

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PHYCLIP: ℓ_1 -PRODUCT OF HYPERBOLIC FACTORS UNIFIES HIERARCHY AND COMPOSITIONALITY IN VISION–LANGUAGE REPRESENTATION LEARNING

006
007 **Anonymous authors**
008
009
010
011
012

Paper under double-blind review

ABSTRACT

Vision–language models have achieved remarkable success in multi-modal representation learning from large-scale pairs of visual scenes and linguistic descriptions. However, they still struggle to simultaneously express two distinct types of semantic structures: the hierarchy within a concept family (e.g., *dog* \preceq *mammal* \preceq *animal*) and the compositionality across different concept families (e.g., “a dog in a car” \preceq *dog*, *car*). Recent works have addressed this challenge by employing hyperbolic space, which efficiently captures tree-like hierarchy, yet its suitability for representing compositionality remains unclear. To resolve this dilemma, we propose *PHyCLIP*, which employs an ℓ_1 -Product metric on a Cartesian product of Hyperbolic factors. With our design, intra-family hierarchies emerge within individual hyperbolic factors, and cross-family composition is captured by the ℓ_1 -product metric, analogous to a Boolean algebra. Experiments on zero-shot classification, retrieval, hierarchical classification, and compositional understanding tasks demonstrate that *PHyCLIP* outperforms existing single-space approaches and offers more interpretable structures in the embedding space.

1 INTRODUCTION

Vision–language models have become a central paradigm for learning transferable representations across visual and textual modalities. As exemplified by CLIP (Radford et al., 2021), contrastive pre-training maps images and texts to embeddings and enables strong zero-shot transfer on classification, retrieval, and related tasks. However, compressing the semantics of an instance into a single point makes it challenging to faithfully encode two semantic structures at once: *hierarchy* (*is-a* relations in a concept family) and *compositionality* (conjunction across distinct concept families).

Visual and linguistic concepts linked by *is-a* relations form tree-like taxonomic *hierarchies*. For example, a dog *is a* mammal, which in turn *is an* animal, as shown in the upper part of Fig. 1. Because the number of nodes grows exponentially with depth, Euclidean geometry struggles to faithfully represent such trees, whereas hyperbolic geometry aligns well with this growth (Bridson & Haefliger, 1999; Sarkar, 2011). These observations have motivated the development of hyperbolic embeddings (Nickel & Kiela, 2017) and hyperbolic entailment cones, which encode partial orders via inclusion (Ganea et al., 2018a). Within vision–language representation learning, MERU (Desai et al., 2023) and HyCoCLIP (Pal et al., 2025) leverage these approaches to capture image–text relations; for instance, an image of a dog *is an* instance of the linguistic concept *dog* (see the lower part of Fig. 1).

Beyond taxonomic structure, images and texts exhibit *compositionality*. For example, the description “a dog in a car” binds concepts *dog* and *car* from distinct concept families (animals and transportation), as shown in the middle part of Fig. 1. Classical approaches express composition via logical conjunction or additive operations (e.g., Boolean algebra, bag-of-words, and vector addition in word2vec) (Hinton et al., 1986; Mikolov et al., 2013; Vendrov et al., 2016), but these struggle to encode semantic hierarchy efficiently. Conversely, while hyperbolic geometry captures hierarchy, it lacks a canonical operation for composition. Möbius addition in hyperbolic spaces (Ungar, 2008) is not aligned with standard vector addition or Boolean structures (Higgins et al., 2018). Intersections of regions (such as hyperbolic entailment cones) can approximate conjunction but offer no general guarantees of representational efficiency for arbitrary co-occurrences.

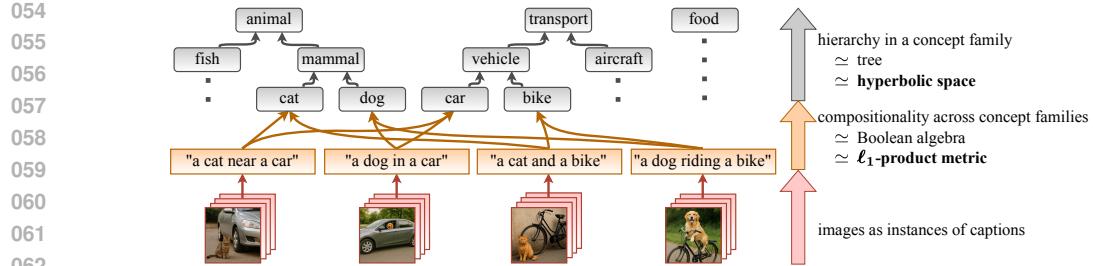


Figure 1: **Conceptual diagram of hierarchical and compositional structures.** While all arrows represent entailments (\preceq), they differ in nature. (upper) Linguistic concepts organize tree-like taxonomic *hierarchies* of concept families, each of which can be embedded into a hyperbolic space (Nickel & Kiela, 2017). (middle) Images and texts exhibit *compositionality* across distinct concept families, which can be captured by a Boolean algebra or an ℓ_1 -product metric. (lower) Images are instances of their corresponding captions.

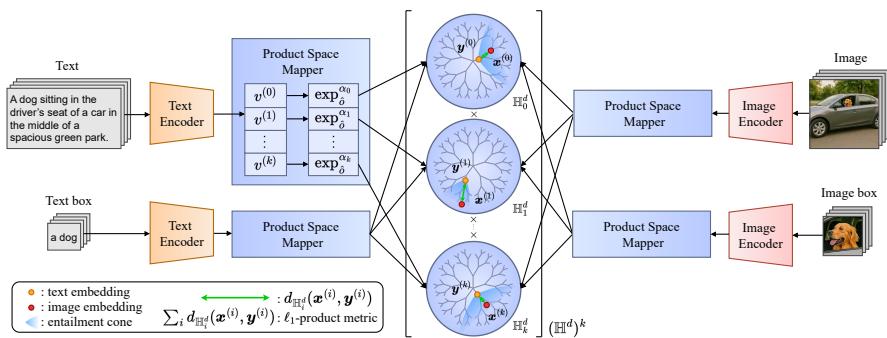


Figure 2: **Overview of PHyCLIP.** Images and texts are encoded as points \mathbf{X} in an ℓ_1 -product metric space of hyperbolic factors, $(\mathbb{H}^d)^k$, that is, as tuples of points $\mathbf{x}^{(i)}$ in hyperbolic spaces \mathbb{H}_i^d , where their distance is defined by the sum of hyperbolic distances. The entailment relations $\mathbf{X} \preceq \mathbf{Y}$ are encoded using entailment cones as $\mathbf{x}^{(i)} \in C(\mathbf{y}^{(i)})$ within hyperbolic factors \mathbb{H}_i^d .

To resolve this dilemma, we propose *PHyCLIP*, which leverages an ℓ_1 -Product metric on a Cartesian product of Hyperbolic factors, as depicted in Fig. 2. Our design follows two classical correspondences: (i) metric trees admit low-distortion embeddings into hyperbolic spaces, so hyperbolic factors embed *intra-family* taxonomies (Sarkar, 2011; Nickel & Kiela, 2017; Ganea et al., 2018a); and (ii) finite Boolean algebras with the Hamming distance embed isometrically into an ℓ_1 space, so an ℓ_1 -product metric naturally supports *cross-family* Boolean-like composition (Deza & Laurent, 1997). Intuitively, each bit for an atomic concept (e.g., dog, cat, horse) in the Boolean algebra is replaced with a hyperbolic factor for a concept family (e.g., animals), and the activation of multiple factors expresses composition (e.g., “dog and car”). Unlike previous mixed-curvature models (Gu et al., 2019; Wang et al., 2024; Gao et al., 2025), our space uses an ℓ_1 -product metric rather than a Riemannian (ℓ_2) product metric and constrains each factor to have negative curvature. Our contributions are summarized as follows.

Balancing Hierarchy and Compositionality. We introduce *PHyCLIP*, a vision–language model that leverages an ℓ_1 -product metric space of hyperbolic factors to jointly capture *hierarchy* (within factors) and *compositionality* (across factors).

Theoretical Support. We formally link Boolean lattices to ℓ_1 -product metrics and metric trees to hyperbolic factors, explaining that an ℓ_1 -product metric space of hyperbolic factors aligns better with the dual semantic structures than standard metric spaces (e.g., Euclidean or hyperbolic).

Superior Performance and Interpretability. Experiments on zero-shot classification, image–text retrieval, hierarchical classification, and compositional understanding demonstrate that *PHyCLIP* achieves consistent improvements over baselines that use standard metric spaces. Visualizations find that intra-family taxonomies emerge within individual factors, and composing concepts leads to the simultaneous activation of the corresponding factors, analogous to a Boolean algebra.

108

2 THEORETICAL BACKGROUND AND MOTIVATION

109

110

Geometry and Embedding of Hierarchies. Concepts in natural language linked by *is-a* (hy-
111 pernymy/hyponymy, generalization/specialization, entailment) relations form a partially ordered
112 set (poset) and typically exhibit deep hierarchical structure. A poset (P, \preceq) is a set equipped
113 with an order relation \preceq (which is reflexive, antisymmetric, and transitive). A typical example
114 is **dog** \preceq **mammal** \preceq **animal**, where a dog *is a* type of mammal; equivalently, if an entity
115 is a dog, then this *entails* that the entity is a mammal. Large lexical resources such as Word-
116 Net provide such relations in the form of a directed acyclic graph with multiple inheritance (e.g.,
117 **dog** \preceq **domestic animal**) (Miller, 1995). For modeling or computational convenience, many studies
118 approximate this hierarchy with a taxonomic tree (Morin & Bengio, 2005; Mnih & Hinton, 2008).
119 The distance between two nodes (i.e., words) in a tree is often defined as the length of their shortest
120 path, inducing a type of *metric tree*. See technical details in Appendix A.

121

122

Theorem 1 (Hyperbolic embedding of trees (Sarkar, 2011)). *Let \mathbb{H}^d be a d -dimensional hyperbolic
123 space with the hyperbolic distance $d_{\mathbb{H}^d}$. For every finite metric tree T (and every infinite metric tree
124 T with known bounds for maximum degree and minimum edge length), and for every $\varepsilon > 0$, there
125 exist a scale $\tau > 0$ and an embedding $f : \tau T \rightarrow \mathbb{H}^2$ such that the distortion is at most $1 + \varepsilon$; that is,
126 there exists a $(1 + \varepsilon, 0)$ -quasi-isometric embedding f up to scaling.*

127

128

See Theorem 5 in Sarkar (2011) for the proof. This explains the empirical success of hyperbolic
129 embeddings for hierarchical data (Nickel & Kiela, 2017; 2018; Ganea et al., 2018a; Sala et al., 2018;
130 Tifrea et al., 2019). In practice, \mathbb{H}^d with $d > 2$ is common for achieving better performance.

131

132

Geometry and Embedding of Compositionality. Beyond taxonomic structure, images and texts
133 often exhibit compositionality: they mention multiple concepts to indicate the co-occurrence or
134 conjunction of those concepts. For example, the description “a dog in a car” mentions concepts **dog**
135 and **car**. Such data suggest another type of entailment relation, as an image of “a dog in a car” can
136 be regarded as an image of **dog** as well as an image of **car**. The resulting structure is no longer a
137 tree but rather a more general poset. While hyperbolic embeddings remain an option, it is natural to
138 explore alternatives that more directly capture compositionality.

139

140

Order embeddings (\mathbb{R}^n, \preceq) (Vendrov et al., 2016) assign each concept a point $\mathbf{x} \in \mathbb{R}^n$ and
141 declare $\mathbf{x} \preceq \mathbf{y}$ iff $x_i \geq y_i$ for all coordinates i . This is equivalent to the inclusion relation
142 between associated upper orthants $U(\mathbf{x}) := \{\mathbf{z} \in \mathbb{R}^n : z_i \geq x_i \forall i\}$, i.e., $\mathbf{x} \preceq \mathbf{y}$ iff
143 $U(\mathbf{x}) \subseteq U(\mathbf{y})$. Then, the coordinate-wise max (i.e., the union of orthants) expresses conjunction
144 (e.g., $\max(\mathbf{dog}, \mathbf{car})$ includes “a dog in a car”), and the coordinate-wise min yields shared concepts
145 (e.g., $\min(\mathbf{“a dog in a car”}, \mathbf{“a dog on a sofa”}) \approx \mathbf{dog}$). Similarly, box embeddings use axis-aligned
146 hyperrectangles in \mathbb{R}^n (Vilnis et al., 2018; Li et al., 2019; Dasgupta et al., 2020). In hyperbolic space,
147 hyperbolic entailment cones use geodesic conical regions (Ganea et al., 2018a), and disk embeddings
148 use hyperballs (Suzuki et al., 2019). Compared with hyperbolic embeddings for pure hierarchies,
149 there has been less theoretical analysis of these region-based embeddings for compositionality. Our
150 work extends this line to capture hierarchy and compositionality simultaneously.

151

152

Boolean Lattice and Its Relation to Order Embedding. In an *is-a* taxonomy, any two nodes have
153 at least one common generalization, whereas they need not share a common specialization. A *lattice* is
154 a poset in which any two nodes have both a common generalization (join) and a common specialization
155 (meet). Consider n atomic concepts $\mathcal{C} = \{c_1, \dots, c_n\}$ (e.g., $\{\mathbf{dog}, \mathbf{car}, \mathbf{tomato}, \dots\}$). A subset
156 $S \subseteq \mathcal{C}$ denotes the conjunction of the concepts specified in S , and the inclusion relation $S \supseteq T$ (e.g.,
157 $\{\mathbf{dog}, \mathbf{car}\} \supseteq \{\mathbf{dog}\}, \{\mathbf{car}\}$) induces the order relation $S \preceq T$ (e.g., $\{\mathbf{dog}, \mathbf{car}\} \preceq \{\mathbf{dog}\}, \{\mathbf{car}\}$).
158 In this way, the *Boolean lattice* $(2^{\mathcal{C}}, \subseteq)$ over all such subsets naturally represents the compositionality
159 of atomic concepts as a non-taxonomic poset. When focusing on operations rather than order, it is
160 also referred to as a Boolean algebra. At the same time, using an indicator $\chi : 2^{\mathcal{C}} \rightarrow \{0, 1\}^n$, the
161 Boolean lattice can be regarded as a metric space $(\{0, 1\}^n, d_{\text{Ham}})$ with the Hamming distance. See
162 Appendix A and Ganter & Wille (1999); Davey & Priestley (2002) for more details.

