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ABSTRACT

Vision–language models have achieved remarkable success in multi-modal repre-
sentation learning from large-scale pairs of visual scenes and linguistic descriptions.
However, they still struggle to simultaneously express two distinct types of se-
mantic structures: the hierarchy within a concept family (e.g., dog ⪯ mammal ⪯
animal) and the compositionality across different concept families (e.g., “a dog
in a car” ⪯ dog, car). Recent works have addressed this challenge by employing
hyperbolic space, which efficiently captures tree-like hierarchy, yet its suitability
for representing compositionality remains unclear. To resolve this dilemma, we
propose PHyCLIP, which employs an ℓ1-Product metric on a Cartesian product
of Hyperbolic factors. With our design, intra-family hierarchies emerge within
individual hyperbolic factors, and cross-family composition is captured by the
ℓ1-product metric, analogous to a Boolean algebra. Experiments on zero-shot clas-
sification, retrieval, hierarchical classification, and compositional understanding
tasks demonstrate that PHyCLIP outperforms existing single-space approaches and
offers more interpretable structures in the embedding space.

1 INTRODUCTION

Vision–language models have become a central paradigm for learning transferable representations
across visual and textual modalities. As exemplified by CLIP (Radford et al., 2021), contrastive pre-
training maps images and texts to embeddings and enables strong zero-shot transfer on classification,
retrieval, and related tasks. However, compressing the semantics of an instance into a single point
makes it challenging to faithfully encode two semantic structures at once: hierarchy (is-a relations in
a concept family) and compositionality (conjunction across distinct concept families).

Visual and linguistic concepts linked by is-a relations form tree-like taxonomic hierarchies. For
example, a dog is a mammal, which in turn is an animal, as shown in the upper part of Fig. 1.
Because the number of nodes grows exponentially with depth, Euclidean geometry struggles to
faithfully represent such trees, whereas hyperbolic geometry aligns well with this growth (Bridson &
Haefliger, 1999; Sarkar, 2011). These observations have motivated the development of hyperbolic
embeddings (Nickel & Kiela, 2017) and hyperbolic entailment cones, which encode partial orders via
inclusion (Ganea et al., 2018a). Within vision–language representation learning, MERU (Desai et al.,
2023) and HyCoCLIP (Pal et al., 2025) leverage these approaches to capture image–text relations; for
instance, an image of a dog is an instance of the linguistic concept dog (see the lower part of Fig. 1).

Beyond taxonomic structure, images and texts exhibit compositionality. For example, the description
“a dog in a car” binds concepts dog and car from distinct concept families (animals and transporta-
tion), as shown in the middle part of Fig. 1. Classical approaches express composition via logical
conjunction or additive operations (e.g., Boolean algebra, bag-of-words, and vector addition in
word2vec) (Hinton et al., 1986; Mikolov et al., 2013; Vendrov et al., 2016), but these struggle to
encode semantic hierarchy efficiently. Conversely, while hyperbolic geometry captures hierarchy, it
lacks a canonical operation for composition. Möbius addition in hyperbolic spaces (Ungar, 2008) is
not aligned with standard vector addition or Boolean structures (Higgins et al., 2018). Intersections
of regions (such as hyperbolic entailment cones) can approximate conjunction but offer no general
guarantees of representational efficiency for arbitrary co-occurrences.
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hierarchy in a concept family
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compositionality across concept families
      Boolean algebra
      -product metric

images as instances of captions

animal

fish mammal

cat dog

transport

vehicle aircraft

car bike

food

"a dog in a car" "a dog riding a bike""a cat near a car" "a cat and a bike"

Figure 1: Conceptual diagram of hierarchical and compositional structures. While all arrows
represent entailments (⪯), they differ in nature. (upper) Linguistic concepts organize tree-like
taxonomic hierarchies of concept families, each of which can be embedded into a hyperbolic
space (Nickel & Kiela, 2017). (middle) Images and texts exhibit compositionality across distinct
concept families, which can be captured by a Boolean algebra or an ℓ1-product metric. (lower)
Images are instances of their corresponding captions.

Product Space
 Mapper

Image 
Encoder

Product Space
 Mapper

Product Space
 Mapper

Product Space
 Mapper

Image 
Encoder

Text 
Encoder

Text 
Encoder

Image

Image box

Text

A dog sitting in the
driver’s seat of a car in
the middle of a
spacious green park.

a dog 

Text box

: 
: -product metric: entailment cone

: text embedding
: image embedding

Figure 2: Overview of PHyCLIP. Images and texts are encoded as points X in an ℓ1-product metric
space of hyperbolic factors, (Hd)k, that is, as tuples of points x(i) in hyperbolic spaces Hd

i , where
their distance is defined by the sum of hyperbolic distances. The entailment relations X ⪯ Y are
encoded using entailment cones as x(i) ∈ C(y(i)) within hyperbolic factors Hd

i .

To resolve this dilemma, we propose PHyCLIP, which leverages an ℓ1-Product metric on a Cartesian
product of Hyperbolic factors, as depicted in Fig. 2. Our design follows two classical correspondences:
(i) metric trees admit low-distortion embeddings into hyperbolic spaces, so hyperbolic factors embed
intra-family taxonomies (Sarkar, 2011; Nickel & Kiela, 2017; Ganea et al., 2018a); and (ii) finite
Boolean algebras with the Hamming distance embed isometrically into an ℓ1 space, so an ℓ1-product
metric naturally supports cross-family Boolean-like composition (Deza & Laurent, 1997). Intuitively,
each bit for an atomic concept (e.g., dog, cat, horse) in the Boolean algebra is replaced with a
hyperbolic factor for a concept family (e.g., animals), and the activation of multiple factors expresses
composition (e.g., “dog and car”). Unlike previous mixed-curvature models (Gu et al., 2019; Wang
et al., 2024; Gao et al., 2025), our space uses an ℓ1-product metric rather than a Riemannian
(ℓ2) product metric and constrains each factor to have negative curvature. Our contributions are
summarized as follows.

Balancing Hierarchy and Compositionality. We introduce PHyCLIP, a vision–language model
that leverages an ℓ1-product metric space of hyperbolic factors to jointly capture hierarchy (within
factors) and compositionality (across factors).

Theoretical Support. We formally link Boolean lattices to ℓ1-product metrics and metric trees to
hyperbolic factors, explaining that an ℓ1-product metric space of hyperbolic factors aligns better with
the dual semantic structures than standard metric spaces (e.g., Euclidean or hyperbolic).

