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Abstract

We present a novel strategy for robust estimation of the gaps in multiarmed bandits
that is based on importance-weighted sampling. The strategy is applicable in best-
of-both-worlds setting, namely, it can be used in both stochastic and adversarial
regime with no need for prior knowledge of the regime. It is based on a pair of
estimators, one based on standard importance weighted sampling to upper bound
the losses, and another based on importance weighted sampling with implicit
exploration to lower bound the losses. We combine the strategy with the EXP3++
algorithm to achieve best-of-both-worlds regret guarantees in the stochastic and
adversarial regimes. We conjecture that the strategy can be applied more broadly
to robust gap estimation in reinforcement learning, which will be studied in future
work.

1 Introduction

Best-of-both-worlds algorithms are algorithms that perform well in stochastic, adversarial, and
intermediate environments, with no need for prior knowledge about the nature of the environment.
The idea and the term were introduced by Bubeck and Slivkins (2012), who studied multiarmed
bandits, and have since spread to a broad range of other frameworks, including combinatorial
bandits, linear bandits, bandits with graph feedback, bandits with delayed feedback, Markov Decision
Processes (MDPs), and many more (Dann et al., 2023, Masoudian et al., 2024, Jin et al., 2023).

There exist two major approaches to deriving best-of-both-worlds algorithms. One is to start with
an algorithm for stochastic environments and extend it to a best-of-both-algorithm by constantly
monitoring whether the environment satisfies certain stochasticity tests, and if not, perform an
irreversible switch into an adversarial operation mode. So far this approach failed to yield any
practically applicable algorithms and to generalize beyond the multiarmed bandit setting (Bubeck
and Slivkins, 2012, Auer and Chiang, 2016). The second approach is to start with an algorithm for
adversarial bandits and to make adjustments (sometimes only in the analysis) to make it also work
in stochastic environments. This category can be further subdivided into two. The first subcategory
delivers stochastic regret guarantees through direct control of the gaps. This approach was introduced
by Seldin and Slivkins (2014), who injected a bit extra exploration into the classical EXP3 algorithm
with losses (Bubeck and Cesa-Bianchi, 2012) and obtained the first practically applicable best-of-both-
worlds algorithm named EXP3++. The approach was further improved by Seldin and Lugosi (2017)
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and extended to additional settings, for example, bandits with graph feedback (Rouyer et al., 2022).
An advantage of this approach is its intuitiveness and relative simplicity, making it relatively easy to
generalize to new problems. A disadvantage is that the regret bounds are slightly suboptimal: the
adversarial regret bound of Seldin and Lugosi (2017) is suboptimal by a lnK factor coming from the
analysis of EXP3 (where K is the number of arms) and the stochastic regret bound is suboptimal by a
ln t factor coming from the control of the gaps (where t is the game round). The second subcategory
is based on a self-bounding analysis introduced by Zimmert and Seldin (2021). This approach, known
as Tsallis-INF, is currently the dominant one. It delivers minimax optimal regret guarantees in both
the stochastic and adversarial environments (Zimmert and Seldin, 2021, Masoudian and Seldin, 2021,
Ito, 2021), it also delivers minimax optimal regret guarantees in intermediate regimes, including
stochastically constrained adversarial, and stochastic regime with adversarial corruptions (Zimmert
and Seldin, 2021, Masoudian and Seldin, 2021), and it has been extended to a great variety of settings
mentioned earlier (Dann et al., 2023, Jin et al., 2023, Masoudian et al., 2024). However, this approach
is based solely on analysing properties of the distribution on arms played by the algorithm, and
provides no gap estimates. In many practical cases knowledge of the gaps could be interesting and
valuable, but it is currently unknown whether this information can be extracted from Tsallis-INF. A
second disadvantage is that extension to new settings requires handcrafting of potential functions,
which is not always intuitive.

Our work focuses on the first subcategory, namely, EXP3++ style approach. The best multiarmed
bandits algorithm in this subcategory is the EXP3++ version introduced by Seldin and Lugosi (2017).

It achieves O
(∑

a:∆(a)>0
(ln t)2

∆(a)

)
regret in the stochastic regime (where ∆(a) are the suboptimality

gaps) and O(
√
Kt lnK) regret in the adversarial regime. A disadvantage of the algorithm of Seldin

and Lugosi is that its stochastic analysis is based on plain (or, in other words, unweighted) losses.
Therefore, the stochastic regret guarantee applies only in the purely stochastic regime.

We introduce a novel modification of the algorithm, where both the stochastic and the adversarial
analysis are based on importance-weighted losses. The modification preserves the same regret bounds
in the stochastic and the adversarial regime as the regret bounds of Seldin and Lugosi, but provides
an opportunity to achieve improved regret bounds in intermediate regimes, such as stochastically
constrained adversarial. Moreover, it provides an explicit high-probability estimate of the gaps,
which may be interesting in its own right, in particular if in the future the technique is extended to
reinforcement learning, where using importance-weighted estimates is a common practice.

The primary challenge in high-probability gap estimation based on importance-weighted sampling are
the high variance and range of importance-weighted samples. Our solution is based on using standard
importance-weighted sampling to control loss deviations from above and importance-weighted
sampling with implicit exploration (Neu, 2015) to control loss deviations from below. For the first
the control is achieved by Bernstein’s inequality for martingales, which only requires one-sided
boundedness of the losses. For the second the control is achieved using the analysis of implicit
exploration by Neu. We emphasize that using the combination of the two estimators is crucial,
because due to high range each of the two estimators only allow deviation control in one direction.

In what follows, we start with outlining the problem setting in Section 2, present our gap estimation
strategy in Section 3, combine it with the EXP3++ algorithm in Section 4, and finish with a discussion
in Section 5. All proofs are deferred to the appendix.