163

164

Definition 1 (ℓ_1 -product metric space). *Let $\{(X_i, d_i)\}_{i=1}^k$ be non-trivial metric spaces. An ℓ_1 -product
165 metric space of $\{(X_i, d_i)\}_{i=1}^k$ is a Cartesian product space $\prod_{i=1}^k X_i$ equipped with the ℓ_1 -product
166 metric $(\sum_{i=1}^k d_i)((\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}), (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(k)})) = \sum_{i=1}^k d_i(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$. If not ambiguous even
167 without subscripts, this space is denoted by (X^k, d_{X^k}) for brevity.*

168

162 **Proposition 1** (Embedding of Boolean Lattice). *A Boolean lattice $(2^C, \preceq)$ for n atomic concepts can
163 be embedded into the poset (\mathbb{R}^n, \preceq) used by order embeddings while preserving the order relations.
164 As a metric space $(\{0, 1\}^n, d_{\text{Ham}})$, it is isometrically embedded into an ℓ_1 -product metric space
165 $(\prod_{i=1}^k X_i, \sum_{i=1}^k d_i)$ for any $k \geq n$ after appropriate per-factor scaling. However, it admits no
166 isometric embedding into a hyperbolic space \mathbb{H}^d for any $d \geq 2$ and $n \geq 2$.*
167

168 See Appendix B for the proof. A Boolean lattice has remarkable expressivity for compositionality,
169 but it is often too coarse as it considers combinations of all atomic concepts. Order embeddings
170 enrich it by replacing each bit $\{0, 1\}$ with \mathbb{R} , whereas a single hyperbolic space does not.
171

172 3 PHYCLIP AND ITS LOSS FUNCTIONS

173 **Embedding into an ℓ_1 -Product Metric Space of Hyperbolic Factors.** We extend the Boolean
174 lattice by replacing each bit $\{0, 1\}$ with a metric tree T_i and leverage the expressive power of
175 both the hyperbolic embeddings for hierarchy and the Boolean lattice for compositionality. In this
176 setting, the description “a dog in a car” is represented by a pair of nodes in metric trees T_1 and
177 T_2 that encode *is-a* taxonomies of animals (e.g., `dog` \preceq `mammal` \preceq `animal`) and transportation
178 (e.g., `car` \preceq `vehicle` \preceq `transport`), respectively. Notably, a *single* hyperbolic space cannot capture
179 this product geometry (see Proposition 2 in Appendix B), whereas an ℓ_1 -product metric space of
180 hyperbolic factors can.
181

182 **Theorem 2** (Embedding into an ℓ_1 -product metric space of hyperbolic factors). *Let T_1, \dots, T_k be
183 finite metric trees (or infinite metric trees with known bounds for maximum degree and minimum
184 edge length) with metrics d_{T_1}, \dots, d_{T_k} . For every $\varepsilon > 0$, there exists a $(1 + \varepsilon, 0)$ -quasi-isometric
185 embedding from the ℓ_1 -product metric space of these metric trees, $(\prod_{i=1}^k T_i, \sum_{i=1}^k d_{T_i})$, into an
186 ℓ_1 -product metric space of k two-dimensional hyperbolic factors, $((\mathbb{H}^2)^k, d_{(\mathbb{H}^2)^k})$, after appropriate
187 per-factor scaling.*
188

189 Given the above, we propose embeddings into an ℓ_1 -product metric space of k copies of d -dimensional
190 hyperbolic factors \mathbb{H}^d , $((\mathbb{H}^d)^k, d_{(\mathbb{H}^d)^k})$. The total dimension of $(\mathbb{H}^d)^k$ is kd . Each hyperbolic factor
191 \mathbb{H}_i^d is intended to represent the taxonomy of a concept family as well as aspects of inter-object
192 relations (e.g., “a dog riding on something”, “a car loading something”). An instance is embedded
193 as a tuple $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)})$ for $\mathbf{x}^{(i)} \in \mathbb{H}_i^d$. Within each factor \mathbb{H}_i^d , we use standard hyperbolic
194 embeddings (Nickel & Kiela, 2017) together with hyperbolic entailment cones (Ganea et al., 2018a)
195 to encode *intra-family* hierarchy and image–text entailment, while *cross-family* compositionality is
196 captured by the additive geometry of the ℓ_1 -product metric space.
197

198 **PHyCLIP for Vision–Language Representation Learning.** Here, we propose PHyCLIP for
199 vision–language representation learning, depicted in Fig. 2. Let I and T denote instances of images
200 and texts, respectively. From an instance, a kd -dimensional feature vector is produced, which is
201 then sliced into k segments $\mathbf{v}^{(i)}$ of dimension d for $i = 1, \dots, k$, and each segment $\mathbf{v}^{(i)}$ is lifted
202 via the exponential map to its corresponding hyperbolic factor \mathbb{H}_i^d as $\mathbf{x}^{(i)}$, yielding the embedding
203 $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}) \in (\mathbb{H}^d)^k$. We denote the embeddings of the image I and text T by \mathbf{I} and \mathbf{T} ,
204 respectively. Let B denote the index set of instances in a mini-batch; we write the mini-batch of
205 images as $\{\mathbf{I}_b\} = \{\mathbf{I}_b\}_{b \in B}$ for brevity.
206

207 An image I is typically more specific than its corresponding text T ($I \preceq T$) as the text T may
208 ignore some details of the image I . Following HyCoCLIP (Pal et al., 2025), we suppose that the
209 training data are enriched with box information: the image boxes I^{box} are object-level crops of the
210 original images I , and the text boxes T^{box} are the corresponding nouns/phrases within the text T
211 ($I^{\text{box}} \preceq T^{\text{box}}$). An image box I^{box} and a text box T^{box} are more general than the full image I and the
212 full text T ($I \preceq I^{\text{box}}$, $T \preceq T^{\text{box}}$), respectively, since they omit objects and words outside the boxes.
213

214 We will introduce the contrastive loss $\mathcal{L}_{\text{cont}}$ and entailment loss \mathcal{L}_{ent} , and the final objective is their
215 sum weighted by a hyperparameter γ :
216

$$\mathcal{L}_{\text{overall}} = \mathcal{L}_{\text{cont}} + \gamma \mathcal{L}_{\text{ent}}. \quad (1)$$

217 **Contrastive Loss.** To represent each hyperbolic factor \mathbb{H}_i^d , we adopt the Lorentz model with a
218 learnable curvature $-\alpha_i$ (Cannon et al., 1997; Nickel & Kiela, 2018; Lee, 2018). See Appendix C

216 for implementation details. Following Definition 1, we define the distance on the ℓ_1 -product metric
 217 space $(\mathbb{H}^d)^k$ and its averaged version as
 218

$$219 \quad d_{(\mathbb{H}^d)^k}(\mathbf{X}, \mathbf{Y}) = \sum_{i=1}^k d_{\mathbb{H}_i^d}(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}), \quad d_{\text{avg}}(\mathbf{X}, \mathbf{Y}) = \frac{1}{k} d_{(\mathbb{H}^d)^k}(\mathbf{X}, \mathbf{Y}). \quad (2)$$

221 To pull an embedding \mathbf{X}_b close to its positive pair \mathbf{Y}_b while pushing it away from negatives \mathbf{Y}_a for
 222 $a \neq b$, we use the standard InfoNCE loss (Radford et al., 2021; Desai et al., 2023; Pal et al., 2025):
 223

$$224 \quad \mathcal{L}_{\text{cont}}(\{\mathbf{X}_b\}, \{\mathbf{Y}_b\}) = - \sum_{b \in B} \log \frac{\exp(-d_{\text{avg}}(\mathbf{X}_b, \mathbf{Y}_b)/\tau)}{\sum_{a \in B} \exp(-d_{\text{avg}}(\mathbf{X}_b, \mathbf{Y}_a)/\tau)} \quad (3)$$

225 where τ is a learnable temperature parameter. We average this loss over known pairs:
 226

$$227 \quad \mathcal{L}_{\text{cont}} = \frac{1}{4} (\mathcal{L}_{\text{cont}}(\{\mathbf{I}_b\}, \{\mathbf{T}_b\}) + \mathcal{L}_{\text{cont}}(\{\mathbf{T}_b\}, \{\mathbf{I}_b\}) + \mathcal{L}_{\text{cont}}(\{\mathbf{I}_b^{\text{box}}\}, \{\mathbf{T}_b^{\text{box}}\}) + \mathcal{L}_{\text{cont}}(\{\mathbf{T}_b^{\text{box}}\}, \{\mathbf{I}_b^{\text{box}}\})). \quad (4)$$

229 **Entailment Loss.** We also employ hyperbolic entailment cones to capture the entailment relations
 230 (Ganea et al., 2018a). See Appendix C for implementation details. For every point $\mathbf{y}^{(i)}$ in each
 231 hyperbolic factor \mathbb{H}_i^d , we define a geodesic conical region $C(\mathbf{y}^{(i)})$ with apex at $\mathbf{y}^{(i)}$ and half-aperture
 232 $\omega(\mathbf{y}^{(i)})$, where all points $\mathbf{x}^{(i)} \in C(\mathbf{y}^{(i)})$ are considered more specific than $\mathbf{y}^{(i)}$ (i.e., $\mathbf{x}^{(i)} \preceq \mathbf{y}^{(i)}$).
 233 Then, $\mathbf{x}^{(i)} \in C(\mathbf{y}^{(i)})$ iff $\phi(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) < \omega(\mathbf{y}^{(i)})$ for the exterior angle $\phi(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$. To penalize the
 234 violation of the inclusion relation $\mathbf{x}^{(i)} \in C(\mathbf{y}^{(i)})$ for a pair $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ such that $\mathbf{x}^{(i)} \preceq \mathbf{y}^{(i)}$, the
 235 entailment loss L_{ent} is calculated as

$$236 \quad L_{\text{ent},i}(\mathbf{X}, \mathbf{Y}) = \max(0, \phi(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) - \eta \omega(\mathbf{y}^{(i)})), \quad L_{\text{ent}}(\mathbf{X}, \mathbf{Y}) = \frac{1}{k} \sum_{i=1}^k L_{\text{ent},i}(\mathbf{X}, \mathbf{Y}), \quad (5)$$

237 where hyperparameter η controls the margin (Pal et al., 2025). We sum this loss over known pairs:
 238

$$239 \quad \mathcal{L}_{\text{ent}} = \sum_{b \in B} (L_{\text{ent}}(\mathbf{I}_b, \mathbf{T}_b) + L_{\text{ent}}(\mathbf{I}_b^{\text{box}}, \mathbf{T}_b^{\text{box}}) + L_{\text{ent}}(\mathbf{I}_b, \mathbf{I}_b^{\text{box}}) + L_{\text{ent}}(\mathbf{T}_b, \mathbf{T}_b^{\text{box}})). \quad (6)$$

4 EXPERIMENTS

4.1 TRAINING DETAILS

245 **Datasets.** We trained all models on the Grounded Image–Text Pairs (GRIT) dataset (Peng et al.,
 246 2023), which consists of automatically annotated image–text pairs with bounding boxes and corre-
 247 sponding nouns/phrases. Although the dataset is documented to contain 20.5 million pairs with 35.9
 248 million box annotations, we were able to obtain 14.0 million pairs with 26.6 million box annota-
 249 tions due to outdated public links. This scale remains considerably larger than manually annotated
 250 resources such as Flickr30K Entities (Plummer et al., 2015).
 251

252 **Baselines.** We compare PHyCLIP with CLIP (Radford et al., 2021), MERU (Desai et al., 2023),
 253 and HyCoCLIP (Pal et al., 2025). CLIP is a seminal vision–language model trained with contrastive
 254 learning in a Euclidean space. MERU extends CLIP by lifting embeddings to hyperbolic space
 255 and using hyperbolic entailment cones to represent hierarchy. HyCoCLIP further leverages box
 256 annotations to better capture intra-modal hierarchy. All models were trained from scratch on GRIT
 257 for fair comparison. For PHyCLIP, we set the number of factors to $k = 64$ and the dimension of
 258 each factor to $d = 8$, resulting in a total dimension of 512. We followed the training protocols
 259 and hyperparameters used in the official implementations of HyCoCLIP (Pal et al., 2025); see
 260 Appendix C for details. We report results obtained with the base Vision Transformer as an image
 261 encoder (Dosovitskiy et al., 2021). Supplementary results are provided in Appendix D.1.
 262

4.2 EXPERIMENTAL RESULTS

264 **Zero-shot Image Classification.** We evaluated the geometry of embedding space via zero-shot
 265 image classification, following the protocol standardized by CLIP (Radford et al., 2021). Images
 266 are classified using the similarity to the averaged embedding of template text queries for classes
 267 across 16 datasets, grouped into General, Fine-grained, and Specialized. General datasets cover
 268 broad, heterogeneous concept families (e.g., animals, transportation, household objects). Fine-grained
 269 datasets focus on visually similar subclasses within a single concept family (e.g., specific food, dog
 breeds). Specialized datasets are domain-specific (e.g., texture images, satellite imagery).
 270

Table 1: Zero-shot image classification.

w/ boxes	General datasets						Fine-grained datasets					Specialized datasets					
	ImageNet	CIFAR-10	CIFAR-100	SUN397	Caltech-101	STL-10	Food-101	CUB	Cars	Aircraft	Pets	Flowers	DTD	EuroSAT	RESISC45	Country211	
CLIP	39.36	75.09	48.57	51.48	73.63	92.54	50.59	13.40	7.66	2.42	46.44	19.00	23.19	35.26	42.60	5.20	
CLIP	✓	38.64	76.88	47.88	50.62	74.48	93.34	50.77	13.45	8.99	3.17	46.95	20.67	21.49	36.51	41.46	4.90
MERU	37.49	75.61	46.80	49.54	71.19	93.38	52.88	10.52	7.49	3.05	44.11	22.94	21.70	39.52	41.09	4.74	
MERU	✓	37.86	77.14	48.09	50.15	72.96	93.80	53.61	9.34	7.42	3.06	43.69	17.92	21.38	35.02	40.98	5.20
HyCoCLIP	✓	42.93	88.51	57.68	54.23	75.55	94.55	51.72	12.86	9.98	4.41	50.66	19.93	26.33	38.02	46.15	5.65
PHyCLIP	✓	44.43	89.30	59.83	56.18	75.76	95.06	56.81	16.00	10.47	3.05	54.64	20.41	26.44	33.43	50.13	5.42

The best and second performances are emphasized by bold fonts and underlines, respectively.