Superior Performance and Interpretability. Experiments on zero-shot classification, image–text
retrieval, hierarchical classification, and compositional understanding demonstrate that PHyCLIP
achieves consistent improvements over baselines that use standard metric spaces. Visualizations find
that intra-family taxonomies emerge within individual factors, and composing concepts leads to the
simultaneous activation of the corresponding factors, analogous to a Boolean algebra.
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2 THEORETICAL BACKGROUND AND MOTIVATION

Geometry and Embedding of Hierarchies. Concepts in natural language linked by is-a (hy-
pernymy/hyponymy, generalization/specialization, entailment) relations form a partially ordered
set (poset) and typically exhibit deep hierarchical structure. A poset (P,⪯) is a set equipped
with an order relation ⪯ (which is reflexive, antisymmetric, and transitive). A typical example
is dog ⪯ mammal ⪯ animal, where a dog is a type of mammal; equivalently, if an entity
is a dog, then this entails that the entity is a mammal. Large lexical resources such as Word-
Net provide such relations in the form of a directed acyclic graph with multiple inheritance (e.g.,
dog ⪯ domestic animal) (Miller, 1995). For modeling or computational convenience, many studies
approximate this hierarchy with a taxonomic tree (Morin & Bengio, 2005; Mnih & Hinton, 2008).
The distance between two nodes (i.e., words) in a tree is often defined as the length of their shortest
path, inducing a type of metric tree. See technical details in Appendix A.
Theorem 1 (Hyperbolic embedding of trees (Sarkar, 2011)). Let Hd be a d-dimensional hyperbolic
space with the hyperbolic distance dHd . For every finite metric tree T (and every infinite metric tree
T with known bounds for maximum degree and minimum edge length), and for every ε > 0, there
exist a scale τ > 0 and an embedding f : τT → H2 such that the distortion is at most 1 + ε; that is,
there exists a (1 + ε, 0)-quasi-isometric embedding f up to scaling.

See Theorem 5 in Sarkar (2011) for the proof. This explains the empirical success of hyperbolic
embeddings for hierarchical data (Nickel & Kiela, 2017; 2018; Ganea et al., 2018a; Sala et al., 2018;
Tifrea et al., 2019). In practice, Hd with d > 2 is common for achieving better performance.

Geometry and Embedding of Compositionality. Beyond taxonomic structure, images and texts
often exhibit compositionality: they mention multiple concepts to indicate the co-occurrence or
conjunction of those concepts. For example, the description “a dog in a car” mentions concepts dog
and car. Such data suggest another type of entailment relation, as an image of “a dog in a car” can
be regarded as an image of dog as well as an image of car. The resulting structure is no longer a
tree but rather a more general poset. While hyperbolic embeddings remain an option, it is natural to
explore alternatives that more directly capture compositionality.

Order embeddings (Rn,⪯) (Vendrov et al., 2016) assign each concept a point x ∈ Rn and
declare x ⪯ y iff xi ≥ yi for all coordinates i. This is equivalent to the inclusion rela-
tion between associated upper orthants U(x) := {z ∈ Rn : zi ≥ xi ∀i}, i.e., x ⪯ y iff
U(x) ⊆ U(y). Then, the coordinate-wise max (i.e., the union of orthants) expresses conjunction
(e.g., max(dog, car) includes “a dog in a car”), and the coordinate-wise min yields shared concepts
(e.g., min(“a dog in a car”, “a dog on a sofa”) ≈ dog). Similarly, box embeddings use axis-aligned
hyperrectangles in Rn (Vilnis et al., 2018; Li et al., 2019; Dasgupta et al., 2020). In hyperbolic space,
hyperbolic entailment cones use geodesic conical regions (Ganea et al., 2018a), and disk embeddings
use hyperballs (Suzuki et al., 2019). Compared with hyperbolic embeddings for pure hierarchies,
there has been less theoretical analysis of these region-based embeddings for compositionality. Our
work extends this line to capture hierarchy and compositionality simultaneously.

Boolean Lattice and Its Relation to Order Embedding. In an is-a taxonomy, any two nodes have
at least one common generalization, whereas they need not share a common specialization. A lattice is
a poset in which any two nodes have both a common generalization (join) and a common specialization
(meet). Consider n atomic concepts C = {c1, . . . , cn} (e.g., {dog, car, tomato, . . . }). A subset
S ⊆ C denotes the conjunction of the concepts specified in S, and the inclusion relation S ⊇ T (e.g.,
{dog, car} ⊇ {dog}, {car}) induces the order relation S ⪯ T (e.g., {dog, car} ⪯ {dog}, {car}).
In this way, the Boolean lattice (2C ,⊆) over all such subsets naturally represents the compositionality
of atomic concepts as a non-taxonomic poset. When focusing on operations rather than order, it is
also referred to as a Boolean algebra. At the same time, using an indicator χ : 2C → {0, 1}n, the
Boolean lattice can be regarded as a metric space ({0, 1}n, dHam) with the Hamming distance. See
Appendix A and Ganter & Wille (1999); Davey & Priestley (2002) for more details.
Definition 1 (ℓ1-product metric space). Let {(Xi, di)}ki=1 be non-trivial metric spaces. An ℓ1-product
metric space of {(Xi, di)}ki=1 is a Cartesian product space

∏k
i=1 Xi equipped with the ℓ1-product

metric (
∑k

i=1 di)((x
(1), . . . ,x(k)), (y(1), . . . ,y(k))) =

∑k
i=1 di(x

(i),y(i)). If not ambiguous even
without subscripts, this space is denoted by (Xk, dXk) for brevity.
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Proposition 1 (Embedding of Boolean Lattice). A Boolean lattice (2C ,⪯) for n atomic concepts can
be embedded into the poset (Rn,⪯) used by order embeddings while preserving the order relations.
As a metric space ({0, 1}n, dHam), it is isometrically embedded into an ℓ1-product metric space
(
∏k

i=1 Xi,
∑k

i=1 di) for any k ≥ n after appropriate per-factor scaling. However, it admits no
isometric embedding into a hyperbolic space Hd for any d ≥ 2 and n ≥ 2.

See Appendix B for the proof. A Boolean lattice has remarkable expressivity for compositionality,
but it is often too coarse as it considers combinations of all atomic concepts. Order embeddings
enrich it by replacing each bit {0, 1} with R, whereas a single hyperbolic space does not.

3 PHYCLIP AND ITS LOSS FUNCTIONS

Embedding into an ℓ1-Product Metric Space of Hyperbolic Factors. We extend the Boolean
lattice by replacing each bit {0, 1} with a metric tree Ti and leverage the expressive power of
both the hyperbolic embeddings for hierarchy and the Boolean lattice for compositionality. In this
setting, the description “a dog in a car” is represented by a pair of nodes in metric trees T1 and
T2 that encode is-a taxonomies of animals (e.g., dog ⪯ mammal ⪯ animal) and transportation
(e.g., car ⪯ vehicle ⪯ transport), respectively. Notably, a single hyperbolic space cannot capture
this product geometry (see Proposition 2 in Appendix B), whereas an ℓ1-product metric space of
hyperbolic factors can.
Theorem 2 (Embedding into an ℓ1-product metric space of hyperbolic factors). Let T1, . . . , Tk be
finite metric trees (or infinite metric trees with known bounds for maximum degree and minimum
edge length) with metrics dT1

, . . . , dTk
. For every ε > 0, there exists a (1 + ε, 0)-quasi-isometric

embedding from the ℓ1-product metric space of these metric trees, (
∏k

i=1 Ti,
∑k

i=1 dTi), into an
ℓ1-product metric space of k two-dimensional hyperbolic factors, ((H2)k, d(H2)k), after appropriate
per-factor scaling.