2 Problem Setting

An environment generates a sequence of losses ℓ1, ℓ2, . . . , where ℓt ∈ [0, 1]K . We consider three
types of environments. In a stochastic environment each entry ℓt(a) is drawn from a distribution
with a fixed expectation, E [ℓt(a)] = µ(a), independent of t. In an oblivious adversarial environment
the vectors ℓt are generated arbitrarily before the game starts. Since the oblivious setting is the
only adversarial setting we consider in the paper, we will simply refer to it as adversarial. In a
stochastically constrained adversarial environment the vector entries are sampled independently from
distributions that maintain the gaps, E[ℓt(a)− ℓt(a

′)] = ∆̃a,a′ , but the means are allowed to fluctuate
over time. The stochastic environment is a special case of stochastically constrained adversarial
environment, where the means do not fluctuate.
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The game is played repeatedly, and at each step t the algorithm chooses an action At ∈ {1, . . . ,K}
and observes only the loss of this action ℓt(At) at this time step.

The aim of the algorithm is to minimize the pseudo-regret, which is the difference between its
cumulative loss and the cumulative loss of the best action in hindsight, defined as

R(t) =

t∑
s=1

E[ℓs(As)]−min
a

{
E
[ t∑

s=1

ℓs(a)

]}
.

In the oblivious adversarial setting the losses are considered deterministic and the second expectation
can be dropped, making the pseudo-regret coincide with the expected regret

R(t) =

t∑
s=1

E[ℓs(As)]−min
a

t∑
s=1

ℓs(a).

In the stochastic regime action a is called optimal if µ(a) = mina′{µ(a′)}. We use a∗ to denote
an optimal action (there may be more than one). We use ∆(a) = µ(a) − µ(a∗) to denote the
suboptimality gap of action a. The definition of regret in the stochastic setting can then be rewritten
as

R(t) =
∑

a:∆(a)>0

E[Nt(a)]∆(a), (1)

where Nt(a) denotes the number of times action a was played in the first t rounds of the game.

In the stochastically constrained adversarial regime we use a∗ ∈ argmina ∆̃a,1 to denote an optimal
action, and ∆(a) = ∆̃a,a∗ the suboptimality gap of action a (Zimmert and Seldin, 2021). If the
means do not fluctuate with time, this definition coincides with the definition of the gaps in the
stochastic regime. In the stochastically constrained adversarial regime the regret can also be rewritten
using equation (1).

3 Robust Gap Estimation

Our gap estimation strategy uses importance weighted losses, and importance weighted losses with
implicit exploration. We denote the importance weighted loss of action a at time t by:

ℓIWt (a) =
ℓt(a)1(At = a)

p̃t(a)
,

where 1(·) denotes the indicator function. The importance weighted loss with implicit exploration of
action a at time t is denoted by:

ℓIXt (a) =
ℓt(a)1(At = a)

p̃t(a) + γt(a)
,

where γt(a) is an implicit exploration parameter to be specified later.

LIW
t (a) =

∑t
s=1 ℓ

IW
s (a) is the cumulative importance weighted loss of action a up to time t and

LIX
t (a) =

∑t
s=1 ℓ

IX
s (a) is the cumulative importance weighted loss with implicit exploration of

action a up to time t. Lt(a) =
∑t

s=1 ℓt(a) is the true cumulative loss of action a up to time t.

In the following display we present our gap estimation algorithm, which we name Robust Importance
Weighted Gap Estimation. The algorithm can be combined with any other algorithm (e.g., EXP3++)
at the plug-in point marked in blue.

The following proposition states the main property of the gap estimation algorithm, namely, that
with an appropriate set of parameters it ensures that 1

2∆(a) ≤ ∆̂t(a) ≤ ∆ with high probability for
all sufficiently large t. Thus, ∆̂t(a) can be used as a reliable estimate of ∆(a) for any higher level
purpose.
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Algorithm 1 Robust Importance Weighted Gap Estimation
Remark: see text for definition of ξt(a), and γt(a)
∀a : LIW

0 (a) = LIX
0 (a) = 0

for t=1, 2,... do

∀a : ∆̂t(a) =

(
LIX
t−1(a)−

ln (4t2)
γt−1(a)

−mina

(
LIW
t−1(a)+

√
2νt−1(a) ln (4t2)+

ln (4t2)
3

))
/(t−1)

∀a : ∆̂t(a) = min{max{0, ∆̂t(a)}, 1}

∀a : ϵt(a) = min

{
1

2K , 1
2

√
lnK
tK , ξt(a)

}
Let pt(a) be any distribution over {1, ...,K} (plug in point for other algorithms).
∀a : p̃t(a) = ϵt(a) + (1−

∑
a′ ϵt(a

′))pt(a)
Draw action At according to p̃t(a) and play it
Observe and suffer the loss ℓAt

t

∀a : ℓIWt (a) = ℓt(a)1(At=a)
p̃t(a)

∀a : ℓIXt (a) = ℓt(a)1(At=a)
p̃t(a)+γt(a)

∀a : LIW
t (a) = LIW

t−1(a) + ℓIWt (a)

∀a : LIX
t (a) = Lt−1(a)

IX + ℓIXt (a)
∀a : νt(a) = νt−1(a) + ϵt(a)

−1

end for

Proposition 1. For any t ∈ [T ] and a ∈ [K], let ϵmin
t (a) = mins≤t {ϵs(a)}. Then for γt(a) =√

ϵmin
t (a) ln t

t , and any a and t, the gap estimates ∆̂t(a) of Algorithm 1 in the stochastic regime
satisfy:

P(∆̂t(a) ≥ ∆(a)) ≤ 1

2t2
. (2)

Furthermore, for any choice of ξt(a), such that ξt(a) ≥ 2307 ln t
t∆̂t(a)2

and t ≥ tmin(a), the gap estimates
satisfy:

P
(
∆̂t(a) ≤

∆(a)

2

)
≤ 1

2t2
+ P

(
∃s ∈

[
0, t

]
: ∆̂s(a) ≥ ∆(a)

)
(3)

≤ 1

2t2
+

ln t

2tc∆(a)2
, (4)

where tmin(a) = mint

{
t ≥ 4·2307(ln t)2K

∆(a)4 lnK

}
is the first time when 2307ln(t)

t∆(a)2 ≤ 1
2

√
lnK
tK .