Table 2: Zero-shot retrieval and hierarchical classification.

w/ boxes	Text → Image				Image → Text				Hierarchical Classification					
	COCO		Flickr		COCO		Flickr		WordNet					
	R@5	R@10	R@5	R@10	R@5	R@10	R@5	R@10	TIE(↓)	LCA(↓)	J(↑)	P _H (↑)	R _H (↑)	
CLIP	56.39	67.59	83.30	89.70	70.44	80.42	93.10	95.70	3.705	2.254	0.7805	0.8498	0.8503	
CLIP	✓	56.12	67.58	82.54	89.32	70.72	80.32	91.90	96.10	3.720	2.265	0.7797	0.8487	0.8509
MERU	55.50	66.71	82.26	88.84	69.32	78.96	89.70	95.70	3.832	2.292	0.7720	0.8451	0.8439	
MERU	✓	55.93	67.29	81.68	88.36	69.72	80.02	91.00	95.70	3.793	2.277	0.7740	0.8462	0.8454
HyCoCLIP	✓	56.24	67.69	82.90	88.94	69.00	79.16	91.90	95.30	3.378	2.113	0.8008	0.8653	0.8636
PHyCLIP	✓	58.00	68.74	83.40	89.92	70.20	80.44	91.10	95.60	3.285	2.088	0.8065	0.8684	0.8682

Table 1 summarizes top-1 accuracies. PHyCLIP obtained consistent performance gains, particularly on General datasets, which we attribute to assigning concept families to hyperbolic factors that naturally support coarse-grained classifications. Within Fine-grained datasets, PHyCLIP achieved remarkable improvements on Food-101 (Bossard et al., 2014) and Oxford-IIIT Pets (Parkhi et al., 2012), implying that it also learned intra-family taxonomies without confusion with other families. Although not best on every dataset, the performance gap on Flowers-102 (Nilsback & Zisserman, 2008) is small, FGVC-Aircraft (Maji et al., 2013) and Country211 (Radford et al., 2021) remain challenging for all models due to extreme intra-class similarity, and EuroSAT (Helber et al., 2019) (comprising satellite imagery) is out-of-distribution relative to GRIT. Consistent with prior findings (Pal et al., 2025), CLIP and MERU do not yield clear improvements with box annotations. Overall, PHyCLIP is the strongest zero-shot classifier among the comparison models.

Zero-shot Image and Text Retrieval. We evaluate cross-modal alignment via zero-shot retrieval in the shared embedding space: given a text query, retrieve the nearest images, and vice versa. This is also a standard benchmark for vision-language models (Radford et al., 2021). We used the COCO validation set (Lin et al., 2014) and the Flickr30K test set (Young et al., 2014; Karpathy & Fei-Fei, 2015). We report Recall at k (R@ k), the fraction of queries for which the paired instance appears in the top- k retrieved results.

Results are summarized in the left half of Table 2. PHyCLIP achieves the best performance across all metrics and datasets on image retrieval, which supports our choice of the ℓ_1 -product metric in Eq. (2). This metric sums distances over hyperbolic factors; when an object specified in the text is absent from a candidate image, or an unspecified object is present, the corresponding factor incurs a large penalty. By contrast, a single hyperbolic space implicitly encodes the presence or absence of objects as hierarchical relations, which may weaken penalties for such mismatches and hinder separability of hard negatives. The vanilla CLIP works well for text retrieval, and PHyCLIP attains a competitive performance. Texts are more diverse and ambiguous than images, and some texts may accidentally match with non-paired images, which may limit the benefits of our design.

Hierarchical Classification. We evaluate the expressivity for the *is-a* taxonomy via hierarchical classification (Kosmopoulos et al., 2015; Pal et al., 2025) on ImageNet (Russakovsky et al., 2015), where class labels are enriched by WordNet (Miller, 1995) and errors between predicted and ground-truth classes are measured on the WordNet graph with unit-length edges: Tree Induced Error (TIE) is their graph distance; Lowest Common Ancestor (LCA) error is the maximum of the distances to their LCA; Jaccard similarity J , hierarchical precision P_H , and hierarchical recall R_H are similarities between the sets of ancestors.

324
325
326 Table 3: Compositional understanding through hard-negative classification.
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

w/ boxes	VL-CheckList-Object										SugarCrepe					
	Location			Size			Replace			Swap		Add		Overall		
	Center	Mid	Margin	Large	Medium	Small	Obj	Att	Rel	Obj	Att	Obj	Att			
CLIP	67.1	65.5	64.3	69.9	63.8	64.2	88.74	80.84	69.42	63.67	64.86	80.60	72.83	77.66		
CLIP	✓	66.1	61.6	64.7	67.0	64.6	63.3	89.29	81.73	69.84	62.45	64.11	80.12	71.68	77.61	
MERU	63.3	60.0	60.5	66.6	57.3	58.6	88.68	80.71	69.27	57.55	64.11	80.16	74.42	77.37		
MERU	✓	62.6	58.3	59.8	62.6	60.3	59.8	89.53	79.06	69.91	56.33	66.37	79.97	75.72	77.73	
HyCoCLIP	✓	65.9	65.6	63.1	67.6	63.1	63.9	91.28	80.46	67.07	54.69	63.96	81.09	72.40	77.46	
PHyCLIP	✓	73.0	72.0	71.4	76.4	69.2	69.0	91.34	82.11	66.64	59.18	66.07	83.56	74.28	78.75	

Results are summarized in the right half of Table 2. PHyCLIP achieves superior scores across all metrics, indicating not only higher classification accuracy but also that misclassifications tend to be close to the ground-truth class in the taxonomy. By handling cross-family compositionality via the ℓ_1 -product metric, each hyperbolic factor can devote capacity to a cleaner intra-family *is-a* taxonomy, thereby yielding disentangled, hierarchy-aligned representations.

Compositional Understanding. We assess the expressivity of compositionality via hard negative classification using VL-CheckList (Zhao et al., 2022) and SugarCrepe (Hsieh et al., 2023). Both benchmarks require models to distinguish ground-truth captions from hard negatives created by altering objects, attributes, or relations in the ground-truth captions. Following Pal et al. (2025), we evaluate the Object subset of VL-CheckList, in which a noun for a single object in each caption is randomly replaced. The results are summarized by the replaced object’s location (center/mid/margin) and size (small/medium/large) in the image. We also evaluate all seven subsets in SugarCrepe, in which objects, attributes, and relations are replaced, swapped, or added in each caption.

As shown in Table 3, PHyCLIP yields a substantial improvement on VL-CheckList–Object. It successfully represents object presence robustly with respect to location and size. On SugarCrepe, PHyCLIP obtains the best scores on four out of seven subsets and the second-best on two subsets; its average score exceeds that of the second-best model by more than 1%, whereas the other models cluster within 0.3%. Performance on attribute subsets is robust across all three operations, suggesting that our design decouples intra-family taxonomy from cross-family composition and thereby emphasizes attribute–object binding. By contrast, we observe modest drops in relation replacement and object swapping, which implies that our design is less sensitive to inter-object relations, although it potentially captures these relations within each hyperbolic factor.

Ablation Study. We investigate the contributions of embedding space factorization and the ℓ_1 -product metric through ablation studies, summarized in Table 4. We fix the total embedding dimension kd and vary the number of factors, k . When $k = 1$ (equivalent to HyCoCLIP), performance is the lowest on most metrics; increasing k generally improves results, except for text retrieval, thereby demonstrating the benefit of factorization. Performance peaks at $k = 64$ or $k = 128$, although zero-shot classification accuracy for Food-101 (Bossard et al., 2014) drops substantially at $k = 128$, indicating that overly fine factorization may impair the representation of intra-family taxonomy. Replacing the ℓ_1 -product metric with the Riemannian (ℓ_2) product metric consistently degrades performance, except for text retrieval. This result supports that the ℓ_1 -product metric provides a more effective way to aggregate cross-family composition.

4.3 VISUALIZATIONS OF HYPERBOLIC FACTORS

Norm Distributions. Figure 3 plots the empirical distributions of embedding norms. As shown in (b) and (c), in both PHyCLIP and HyCoCLIP, image norms are consistently larger than text norms and are tightly concentrated. These models consider images to be more specific than their paired texts, $I_b \preceq T_b$, which encourages the image embedding I_b to lie within the text’s hyperbolic entailment cone $C(T_b)$ (i.e., $I_b \in C(T_b)$), yielding larger image norms. However, within individual hyperbolic factors

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377 Table 4: Ablation study.

# of factors, k	# of dims., d	product metric	classification		retrieval		hierarchical	
			ImageNet	Food-101	Image	Text	THE	J
1	512	–	42.93	51.71	56.24	69.00	3.378	0.8008
8	64	ℓ_1	44.26	52.16	57.28	69.38	3.288	0.8061
16	32	ℓ_1	44.03	54.89	56.78	67.62	3.292	0.8063
32	16	ℓ_1	43.90	54.48	56.70	66.92	3.324	0.8035
64	8	ℓ_1	44.43	56.81	58.00	70.20	3.285	0.8065
128	4	ℓ_1	44.08	52.61	57.82	71.44	3.278	0.8073
64	8	ℓ_2	43.46	51.44	57.72	71.40	3.377	0.7998

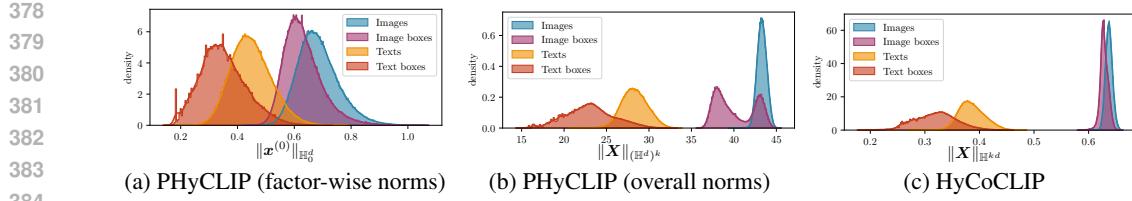


Figure 3: **Norm distributions.** In (b) and (c), image norms are consistently larger than text norms, because images are more specific than their paired texts ($I_b \preceq T_b$). However, in a single hyperbolic factor shown in (a), image and text norms largely overlap, as PHyCLIP may keep some factors unused for instances that do not contain the corresponding concept families.

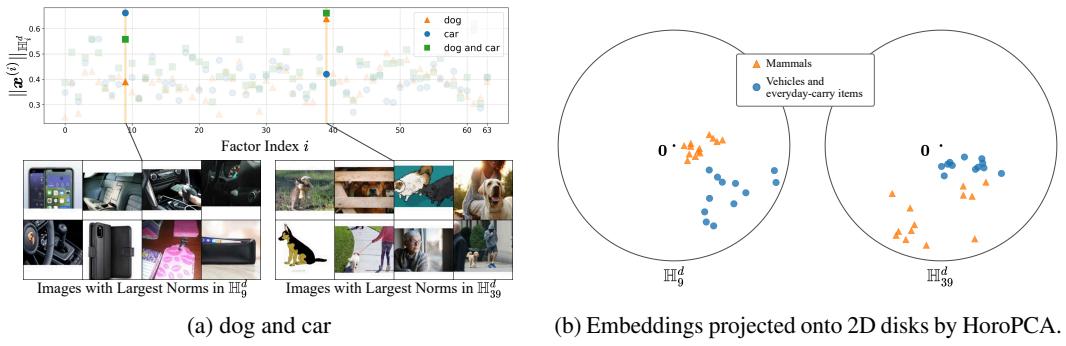


Figure 4: **Visualization of factor-wise embeddings.** (a) Each concept (e.g., dog or car) activates a distinct factor (i.e., $i = 39$ or $i = 9$), and their composition (e.g., “a dog and a car”) activates the corresponding factors simultaneously. (b) A set of relevant concepts (e.g., hyponyms of mammals) forms a hierarchical structure in the corresponding factor (e.g., $i = 39$), while they cluster near the origin in another factor (e.g., $i = 9$).

of PHyCLIP in (a), the image and text distributions largely overlap and are broadly dispersed. This is because instances without a particular concept family lie near the origin in the corresponding factor, in other words, factors are used selectively on a per-instance basis. Consequently, PHyCLIP leverages a broader portion of the embedding space and facilitates meaningful distances and taxonomic structures under contrastive learning.