Given the above, we propose embeddings into an ℓ1-product metric space of k copies of d-dimensional
hyperbolic factors Hd, ((Hd)k, d(Hd)k). The total dimension of (Hd)k is kd. Each hyperbolic factor
Hd

i is intended to represent the taxonomy of a concept family as well as aspects of inter-object
relations (e.g., “a dog riding on something”, “a car loading something”). An instance is embedded
as a tuple X = (x(1), . . . ,x(k)) for x(i) ∈ Hd

i . Within each factor Hd
i , we use standard hyperbolic

embeddings (Nickel & Kiela, 2017) together with hyperbolic entailment cones (Ganea et al., 2018a)
to encode intra-family hierarchy and image–text entailment, while cross-family compositionality is
captured by the additive geometry of the ℓ1-product metric space.

PHyCLIP for Vision–Language Representation Learning. Here, we propose PHyCLIP for
vision–language representation learning, depicted in Fig. 2. Let I and T denote instances of images
and texts, respectively. From an instance, a kd-dimensional feature vector is produced, which is
then sliced into k segments v(i) of dimension d for i = 1, . . . , k, and each segment v(i) is lifted
via the exponential map to its corresponding hyperbolic factor Hd

i as x(i), yielding the embedding
X = (x(1), . . . ,x(k)) ∈ (Hd)k. We denote the embeddings of the image I and text T by I and T ,
respectively. Let B denote the index set of instances in a mini-batch; we write the mini-batch of
images as {Ib} = {Ib}b∈B for brevity.

An image I is typically more specific than its corresponding text T (I ⪯ T ) as the text T may
ignore some details of the image I . Following HyCoCLIP (Pal et al., 2025), we suppose that the
training data are enriched with box information: the image boxes Ibox are object-level crops of the
original images I , and the text boxes T box are the corresponding nouns/phrases within the text T
(Ibox ⪯ T box). An image box Ibox and a text box T box are more general than the full image I and the
full text T (I ⪯ Ibox, T ⪯ T box), respectively, since they omit objects and words outside the boxes.

We will introduce the contrastive loss Lcont and entailment loss Lent, and the final objective is their
sum weighted by a hyperparameter γ:

Loverall = Lcont + γLent. (1)

Contrastive Loss. To represent each hyperbolic factor Hd
i , we adopt the Lorentz model with a

learnable curvature −αi (Cannon et al., 1997; Nickel & Kiela, 2018; Lee, 2018). See Appendix C
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for implementation details. Following Definition 1, we define the distance on the ℓ1-product metric
space (Hd)k and its averaged version as

d(Hd)k(X,Y ) =
∑k

i=1 dHd
i
(x(i),y(i)), davg(X,Y ) = 1

kd(Hd)k(X,Y ). (2)

To pull an embedding Xb close to its positive pair Yb while pushing it away from negatives Ya for
a ̸= b, we use the standard InfoNCE loss (Radford et al., 2021; Desai et al., 2023; Pal et al., 2025):

Lcont({Xb}, {Yb}) = −∑
b∈B log

exp(−davg(Xb,Yb)/τ)∑
a∈B exp(−davg(Xb,Ya)/τ)

(3)

where τ is a learnable temperature parameter. We average this loss over known pairs:

Lcont =
1
4 (Lcont({Ib}, {Tb})+Lcont({Tb}, {Ib})+Lcont({Ibox

b }, {T box
b })+Lcont({T box

b }, {Ibox
b })).(4)

Entailment Loss. We also employ hyperbolic entailment cones to capture the entailment rela-
tions (Ganea et al., 2018a). See Appendix C for implementation details. For every point y(i) in each
hyperbolic factor Hd

i , we define a geodesic conical region C(y(i)) with apex at y(i) and half-aperture
ω(y(i)), where all points x(i) ∈ C(y(i)) are considered more specific than y(i) (i.e., x(i) ⪯ y(i)).
Then, x(i) ∈ C(y(i)) iff ϕ(x(i),y(i)) < ω(y(i)) for the exterior angle ϕ(x(i),y(i)). To penalize the
violation of the inclusion relation x(i) ∈ C(y(i)) for a pair (x(i),y(i)) such that x(i) ⪯ y(i), the
entailment loss Lent is calculated as

Lent,i(X,Y ) = max(0, ϕ(x(i),y(i))− ηω(y(i))), Lent(X,Y ) = 1
k

∑k
i=1 Lent,i(X,Y ), (5)

where hyperparameter η controls the margin (Pal et al., 2025). We sum this loss over known pairs:

Lent =
∑

b∈B

(
Lent(Ib,Tb) + Lent(I

box
b ,T box

b ) + Lent(Ib, I
box
b ) + Lent(Tb,T

box
b )

)
. (6)

4 EXPERIMENTS

4.1 TRAINING DETAILS

Datasets. We trained all models on the Grounded Image–Text Pairs (GRIT) dataset (Peng et al.,
2023), which consists of automatically annotated image–text pairs with bounding boxes and corre-
sponding nouns/phrases. Although the dataset is documented to contain 20.5 million pairs with 35.9
million box annotations, we were able to obtain 14.0 million pairs with 26.6 million box annota-
tions due to outdated public links. This scale remains considerably larger than manually annotated
resources such as Flickr30K Entities (Plummer et al., 2015).

Baselines. We compare PHyCLIP with CLIP (Radford et al., 2021), MERU (Desai et al., 2023),
and HyCoCLIP (Pal et al., 2025). CLIP is a seminal vision–language model trained with contrastive
learning in a Euclidean space. MERU extends CLIP by lifting embeddings to hyperbolic space
and using hyperbolic entailment cones to represent hierarchy. HyCoCLIP further leverages box
annotations to better capture intra-modal hierarchy. All models were trained from scratch on GRIT
for fair comparison. For PHyCLIP, we set the number of factors to k = 64 and the dimension of
each factor to d = 8, resulting in a total dimension of 512. We followed the training protocols
and hyperparameters used in the official implementations of HyCoCLIP (Pal et al., 2025); see
Appendix C for details. We report results obtained with the base Vision Transformer as an image
encoder (Dosovitskiy et al., 2021). Supplementary results are provided in Appendix D.1.

4.2 EXPERIMENTAL RESULTS

Zero-shot Image Classification. We evaluated the geometry of embedding space via zero-shot
image classification, following the protocol standardized by CLIP (Radford et al., 2021). Images
are classified using the similarity to the averaged embedding of template text queries for classes
across 16 datasets, grouped into General, Fine-grained, and Specialized. General datasets cover
broad, heterogeneous concept families (e.g., animals, transportation, household objects). Fine-grained
datasets focus on visually similar subclasses within a single concept family (e.g., specific food, dog
breeds). Specialized datasets are domain-specific (e.g., texture images, satellite imagery).
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Table 1: Zero-shot image classification.