A proof of this proposition is provided in Appendix B.

4 EXP3++ with Robust Importance Weighted Gap Estimation

In the following display we cite the EXP3++ algorithm of Seldin and Slivkins (2014).

We combine EXP3++ with our robust gap estimation by plugging the exploration parameters ϵt(a)
from Algorithm 1 into EXP3++. The matching lines are highlighted in violet and the plug-in point in
blue. Note that importance weighted samples with implicit exploration are not used by EXP3++ and
have no impact on its operation, they are only used within Algorithm 1.

We prove the following regret guarantee in the stochastic regime for EXP3++ with our robust gap
estimation.
Theorem 2. Let ξt(a) = 2307 ln t

t∆̂t(a)2
, where ∆̂t(a) is the gap estimate from Algorithm 1. Then the

expected regret of EXP3++ in the stochastic regime satisfies:

R(t) = O

( ∑
a:∆(a)>0

ln2 t

∆(a)

)
+ Õ

( ∑
a:∆(a)>0

K

∆(a)3

)
, (5)
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Algorithm 2 EXP3++
Remark: see text for definition of ηt and ξt(a)
∀a : LIW

0 (a) = 0
for t=1,2,... do

∀a : ϵt(a) = min

{
1

2K , 1
2

√
lnK
tK , ξt(a)

}
∀a : pt(a) = e−ηtL

IW
t−1(a)/

∑
a′ e−ηtL

IW
t−1(a

′)

∀a : p̃t(a) = ϵt(a) + (1−
∑

a′ ϵt(a
′))pt(a)

Draw action At according to p̃t(a) and play it
Observe and suffer the loss ℓt(At)

∀a : ℓIWt (a) = ℓt(At)1(At=a)
p̃t(a)

∀a : LIW
t (a) = LIW

t−1(a) + ℓIWt (a)
end for

where Õ hides factors logarithmic in K.

We provide a proof of the theorem in Appendix C. We note that the regret bound matches the bound
of Seldin and Lugosi (2017, Theorem 3), but we use importance-weighted gap estimates, opening
potential for more applications.

The adversarial regret bound is taken directly from Seldin and Slivkins (2014), who provide a general
adversarial analysis that holds for any choice of ξt.

Theorem 3 ((Seldin and Slivkins, 2014, Theorem 1)). For ηt = 1
2

√
lnK
tK and ξt(a) ≥ 0 the regret of

the EXP3++ algorithm in the adversarial regime for any t satisfies:

R(t) ≤ 4
√
Kt lnK.

5 Discussion

We have provided a robust strategy for gap estimation based on importance weighted samples
and implicit exploration. In combination with the EXP3++ algorithm it achieves regret of order

O

(∑
a:∆(a)>0

(ln t)2

∆(a)

)
in the stochastic regime and regret of order O(

√
Kt lnK) in the adversarial

regime. While the regret bounds are the same as the bounds of Seldin and Lugosi (2017), the
ability to use importance-weighted gap estimates opens the opportunity to achieve improved regret
bounds in additional environments, such as stochastically constrained adversarial, to provide high-
probability regret guarantees, and to expand to additional learning settings beyond multiarmed bandits.
We emphasize that even though best-of-both-worlds algorithms like Tsallis-INF provide slightly

tighter regret bounds, namely O

(∑
a:∆(a)>0

ln t
∆(a)

)
in the stochastic regime and O(

√
Kt) in the

adversarial regime, they provide neither gap estimates nor high-probability guarantees. The ability of
our approach to provide high-probability gap estimates based on importance weighted samples might
be valuable in its own right. We are looking forward to discuss these opportunities with workshop
participants and explore them further in future work.
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A Concentration of Measure Inequalities and other prior results

In this section we cite two concentration inequalities from prior work that we use in our proofs.
The first is Bernstein’s inequality for martingales that we use to control LIW

t , and the second is an
inequality of Neu (2015) that we use to control LIX

t .

A.1 Bernstein’s Inequality for Martingales

We use the following form of Bernstein’s inequality for martingales due to Seldin and Lugosi (2017).
The important element for us that distinguishes it from the more broadly known Bernstein’s inequality
for martingales (Freedman, 1975) is that it only requires one-sided boundedness of the martingale.

Theorem 4 (Bernstein’s inequality for martingales (Seldin and Lugosi, 2017, Theorem 9)). Let
X1, ..., Xn be a martingale difference sequence with respect to filtration F1, ..., Fn, where each
Xj is bounded from above, and let Si =

∑i
j=1 Xj be the associated martingale. Let vn =∑n

j=1 E[(Xj)
2|Fj−1] and cn = max1≤j≤n{Xj}. Then for any δ > 0:

P

((
Sn ≥

√
2ν ln

1

δ
+

c ln 1
δ

3

)
∧ (vn ≤ ν) ∧ (cn ≤ c)

)
≤ δ. (6)

A.2 Concentration Inequality for Implicit Exploration

We also use the following inequality to control importance-weighted sampling with implicit explo-
ration. The inequality is a slight generalization of the inequality of Neu (2015, Lemma 1). Specifically,
we note that the proof of Neu works as it is for arm-dependent γt(a), and that the proof does not
require monotonicity of γt(a).

Theorem 5. Let γt(a) and αt(a) be nonnegative Ft−1-measurable random variables satisfying
αt(a) ≤ 2γt(a) for all t and a. Then

P

(
t∑

s=1

∑
a

αs(a)
(
ℓIXs (a)− ℓs(a)

)
≥ ln

1

δ

)
≤ δ.

The theorem leads to the following corollary, which is a slight generalization of the result of Neu
(2015, Corollary 1).

Corollary 6. Fix a and γ. (Think of γ as a lower bound on γs(a) for all s ≤ t.) Then

P

((
t∑

s=1

(
ℓIXs (a)− ℓs(a)

)
≥

ln 1
δ

2γ

)
∧
(

min
s∈{1,...,t}

γs(a) ≥ γ

))
≤ δ.