Composition via ℓ_1 -Product Metric. To examine the behavior of the ℓ_1 -product metric, we obtain factor-wise embeddings $\mathbf{x}^{(i)}$ of single-concept prompts (e.g., “a photo of a dog” and “a photo of a car”) and their compositions (e.g., “a photo of a dog and a car”). Figure 4 (a) shows factor-wise embedding norms $\|\mathbf{x}^{(i)}\|_{\mathbb{H}_i^d}$ across $k = 64$ factors. The “dog” embedding exhibits its largest norm in factor $i = 39$ while remaining near the origin in factor $i = 9$. Conversely, the “car” embedding peaks in factor $i = 9$ and is suppressed in factor $i = 39$. Then, their composition produces large norms in *both* factors $i = 39$ and $i = 9$, meaning that composing concepts simultaneously activates the corresponding factors. We observe the same pattern for “boy and bicycle” and “sunset and ocean” (see Appendix D.2). This pattern aligns with the behavior of a Boolean algebra, where multiple concepts are specified by the union of concept subsets (or, the element-wise max of binary indicators).

Figure 4 (a) also provides GRIT images randomly sampled from the top 0.1% by the embedding norm for each factor. Factor $i = 39$ yields various mammals, suggesting a family of mammals, whereas factor $i = 9$ shows vehicles and everyday-carry items. Embeddings visualized using HoroPCA (Chami et al., 2021) in Fig. 4(b) support this interpretation. Terms related to mammals form a hierarchical structure (i.e., captured) in factor $i = 39$ and concentrate near the origin (i.e., not captured) in factor $i = 9$. Embeddings related to vehicles and everyday-carry items exhibit the opposite pattern. See Appendix D.2 for more visualizations.

We emphasize that, while we give a hierarchy between samples, we do not provide any explicit supervision for factor assignments; this specialization of factors emerges automatically through training. Consistent with Theorem 2, these observations empirically support that PHyCLIP organizes intra-family taxonomies within individual hyperbolic factors and expresses inter-family compositionality via the simultaneous activation of multiple factors, analogous to a Boolean algebra.

432 **5 RELATED WORK**

434 **Vision-Language Models and Representation Learning.** Vision–language representation learning
 435 contributes to retrieval (Mori et al., 1999), semantic segmentation (Barnard et al., 2003), and image
 436 generation (Ramesh et al., 2021; Labs, 2025). Early works learned alignments through object-level,
 437 word-based classification and detection (Karpathy & Fei-Fei, 2015; He & Peng, 2017; Engilberge
 438 et al., 2018) or through text–image generation (Peng et al., 2017; Gu et al., 2018), but they often
 439 required complex annotation and network designs (Zhao et al., 2022). A more generic approach maps
 440 an entire image or text to a single vector and learns a shared embedding space with a contrastive
 441 objective. Representative systems include DeViSE (Frome et al., 2013), VSE++ (Faghri et al., 2018),
 442 CLIP (Radford et al., 2021), and ALIGN (Jia et al., 2021). Our model, PHyCLIP, follows this line,
 443 while implicitly extracting individual concepts through the geometry of an ℓ_1 -product metric space.

444 **Hyperbolic Representations in Deep Learning.** Data often exhibit hierarchical, tree-like structures.
 445 Many approaches have attempted to encode such structure (Nguyen et al., 2017; Vulic & Mrksic,
 446 2018), and hyperbolic spaces have become influential due to their empirical performance and
 447 theoretical support (Sala et al., 2018; Sonthalia & Gilbert, 2020). As discussed in Section 2, tree
 448 metrics admit quasi-isometric embeddings into the two-dimensional hyperbolic plane, which enhances
 449 generalization and interpretability (Bridson & Haefliger, 1999; Sarkar, 2011). Hyperbolic embeddings
 450 have been applied to words (Nickel & Kiela, 2017; 2018; Tifrea et al., 2019), sentences (Dhingra
 451 et al., 2018), graphs (Liu et al., 2019), and images (Khrulkov et al., 2020; Atigh et al., 2022; van
 452 Spengler et al., 2023; Qiu et al., 2024). There is also extensive work on building neural networks
 453 on hyperbolic spaces (Ganea et al., 2018b; Shimizu et al., 2021; Takeuchi et al., 2022; Peng et al.,
 454 2022) and on optimization over Riemannian manifolds (Bonnabel, 2013; Bécigneul & Ganea, 2019).
 455 Within vision–language learning, MERU adapts CLIP to hyperbolic geometry (Desai et al., 2023).
 456 Our method also leverages hyperbolic geometry and embeds tree-like structures efficiently.

457 For non-hierarchical data, Euclidean, hyperspherical, or toroidal geometries can be effective (Ebisu &
 458 Ichise, 2018), and several studies explore representations in a Riemannian (ℓ_2) product of such spaces
 459 as mixed-curvature representations (Gu et al., 2019; Wang et al., 2024; Gao et al., 2025). PHyCLIP
 460 also employs a product space, but all factors are hyperbolic and the product metric is ℓ_1 ; we justified
 461 both choices theoretically in Section 2.

462 **Region-based Embeddings for Structured Representations.** Hierarchical relations can be viewed
 463 as a form of inclusion relations. Order embeddings (Vendrov et al., 2016) represent an instance
 464 as an upper orthant of Euclidean space, and box embeddings (Vilnis et al., 2018) represent it as
 465 an axis-aligned hyperrectangle, where the inverse of set inclusion encodes the hierarchical relation.
 466 Euclidean variants include Gaussian embeddings (Vilnis & Mccallum, 2015), and hyperbolic variants
 467 include disk embeddings (Nickel & Kiela, 2018) and hyperbolic entailment cones (Ganea et al.,
 468 2018a). These approaches have also been employed in the vision–language setting (Ren et al., 2016;
 469 Desai et al., 2023; Pal et al., 2025). We summarize their theoretical connections in Appendix A.2.
 470 These region-based approaches permit composition via intersection of regions, which allows multiple
 471 parents and richer semantic composition. However, their compositional expressivity has not yet
 472 been fully characterized. We showed in Section 2 that order embeddings and PHyCLIP support
 473 compositionality at the level of a Boolean algebra, while a single hyperbolic space may not.

474 **6 CONCLUSION**

475 We introduced PHyCLIP, a vision–language model that learns representations using an ℓ_1 -product
 476 metric space of hyperbolic factors. We theoretically and empirically demonstrated that it simultane-
 477 ously captures compositionality across concept families through the ℓ_1 -product metric, as well as *is-a*
 478 taxonomies within hyperbolic spaces via hyperbolic embeddings. This design yields state-of-the-art
 479 performance across various downstream tasks and provides an interpretable embedding structure.
 480 While the main focus is on object composition, it also performs well for attribute binding because it
 481 decouples intra-family taxonomy from cross-family composition. By contrast, the relational structure
 482 remains unexplored; incorporating its algebraic structure is a promising direction for future work.
 483

486 ETHICS STATEMENT
487488 This study is purely focused on vision–language representation learning, and it is not expected to
489 have any direct negative impact on society or individuals.
490491 REPRODUCIBILITY STATEMENT
492493 The environment, datasets, methods, evaluation metrics, and other experimental settings are provided
494 in Section 4 and Appendix C. For full reproducibility, the source code is attached as supplementary
495 material.
496497 REFERENCES
498499 Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne van Noord, and Pascal Mettes. Hyperbolic
500 Image Segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*
501 (*CVPR*), 2022.502 Kobus Barnard, Pinar Duygulu, David A. Forsyth, Nando de Freitas, David M. Blei, and Michael I.
503 Jordan. Matching Words and Pictures. *Journal of Machine Learning Research*, 2003.504 Gary Bécigneul and Octavian-Eugen Ganea. Riemannian Adaptive Optimization Methods. In
505 *International Conference on Learning Representations (ICLR)*, 2019.506 Silvère Bonnabel. Stochastic Gradient Descent on Riemannian Manifolds. *IEEE Transactions on*
507 *Automatic Control*, 2013.508 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101: Mining Discriminative Compo-
509 nents with Random Forests. In *European Conference on Computer Vision (ECCV)*, 2014.510 Martin R. Bridson and André Haefliger. *Metric Spaces of Non-Positive Curvature*. Springer, 1999.511 James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic Geometry.
512 *Flavors of Geometry*, 1997.513 Ines Chami, Albert Gu, Dat Nguyen, and Christopher Ré. HoroPCA: Hyperbolic Dimensionality
514 Reduction via Horospherical Projections. In *International Conference on Machine Learning*
515 (*ICML*), 2021.516 Xinlei Chen, Saining Xie, and Kaiming He. An Empirical Study of Training Self-Supervised Vision
517 Transformers. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.518 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote Sensing Image Scene Classification: Bench-
519 mark and State of the Art. *Proceedings of the IEEE*, 2017.520 M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing Textures in the Wild. In
521 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2014.522 Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single Layer Networks in Unsupervised
523 Feature Learning. In *Artificial Intelligence and Statistics (AISTATS)*, 2011.524 Shib Sankar Dasgupta, Michael Boratko, Dongxu Zhang, Luke Vilnis, Xiang Lorraine Li, and Andrew
525 McCallum. Improving Local Identifiability in Probabilistic Box Embeddings. In *Advances in*
526 *Neural Information Processing Systems (NeurIPS)*, 2020.527 B. A. Davey and H. A. Priestley. *Introduction to Lattices and Order*. Cambridge University Press,
528 2002.529 Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna
530 Vedantam. Hyperbolic Image-text Representations. In *International Conference on Machine*
531 *Learning (ICML)*, 2023.532 Michel Marie Deza and Monique Laurent. *Geometry of Cuts and Metrics*. Springer, 1997.

540 Bhuwan Dhingra, Christopher J. Shallue, Mohammad Norouzi, Andrew M. Dai, and George E. Dahl.
 541 Embedding Text in Hyperbolic Spaces. In *ACL Workshop on Graph-Based Methods for Natural*
 542 *Language Processing*, 2018.

543

544 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 545 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 546 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
 547 In *International Conference on Learning Representations (ICLR)*, 2021.

548

549 Takuma Ebisu and Ryutaro Ichise. TorusE: Knowledge Graph Embedding on a Lie Group. In *AAAI*
 549 *Conference on Artificial Intelligence (AAAI)*, 2018.

550

551 Martin Engilberge, Louis Chevallier, Patrick Perez, and Matthieu Cord. Finding Beans in Burgers:
 552 Deep Semantic-Visual Embedding with Localization. In *IEEE/CVF Conference on Computer*
 553 *Vision and Pattern Recognition (CVPR)*, 2018.

554

555 Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. VSE++: Improving Visual-
 556 Semantic Embeddings with Hard Negatives. In *British Machine Vision Conference (BMVC)*,
 556 2018.

557

558 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning Generative Visual Models from Few Training
 559 Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. *CVPR Workshop*,
 560 2004.

561

562 Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc'Aurelio Ranzato, and
 563 Tomas Mikolov. DeViSE: A Deep Visual-Semantic Embedding Model. In *Advances in Neural*
 563 *Information Processing Systems (NIPS)*, 2013.

564

565 Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic Entailment Cones for
 566 Learning Hierarchical Embeddings. In *International Conference on Machine Learning (ICML)*,
 566 2018a.

567

568 Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic Neural Networks. In
 569 *Advances in Neural Information Processing Systems (NeurIPS)*, 2018b.

570

571 Bernhard Ganter and Rudolf Wille. *Formal Concept Analysis: Mathematical Foundations*. Springer,
 1999.

572

573 Yuxiao Gao, Fuwei Zhang, Zhao Zhang, Xiaoshuang Min, and Fuzhen Zhuang. Mixed-Curvature
 574 Multi-Modal Knowledge Graph Completion. In *AAAI Conference on Artificial Intelligence (AAAI)*,
 575 2025.

576

577 Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning Mixed-Curvature Represen-
 578 tations in Product Spaces. In *International Conference on Learning Representations (ICLR)*,
 578 2019.

579

580 Jiuxiang Gu, Jianfei Cai, Shafiq Joty, Li Niu, and Gang Wang. Look, Imagine and Match: Improving
 581 Textual-Visual Cross-Modal Retrieval with Generative Models. In *IEEE/CVF Conference on*
 582 *Computer Vision and Pattern Recognition (CVPR)*, 2018.

583

584 Xiangteng He and Yuxin Peng. Fine-Grained Image Classification via Combining Vision and
 585 Language. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

586

587 Patrick Helber, Benjamin Bischke, Andreas R. Dengel, and Damian Borth. EuroSAT: A Novel
 588 Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. *IEEE Journal*
 588 *of Selected Topics in Applied Earth Observations and Remote Sensing*, 2019.

589

590 Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, and
 591 Alexander Lerchner. Towards a Definition of Disentangled Representations. *arXiv*, 2018.

592

593 G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed Representations. In *Parallel*
 593 *Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations*.
 The MIT Press, 1986.

594 Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcreepe:
 595 Fixing hackable benchmarks for vision-language compositionality. In *NeurIPS Datasets and*
 596 *Benchmarks*, 2023.

597

598 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan
 599 Sung, Zhen Li, and Tom Duerig. Scaling Up Visual and Vision-Language Representation Learning
 600 With Noisy Text Supervision. In *International Conference on Machine Learning (ICML)*, 2021.

601 Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descrip-
 602 tions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015.

603

604 Valentin Khrulkov, Leyla Mirvakhanova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
 605 Hyperbolic image embeddings. In *IEEE/CVF Conference on Computer Vision and Pattern*
 606 *Recognition (CVPR)*, 2020.