General datasets Fine-grained datasets Specialized datasets
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C
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21
1

CLIP 39.36 75.09 48.57 51.48 73.63 92.54 50.59 13.40 7.66 2.42 46.44 19.00 23.19 35.26 42.60 5.20
CLIP ✓ 38.64 76.88 47.88 50.62 74.48 93.34 50.77 13.45 8.99 3.17 46.95 20.67 21.49 36.51 41.46 4.90
MERU 37.49 75.61 46.80 49.54 71.19 93.38 52.88 10.52 7.49 3.05 44.11 22.94 21.70 39.52 41.09 4.74
MERU ✓ 37.86 77.14 48.09 50.15 72.96 93.80 53.61 9.34 7.42 3.06 43.69 17.92 21.38 35.02 40.98 5.20
HyCoCLIP ✓ 42.93 88.51 57.68 54.23 75.55 94.55 51.72 12.86 9.98 4.41 50.66 19.93 26.33 38.02 46.15 5.65
PHyCLIP ✓ 44.43 89.30 59.83 56.18 75.76 95.06 56.81 16.00 10.47 3.05 54.64 20.41 26.44 33.43 50.13 5.42

The best and second performances are emphasized by bold fonts and underlines, respectively.

Table 2: Zero-shot retrieval and hierarchical classification.

w
/b

ox
es Text → Image Image → Text Hierarchical Classification

COCO Flickr COCO Flickr WordNet
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 TIE(↓) LCA(↓) J(↑) PH (↑) RH (↑)

CLIP 56.39 67.59 83.30 89.70 70.44 80.42 93.10 95.70 3.705 2.254 0.7805 0.8498 0.8503
CLIP ✓ 56.12 67.58 82.54 89.32 70.72 80.32 91.90 96.10 3.720 2.265 0.7797 0.8487 0.8509
MERU 55.50 66.71 82.26 88.84 69.32 78.96 89.70 95.70 3.832 2.292 0.7720 0.8451 0.8439
MERU ✓ 55.93 67.29 81.68 88.36 69.72 80.02 91.00 95.70 3.793 2.277 0.7740 0.8462 0.8454
HyCoCLIP ✓ 56.24 67.69 82.90 88.94 69.00 79.16 91.90 95.30 3.378 2.113 0.8008 0.8653 0.8636
PHyCLIP ✓ 58.00 68.74 83.40 89.92 70.20 80.44 91.10 95.60 3.285 2.088 0.8065 0.8684 0.8682

Table 1 summarizes top-1 accuracies. PHyCLIP obtained consistent performance gains, particularly
on General datasets, which we attribute to assigning concept families to hyperbolic factors that
naturally support coarse-grained classifications. Within Fine-grained datasets, PHyCLIP achieved re-
markable improvements on Food-101 (Bossard et al., 2014) and Oxford-IIIT Pets (Parkhi et al., 2012),
implying that it also learned intra-family taxonomies without confusion with other families. Although
not best on every dataset, the performance gap on Flowers-102 (Nilsback & Zisserman, 2008) is
small, FGVC-Aircraft (Maji et al., 2013) and Country211 (Radford et al., 2021) remain challenging
for all models due to extreme intra-class similarity, and EuroSAT (Helber et al., 2019) (comprising
satellite imagery) is out-of-distribution relative to GRIT. Consistent with prior findings (Pal et al.,
2025), CLIP and MERU do not yield clear improvements with box annotations. Overall, PHyCLIP is
the strongest zero-shot classifier among the comparison models.

Zero-shot Image and Text Retrieval. We evaluate cross-modal alignment via zero-shot retrieval
in the shared embedding space: given a text query, retrieve the nearest images, and vice versa. This is
also a standard benchmark for vision–language models (Radford et al., 2021). We used the COCO
validation set (Lin et al., 2014) and the Flickr30K test set (Young et al., 2014; Karpathy & Fei-Fei,
2015). We report Recall at k (R@k), the fraction of queries for which the paired instance appears in
the top-k retrieved results.

Results are summarized in the left half of Table 2. PHyCLIP achieves the best performance across all
metrics and datasets on image retrieval, which supports our choice of the ℓ1-product metric in Eq. (2).
This metric sums distances over hyperbolic factors; when an object specified in the text is absent
from a candidate image, or an unspecified object is present, the corresponding factor incurs a large
penalty. By contrast, a single hyperbolic space implicitly encodes the presence or absence of objects
as hierarchical relations, which may weaken penalties for such mismatches and hinder separability of
hard negatives. The vanilla CLIP works well for text retrieval, and PHyCLIP attains a competitive
performance. Texts are more diverse and ambiguous than images, and some texts may accidentally
match with non-paired images, which may limit the benefits of our design.

Hierarchical Classification. We evaluate the expressivity for the is-a taxonomy via hierarchical
classification (Kosmopoulos et al., 2015; Pal et al., 2025) on ImageNet (Russakovsky et al., 2015),
where class labels are enriched by WordNet (Miller, 1995) and errors between predicted and ground-
truth classes are measured on the WordNet graph with unit-length edges: Tree Induced Error (TIE) is
their graph distance; Lowest Common Ancestor (LCA) error is the maximum of the distances to their
LCA; Jaccard similarity J , hierarchical precision PH , and hierarchical recall RH are similarities
between the sets of ancestors.
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Table 3: Compositional understanding through hard-negative classification.

VL-CheckList–Object SugarCrepe
Location Size Replace Swap Add

w
/b

ox
es

Center Mid Margin Large Medium Small Obj Att Rel Obj Att Obj Att Overall
CLIP 67.1 65.5 64.3 69.9 63.8 64.2 88.74 80.84 69.42 63.67 64.86 80.60 72.83 77.66
CLIP ✓ 66.1 61.6 64.7 67.0 64.6 63.3 89.29 81.73 69.84 62.45 64.11 80.12 71.68 77.61
MERU 63.3 60.0 60.5 66.6 57.3 58.6 88.68 80.71 69.27 57.55 64.11 80.16 74.42 77.37
MERU ✓ 62.6 58.3 59.8 62.6 60.3 59.8 89.53 79.06 69.91 56.33 66.37 79.97 75.72 77.73
HyCoCLIP ✓ 65.9 65.6 63.1 67.6 63.1 63.9 91.28 80.46 67.07 54.69 63.96 81.09 72.40 77.46
PHyCLIP ✓ 73.0 72.0 71.4 76.4 69.2 69.0 91.34 82.11 66.64 59.18 66.07 83.56 74.28 78.75

Results are summarized in the right half of Table 2. PHyCLIP achieves superior scores across all
metrics, indicating not only higher classification accuracy but also that misclassifications tend to be
close to the ground-truth class in the taxonomy. By handling cross-family compositionality via the
ℓ1-product metric, each hyperbolic factor can devote capacity to a cleaner intra-family is-a taxonomy,
thereby yielding disentangled, hierarchy-aligned representations.

Compositional Understanding. We assess the expressivity of compositionality via hard negative
classification using VL-CheckList (Zhao et al., 2022) and SugarCrepe (Hsieh et al., 2023). Both
benchmarks require models to distinguish ground-truth captions from hard negatives created by
altering objects, attributes, or relations in the ground-truth captions. Following Pal et al. (2025), we
evaluate the Object subset of VL-CheckList, in which a noun for a single object in each caption is
randomly replaced. The results are summarized by the replaced object’s location (center/mid/margin)
and size (small/medium/large) in the image. We also evaluate all seven subsets in SugarCrepe, in
which objects, attributes, and relations are replaced, swapped, or added in each caption.