The corollary follows by taking αs(a
′) = 2γ1(a′ = a).

A.3 Partial Sum of Reciprocals of Powers of Natural Numbers

We use the following inequality of Seldin and Lugosi (2017, Lemma 11).

Lemma 7. For α ≥ 2 and m ≥ 1:
n∑

k=m

1

kα
≤ 1

2mα−1
.

B Proof of Proposition 1: A Bound on the Probability of Failure of Gap
Estimates

This section contains a proof of Proposition 1, showing that the gap estimates are reliable with high
probability.
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We use Lt(a) =
∑t

s=1 ℓs(a) to denote the cumulative sum of the true losses and derive high-
probability bounds on Lt(a)−LIW

t (a) and on LIX
t (a)−Lt(a). Then we use these bounds to control

the gap estimates.

We start with a bound on Lt(a)− LIW
t (a).

Lemma 8.

P
(
Lt(a)− LIW

t (a) ≥
√

2νt ln (4(t+ 1)2) +
ln (4(t+ 1)2)

3

)
≤ 1

4(t+ 1)2
. (7)

The proof of Inequality (7) uses Bernstein’s inequality for Martingales (Theorem 4) and is provided
in Appendix D.

Next using, we provide a bound on LIX
t (a)− Lt(a) using Corollary 6.

P
(
LIX
t (a)− Lt(a) ≥

ln (4(t+ 1)2)

2γt(a)

)
≤ 1

4(t+ 1)2
. (8)

In the next two sections we first show that with high probability ∆̂t(a) ≤ ∆(a), and then show that
with high probability 1

2∆(a) ≤ ∆̂t(a).

B.1 High Probability Upper bound on ∆̂t(a)

We want to show that

P(∆̂t(a) ≥ ∆(a))

is small.

In the interest of legibility and without loss of generality, we prove this for t+ 1, though the proof
would otherwise be the same. Firstly, we construct an upper bound on the probability that the gap
estimate is larger than the true gap. Substituting in definitions, and then upper bounding leads to

P(∆̂t+1(a) ≥ ∆(a)) = P(t∆̂t+1 ≥ t∆(a))

≤ P
(
LIX
t (a)− ln (4(t+ 1)2)

γt(a)
−min

a

(
LIW
t (a) +

√
2νt(a) ln (4(t+ 1)2)

+
ln (4(t+ 1)2)

3

)
≥ Lt(a)− Lt(a

∗)

)
≤ P

(
LIX
t (a)− ln (4(t+ 1)2)

γt(a)
≥ Lt(a)

)
+

P
(
min
a

(
LIW
t (a) +

√
2νt(a) ln (4(t+ 1)2) +

ln (4(t+ 1)2)

3

)
≤ Lt(a

∗)

)
≤ 1

4(t+ 1)2
+

P
(
min
a

(
LIW
t (a) +

√
2νt(a) ln (4(t+ 1)2) +

ln (4(t+ 1)2)

3

)
≤ Lt(a

∗)

)
(9)

≤ 1

2(t+ 1)2
(10)

B.2 High Probability Lower Bound on ∆̂t(a)

It remains to show that the gap estimate is much smaller than the true gap with small probability. We
want to show that

P
(
∆̂t(a) ≤

∆(a)

2

)

8



is small.

Our approach involves substituting in the definitions, then splitting the probability into three terms
handled separately, which, when combined, lead to an upper bound on the probability of interest.

We expand and then separate into three parts as shown in the following sections, where ct(x, y) =√
2x ln (4(t+ 1)2) + y ln (4(t+1)2)

3 , and a′ = argmina(L
IW
t (a) + ct(νt(a), 1)).

B.2.1 Separate

Again, in the interest of legibility and without loss of generality, we prove this for t+ 1, though the
proof would otherwise be the same. Substituting in the definitions of ∆̂t+1(a), ∆(a), and ct(x, y)
we have:

P
(
∆̂t+1(a) ≤

∆(a)

2

)
=P
(
t∆̂t+1(a) ≤

t∆(a)

2

)
≤P
(
LIX
t (a)− ln (4(t+ 1)2)

γt(a)
−min

a

(
LIW
t (a) + ct(νt(a), 1)

)
≤ t∆(a)

2

)
.

Adding 0 terms, and rewriting the right side we have:

= P
(
LIX
t (a)− ln (4(t+ 1)2)

γt(a)
−min

a

(
LIW
t (a) + ct(νt(a), 1)

)
+

t∑
s=1

γs(a)

p̃s(a)
−

t∑
s=1

γs(a)

p̃s(a)

+ LIW
t (a∗)− LIW

t (a∗) + ct

(
νt(a

∗),
1

p̃t(a∗)

)
− ct

(
νt(a

∗),
1

p̃t(a∗)

)
+ ct

(
νt(a),

1

p̃t(a)

)
− ct

(
νt(a),

1

p̃t(a)

)
≤ Lt(a)− Lt(a

∗)− t∆(a)

2

)
.

Rearranging and using the definition of a′ leads to

= P

(
LIX
t (a)− Lt(a) + ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs(a)

p̃s(a)
(11)

+ Lt(a
∗)− LIW

t (a∗) + ct

(
νt(a

∗),
1

p̃t(a∗)

)
(12)

+
t∆(a)

2
− ln (4(t+ 1)2)

γt(a)
− ct(νt(a

′), 1) + LIW
t (a∗)− LIW

t (a′) (13)

− ct

(
νt(a

∗),
1

p̃t(a∗)

)
− ct

(
νt(a),

1

p̃t(a)

)
−

t∑
s=1

γs(a)

p̃s(a)
≤ 0

)
. (14)

Let A denote the group of terms on Line (11), B on Line (12), and C on Lines (13) and (14).

= P(A
+B

+ C ≤ 0) (15)

Which can be upper bounded;

≤P(A ≤ 0) + P(B ≤ 0) + P(C ≤ 0). (16)

We next upper bound the first two probabilities in Line (16) by 1
4(t+1)2 as shown in the following two

sections.