607

608 Aris Kosmopoulos, Ioannis Partalas, Éric Gaussier, Georgios Palioras, and Ion Androutsopoulos.
 609 Evaluation measures for hierarchical classification: a unified view and novel approaches. *Data*
 610 *Mining and Knowledge Discovery*, 2015.

611 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D Object Representations for Fine-
 612 Grained Categorization. In *ICCV Workshops*, 2013.

613

614 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 615 Technical report, 2009.

616

617 Black Forest Labs. FLUX.1 Kontext: Flow Matching for In-Context Image Generation and Editing
 618 in Latent Space. *arXiv*, 2025.

619

620 John M. Lee. *Introduction to Riemannian Manifolds, Second Edition*. Springer International
 621 Publishing AG, 2018.

622

623 Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum. Smoothing the Ge-
 624 ometry of Probabilistic Box Embeddings. In *International Conference on Learning Representations*
 625 (*ICLR*), 2019.

626

627 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 628 Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In *European*
 629 *Conference on Computer Vision (ECCV)*, 2014.

630

631 Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic Graph Neural Networks. In *Advances in*
 632 *Neural Information Processing Systems (NeurIPS)*, 2019.

633

634 Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In
 635 *International Conference on Learning Representations (ICLR)*, 2017.

636

637 Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In *International*
 638 *Conference on Learning Representations (ICLR)*, 2019.

639

640 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-Grained
 641 Visual Classification of Aircraft. *arXiv*, 2013.

642

643 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words
 644 and Phrases and Their Compositionality. In *Advances in Neural Information Processing Systems*
 645 (*NeurIPS*), 2013.

646

647 George A. Miller. WordNet: A Lexical Database for English. *Communications of the ACM*, 1995.

648

649 Andriy Mnih and Geoffrey Hinton. A Scalable Hierarchical Distributed Language Model. In
 650 *Advances in Neural Information Processing Systems (NeurIPS)*, 2008.

651

652 Yasuhide Mori, Hironobu Takahashi, and Ryu ichi Oka. Image-to-word transformation based on
 653 dividing and vector quantizing images with words. In *IEEE International Conference on Image*
 654 *Processing*, 1999.

648 Frederic Morin and Yoshua Bengio. Hierarchical Probabilistic Neural Network Language Model. In
 649 *Artificial Intelligence and Statistics (AISTATS)*, 2005.
 650

651 Kim Anh Nguyen, Maximilian Köper, Sabine Schulte im Walde, and Ngoc Thang Vu. Hierarchical
 652 Embeddings for Hypernymy Detection and Directionality. In *Empirical Methods in Natural
 653 Language Processing (EMNLP)*, 2017.

654 Maximilian Nickel and Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Representa-
 655 tions. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
 656

657 Maximilian Nickel and Douwe Kiela. Learning Continuous Hierarchies in the Lorentz Model of
 658 Hyperbolic Geometry. In *International Conference on Machine Learning (ICML)*, 2018.
 659

660 M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
 661 *Indian Conference on Computer Vision, Graphics and Image Processing*, 2008.

662 Avik Pal, Max van Spengler, Guido Maria D'Amely di Melendugno, Alessandro Flaborea, Fabio
 663 Galasso, and Pascal Mettes. Compositional Entailment Learning for Hyperbolic Vision-Language
 664 Models. In *International Conference on Learning Representations (ICLR)*, 2025.
 665

666 Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and Dogs. In
 667 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2012.
 668

669 Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic
 670 Deep Neural Networks: A Survey. *IEEE Transactions on Pattern Analysis and Machine Intelli-
 671 gence*, 2022.

672 Yuxin Peng, Jinwei Qi, and Yuxin Yuan. CM-GANs: Cross-modal Generative Adversarial Net-
 673 works for Common Representation Learning. *ACM Transactions on Multimedia Computing,
 674 Communications, and Applications*, 2017.

675 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei.
 676 Kosmos-2: Grounding Multimodal Large Language Models to the World. *arXiv*, 2023.
 677

678 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
 679 Svetlana Lazebnik. Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer
 680 Image-to-Sentence Models. In *IEEE/CVF International Conference on Computer Vision (ICCV)*,
 681 2015.

682 Zexuan Qiu, Jiahong Liu, Yankai Chen, and Irwin King. HiHPQ: Hierarchical Hyperbolic Product
 683 Quantization for Unsupervised Image Retrieval. In *AAAI Conference on Artificial Intelligence
 684 (AAAI)*, 2024.
 685

686 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 687 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 688 Learning Transferable Visual Models From Natural Language Supervision. In *International
 689 Conference on Machine Learning (ICML)*, 2021.

690 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 691 and Ilya Sutskever. Zero-Shot Text-to-Image Generation. *arXiv*, 2021.
 692

693 Zhou Ren, Hailin Jin, Zhe Lin, Chen Fang, and Alan Yuille. Joint Image-Text Representation
 694 by Gaussian Visual-Semantic Embedding. In *ACM International Conference on Multimedia
 695 (ACMMM)*, 2016.

696 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 697 Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei.
 698 ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision*,
 699 2015.

700 Frederic Sala, Christopher De Sa, Albert Gu, and Christopher Ré. Representation Tradeoffs for
 701 Hyperbolic Embeddings. In *International Conference on Machine Learning (ICML)*, 2018.

702 Rik Sarkar. Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane. In *International*
 703 *Symposium on Graph Drawing (GD)*, 2011.
 704

705 Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic Neural Networks++. In *International*
 706 *Conference on Learning Representations (ICLR)*, 2021.
 707

708 Rishi Sonthalia and Anna C. Gilbert. Tree! I Am No Tree! I Am a Low Dimensional Hyperbolic
 709 Embedding. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
 710

711 Ryota Suzuki, Ryusuke Takahama, and Shun Onoda. Hyperbolic Disk Embeddings for Directed
 712 Acyclic Graphs. In *International Conference on Machine Learning (ICML)*, 2019.
 713

714 Jun Takeuchi, Qian Chen, Hiroshi Noji, and Isao Goto. Neural Networks in a Product of Hyperbolic
 715 Spaces. In *North American Chapter of the Association for Computational Linguistics (NAACL)*
 716 *Student Research Workshop*, 2022.
 717

718 Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincare Glove: Hyperbolic Word
 719 Embeddings. In *International Conference on Learning Representations (ICLR)*, 2019.
 720

721 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 722 Jégou. Training data-efficient image transformers & distillation through attention. In *International*
 723 *Conference on Machine Learning (ICML)*, 2021.
 724

725 Abraham Albert Ungar. *A Gyrovector Space Approach to Hyperbolic Geometry*. Morgan and
 726 Claypool, 2008.
 727

728 Max van Spengler, Erwin Berkhout, and Pascal Mettes. Poincaré ResNet. In *IEEE/CVF International*
 729 *Conference on Computer Vision (ICCV)*, 2023.
 730

731 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 732 Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In *Advances in Neural Information*
 733 *Processing Systems (NeurIPS)*, 2017.
 734

735 Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-Embeddings of Images and
 736 Language. In *International Conference on Learning Representations (ICLR)*, 2016.
 737

738 Luke Vilnis and Andrew McCallum. Word Representations via Gaussian Embedding. In *International*
 739 *Conference on Learning Representations (ICLR)*, 2015.
 740

741 Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. Probabilistic Embedding of Knowl-
 742 edge Graphs with Box Lattice Measures. In *Annual Meeting of the Association for Computational*
 743 *Linguistics (ACL)*, 2018.
 744

745 Ivan Vulic and Nikola Mrksic. Specialising Word Vectors for Lexical Entailment. In *North American*
 746 *Chapter of the Association for Computational Linguistics (NAACL-HLT)*, 2018.
 747

748 C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
 749 Technical Report CNS-TR-2011-001, 2011.
 750

751 Jiapu Wang, Zheng Cui, Boyue Wang, Shirui Pan, Junbin Gao, Baocai Yin, and Wen Gao. IME:
 752 Integrating Multi-curvature Shared and Specific Embedding for Temporal Knowledge Graph
 753 Completion. In *International Conference on World Wide Web (WWW)*, 2024.
 754

755 Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 756 Large-scale scene recognition from abbey to zoo. In *IEEE Conference on Computer Vision and*
 757 *Pattern Recognition (CVPR)*, 2010.
 758

759 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 760 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions*
 761 *of the Association for Computational Linguistics*, 2014.
 762

763 Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu, and
 764 Jianwei Yin. VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects,
 765 Attributes and Relations. *arXiv*, 2022.

756 A BACKGROUND THEORY
757758 A.1 QUASI-ISOMETRIC EMBEDDINGS
759

760 We adopt standard notions from Bridson & Haefliger (1999). Let (X, d_X) be a metric space. A
761 geodesic segment $[x, y] \subset X$ is an isometric image of an interval whose endpoints are mapped to x
762 and y in X . The space X is *geodesic* if every pair of points can be joined by a geodesic segment. For
763 $\delta \geq 0$, a geodesic triangle is δ -*slim* if each side is contained in the δ -neighborhood of the union of
764 the other two sides. A geodesic metric space X is δ -*hyperbolic* (in the sense of Gromov) if every
765 geodesic triangle in X is δ -slim. A metric tree is a geodesic metric space in which any two nodes are
766 joined by a unique geodesic, and every geodesic triangle is a tripod; hence, it is 0-hyperbolic. Any
767 tree with positive edge lengths, equipped with path length as distance, is a metric tree. Euclidean
768 spaces \mathbb{R}^n are not Gromov-hyperbolic for $n \geq 2$, whereas hyperbolic spaces \mathbb{H}^n are δ -hyperbolic,
769 where δ depends only on the curvature.

770 **Definition 2** (Quasi-isometric embedding (Bridson & Haefliger, 1999)). *Let (X, d_X) and (Y, d_Y) be
771 metric spaces. A map $f : (X, d_X) \rightarrow (Y, d_Y)$ is a (λ, c) -quasi-isometric embedding if it is injective
772 and there exist a distortion $\lambda \geq 1$ and an error $c \geq 0$ such that*

$$773 \frac{1}{\lambda} d_X(\mathbf{x}, \mathbf{x}') - c \leq d_Y(f(\mathbf{x}), f(\mathbf{x}')) \leq \lambda d_X(\mathbf{x}, \mathbf{x}') + c \quad \text{for all } \mathbf{x}, \mathbf{x}' \in X. \quad (7)$$

774 If $\lambda = 1$ and $c = 0$, the embedding is isometric.

776 A.2 REPRESENTATIONS OF POSET AND LATTICE
777

778 A *poset* (P, \preceq) is a set P with a reflexive, antisymmetric, and transitive relation \preceq . Its Hasse diagram
779 places an edge from x to y when $x \prec y$ and there is no z such that $x \prec z \prec y$; hence the existence
780 of an upward path from x to y implies $x \preceq y$ (Ganter & Wille, 1999; Davey & Priestley, 2002).
781 Given $\mathbf{x}, \mathbf{y} \in P$, a *meet* $\mathbf{x} \sqcap \mathbf{y}$ (greatest lower bound) and a *join* $\mathbf{x} \sqcup \mathbf{y}$ (least upper bound) may or
782 may not exist. A *meet-semilattice* (*join-semilattice*) is a poset in which the meet $\mathbf{x} \sqcap \mathbf{y}$ (the join
783 $\mathbf{x} \sqcup \mathbf{y}$) exists for all pairs \mathbf{x}, \mathbf{y} , and a *lattice* has both for all pairs.

784 If a rooted tree is ordered by the ancestor relation with the root \mathbf{o} at the bottom (so that $\mathbf{o} \preceq \mathbf{x}$ for
785 all \mathbf{x}), then the meet $\mathbf{x} \sqcap \mathbf{y}$ of a pair \mathbf{x}, \mathbf{y} always exists, while joins need not exist. Hence, a rooted
786 tree is naturally a meet-semilattice in this orientation. Conversely, an *is-a* taxonomy often uses the
787 *entailment* order $\mathbf{x} \preceq \mathbf{y}$ interpreted as “ \mathbf{x} entails \mathbf{y} ” or more roughly “ \mathbf{x} is more specific than \mathbf{y} ,”
788 with the root \mathbf{o} at the top. The join $\mathbf{x} \sqcup \mathbf{y}$ always exists, while meets need not exist; the poset is then
789 a join-semilattice.

790 Let $\mathcal{C} = \{c_1, \dots, c_n\}$ be n atomic concepts (e.g., *dog*, *car*, *tomato*, …). A subset $S \subseteq \mathcal{C}$ expresses
791 the conjunction or co-occurrence of the concepts specified in S . We define the *Boolean lattice* $(2^{\mathcal{C}}, \subseteq)$
792 over the power set $2^{\mathcal{C}}$ of \mathcal{C} , in which the order relation \preceq is the inclusion relation \subseteq . Meet/join are
793 given by intersection/union, respectively. $T \subseteq S$ means that S specifies all concepts in T , so S
794 entails T . Let $\chi : 2^{\mathcal{C}} \rightarrow \{0, 1\}^n$ be the indicator map with $\chi(S)_i = 1$ iff $c_i \in S$. Then, $T \preceq S$ iff
795 $\chi(T)_i \leq \chi(S)_i$ for all i , and meet/join become bit-wise AND/OR, respectively. We summarize the
796 correspondence between different representations in Table 5. In this lattice, each node is defined
797 *intensionally* as a set of concepts.