As shown in Table 3, PHyCLIP yields a substantial improvement on VL-CheckList–Object. It
successfully represents object presence robustly with respect to location and size. On SugarCrepe,
PHyCLIP obtains the best scores on four out of seven subsets and the second-best on two subsets;
its average score exceeds that of the second-best model by more than 1%, whereas the other models
cluster within 0.3%. Performance on attribute subsets is robust across all three operations, suggesting
that our design decouples intra-family taxonomy from cross-family composition and thereby empha-
sizes attribute–object binding. By contrast, we observe modest drops in relation replacement and
object swapping, which implies that our design is less sensitive to inter-object relations, although it
potentially captures these relations within each hyperbolic factor.

Table 4: Ablation study.

#
of

fa
ct

or
s,
k

#
of

di
m

s.
,d

pr
od

uc
tm

et
ri

c

classification retrieval hierarchical
COCO, R@5

Im
ag

eN
et

Fo
od

-1
01

Im
ag

e

Te
xt

T
IE

J

1 512 – 42.93 51.71 56.24 69.00 3.378 0.8008
8 64 ℓ1 44.26 52.16 57.28 69.38 3.288 0.8061
16 32 ℓ1 44.03 54.89 56.78 67.62 3.292 0.8063
32 16 ℓ1 43.90 54.48 56.70 66.92 3.324 0.8035
64 8 ℓ1 44.43 56.81 58.00 70.20 3.285 0.8065

128 4 ℓ1 44.08 52.61 57.82 71.44 3.278 0.8073
64 8 ℓ2 43.46 51.44 57.72 71.40 3.377 0.7998

Ablation Study. We investigate the contributions of
embedding space factorization and the ℓ1-product metric
through ablation studies, summarized in Table 4. We fix
the total embedding dimension kd and vary the number
of factors, k. When k = 1 (equivalent to HyCoCLIP),
performance is the lowest on most metrics; increasing
k generally improves results, except for text retrieval,
thereby demonstrating the benefit of factorization. Per-
formance peaks at k = 64 or k = 128, although zero-
shot classification accuracy for Food-101 (Bossard et al.,
2014) drops substantially at k = 128, indicating that
overly fine factorization may impair the representation
of intra-family taxonomy. Replacing the ℓ1-product metric with the Riemannian (ℓ2) product metric
consistently degrades performance, except for text retrieval. This result supports that the ℓ1-product
metric provides a more effective way to aggregate cross-family composition.

4.3 VISUALIZATIONS OF HYPERBOLIC FACTORS

Norm Distributions. Figure 3 plots the empirical distributions of embedding norms. As shown in
(b) and (c), in both PHyCLIP and HyCoCLIP, image norms are consistently larger than text norms
and are tightly concentrated. These models consider images to be more specific than their paired texts,
Ib ⪯ Tb, which encourages the image embedding Ib to lie within the text’s hyperbolic entailment cone
C(Tb) (i.e., Ib ∈ C(Tb)), yielding larger image norms. However, within individual hyperbolic factors
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Figure 3: Norm distributions. In (b) and (c), image norms are consistently larger than text norms,
because images are more specific than their paired texts (Ib ⪯ Tb). However, in a single hyperbolic
factor shown in (a), image and text norms largely overlap, as PHyCLIP may keep some factors unused
for instances that do not contain the corresponding concept families.

Images with Largest Norms in Images with Largest Norms in 

Factor Index 

(a) dog and car

Mammals
Vehicles and 
everyday-carry items

(b) Embeddings projected onto 2D disks by HoroPCA.

Figure 4: Visualization of factor-wise embeddings. (a) Each concept (e.g., dog or car) activates a
distinct factor (i.e., i = 39 or i = 9), and their composition (e.g., “a dog and a car”) activates the
corresponding factors simultaneously. (b) A set of relevant concepts (e.g., hyponyms of mammals)
forms a hierarchical structure in the corresponding factor (e.g., i = 39), while they cluster near the
origin in another factor (e.g., i = 9).

of PHyCLIP in (a), the image and text distributions largely overlap and are broadly dispersed. This is
because instances without a particular concept family lie near the origin in the corresponding factor, in
other words, factors are used selectively on a per-instance basis. Consequently, PHyCLIP leverages a
broader portion of the embedding space and facilitates meaningful distances and taxonomic structures
under contrastive learning.

Composition via ℓ1-Product Metric. To examine the behavior of the ℓ1-product metric, we obtain
factor-wise embeddings x(i) of single-concept prompts (e.g., “a photo of a dog” and “a photo of
a car”) and their compositions (e.g., “a photo of a dog and a car”). Figure 4 (a) shows factor-wise
embedding norms ∥x(i)∥Hd

i
across k = 64 factors. The “dog” embedding exhibits its largest norm in

factor i = 39 while remaining near the origin in factor i = 9. Conversely, the “car” embedding peaks
in factor i = 9 and is suppressed in factor i = 39. Then, their composition produces large norms
in both factors i = 39 and i = 9, meaning that composing concepts simultaneously activates the
corresponding factors. We observe the same pattern for “boy and bicycle” and “sunset and ocean” (see
Appendix D.2). This pattern aligns with the behavior of a Boolean algebra, where multiple concepts
are specified by the union of concept subsets (or, the element-wise max of binary indicators).

Figure 4 (a) also provides GRIT images randomly sampled from the top 0.1% by the embedding
norm for each factor. Factor i = 39 yields various mammals, suggesting a family of mammals,
whereas factor i = 9 shows vehicles and everyday-carry items. Embeddings visualized using
HoroPCA (Chami et al., 2021) in Fig. 4(b) support this interpretation. Terms related to mammals
form a hierarchical structure (i.e., captured) in factor i = 39 and concentrate near the origin (i.e.,
not captured) in factor i = 9. Embeddings related to vehicles and everyday-carry items exhibit the
opposite pattern. See Appendix D.2 for more visualizations.

We emphasize that, while we give a hierarchy between samples, we do not provide any explicit super-
vision for factor assignments; this specialization of factors emerges automatically through training.
Consistent with Theorem 2, these observations empirically support that PHyCLIP organizes intra-
family taxonomies within individual hyperbolic factors and expresses inter-family compositionality
via the simultaneous activation of multiple factors, analogous to a Boolean algebra.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Vision–Language Models and Representation Learning. Vision–language representation learn-
ing contributes to retrieval (Mori et al., 1999), semantic segmentation (Barnard et al., 2003), and image
generation (Ramesh et al., 2021; Labs, 2025). Early works learned alignments through object-level,
word-based classification and detection (Karpathy & Fei-Fei, 2015; He & Peng, 2017; Engilberge
et al., 2018) or through text–image generation (Peng et al., 2017; Gu et al., 2018), but they often
required complex annotation and network designs (Zhao et al., 2022). A more generic approach maps
an entire image or text to a single vector and learns a shared embedding space with a contrastive
objective. Representative systems include DeViSE (Frome et al., 2013), VSE++ (Faghri et al., 2018),
CLIP (Radford et al., 2021), and ALIGN (Jia et al., 2021). Our model, PHyCLIP, follows this line,
while implicitly extracting individual concepts through the geometry of an ℓ1-product metric space.