9



B.2.2 Bound A

First, we upper bound P(A ≤ 0). We want to show:

P

(
LIX
t (a)− Lt(a) + ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs(a)

p̃s(a)
≤ 0

)
≤ 1

4(t+ 1)2
.

Start by rearranging P(A ≤ 0) to write:

P

(
ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs(a)

p̃s(a)
≤ Lt(a)− LIX

t (a)

)
. (17)

Then expand the right side:

Lt(a)− LIX
t (a) = Lt(a)− E[LIX

t (a)] + E[LIX
t (a)]− LIX

t (a). (18)

The next step is to upper bound the first two terms on the right hand side of Equation (18).

Lt(a)− E[LIX
t (a)] =

t∑
s=1

µ(a)
γs(a)

p̃s(a) + γs(a)

≤
t∑

s=1

γs(a)

p̃s(a)
. (19)

The last two terms of Equation (18) can be lower bounded with probability at most δ by applying
Bernstein’s inequality for Martingales. Let St denote the last two terms of Equation (18), and let Xi

be derived from St as follows:

St = E[LIX
t (a)]− LIX

t (a)

=

t∑
i=1

E[ℓIXt (a)]− ℓIXt (a)

=

t∑
i=1

Xi.

Each Xt is bounded from above:

Xt = E[ℓIXt (a)]− ℓIXt (a)

≤ p̃t(a)ℓt(a)

p̃t(a) + γt(a)

≤ 1,

and has, by construction, expected value of 0 given the history up to and including time t− 1:

E[Xt|Ft−1] = 0.

10



Therefore, as X1, ..., Xt is a martingale difference sequence, St =
∑t

i=1 Xi is the associated
martingale. To apply Bernstein’s inequality for Martingales we still need to bound the variance of St.

E[X2
t |Ft−1] = E[(E[ℓIXt (a)]− ℓIXt (a))2]

= E[(ℓIXt (a)− E[ℓIXt (a)])2]

= E[(ℓIXt (a))2]− E[ℓIXt (a)]2

= E
[
1(At = a)ℓt(a)

2

(p̃t(a) + γt(a))2

]
− p̃t(a)

2µ(a)2

(p̃t(a) + γt(a))2

=
p̃t(a)ℓ

2
t (a)

(p̃t(a) + γt(a))2
− p̃t(a)

2ℓ2t (a)

(p̃t(a) + γt(a))2

≤ p̃t(a)

(p̃t(a) + γt(a))2
(1− p̃t(a))

≤ 1

p̃t(a) + γt(a)

≤ 1

p̃t(a)

≤ ϵ−1
t (a)

=⇒

vt(a) =

t∑
j=1

E[X2
j |Fj−1] ≤

t∑
j=1

ϵ−1
j (a) = νt(a) (20)

Applying Bernstein’s Inequality for Martingales results in:

P
(
E[LIX

t (a)]− LIX
t (a) ≥ ct

(
νt(a), 1

))
≤ 1

4(t+ 1)2
. (21)

Putting the previous steps together to bound P(A ≤ 0):

P(A ≤ 0) =P
(
Lt(a)− LIX

t (a) ≥
t∑

s=1

γs(a)

p̃s(a)
+ ct

(
νt(a),

1

p̃t(a)

))
= P

((
Lt(a)− E[LIX

t (a)]

)
+

(
E[LIX

t (a)]− LIX
t (a)

)
≥

t∑
s=1

γs(a)

p̃s(a)
+ ct

(
νt(a),

1

p̃t(a)

))
(22)

≤ P
(
E[LIX

t (a)]− LIX
t (a) ≥ ct

(
νt(a),

1

p̃t(a)

))
(23)

≤ P
(
E[LIX

t (a)]− LIX
t (a) ≥ ct

(
νt(a), 1

))
(24)

≤ 1

4(t+ 1)2
, (25)

where Step (22) follows from expanding as in Step (18) and Step (23) follows from upper bound-

ing Lt(a) − E[LIX
t (a)] as in (19). Step (24) follows by lower bounding ct

(
νt(a),

1
p̃t(a)

)
with

ct(νt(a), 1). Finally, Step (25) follows directly from (21).

B.2.3 Bound B

After bounding P(A ≤ 0), we upper bound P(B ≤ 0). We want to show:

P
(
Lt(a

∗)− LIW
t (a∗) + ct(νt(a

∗),
1

p̃t(a∗)
) ≤ 0

)
≤ 1

4(t+ 1)2
.

11



The first step is to rewrite P(B ≤ 0).

P(B ≤ 0) = P
(
LIW
t (a∗)− Lt(a

∗) ≥ ct

(
νt(a

∗),
1

p̃t(a∗)

))
Then, using the same technique as when bounding P(A ≤ 0), let

Xt = ℓIWt (a∗)− ℓ(a∗)

and

St =

t∑
i=1

Xi = LIW
t (a∗)− Lt(a

∗).

In order to apply Bernstein’s Inequality for Martingales we firstly show that X1, ..., Xt is a martingale
difference sequence. Each term is bounded from above:

Xt ≤ ℓIWt (a∗) ≤ 1

p̃t(a∗)
.

And E[Xt|Ft−1] = 0:

E[Xt|Ft−1] = E
[
1(At = a∗)ℓt(a

∗)

p̃t(a∗)
− ℓ(a∗)

]
=

p̃t(a
∗)µ(a∗)

p̃t(a∗)
− µ(a∗)

= 0.

By construction, St is the associated martingale, and as before, in order to apply Bernstein’s Inequality
for Martingales, we now bound the variance of St. The first line follows directly from the definition
of variance, and that E[ℓIWt (a∗)] = µ(a∗).

