine similarity of MNN cells in 
different batches to evaluate batch effect correction of RNA velocity. Let Cb be all the 
cells in batch b and NMNN (c) be MNN of cell c, the velocity coherence score for cell c is 
defined as:

where B denotes the set of batches in the dataset and (b1, b2) denotes a pair of different 
batch IDs. Then, the final velocity coherence score is calculated as the average of 100 
randomly selected cells.

Baseline model explanations

In the model comparison process, we consider eight baseline methods (settings) in total 
for comparison, including standard and annotated mode of LatentVelo, stochastic and 
dynamical mode of scVelo, veloVI, and scGen-corrected scVelo and veloVI. The order of 
these methods (settings) is random.

LatentVelo [14] uses a VAE that embeds unspliced and spliced abundances of RNA 
into the latent space, and dynamics on the latent space are described as a neural ODE. 
By learning a shared latent space for multiple batches, LatentVelo enables batch effect 
correction from a dynamic view. The annotated mode of LatentVelo incorporates cell 
type information by modifying the prior.

The stochastic mode of scVelo [10] treats transcription, splicing, and degradation as 
probabilistic events and approximates the Markov process using moment equations. 
By using both first- and second-order moments, scVelo (stochastic) can utilize both 
relationships and covariation between unspliced and spliced mRNA abundances. The 
dynamical mode of scVelo solves the ODEs with a likelihood-based expectation-max-
imization framework, iteratively estimating the parameters of kinetic rates, transcrip-
tional state, and cell-internal latent time.

veloVI [16] treats unspliced and spliced abundances of RNA for each gene as a func-
tion of kinetic parameters, latent time, and latent transcriptional state. It further treats 
latent time as tied via a low-dimensional latent variable. veloVI uses a VAE architecture 
and outputs a posterior distribution over estimated velocity.

For batch effect correction settings, since current RNA velocity methods require cell-
by-gene spliced and unspliced counts as input, only batch effect correction methods 
that return a corrected and reconstructed gene matrix can be used. As a result, we used 
scGen [29] for batch effect correction, as recommended by scIB [58].

In the scGen-corrected models, we followed the approach taken by [14, 59]. Since 
we need to simultaneously correct spliced and unspliced counts, we perform batch 

(42)Coh(c) =
1

|B|(|B| − 1)

B
∑

b1=1

∑

b2 �=b1

vb1 · vb2
�vb1��vb2�

,

(43)vb =
1

|c′ ∈ Cb ∩ NMNN (c)|

∑

c′∈Cb∩N
MNN (c)

Vc′ ,
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effect correction on the sum of these counts. Denote the spliced and unspliced counts 
as S and U, we define the sum matrix as M = S + U  , and the ratio matrix as R = S

S+U  . 
scGen batch effect correction is performed on log-normalized M with the default set-
tings, and we get the corrected matrix M̃ . To recover corrected spliced and unspliced 
expression, we multiply M̃ with R or 1− R.

Then, RNA velocity is estimated as before.

Experiment design

For the simulated dataset, we followed the tutorial from scCube [28] and generated 
random spatial patterns for cell types with a reference-free strategy. We also consid-
ered scDesign3 [60] for the simulation. Extra analysis of data simulation can be found 
in Additional file 1: Text S4 and Additional file 1: Fig. S16. We used the scRNA-seq 
pancreas dataset [24] for this simulation. For the real OSCC dataset, we filtered all 
noncancer (nc) cells, following the preprocessing step in [25].

For both the simulated pancreas dataset and the real OSCC dataset, we followed the 
pre-processing guidelines from scVelo [10]. We normalized the count matrices to the 
median of total molecules across cells and filtered genes with less than 20 expressed 
counts commonly for spliced and unspliced mRNA, followed by log-transforming the 
data and selecting the top 2000 highly variable genes. Then, we calculated a nearest 
neighbor graph (with 30 neighbors) based on Euclidean distances in principal com-
ponent analysis space (with 30 principal components) on spliced logcounts. We com-
puted first- and second-order moments (means and uncentered variances) for each 
cell across its 30 nearest neighbors.

Following [16], we min-max scaled the unspliced and spliced expression to the unit 
interval and applied the steady-state scVelo model. Finally, we filtered the genes with 
negative steady-state ratio and R2 statistic below a user-defined threshold (default as 
0.2). We further performed ablation studies for the R2 threshold in Additional file 1: 
Text S1.5 and visualized results in Additional file  1: Fig. S17. Then, the remaining 
genes are used for velocity inference.

In model comparison, we followed the tutorials of all methods. To prove the scal-
ability of spVelo on larger datasets, we further performed simulation for two different 
conditions, including large number of slices and large number of cells per slice. More 
details can be found in Additional file 1: Text S5 and results are visualized in Addi-
tional file 1: Fig. S18.
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(44)Scorrected =M̃ × R

(45)Ucorrected =M̃ × (1− R)
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