Hyperbolic Representations in Deep Learning. Data often exhibit hierarchical, tree-like structures.
Many approaches have attempted to encode such structure (Nguyen et al., 2017; Vulic & Mrksic,
2018), and hyperbolic spaces have become influential due to their empirical performance and
theoretical support (Sala et al., 2018; Sonthalia & Gilbert, 2020). As discussed in Section 2, tree
metrics admit quasi-isometric embeddings into the two-dimensional hyperbolic plane, which enhances
generalization and interpretability (Bridson & Haefliger, 1999; Sarkar, 2011). Hyperbolic embeddings
have been applied to words (Nickel & Kiela, 2017; 2018; Tifrea et al., 2019), sentences (Dhingra
et al., 2018), graphs (Liu et al., 2019), and images (Khrulkov et al., 2020; Atigh et al., 2022; van
Spengler et al., 2023; Qiu et al., 2024). There is also extensive work on building neural networks
on hyperbolic spaces (Ganea et al., 2018b; Shimizu et al., 2021; Takeuchi et al., 2022; Peng et al.,
2022) and on optimization over Riemannian manifolds (Bonnabel, 2013; Bécigneul & Ganea, 2019).
Within vision–language learning, MERU adapts CLIP to hyperbolic geometry (Desai et al., 2023).
Our method also leverages hyperbolic geometry and embeds tree-like structures efficiently.

For non-hierarchical data, Euclidean, hyperspherical, or toroidal geometries can be effective (Ebisu &
Ichise, 2018), and several studies explore representations in a Riemannian (ℓ2) product of such spaces
as mixed-curvature representations (Gu et al., 2019; Wang et al., 2024; Gao et al., 2025). PHyCLIP
also employs a product space, but all factors are hyperbolic and the product metric is ℓ1; we justified
both choices theoretically in Section 2.

Region-based Embeddings for Structured Representations. Hierarchical relations can be viewed
as a form of inclusion relations. Order embeddings (Vendrov et al., 2016) represent an instance
as an upper orthant of Euclidean space, and box embeddings (Vilnis et al., 2018) represent it as
an axis-aligned hyperrectangle, where the inverse of set inclusion encodes the hierarchical relation.
Euclidean variants include Gaussian embeddings (Vilnis & Mccallum, 2015), and hyperbolic variants
include disk embeddings (Nickel & Kiela, 2018) and hyperbolic entailment cones (Ganea et al.,
2018a). These approaches have also been employed in the vision–language setting (Ren et al., 2016;
Desai et al., 2023; Pal et al., 2025). We summarize their theoretical connections in Appendix A.2.
These region-based approaches permit composition via intersection of regions, which allows multiple
parents and richer semantic composition. However, their compositional expressivity has not yet
been fully characterized. We showed in Section 2 that order embeddings and PHyCLIP support
compositionality at the level of a Boolean algebra, while a single hyperbolic space may not.

6 CONCLUSION

We introduced PHyCLIP, a vision–language model that learns representations using an ℓ1-product
metric space of hyperbolic factors. We theoretically and empirically demonstrated that it simultane-
ously captures compositionality across concept families through the ℓ1-product metric, as well as is-a
taxonomies within hyperbolic spaces via hyperbolic embeddings. This design yields state-of-the-art
performance across various downstream tasks and provides an interpretable embedding structure.
While the main focus is on object composition, it also performs well for attribute binding because it
decouples intra-family taxonomy from cross-family composition. By contrast, the relational structure
remains unexplored; incorporating its algebraic structure is a promising direction for future work.
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A BACKGROUND THEORY

A.1 QUASI-ISOMETRIC EMBEDDINGS

We adopt standard notions from Bridson & Haefliger (1999). Let (X, dX) be a metric space. A
geodesic segment [x, y] ⊂ X is an isometric image of an interval whose endpoints are mapped to x
and y in X . The space X is geodesic if every pair of points can be joined by a geodesic segment. For
δ ≥ 0, a geodesic triangle is δ-slim if each side is contained in the δ-neighborhood of the union of
the other two sides. A geodesic metric space X is δ-hyperbolic (in the sense of Gromov) if every
geodesic triangle in X is δ-slim. A metric tree is a geodesic metric space in which any two nodes are
joined by a unique geodesic, and every geodesic triangle is a tripod; hence, it is 0-hyperbolic. Any
tree with positive edge lengths, equipped with path length as distance, is a metric tree. Euclidean
spaces Rn are not Gromov-hyperbolic for n ≥ 2, whereas hyperbolic spaces Hn are δ-hyperbolic,
where δ depends only on the curvature.

Definition 2 (Quasi-isometric embedding (Bridson & Haefliger, 1999)). Let (X, dX) and (Y, dY ) be
metric spaces. A map f : (X, dX) → (Y, dY ) is a (λ, c)-quasi-isometric embedding if it is injective
and there exist a distortion λ ≥ 1 and an error c ≥ 0 such that

1
λ dX(x,x′)− c ≤ dY

(
f(x), f(x′)

)
≤ λ dX(x,x′) + c for all x,x′ ∈ X. (7)

If λ = 1 and c = 0, the embedding is isometric.

A.2 REPRESENTATIONS OF POSET AND LATTICE

A poset (P,⪯) is a set P with a reflexive, antisymmetric, and transitive relation ⪯. Its Hasse diagram
places an edge from x to y when x ≺ y and there is no z such that x ≺ z ≺ y; hence the existence
of an upward path from x to y implies x ⪯ y (Ganter & Wille, 1999; Davey & Priestley, 2002).
Given x,y ∈ P , a meet x ⊓ y (greatest lower bound) and a join x ⊔ y (least upper bound) may or
may not exist. A meet-semilattice (join-semilattice) is a poset in which the meet x ⊓ y (the join
x ⊔ y) exists for all pairs x,y, and a lattice has both for all pairs.

If a rooted tree is ordered by the ancestor relation with the root o at the bottom (so that o ⪯ x for
all x), then the meet x ⊓ y of a pair x,y always exists, while joins need not exist. Hence, a rooted
tree is naturally a meet-semilattice in this orientation. Conversely, an is-a taxonomy often uses the
entailment order x ⪯ y interpreted as “x entails y” or more roughly “x is more specific than y,”
with the root o at the top. The join x ⊔ y always exists, while meets need not exist; the poset is then
a join-semilattice.

Let C = {c1, . . . , cn} be n atomic concepts (e.g., dog, car, tomato,. . . ). A subset S ⊆ C expresses
the conjunction or co-occurrence of the concepts specified in S. We define the Boolean lattice (2C ,⊆)
over the power set 2C of C, in which the order relation ⪯ is the inclusion relation ⊆. Meet/join are
given by intersection/union, respectively. T ⊆ S means that S specifies all concepts in T , so S
entails T . Let χ : 2C → {0, 1}n be the indicator map with χ(S)i = 1 iff ci ∈ S. Then, T ⪯ S iff
χ(T )i ≤ χ(S)i for all i, and meet/join become bit-wise AND/OR, respectively. We summarize the
correspondence between different representations in Table 5. In this lattice, each node is defined
intensionally as a set of concepts.