E[X2
t |Ft−1] = E[(ℓIWt (a∗))2]− E[ℓIWt (a∗)]2

≤ E
[(

ℓt(a
∗)1(At = a∗)

p̃t(a∗)

)2]
= E

[
ℓt(a

∗)21(At = a∗)
2

p̃t(a∗)2

]
≤ E

[
ℓt(a

∗)21(At = a∗)

p̃t(a∗)2

]
=

µ(a∗)2p̃t(a
∗)

p̃t(a∗)2

≤ 1

p̃t(a∗)

≤ 1

ϵt(a∗)

=⇒

vt(a
∗) =

t∑
j=1

E[X2
j |Fj−1] ≤

t∑
j=1

ϵj(a
∗)−1 = νt(a

∗) (26)

Lastly, applying Bernstein’s inequality for martingales results in:

P(B ≤ 0) = P
(
LIW
t (a∗)− Lt(a

∗) ≥ ct

(
νt(a

∗),
1

p̃t(a∗)

))
≤ 1

4(t+ 1)2
.

B.2.4 Bound C

To complete the bounding of Line (16) it remains to upper bound P(C ≤ 0).We want to show

P

(
t∆(a)

2
− ln (4(t+ 1)2)

γt(a)
− ct(νt(a

′), 1) + LIW
t (a∗)− LIW

t (a′)

−ct(νt(a
∗),

1

p̃t(a∗)
)− ct(νt(a),

1

p̃t(a)
)−

t∑
s=1

γs(a)

p̃s(a)
≤ 0

)
(27)

12



is small.

By adding 0 = ct(νt(a
∗), 1)− ct(νt(a

∗), 1) we rewrite C as:

C =
t∆(a)

2
− ln (4(t+ 1)2)

γt(a)
+ (LIW

t (a∗) + ct(νt(a
∗), 1))− (LIW

t (a′) + ct(νt(a
′), 1))

− ct(νt(a
∗), 1)− ct

(
νt(a

∗),
1

p̃t(a∗)

)
− ct

(
νt(a),

1

p̃t(a)

)
−

t∑
s=1

γs(a)

p̃s(a)
. (28)

We define the following function:

F (t) =
ln (4(t+ 1)2)

γt(a)
+ ct(νt(a

∗), 1) + ct

(
νt(a

∗),
1

p̃t(a∗)

)
+ ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs(a)

p̃s(a)
.

(29)

By definition of a′ we have:(
LIW
t (a∗) + ct(νt(a

∗), 1)

)
≥
(
LIW
t (a′) + ct(νt(a

′), 1)

)
.

Meaning that C, on Step (28), can be lower bounded by:

C ≥ t∆(a)

2
− F (t)

=⇒

P(C ≤ 0) ≤ P
(
F (t) ≥ t∆(a)

2

)
.

Substituting in the definition of ct leads to:

F (t) =
ln (4(t+ 1)2)

γt(a)
+ 2
√
2νt(a∗) ln (4(t+ 1)2) +

ln (4(t+ 1)2)

3
+

ln (4(t+ 1)2)

3p̃t(a∗)

+

t∑
s=1

γs(a)

p̃s(a)
+
√
2νt(a) ln (4(t+ 1)2) +

ln (4(t+ 1)2)

3p̃t(a)
. (30)

Then, assuming that ϵt(a) = ξt(a), upper bound νt(a
∗) and p̃t(a

∗)−1, and substitute in the definition
of νt(a) . This will restrict the time interval to t ≥ tmin, which is addressed later. This leads to:

F (t) ≤ ln (4(t+ 1)2)

3
(1 + 2ξt(a)

−1) + 3

√√√√2 ln (4(t+ 1)2)

t∑
s=1

ϵs(a)−1

+
ln (4(t+ 1)2)

γt(a)
+

t∑
s=1

γs(a)ϵs(a)
−1 (31)

We provide the following lemma to upper bound Ft.
Lemma 9. Let t ≥ tmin(a), then

P
(
ϵmin
t (a) ≤ ln t

ct∆(a)2

)
= P

(
∃s ∈

[
0, t

]
: ϵs(a) ≤

ln t

ct∆(a)2

)
≤ ln t

2t∆(a)2

Proof. We show that if t ≥ tmin(a), then for all s ≤ t∆(a)2

ln t : ϵs(a) ≥ ln t
ct∆(a)2 . By the definition of

tmin(a) we have
ln t

ct∆(a)2
≤ 1

2

√
lnK

tK
≤ 1

2

√
lnK

sK
. (32)
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On the other hand, we have

ln s

cs∆̂s(a)2
≥ ln s

cs
≥ ln s ln t

ct∆(a)2
≥ ln t

ct∆(a)2
, (33)

where the first inequality is due the fact that ∆̂s(a) ≤ 1 and the second one uses s ≤ t∆(a)2

ln t . Now it
is suffices to combine (32) and (33) to get

ϵs(a) = min

{
ln s

cs∆̂s(a)2
,
1

2

√
lnK

sK

}
≥ ln t

ct∆(a)2
. (34)

Thus, with (34) we rewrite the following probability as

P
(
∃s ∈

[
0, t

]
: ϵs(a) ≤

ln t

ct∆(a)2

)
= 0 +

(
∃s ∈

[
t∆(a)2

ln t
, t

]
: ϵs(a) ≤

ln t

ct∆(a)2

)
(35)

= P
(
∃s ∈

[
t∆(a)2

ln t
, t

]
:

ln s

cs∆̂s(a)2
≤ ln t

ct∆(a)2

)
≤ P

(
∃s ∈

[
t∆(a)2

ln t
, t

]
:

ln t

ct∆̂s(a)2
≤ ln t

ct∆(a)2

)
= P

(
∃s ∈

[
t∆(a)2

ln t
, t

]
: ∆̂s(a) ≥ ∆(a)

)
≤

t∑
s=

t∆(a)2

ln t

1

2(s+ 1)2
≤ − 1

2x
|tt∆(a)2

ln t

≤ ln t

2t∆(a)2
, (36)

where the second inequality uses the union bound together with Proposition 1 and the last inequality
uses the integral of

∫
1

2x2 dx = −1
2x .