798 From the dual perspective, each node can be defined *extensionally* as a set of instances that contain
799 specified concepts, in the context of formal concept analysis (Ganter & Wille, 1999). Let \mathcal{Z} be a
800 universe of instances and let $I \subseteq \mathcal{Z} \times \mathcal{C}$ be an incidence relation (i.e., $\mathbf{z} I c$ means that \mathbf{z} has concept
801 c). For $S \subseteq \mathcal{C}$, define an operation $S' = \{\mathbf{z} \in \mathcal{Z} \mid \mathbf{z} I c \text{ for all } c \in S \subseteq \mathcal{C}\}$, which forms a Galois
802 connection: $S \subseteq T$ implies $T' \subseteq S'$. Also, subsets $S' \subseteq \mathcal{Z}$ form the dual lattice of $(2^{\mathcal{C}}, \subseteq)$, where
803 $S \subseteq T \Leftrightarrow S \preceq T \Rightarrow T' \subseteq S' \Leftrightarrow T' \preceq S'$. If $S = S''$ for any subset $S \subseteq \mathcal{C}$, $S \subseteq T \Leftrightarrow T' \subseteq S'$.

804 An *is-a* taxonomy is typically realized as a join-subsemilattice of this dual lattice. Order embed-
805 dings (Vendrov et al., 2016) can be regarded as an extension of the Boolean lattice, where each bit
806 $\{0, 1\}$ is replaced with a real number \mathbb{R} . They declare “ \mathbf{x} entails \mathbf{y} ” iff $x_i \geq y_i$ for all i , similarly to
807 the indicators of a Boolean lattice. Indeed, the ambient poset (\mathbb{R}^n, \preceq) of order embeddings is a lattice
808 with meet/join given by coordinate-wise max/min, respectively. When regarding an embedding
809 \mathbf{x} as an orthant $U(\mathbf{x}) \subseteq \mathbb{R}^n$, the entailment is represented as $U(\mathbf{x}) \subseteq U(\mathbf{y})$, similarly to the dual
lattice. When treating the orthant $U(\mathbf{y})$ as the set of all instances that contain the specified concepts

Table 5: Correspondence of generalization, specialization, and entailment in different representations.

	Generalization (hypernymy)	Specialization (hyponymy)	Space	Entailment (\mathbf{x} or S entails \mathbf{y} or T)
Tree of is-a Relations (is-a Taxonomy)	join \sqcup	(meet \sqcap)	T	$\mathbf{x} \preceq \mathbf{y}$
Order Embedding (as points)	min	max	\mathbb{R}^n	$x_i \geq y_i$ for all i
Order Embedding (as orthants)			orthants in \mathbb{R}^n	$U(\mathbf{x}) \subseteq U(\mathbf{y})$
Order Embedding (for entailment)			orthants in \mathbb{R}^n	$\mathbf{x} \in U(\mathbf{y})$
Hyperbolic Entailment Cone	(union \cup)	intersection \cap	cones in \mathbb{H}^n	$\mathbf{x} \in C(\mathbf{y})$
Boolean Lattice (as a power set)	intersection \cap	union \cup	$2^{\mathcal{C}}$	$S \supseteq T$
Boolean Lattice (as a lattice)	meet \sqcap	join \sqcup		$S \succeq T$
Boolean Lattice (with indicator)	AND	OR	$\{0, 1\}^{ \mathcal{C} }$	$\chi(S)_i \geq \chi(T)_i$ for all i
Dual Lattice (as a set)	union \cup	intersection \cap		$S' \subseteq T'$
Dual Lattice (as a lattice)	join \sqcup	meet \sqcap		$S' \preceq T'$
Product of Trees	join \sqcup	(meet \sqcap)	$\prod_{i=1}^k T_i$	$\mathbf{x}^{(i)} \preceq \mathbf{y}^{(i)}$ for all i
PHyCLIP	(union \cup)	intersection \cap	cones in $(\mathbb{H}_i^d)^k$	$\mathbf{x}^{(i)} \in C_i(\mathbf{y}^{(i)})$ for all i

\mathbf{y} , the entailment is represented as $\mathbf{x} \in U(\mathbf{y})$, which aligns with the definition of the dual lattice. Hyperbolic entailment cones (Ganea et al., 2018a) are a hyperbolic extension of the last interpretation of order embeddings, where an orthant $U(\mathbf{y})$ is replaced with a geodesic conical region $C(\mathbf{y})$.

Also, our proposed PHyCLIP can be regarded as an extension of a Boolean lattice, where each bit $\{0, 1\}$ is replaced with a metric tree T_i , which is embedded into a hyperbolic factor \mathbb{H}_i^d .

B PROPOSITIONS, THEOREMS, AND PROOFS

B.1 PROOF OF PROPOSITION 1

Let $(2^{\mathcal{C}}, \subseteq)$ be a Boolean lattice over all subsets of atomic concepts $\mathcal{C} = \{c_1, \dots, c_n\}$. The indicator χ maps subsets $S, T \subseteq \mathcal{C}$ to binary sequences $\chi(S), \chi(T) \in \{0, 1\}^n$, where $\chi(S)_i = 1$ if $c_i \in S$ and $\chi(S)_i = 0$ otherwise. Then, $S \subseteq T$ iff $\chi(S)_i \leq \chi(T)_i$ for all i . The Hamming distance d_{Ham} is defined as $d_{\text{Ham}}(\chi(S), \chi(T)) = \sum_{i=1}^n |\chi(S)_i - \chi(T)_i|$. Consider a map $f : \{0, 1\}^n \rightarrow \mathbb{R}^n, \chi(S) \mapsto \mathbf{x} = (x_1, \dots, x_n) = (1 - \chi(S)_1, \dots, 1 - \chi(S)_n)$ and the product order $\mathbf{x} \preceq \mathbf{y}$ iff $x_i \geq y_i$ for all i on \mathbb{R}^n . Then, the map $f \circ \chi$ embeds the Boolean lattice $(2^{\mathcal{C}}, \subseteq)$ into the poset (\mathbb{R}^n, \preceq) used by order embeddings while preserving the order relations.

By definition, the Hamming distance is $d_{\text{Ham}}(\chi(S), \chi(T)) = \|\chi(S) - \chi(T)\|_1 = \sum_{i=1}^n |\chi(S)_i - \chi(T)_i|$. Hence, the metric space $(\{0, 1\}^n, d_{\text{Ham}})$ is equivalent to an ℓ_1 -product metric space $(\{0, 1\}^n, \sum_{i=1}^n |\cdot|)$. Consider a map f_i that maps 0 to the base point of the metric space X_i and 1 to a point with a finite non-zero distance $1/\tau_i > 0$ from the base point. The map f_i is an isometric embedding from $\{0, 1\}$ to X_i after scaled by τ_i . The map $f = (f_1, \dots, f_n)$ is an isometric embedding from $(\{0, 1\}^n, d_{\text{Ham}})$ to $(\prod_{i=1}^n \tau_i X_i, \sum_{i=1}^n d_{X_i})$ for any $k \geq n$.

Assume by contradiction that an isometric embedding $f : (\{0, 1\}^n, d_{\text{Ham}}) \rightarrow (\mathbb{H}^d, d_{\mathbb{H}^d})$ exists for some $n \geq 2$ and $d \geq 2$. Take four points

$$A = (0, 0, 0, \dots), \quad B = (1, 0, 0, \dots), \quad C = (1, 1, 0, \dots), \quad D = (0, 1, 0, \dots).$$

in $\{0, 1\}^n$. Let $\mathbf{a} = f(A), \mathbf{b} = f(B), \mathbf{d} = f(D)$, and $\mathbf{c} = f(C)$. Since f is an isometric embedding,

$$d_{\mathbb{H}^d}(\mathbf{a}, \mathbf{b}) = d_{\mathbb{H}^d}(\mathbf{b}, \mathbf{c}) = d_{\mathbb{H}^d}(\mathbf{a}, \mathbf{d}) = d_{\mathbb{H}^d}(\mathbf{d}, \mathbf{c}) = 1$$

and

$$d_{\mathbb{H}^d}(\mathbf{a}, \mathbf{b}) + d_{\mathbb{H}^d}(\mathbf{b}, \mathbf{c}) = d_{\mathbb{H}^d}(\mathbf{a}, \mathbf{d}) + d_{\mathbb{H}^d}(\mathbf{d}, \mathbf{c}) = d_{\mathbb{H}^d}(\mathbf{a}, \mathbf{c}) = 2.$$

In a hyperbolic space, a geodesic segment is unique, and its midpoint is unique, so both \mathbf{b} and \mathbf{d} are placed at the midpoint in the geodesic segment $[\mathbf{a}, \mathbf{c}]$; hence $\mathbf{b} = \mathbf{d}$. See Proposition I.4 in Bridson & Haefliger (1999). This contradicts the assumption that f is an isometric embedding (which is injective).

B.2 PROPOSITION 2 AND ITS PROOF

Proposition 2 (ℓ_1 -product of trees is not hyperbolic). *Let T_1, T_2 be infinite metric trees with known bounds for maximum degree and minimum edge length. Their ℓ_1 -product metric space $(T_1 \times T_2, d_{T_1 \times T_2})$ is not hyperbolic.*

864 $d_{T_2})$ is not δ -hyperbolic for any finite δ . Consequently, there is no (λ, c) -quasi-isometric embedding
 865 $(T_1 \times T_2, d_{T_1} + d_{T_2}) \rightarrow \mathbb{H}^n$.
 866

867 A quasi-geodesic q in X is a (λ, c) -quasi-isometric embedding $q : I \rightarrow X$, where I is an interval
 868 in \mathbb{R} or the intersection of \mathbb{Z} with such an interval; see Definition I.8.22 in Bridson & Haefliger
 869 (1999). In a δ -hyperbolic space Y , the stability of quasi-geodesics asserts that the Hausdorff distance
 870 between a geodesic γ and a (λ, c) -quasi-geodesic q with common endpoints is bounded by a constant
 871 $D = D(\lambda, c, \delta)$; see Theorem III.1.7 in Bridson & Haefliger (1999).

872 **Lemma 1** (Stability of geodesic triangles under quasi-isometric embeddings). *Let X be a geodesic
 873 metric space and $f : X \rightarrow Y$ be a (λ, c) -quasi-isometric embedding into a δ -hyperbolic space
 874 Y . Then every geodesic triangle in X is $\tilde{\delta}$ -slim for some constant $\tilde{\delta} \leq \lambda(\delta + 2D + c)$, where
 875 $D = D(\lambda, c, \delta)$ is the quasi-geodesic stability constant in Y .*

876 *Proof.* Let Δ be a geodesic triangle in X . Each side maps to a (λ, c) -quasi-geodesic in Y . By the
 877 stability of quasi-geodesics, each image side is contained in D -neighborhood of the corresponding
 878 geodesic. Geodesic triangles in Y are δ -slim; hence, each point on one image side is contained
 879 in $\delta + 2D$ -neighborhood of the union of the other two image sides. Pulling this back via the
 880 quasi-isometry inequalities yields the stated bound. \square
 881

882 Let T_1, T_2 be infinite trees with bounds for maximum degree and minimum edge length, which admit
 883 a geodesic ray of infinite length. For simplicity, we restrict the edge length to be 1, but the following
 884 discussion holds for arbitrary non-zero edge lengths, by replacing \mathbb{N} with the ordered set of the
 885 geodesic distances from the root to the nodes in the geodesic ray.
 886

887 Consider $(\mathbb{N}^2, \|\cdot\|_1)$. Let m be an even integer and take three points $A = (0, 0)$, $B = (m, 0)$,
 888 $C = (0, m)$. The midpoint $(\frac{m}{2}, \frac{m}{2})$ of a monotone geodesic from B to C is at $\frac{m}{2}$ from $[A, B] \cup [A, C]$,
 889 requiring $\delta \geq m/2$. $\delta \rightarrow \infty$ as $m \rightarrow \infty$. Hence, $(\mathbb{N}^2, \|\cdot\|_1)$ is not δ -hyperbolic for any finite δ .

890 Choose two geodesic rays $\gamma_i : \mathbb{N} \rightarrow T_i$ for $i = 1, 2$. The map $\Phi : \mathbb{N}^2 \rightarrow T_1 \times T_2$, $\Phi(m, n) =$
 891 $(\gamma_1(m), \gamma_2(n))$ is an isometric embedding from $(\mathbb{N}^2, \|\cdot\|_1)$ into $(T_1 \times T_2, d_{T_1} + d_{T_2})$. Given a
 892 $\tilde{\delta}$ -slim geodesic triangle Δ in \mathbb{N}^2 , its image $\Phi(\Delta)$ is also a $\tilde{\delta}$ -slim geodesic triangle in $T_1 \times T_2$. Since
 893 $(\mathbb{N}^2, \|\cdot\|_1)$ is not δ -hyperbolic, neither is $(T_1 \times T_2, d_{T_1} + d_{T_2})$.
 894

895 Assume by contradiction that $f : (T_1 \times T_2, d_{T_1} + d_{T_2}) \rightarrow \mathbb{H}^n$ is a (λ, c) -quasi-isometric embedding,
 896 where \mathbb{H}^n is δ -hyperbolic for a finite δ . By Lemma 1, every geodesic triangle in $T_1 \times T_2$ is $\tilde{\delta}$ -slim,
 897 where $\tilde{\delta} \leq \lambda(\delta + 2D + c)$ and $D = D(\lambda, c, \delta)$ are constants. However, $(T_1 \times T_2, d_{T_1} + d_{T_2})$ is not
 898 $\tilde{\delta}$ -hyperbolic for any finite $\tilde{\delta}$, which contradicts the assumption. Therefore, there is no (λ, c) -quasi-
 899 isometric embedding $f : (T_1 \times T_2, d_{T_1} + d_{T_2}) \rightarrow \mathbb{H}^n$.
 900