From the dual perspective, each node can be defined extensionally as a set of instances that contain
specified concepts, in the context of formal concept analysis (Ganter & Wille, 1999). Let Z be a
universe of instances and let I ⊆ Z × C be an incidence relation (i.e., z I c means that z has concept
c). For S ⊆ C, define an operation S′ = {z ∈ Z | z I c for all c ∈ S ⊆ C}, which forms a Galois
connection: S ⊆ T implies T ′ ⊆ S′. Also, subsets S′ ⊆ Z form the dual lattice of (2C ,⊆), where
S ⊆ T ⇔ S ⪯ T ⇒ T ′ ⊆ S′ ⇔ T ′ ⪯ S′. If S = S′′ for any subset S ⊆ C, S ⊆ T ⇔ T ′ ⊆ S′.

An is-a taxonomy is typically realized as a join-subsemilattice of this dual lattice. Order embed-
dings (Vendrov et al., 2016) can be regarded as an extension of the Boolean lattice, where each bit
{0, 1} is replaced with a real number R. They declare “x entails y” iff xi ≥ yi for all i, similarly to
the indicators of a Boolean lattice. Indeed, the ambient poset (Rn,⪯) of order embeddings is a lattice
with meet/join given by coordinate-wise max/min, respectively. When regarding an embedding
x as an orthant U(x) ⊆ Rn, the entailment is represented as U(x) ⊆ U(y), similarly to the dual
lattice. When treating the orthant U(y) as the set of all instances that contain the specified concepts
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Table 5: Correspondence of generalization, specialization, and entailment in different representations.

Generalization Specialization Space Entailment
(hypernymy) (hyponymy) (x or S entails y or T )

Tree of is-a Relations (is-a Taxonomy) join ⊔ (meet ⊓) T x ⪯ y
Order Embedding (as points) min max Rn xi ≥ yi for all i
Order Embedding (as orthants) orthants in Rn U(x) ⊆ U(y)
Order Embedding (for entailment) orthants in Rn x ∈ U(y)
Hyperbolic Entailment Cone (union ∪) intersection ∩ cones in Hn x ∈ C(y)

Boolean Lattice (as a power set) intersection ∩ union ∪ 2C S ⊇ T
Boolean Lattice (as a lattice) meet ⊓ join ⊔ S ⪰ T

Boolean Lattice (with indicator) AND OR {0, 1}|C| χ(S)i ≥ χ(T )i for all i
Dual Lattice (as a set) union ∪ intersection ∩ S′ ⊆ T ′

Dual Lattice (as a lattice) join ⊔ meet ⊓ S′ ⪯ T ′

Product of Trees join ⊔ (meet ⊓)
∏k

i=1 Ti x(i) ⪯ y(i) for all i
PHyCLIP (union ∪) intersection ∩ cones in (Hd

i )
k x(i) ∈ Ci(y

(i)) for all i

y, the entailment is represented as x ∈ U(y), which aligns with the definition of the dual lattice.
Hyperbolic entailment cones (Ganea et al., 2018a) are a hyperbolic extension of the last interpretation
of order embeddings, where an orthant U(y) is replaced with a geodesic conical region C(y).

Also, our proposed PHyCLIP can be regarded as an extension of a Boolean lattice, where each bit
{0, 1} is replaced with a metric tree Ti, which is embedded into a hyperbolic factor Hd

i .

B PROPOSITIONS, THEOREMS, AND PROOFS

B.1 PROOF OF PROPOSITION 1

Let (2C ,⊆) be a Boolean lattice over all subsets of atomic concepts C = {c1, . . . , cn}. The indicator
χ maps subsets S, T ⊆ C to binary sequences χ(S), χ(T ) ∈ {0, 1}n, where χ(S)i = 1 if ci ∈ S
and χ(S)i = 0 otherwise. Then, S ⊆ T iff χ(S)i ≤ χ(T )i for all i. The Hamming distance
dHam is defined as dHam(χ(S), χ(T )) =

∑n
i=1 |χ(S)i − χ(T )i|. Consider a map f : {0, 1}n →

Rn, χ(S) 7→ x = (x1, . . . , xn) = (1 − χ(S)1, . . . , 1 − χ(S)n) and the product order x ⪯ y iff
xi ≥ yi for all i on Rn. Then, the map f ◦ χ embeds the Boolean lattice (2C ,⊆) into the poset
(Rn,⪯) used by order embeddings while preserving the order relations.

By definition, the Hamming distance is dHam(χ(S), χ(T )) = ∥χ(S)− χ(T )∥1 =
∑n

i=1 |χ(S)i −
χ(T )i|. Hence, the metric space ({0, 1}n, dHam) is equivalent to an ℓ1-product metric space
({0, 1}n,∑n

i=1 | · |). Consider a map fi that maps 0 to the base point of the metric space Xi

and 1 to a point with a finite non-zero distance 1/τi > 0 from the base point. The map fi is an
isometric embedding from {0, 1} to Xi after scaled by τi. The map f = (f1, . . . , fn) is an isometric
embedding from ({0, 1}n, dHam) to (

∏k
i=1 τiXi,

∑k
i=1 dXi

) for any k ≥ n.

Assume by contradiction that an isometric embedding f : ({0, 1}n, dHam) → (Hd, dHd) exists for
some n ≥ 2 and d ≥ 2. Take four points

A = (0, 0, 0, . . . ), B = (1, 0, 0, . . . ), C = (1, 1, 0, . . . ), D = (0, 1, 0, . . . ).

in {0, 1}n. Let a = f(A), b = f(B), d = f(D), and c = f(C). Since f is an isometric embedding,

dHd(a, b) = dHd(b, c) = dHd(a,d) = dHd(d, c) = 1

and
dHd(a, b) + dHd(b, c) = dHd(a,d) + dHd(d, c) = dHd(a, c) = 2.

In a hyperbolic space, a geodesic segment is unique, and its midpoint is unique, so both b and d are
placed at the midpoint in the geodesic segment [a, c]; hence b = d. See Proposition I.4 in Bridson
& Haefliger (1999). This contradicts the assumption that f is an isometric embedding (which is
injective).

B.2 PROPOSITION 2 AND ITS PROOF

Proposition 2 (ℓ1-product of trees is not hyperbolic). Let T1, T2 be infinite metric trees with known
bounds for maximum degree and minimum edge length. Their ℓ1-product metric space (T1×T2, dT1 +
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dT2
) is not δ-hyperbolic for any finite δ. Consequently, there is no (λ, c)-quasi-isometric embedding

(T1 × T2, dT1
+ dT2

) → Hn.

A quasi-geodesic q in X is a (λ, c)-quasi-isometric embedding q : I → X , where I is an interval
in R or the intersection of Z with such an interval; see Definition I.8.22 in Bridson & Haefliger
(1999). In a δ-hyperbolic space Y , the stability of quasi-geodesics asserts that the Hausdorff distance
between a geodesic γ and a (λ, c)-quasi-geodesic q with common endpoints is bounded by a constant
D = D(λ, c, δ); see Theorem III.1.7 in Bridson & Haefliger (1999).
Lemma 1 (Stability of geodesic triangles under quasi-isometric embeddings). Let X be a geodesic
metric space and f : X → Y be a (λ, c)-quasi-isometric embedding into a δ-hyperbolic space
Y . Then every geodesic triangle in X is δ̃-slim for some constant δ̃ ≤ λ(δ + 2D + c), where
D = D(λ, c, δ) is the quasi-geodesic stability constant in Y .