We start upper bounding Ft by providing an upper bound for
∑t

s=1 ϵs(a)
−1 where we directly apply

Lemma 9 as the following:

t∑
s=1

ϵs(a)
−1 ≤

t∑
s=1

cs∆(a)2

ln s
≤ 2ct2∆(a)2

ln t
, (37)
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Equation (37) follows from s
ln s ≤ t

ln t for s ≥ e. Using Equation (37), and substituting in the
definition of ξ we upper bound F (t) further;

F (t) ≤ ln (4(t+ 1)2)

3
(1 +

2ct∆̂t(a)
2

ln t
) + 3

√
2 ln (4(t+ 1)2)

2ct2∆(a)2

ln t

+
ln (4(t+ 1)2)

γt(a)
+

t∑
s=1

γs(a)ϵs(a)
−1 (38)

≤ ln (4(t+ 1)2)

3
(1 +

2ct∆̂t(a)
2

ln t
) + 6t∆(a)

√
c
ln (4(t+ 1)2)

ln t

+ ln (4(t+ 1)2) · ϵmin
t (a)−

1
2 ·
√

t

ln t
+

t∑
s=1

√
ϵmin
s (a) · ln s

s
· ϵs(a)−1 (39)

≤ ln (4(t+ 1)2)

3
(1 +

2ct∆̂t(a)
2

ln t
) + 6t∆(a)

√
c
ln (4(t+ 1)2)

ln t

+ ln (4(t+ 1)2) · ϵmin
t (a)−

1
2 ·
√

t

ln t
+

t∑
s=1

√
ln t

s
· ϵs(a)−

1
2

≤ ln (4(t+ 1)2)

3
(1 +

2ct∆̂t(a)
2

ln t
) + 6t∆(a)

√
c
ln (4(t+ 1)2)

ln t

+ ln (4(t+ 1)2) ·
(
t∆(a)2c

ln t

) 1
2

·
√

t

ln t
+

t∑
s=1

√
ln t

s
·
(
t∆(a)2c

ln t

) 1
2

(40)

(41)

≤ ln (4(t+ 1)2)

3
(1 +

2ct∆̂t(a)
2

ln t
) + 6t∆(a)

√
c
ln (4(t+ 1)2)

ln t

+
ln (4(t+ 1)2)

ln t
· t∆(a)

√
c+∆(a)

√
c

t∑
s=1

√
t√
s

(42)

≤ ln (4(t+ 1)2)

ln t
· t∆(a)

√
c+ 2∆(a)

√
c. (43)

Where Step (38) follows from substituting in the definition of ξt(a). The second last term of (38) can

be upper bounded by substituting in the definition of γs(a) =
√

ϵmin
s (a)·ln s

s for all s, resulting in Step

(39). Step (40) follows from bounding ϵs(a) as on Step (36). Using 2∆̂t(a) ≤ ∆(a)allows for the
following:

F (t) ≤ ln (4(t+ 1)2)

3

(
1 +

ct∆(a)

ln t

)
+ 6t∆(a)

√
c
ln (4(t+ 1)2)

ln t

+
ln (4(t+ 1)2)

ln t
t∆(a)

√
c+ t∆(a)

√
c

=
ln (4(t+ 1)2)

3
+ t∆(a)

(
1

3

ln (4(t+ 1)2)

ln t
c+

(
6

√
ln (4(t+ 1)2)

ln t
+

ln (4(t+ 1)2)

ln t
+ 1

)√
c

)
.

(44)

The next step is to strictly upper bound each term in Step (44) by t∆(a)
4 , in order to upper bound F (t)

by t∆(a)
2 . Starting with the first term, the following holds for t ≥ tmin:
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ln (4(t+ 1)2)

t
≤ 3∆(a)

4
.

To upper bound the second term for t ≥ tmin note that tmin ≥ e·4
c > 1 + 4

c > 2
c , and substituting

this value for t gives an upper bound on ln (4(t+1)2)
ln t . Using this, we do the following:

t∆(a)

(
1

3

ln 16
c2

ln ( 2c − 1)
c+

(
6

√
ln 16

c2

ln ( 2c − 1)
+

ln 16
c2

ln ( 2c − 1)
+ 1

)√
c

)
<

t∆(a)

4

1

3

ln 16
c2

ln (2c − 1)
c+

(
6

√
ln 16

c2

ln (2c − 1)
+

ln 16
c2

ln (2c − 1)
+ 1

)√
c <

1

4

=⇒

1

3

ln 16
c2

ln ( 2c − 1)
c+

(
6

√
ln 16

c2

ln ( 2c − 1)
+

ln 16
c2

ln (2c − 1)
+ 1

)√
c− 1

4
= 0. (45)

Solving for the non-negative solution to Step (45) gives:

c ≥ 1

2307
. (46)

Consequently, Step (30) can be upper bounded by 0, for large enough t:

C ≤ t∆(a)

2
− F (t) ≤ 0

=⇒

P(C ≤ 0) ≤ P
(
F (t) ≥ t∆(a)

2

)
= 0.

Putting all of the pieces together to bound the probability the gap estimate is too small,

P
(
∆̂t(a) ≤

∆(a)

2

)
≤ P(A ≤ 0) + P(B ≤ 0) + P(C ≤ 0)

≤ 1

4t2
+

1

4t2
+ P(C ≤ 0)

= 2
1

4t2
+ P

(
∃x ∈

[
0, t

]
: ϵx(a) ≤

ln t

ct∆(a)2

)
(47)

≤ 1

2t2
+

ln t

2tc∆(a)2
for t ≥ tmin(a).

C Proof of Theorem 2, Stochastic Regret Guarantee

We start by bounding E[NT (a)]. We split this into three parts, when the gap estimate is potentially
too small during an initial period of the game, when it is either too large or too small at any time, and
when the gap estimate is good but a sup-optimal action may be chosen regardless;

E[Na(t)] = E[N1,a(t)] + E[N2,a(t)] + E[N3,a(t)].