901 B.3 PROOF OF THEOREM 2

902 **Lemma 2** (Product of quasi-isometric embeddings). *If $f_i : (X_i, d_{X_i}) \rightarrow (Y_i, d_{Y_i})$ are (λ_i, c_i) -quasi-
 903 isometric embeddings, then*

$$904 f = \prod_{i=1}^k f_i : \left(\prod_{i=1}^k X_i, \sum_{i=1}^k d_{X_i} \right) \longrightarrow \left(\prod_{i=1}^k Y_i, \sum_{i=1}^k d_{Y_i} \right) \quad (8)$$

905 is (λ, c) -quasi-isometric with $\lambda = \max_i \lambda_i$ and $c = \sum_i c_i$.
 906

907 *Proof of Lemma 2.* Sum the index-wise inequalities and bound λ by $\max_i \lambda_i$. \square
 908

909 Theorem 2 follows immediately from Theorem 1 and Lemma 2.
 910

911 C IMPLEMENTATION DETAILS

912 C.1 LORENTZ MODEL OF HYPERBOLIC SPACE

913 Let $\mathbb{R}^{d,1}$ be the $(d+1)$ -dimensional Minkowski space, equipped with the Minkowski metric $g_{\mathbb{R}^{d,1}} =$
 914 $-dx_0^2 + dx_1^2 + \dots + dx_d^2$ in coordinates $\hat{x} = (x_0, x_1, \dots, x_d)$. Intuitively, x_0 denotes the time

coordinate, and the others $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$ denote the space coordinates. The inner product in $\mathbb{R}^{d,1}$ is given by

$$\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^{d,1}} = -x_0 y_0 + \langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{R}^d}. \quad (9)$$

For $\alpha > 0$, define the upper sheet of the two-sheeted hyperboloid as $\mathbb{L}_\alpha^d = \{\hat{\mathbf{x}} \in \mathbb{R}^{d,1} \mid \langle \hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle_{\mathbb{R}^{d,1}} = -\alpha^{-1}, x_0 > 0\}$. Equivalently, every point satisfies $x_0 = \sqrt{\alpha^{-1} + \|\mathbf{x}\|_{\mathbb{R}^d}^2}$. The Riemannian metric on \mathbb{L}_α^d is the restriction of the Minkowski metric $g_{\mathbb{R}^{d,1}}$ to $T\mathbb{L}_\alpha^d$; with this metric, the sectional curvature is the constant $-\alpha$ (Cannon et al., 1997; Lee, 2018). The geodesic distance is

$$d_{\mathbb{L}_\alpha^d}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \alpha^{-1/2} \operatorname{arccosh}(-\alpha \langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^{d,1}}) \quad \text{for } \hat{\mathbf{x}}, \hat{\mathbf{y}} \in \mathbb{L}_\alpha^d. \quad (10)$$

Then, a d -dimensional hyperbolic space \mathbb{H}_α^d with a curvature $-\alpha$ is isometrically embedded into \mathbb{L}_α^d by

$$\iota : \mathbb{H}_\alpha^d \rightarrow \mathbb{L}_\alpha^d, \mathbf{x} \mapsto \hat{\mathbf{x}} = (\sqrt{\alpha^{-1} + \|\mathbf{x}\|_{\mathbb{R}^d}^2}, \mathbf{x}), \quad (11)$$

and we denote $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{H}_\alpha^d} = \langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{L}_\alpha^d}$ and $d_{\mathbb{H}_\alpha^d}(\mathbf{x}, \mathbf{y}) = d_{\mathbb{L}_\alpha^d}(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ in the main body.

When feature extractors (such as encoders) operate in the Euclidean space \mathbb{R}^d , their output cannot be treated directly as an embedding \mathbf{x} in a hyperbolic space due to the mismatch in geometry. Instead, the output $\mathbf{v} = (v_1, \dots, v_d)$ is treated as a tangent vector in the tangent space $T_{\hat{\mathbf{o}}}\mathbb{L}_\alpha^d \simeq \mathbb{R}^d$ at the base point $\hat{\mathbf{o}} = (\alpha^{-1/2}, 0, \dots, 0)$ of \mathbb{L}_α^d and mapped to a point in \mathbb{L}_α^d via the exponential map

$$\exp_{\hat{\mathbf{o}}}^\alpha : T_{\hat{\mathbf{o}}}\mathbb{L}_\alpha^d \rightarrow \mathbb{L}_\alpha^d, \mathbf{v} \mapsto \hat{\mathbf{x}} = \exp_{\hat{\mathbf{o}}}^\alpha(\mathbf{v}) = \cosh(\sqrt{\alpha}\|\mathbf{v}\|_{\mathbb{R}^d})\hat{\mathbf{o}} + \frac{\sinh(\sqrt{\alpha}\|\mathbf{v}\|_{\mathbb{R}^d})}{\sqrt{\alpha}\|\mathbf{v}\|_{\mathbb{R}^d}}\mathbf{v}. \quad (12)$$

C.2 HYPERBOLIC ENTAILMENT CONES IN THE LORENTZ MODEL

Hyperbolic entailment cones capture the hierarchical relationships (Ganea et al., 2018a). For every point \mathbf{y} in each hyperbolic factor \mathbb{H}^d , we define a geodesic conical region $C(\mathbf{y})$, where all points $\mathbf{x} \in C(\mathbf{y})$ are considered more specific than \mathbf{y} (i.e., $\mathbf{x} \preceq \mathbf{y}$). The size of this conical region is determined by its half-aperture $\omega(\mathbf{y})$, which is inversely proportional to the norm:

$$\omega(\mathbf{y}) = \sin^{-1} \left(\min \left\{ 1, \frac{2K}{\sqrt{\alpha}\|\mathbf{y}\|_{\mathbb{R}^d}} \right\} \right), \quad (13)$$

where K is set to 0.1. Then, $\mathbf{x} \in C(\mathbf{y})$ iff $\phi(\mathbf{x}, \mathbf{y}) < \omega(\mathbf{y})$ for the exterior angle

$$\phi(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{x_0 + y_0 \alpha \langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{H}_\alpha^d}}{\|\mathbf{y}\|_{\mathbb{R}^d} \sqrt{(\alpha \langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{H}_\alpha^d})^2 - 1}} \right) \quad (14)$$

C.3 MODEL ARCHITECTURE AND HYPERPARAMETERS

We introduce the details of our implementation and hyperparameters, which follow Desai et al. (2023); Pal et al. (2025) unless specified otherwise.

As an image encoder, we employ the Vision Transformer (Dosovitskiy et al., 2021; Chen et al., 2021; Touvron et al., 2021) with a patch size of 16. Each image is randomly resized by a scale from 0.5 to 1.0 and randomly cropped to 224×224 pixels, resulting in 196 tokens, concatenated with 2-D sine-cosine position embeddings. We employ the text encoder used by the original CLIP (Radford et al., 2021), which consists of a 12-layer Transformer architecture (Vaswani et al., 2017) with embeddings of 512 dimensions.

The outputs of image and text encoders are scaled by learnable scalars c_{img} and c_{txt} , respectively, before being mapped by the exponential map. These scalars are initialized to $c_{\text{img}} = c_{\text{txt}} = 1/\sqrt{512}$. The negative curvature α_i for factor i is initialized at 1.0 and clamped in $[0.1, 10.0]$. For the contrastive loss $\mathcal{L}_{\text{cont}}$ in Eq. (3), the temperature τ is initialized to 0.07 and clipped at a minimum value of 0.01. For the entailment loss \mathcal{L}_{ent} in Eq. (5), the hyperparameter η is set to $\eta = 0.7$ for inter-modality entailments ($I \preceq T$ and $I^{\text{box}} \preceq T^{\text{box}}$) and $\eta = 1.2$ for intra-modality entailments ($T \preceq I^{\text{box}}$ and $T \preceq T^{\text{box}}$). These scalars are learned on a logarithmic scale.

972 The hyperparameter γ for the overall loss in Eq. (1) is set to $\gamma = 0.2$. We trained each model on 4
 973 A100 GPUs for 500,000 iterations with a batch size of 768. For the large Vision Transformer, we used
 974 8 A100 GPUs. We used the AdamW optimizer (Loshchilov & Hutter, 2019) with hyperparameters
 975 $\beta_1 = 0.9$, $\beta_2 = 0.98$. We applied weight decay of 0.2 to model parameters but not to scalar
 976 parameters. We used a cosine learning rate scheduler (Loshchilov & Hutter, 2017) with a maximum
 977 learning rate of 5×10^{-4} and a warm-up of 4,000 steps.
 978

979 C.4 BENCHMARKS

980 **Zero-shot Image Classification.** We follow the protocol in Desai et al. (2023). Each class is
 981 accompanied by a set of short text templates, such as “a photo of a {class name}”. The prediction is
 982 made by selecting the class whose text templates are closest on average to the image in the embedding
 983 space. We summarize the datasets below.
 984

- 985 • **ImageNet** (Russakovsky et al., 2015): A large-scale dataset of diverse, everyday object categories.
 986
- 987 • **Food-101** (Bossard et al., 2014): A fine-grained dataset of 101 different types of food dishes.
 988
- 989 • **CIFAR-10** (Krizhevsky & Hinton, 2009): A dataset of low-resolution natural images across 10
 general object classes.
 990
- 991 • **CIFAR-100** (Krizhevsky & Hinton, 2009): Similar to CIFAR-10, but with 100 fine-grained object
 classes.
 992
- 993 • **CUB-2011** (Wah et al., 2011): A fine-grained dataset for the identification of 200 bird species.
 994
- 995 • **SUN397** (Xiao et al., 2010): A large-scale scene recognition dataset with 397 scene categories.
 996
- 997 • **Stanford Cars** (Krause et al., 2013): A fine-grained dataset of cars, annotated with make, model,
 and year.
 998
- 999 • **FGVC-Aircraft** (Maji et al., 2013): A fine-grained dataset for aircraft model recognition.
 1000
- 1001 • **DTD** (Cimpoi et al., 2014): The Describable Textures Dataset for texture recognition.
 1002
- 1003 • **Oxford-IIIT Pets** (Parkhi et al., 2012): A fine-grained dataset of 37 different pet breeds.
 1004
- 1005 • **Caltech-101** (Fei-Fei et al., 2004): One of the classic object recognition datasets with 101
 categories.
 1006
- 1007 • **Flowers-102** (Nilsback & Zisserman, 2008): A fine-grained dataset for the classification of 102
 flower categories.
 1008
- 1009 • **STL-10** (Coates et al., 2011): An image recognition dataset inspired by CIFAR-10, but with higher
 resolution.
 1010
- 1011 • **EuroSAT** (Helber et al., 2019): A dataset of Sentinel-2 satellite images for land use and land
 cover classification.
 1012
- 1013 • **RESISC45** (Cheng et al., 2017): A benchmark for Remote Sensing Image Scene Classification
 (RESISC).
 1014
- 1015 • **Country211** (Radford et al., 2021): A dataset for predicting the country of origin from photo-
 graphs.
 1016

1017 **Zero-shot Image and Text Retrieval** In text-to-image retrieval, given a text query, the model
 1018 retrieves the nearest images in the embedding space, and vice versa in image-to-text retrieval. Please
 1019 refer to the detailed protocol in Desai et al. (2023). We summarize the datasets used as follows.
 1020

- 1021 • **COCO** (Lin et al., 2014): A large-scale dataset of complex everyday scenes with rich annotations.
 1022
- 1023 • **Flickr30K** (Young et al., 2014; Karpathy & Fei-Fei, 2015): A dataset of images from the Flickr
 1024 website, each paired with five descriptive captions.
 1025

1026 **Hierarchical Classification.** This task was introduced in Russakovsky et al. (2015), and we used
 1027 the implementation in Pal et al. (2025). The class labels are enriched by WordNet (Miller, 1995), and
 1028 the embeddings of class labels are obtained in the same way as the zero-shot image classification task.
 1029 Errors between predicted and true classes are measured using the WordNet graph with unit-length
 1030 edges. Tree Induced Error (TIE) is the distance between the nodes corresponding to predicted and true
 1031

Table 6: Results with different model sizes.

w/ boxes		Hierarchical Classification					VL-CheckList-Object					
		WordNet					Location			Size		
		TIE(\downarrow)	LCA(\downarrow)	$J(\uparrow)$	$P_H(\uparrow)$	$R_H(\uparrow)$	Center	Mid	Margin	Large	Medium	Small
ViT	CLIP	4.127	2.434	0.7526	0.8295	0.8304	64.6	65.7	61.2	66.3	63.2	62.5
	MERU	4.201	2.435	0.7479	0.8273	0.8256	63.5	60.5	59.6	63.2	61.9	61.2
	HyCoCLIP ✓	3.637	2.209	0.7831	0.8528	0.8507	67.2	66.1	65.3	69.1	65.0	65.8
	PHyCLIP ✓	3.715	2.241	0.7778	0.8492	0.8476	70.4	69.5	70.8	72.8	67.0	69.7
ViT	CLIP	3.705	2.254	0.7805	0.8498	0.8503	67.1	65.5	64.3	69.9	63.8	64.2
	CLIP ✓	3.720	2.265	0.7797	0.8487	0.8509	66.1	61.6	64.7	67.0	64.6	63.3
	MERU	3.832	2.292	0.7720	0.8451	0.8439	63.3	60.0	60.5	66.6	57.3	58.6
	B/16	MERU ✓	3.793	2.277	0.7740	0.8462	0.8454	62.6	58.3	59.8	62.6	60.3
L/16	HyCoCLIP ✓	3.378	<u>2.113</u>	<u>0.8008</u>	<u>0.8653</u>	<u>0.8636</u>	65.9	<u>65.6</u>	63.1	67.6	63.1	63.9
	PHyCLIP ✓	3.285	2.088	0.8065	0.8684	0.8682	73.0	72.0	71.4	76.4	69.2	69.0
	CLIP	3.475	2.158	0.7957	0.8605	0.8607	64.2	60.7	60.2	64.6	61.2	58.0
	MERU	3.558	2.178	0.7891	0.8574	0.8553	58.9	56.3	55.3	61.0	56.4	54.0
L/16	HyCoCLIP ✓	<u>3.100</u>	<u>2.007</u>	<u>0.8179</u>	<u>0.8770</u>	<u>0.8751</u>	73.9	<u>71.2</u>	70.9	75.3	<u>69.3</u>	<u>70.1</u>
	PHyCLIP ✓	3.044	1.993	0.8223	0.8795	0.8790	74.3	72.7	70.5	75.1	70.5	70.8

Among methods with the same backbone, the best and second performances are emphasized by bold fonts and underlines, respectively.

classes. Lowest Common Ancestor (LCA) error is the maximum of the distances from predicted and true classes to their LCA. Jaccard similarity J , hierarchical precision P_H , and hierarchical recall R_H are similarities between the sets of ancestors of predicted and true classes. Intuitively, hierarchical precision P_H quantifies correctness under over-generalization: it takes value 1 if the predicted label is the ground truth or one of its ancestors in the taxonomy. Conversely, hierarchical recall R_H quantifies correctness under over-specialization: it takes value 1 if the predicted label is the ground truth or one of its descendants.

Compositional Understanding. Samples in typical multi-modal datasets are diverse enough that there are few near-duplicate image–text pairs; consequently, models insensitive to detailed semantics can still perform well on retrieval tasks. To assess whether a model truly understands the compositionality of words in a caption, hard negative captions are generated, which are almost correct but differ in a small, targeted way and evaluate whether models can select the true caption.

In VL-CheckList–Object, nouns in the caption are replaced. Because the difficulty varies with the replaced object’s location (center/mid/margin) and size (small/medium/large) in image, results are reported separately for each subset.

In SugarCrepe, three operations (replace, swap, and add) are applied to objects, attributes, and relations. *Replace-Obj* is similar to VL-CheckList–Object. *Swap* exchanges roles or pairings. In *Swap-Obj*, the model must correctly resolve agent–action combinations. *Add* introduces nouns or adjectives that were absent from the original caption.

D ADDITIONAL RESULTS AND VISUALIZATIONS

D.1 ADDITIONAL EXPERIMENTAL RESULTS

We obtained results with the small and large Vision Transformers as the image encoder (Dosovitskiy et al., 2021; Chen et al., 2021; Touvron et al., 2021) in Table 6. As the model size increases, the overall performance improves in most cases. Nevertheless, PHyCLIP remains the best or at least competitive across all evaluation metrics for hierarchy and compositionality.

D.2 ADDITIONAL VISUALIZATIONS

In this section, we provide additional visualizations that complement Fig. 4 in Section 4.3. We embed each word using the single-concept prompt “a photo of a {word}” and the composition of two words using the conjunctive prompt “a photo of a {word 1} and a {word 2}.”

Figure 5 is a larger version of Fig. 4 (b) with labels, where HoroPCA (Chami et al., 2021) projects embeddings in $d = 8$ -dimensional hyperbolic factors onto 2D disks. Embeddings of mammal-related terms are spread over a wide area in factor $i = 39$. Dog-related terms cluster in the left half, cat-related terms in the right, and “chihuahua,” “corgi,” and “puppy” are positioned farther from the

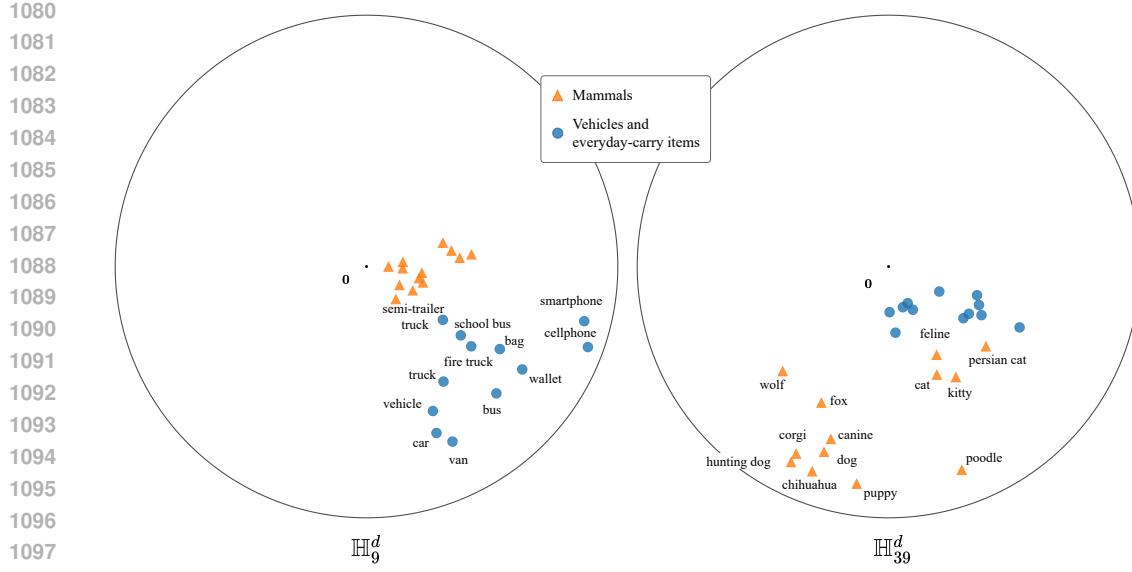


Figure 5: **Embeddings projected onto 2D disks by HoroPCA.** A set of relevant concepts (hyponyms of mammals or words related to vehicles and everyday-carry items) forms a hierarchical structure in the corresponding factor ($i = 39$ or $i = 9$), while the same concepts cluster near the origin in another factor ($i = 9$ or $i = 39$).

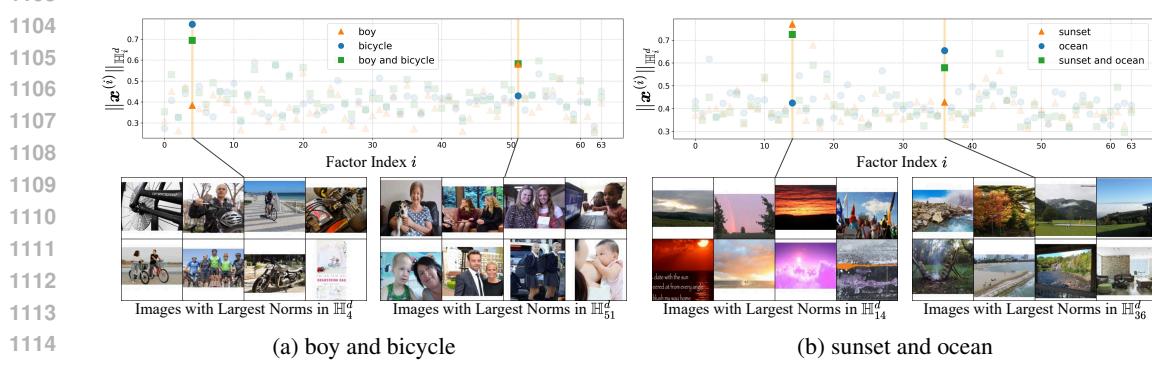


Figure 6: **Visualization of embedding norms in hyperbolic factors.** See also Fig. 4

origin than “dog.” These patterns indicate that factor $i = 39$ encodes a hierarchy of a concept family of mammals (or more specifically, Carnivora). In contrast, in factor $i = 9$, the same embeddings concentrate near the origin, suggesting that this factor does not capture mammals. Conversely, terms related to vehicles and everyday-carry items form a hierarchical arrangement in factor $i = 9$ but cluster near the origin in factor $i = 39$. Together, these observations indicate that distinct hyperbolic factors capture taxonomies of different concept families.

Figure 6 visualizes factor-wise embedding norms of single concepts and conjunctive prompts, complementing Fig. 4 (a). In Fig. 6 (a), the “boy” embedding activates factor $i = 51$, which is also activated by various human images, indicating that this factor captures humans; the “bicycle” embedding activates factor $i = 4$, associated with bicycles and wheels. The conjunctive prompt “boy and bicycle” activates both factors $i = 4$ and $i = 51$. In Fig. 6 (b), the “sunset” embedding activates factor $i = 14$, which captures a family of skies, whereas the “ocean” embedding activates factor $i = 36$, which captures a family of natural landscapes. The conjunctive prompt “sunset and ocean” activates both factors $i = 14$ and $i = 36$.

Figure 7 shows top-10 GRIT images retrieved using conjunctive prompts and the factor-wise “max” of single-concept prompts. Specifically, we embed two single-concept prompts (e.g., “a photo of

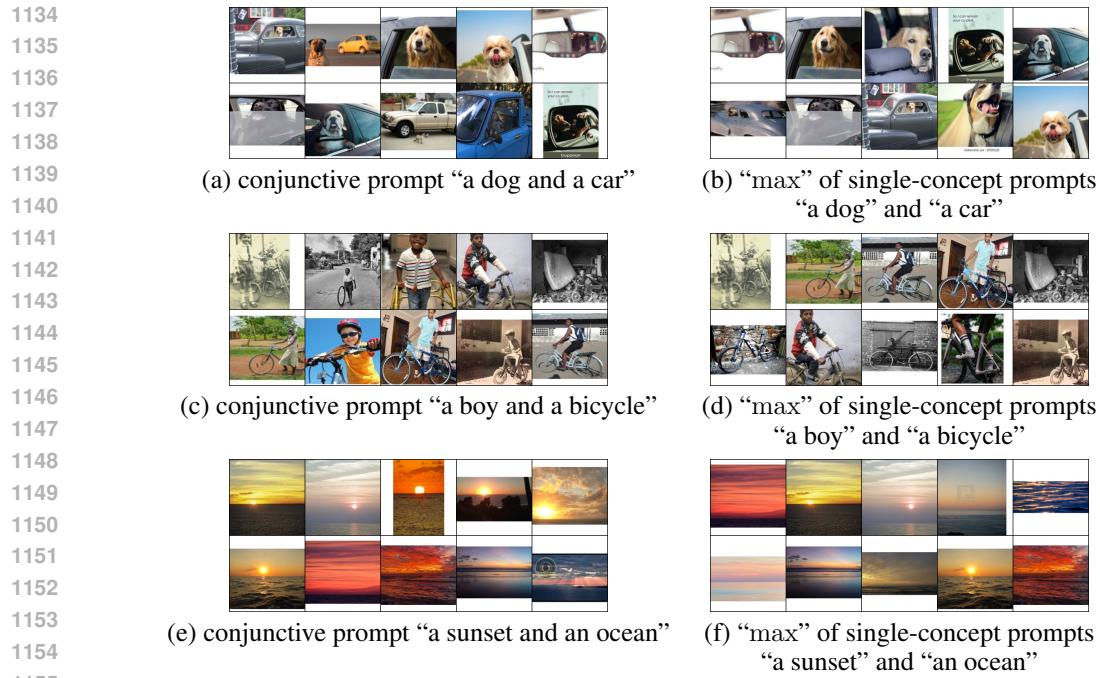


Figure 7: **Retrieval results by conjunctive prompts and factor-wise “max” of single-concept prompts.** A new embedding is constructed by taking, for each factor, the factor-wise embedding with the larger norm between two single-concept prompts. The retrieval results are appropriate in both cases.

a dog” and “a photo of a car”) as $\mathbf{X}_a = (\mathbf{x}_a^{(1)}, \dots, \mathbf{x}_a^{(k)})$ and $\mathbf{X}_b = (\mathbf{x}_b^{(1)}, \dots, \mathbf{x}_b^{(k)})$, and then we construct a new embedding $\mathbf{X}_{\max\{a,b\}}$ by selecting, for each factor, the factor-wise embedding with the larger norm between two single-concept prompts, i.e., we take

$$\mathbf{X}_{\max\{a,b\}} = (\mathbf{x}_{\max\{a,b\}}^{(1)}, \dots, \mathbf{x}_{\max\{a,b\}}^{(k)}) \text{ with } \mathbf{x}_{\max\{a,b\}}^{(i)} = \arg \max_{\mathbf{x} \in \{\mathbf{x}_a^{(i)}, \mathbf{x}_b^{(i)}\}} \|\mathbf{x}\|_{\mathbb{H}_i^d} \text{ for } i = 1, \dots, k.$$

Then, the factor-wise norms satisfy $\|\mathbf{x}_{\max\{a,b\}}^{(i)}\|_{\mathbb{H}_i^d} = \max\{\|\mathbf{x}_a^{(i)}\|_{\mathbb{H}_i^d}, \|\mathbf{x}_b^{(i)}\|_{\mathbb{H}_i^d}\}$. If each factor were a bit $\{0, 1\}$, this operation would reduce to the union operation or the logical OR for a Boolean algebra. If each factor were a real number \mathbb{R} , it coincides with an element-wise max, examined in order embeddings (Vendrov et al., 2016). The retrieval results by both methods are appropriate in most cases and often overlap. Concepts specified in the prompt are embedded with large norms in factors that capture their corresponding concept families, whereas unspecified concepts are represented with small norms. Consequently, by retaining only the high-norm factors, we can compose concepts without corrupting the semantics of the original prompts. These results suggest that PHyCLIP expresses cross-family composition in a manner analogous to Boolean algebra and order embeddings.

In conclusion, in PHyCLIP, different hyperbolic factors capture distinct concept families, and the ℓ_1 -product metric represents cross-family composition through the simultaneous activation of multiple factors.

THE USE OF LARGE LANGUAGE MODELS.

We used ChatGPT and GitHub Copilot as assistance tools for polishing the manuscript and implementing the experimental code. We did not use large language models for research ideation or for proofs.