During the first t ≤ tmin(a) time steps, for any action, the gap estimate is not reliable, as it may be
less than half the true gap. As such, during this period a sub optimal action may be played

E[N1,a(t)] ≤ tmin(a) = Õ

(
K

∆(a)4

)
times, where the Õ notation hides the logarithmic factors.
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The gap estimate may also fail after that time threshold, when ∆̂(a) ≥ ∆(a) or ∆̂(a) ≤ ∆(a)
2 , and a

sub-optimal action may be played. The expected number of times this can happen for an action a is
upper bounded by the following:

P(∆̂(a) ≥ ∆(a)) + P
(
∆̂(a) ≤ ∆(a)

2

)
≤ 2

1

4t2
+ 2

1

4t2
+ P(C ≥ 0) = 4

1

4t2
=

1

t2
+ P(C ≥ 0)

=⇒

E[N2,a(t)] ≤
t∑

s=1

P(∆̂s(a) ≥ ∆(a)) + P
(
∆̂s(a) ≤

∆(a)

2

)

≤
t∑

s=1

P
(
∃x ∈

[
0, s

]
: ϵx(a) ≤

ln s

cs∆(a)2

)
+

1

s2

≤
t∑

s=1

P
(
∃x ∈

[
t∆(a)2

ln t
, t

]
: ∆̂x(a) ≥ ∆(a)

)
+

1

s2

≤ ln t

2∆(a)2
+

t∑
s=1

1

s2

= O(ln t).

Even when the gap estimate is good, a sub-optimal action may still be played. This comes from p̃t(a),
which is composed of two parts, handled separately as follows:

E[N3,a(t)] = E
[ t∑
s=tmin(a)

p̃s(a)

]
≤

t∑
s=1

E
[(

ϵs(a) + (1−
∑
a′

ϵs(a
′))ps(a)

)]
. (48)

Starting with upper bounding the first term:

ϵs(a) ≤
ln s

cs∆̂s(a)2

=⇒
t∑

s=1

E
[
ϵs(a)

]
≤

t∑
s=1

E
[

ln s

cs∆̂s(a)2

]

≤
t∑

s=1

4 ln s

cs∆(a)2

≤ 4

c∆(a)2

t∑
s=1

ln t

s

≤ 4 ln2 t

c∆(a)2

= O

(
ln2 t

∆(a)2

)
.

The first step to upper bound the second term of line 48 starts by upper bounding it by p:

(1−
∑
a′

ϵs(a
′))ps(a) ≤ ps(a).

Upper bounding p is done nearly identically as in (Seldin and Lugosi, 2017, Proof of Theorem 3).
The bound on the gap estimate being too large is of the same order, 1

t , and as β = 1
c = 2307 this

satisfies the requirement that β ≥ 256. The only difference is that in our analysis, we handle the tmin

rounds of the game separately. Taking this we have:
t∑

s=1

E[ps(a)] = O

(
(ln t)2

∆(a)2

)
.
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Together we have:

E[N3,a] = O

(
(ln t)2

∆(a)2

)
.

Putting this together to get a bound on regret:

R(t) =
∑

a:∆(a)>0

E[Na(t)]∆(a)

=
∑

a:∆(a)>0

(
O(ln t) + Õ

(
K

∆(a)4

)
+O

(
ln2 t

∆(a)2

))
∆(a)

= O

( ∑
a:∆(a)>0

ln t∆(a)

)
+ Õ

( ∑
a:∆(a)>0

K

∆(a)3

)
+O

( ∑
a:∆(a)>0

ln2 t

∆(a)

)
.

D Proof of Second Inequality (line 7)

The proof of the inequality on Step (7) is as follows. The left hand side of Step (7) can be rewritten
as:

P
(
tµ(a)− LIW

t (a) ≥
√

2νt ln (4(t+ 1)2) +
ln (4(t+ 1)2)

3

)
.

Let St = tµ(a) − LIW
t (a), we show that St is a martingale, apply Bernstein’s inequality for

Martingales and arrive at Step (7). Start by rewriting St:

St =

t∑
s=1

µ(a)− ℓIWs (a).

Clearly µ(a) − ℓIWs (a) ≤ 1, meaning each term is upper bounded. We must also show that the
expected value of each term with respect to the past is 0.

E[µ(a)− ℓIWs (a)|Fs−1] = E[µ(a)− ℓIWs (a)]

= E[µ(a)]− E[ℓIWs (a)]

= µ(a)− E
[
ℓs(a)1(As = a)

p̃s(a)

]
= µ(a)− µ(a)p̃s(a)

p̃s(a)

= 0

As µ(a)−ℓIWs (a) is upper bounded and has expected value 0 for any s, it forms a martingale difference
sequence, and by construction, St is the associated Martingale. In order to apply Bernstein’s inequality
for Martingales it remains to bound the variance of St .

vt =

t∑
s=1

E[(µ(a)− ℓIWs (a))2|Fs−1]

First note:

E[µ(a)2] + E
[
−2µ(a)21(As = a)

p̃s(a)

]
= µ(a)2 − 2µ(a)2

p̃s(a)

p̃s(a)
≤ 0. (49)
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We start by bounding each term in v:

E[(µ(a)− ℓIWs (a))2] = E[µ(a)2] + E[ℓIWs (a)2] + E[−2µ(a)ℓIWs (a)]

= E[µ(a)2] + E
[
ℓs(a)

21(As = a)
2

p̃s(a)2

]
+ E

[
−2µ(a)21(As = a)

p̃s(a)

]
(50)

≤ E
[
ℓs(a)

21(As = a)
2

p̃s(a)2

]
(51)

≤ E
[
1(As = a)

p̃s(a)2

]
=

p̃s(a)

p̃s(a)2

=
1

p̃s(a)
,

where Step (51) follows from Step (50) by upper bounding the first and last term with 0 as in Step
(49).

vt =

t∑
s=1

E[(µ(a)− ℓIWs (a))2|Fs−1]

≤
t∑

s=1

1

p̃s(a)

≤
t∑

s=1

ϵs(a)
−1 = νt(a)

As this is an upper bound for vt for all t, the probability of the second event in Bernstein’s inequality
for martingales is 1, and the same can be done for the probability of the third event using c = 1. We
now apply Bernstein’s inequality for martingales, with δ = 1

4(t+1)2 , directly resulting in Step (7).
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