Proof. Let ∆ be a geodesic triangle in X . Each side maps to a (λ, c)-quasi-geodesic in Y . By the
stability of quasi-geodesics, each image side is contained in D-neighborhood of the corresponding
geodesic. Geodesic triangles in Y are δ-slim; hence, each point on one image side is contained
in δ + 2D-neighborhood of the union of the other two image sides. Pulling this back via the
quasi-isometry inequalities yields the stated bound.

Let T1, T2 be infinite trees with bounds for maximum degree and minimum edge length, which admit
a geodesic ray of infinite length. For simplicity, we restrict the edge length to be 1, but the following
discussion holds for arbitrary non-zero edge lengths, by replacing N with the ordered set of the
geodesic distances from the root to the nodes in the geodesic ray.

Consider (N2, ∥ · ∥1). Let m be an even integer and take three points A = (0, 0), B = (m, 0),
C = (0,m). The midpoint (m2 ,

m
2 ) of a monotone geodesic from B to C is at m

2 from [A,B]∪[A,C],
requiring δ ≥ m/2. δ → ∞ as m → ∞. Hence, (N2, ∥ · ∥1) is not δ-hyperbolic for any finite δ.

Choose two geodesic rays γi : N → Ti for i = 1, 2. The map Φ : N2 → T1 × T2, Φ(m,n) =
(γ1(m), γ2(n)) is an isometric embedding from (N2, ∥ · ∥1) into (T1 × T2, dT1 + dT2). Given a
δ̃-slim geodesic triangle ∆ in N2, its image Φ(∆) is also a δ̃-slim geodesic triangle in T1 × T2. Since
(N2, ∥ · ∥1) is not δ-hyperbolic, neither is (T1 × T2, dT1

+ dT2
).

Assume by contradiction that f : (T1 × T2, dT1 + dT2) → Hn is a (λ, c)-quasi-isometric embedding,
where Hn is δ-hyperbolic for a finite δ. By Lemma 1, every geodesic triangle in T1 × T2 is δ̃-slim,
where δ̃ ≤ λ(δ + 2D + c) and D = D(λ, c, δ) are constants. However, (T1 × T2, dT1

+ dT2
) is not

δ̃-hyperbolic for any finite δ̃, which contradicts the assumption. Therefore, there is no (λ, c)-quasi-
isometric embedding f : (T1 × T2, dT1

+ dT2
) → Hn.

B.3 PROOF OF THEOREM 2

Lemma 2 (Product of quasi-isometric embeddings). If fi : (Xi, dXi) → (Yi, dYi) are (λi, ci)-quasi-
isometric embeddings, then

f =
∏k

i=1 fi :
(∏k

i=1 Xi,
∑k

i=1 dXi

)
−→

(∏k
i=1 Yi,

∑k
i=1 dYi

)
(8)

is (λ, c)-quasi-isometric with λ = maxi λi and c =
∑

i ci.

Proof of Lemma 2. Sum the index-wise inequalities and bound λ by maxi λi.

Theorem 2 follows immediately from Theorem 1 and Lemma 2.

C IMPLEMENTATION DETAILS

C.1 LORENTZ MODEL OF HYPERBOLIC SPACE

Let Rd,1 be the (d+ 1)-dimensional Minkowski space, equipped with the Minkowski metric gRd,1 =
−dx2

0 + dx2
1 + · · · + dx2

d in coordinates x̂ = (x0, x1, . . . , xd). Intuitively, x0 denotes the time
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coordinate, and the others x = (x1, . . . , xd) ∈ Rd denote the space coordinates. The inner product
in Rd,1 is given by

⟨x̂, ŷ⟩Rd,1 = −x0y0 + ⟨x,y⟩Rd . (9)

For α > 0, define the upper sheet of the two-sheeted hyperboloid as Ld
α = {x̂ ∈ Rd,1 | ⟨x̂, x̂⟩Rd,1 =

−α−1, x0 > 0}. Equivalently, every point satisfies x0 =
√
α−1 + ∥x∥2Rd . The Riemannian metric

on Ld
α is the restriction of the Minkowski metric gRd,1 to TLd

α; with this metric, the sectional curvature
is the constant −α (Cannon et al., 1997; Lee, 2018). The geodesic distance is

dLd
α
(x̂, ŷ) = α−1/2 arccosh(−α ⟨x̂, ŷ⟩Rd,1) for x̂, ŷ ∈ Ld

α. (10)

Then, a d-dimensional hyperbolic space Hd
α with a curvature −α is isometrically embedded into Ld

α
by

ι : Hd
α → Ld

α,x 7→ x̂ = (
√
α−1 + ∥x∥2Rd ,x), (11)

and we denote ⟨x,y⟩Hd
α
= ⟨x̂, ŷ⟩Ld

α
and dHd

α
(x,y) = dLd

α
(x̂, ŷ) in the main body.

When feature extractors (such as encoders) operate in the Euclidean space Rd, their output cannot be
treated directly as an embedding x in a hyperbolic space due to the mismatch in geometry. Instead,
the output v = (v1, . . . , vd) is treated as a tangent vector in the tangent space TôLd

α ≃ Rd at the base
point ô = (α−1/2, 0, . . . , 0) of Ld

α and mapped to a point in Ld
α via the exponential map

expαô : TôLd
α → Ld

α,v 7→ x̂ = expαô(v) = cosh(
√
α∥v∥Rd)ô+

sinh(
√
α∥v∥Rd )√

α∥v∥Rd
v. (12)

C.2 HYPERBOLIC ENTAILMENT CONES IN THE LORENTZ MODEL

Hyperbolic entailment cones capture the hierarchical relationships (Ganea et al., 2018a). For every
point y in each hyperbolic factor Hd, we define a geodesic conical region C(y), where all points
x ∈ C(y) are considered more specific than y (i.e., x ⪯ y). The size of this conical region is
determined by its half-aperture ω(y), which is inversely proportional to the norm:

ω(y) = sin−1

(
min

{
1,

2K√
α∥y∥Rd

})
, (13)

where K is set to 0.1. Then, x ∈ C(y) iff ϕ(x,y) < ω(y) for the exterior angle

ϕ(x,y) = cos−1

 x0 + y0α⟨x,y⟩Hd
α

∥y∥Rd

√
(α⟨x,y⟩Hd

α
)2 − 1

 (14)

C.3 MODEL ARCHITECTURE AND HYPERPARAMETERS

We introduce the details of our implementation and hyperparameters, which follow Desai et al. (2023);
Pal et al. (2025) unless specified otherwise.

As an image encoder, we employ the Vision Transformer (Dosovitskiy et al., 2021; Chen et al.,
2021; Touvron et al., 2021) with a patch size of 16. Each image is randomly resized by a scale
from 0.5 to 1.0 and randomly cropped to 224 × 224 pixels, resulting in 196 tokens, concatenated
with 2-D sine–cosine position embeddings. We employ the text encoder used by the original CLIP
(Radford et al., 2021), which consists of a 12-layer Transformer architecture (Vaswani et al., 2017)
with embeddings of 512 dimensions.

The outputs of image and text encoders are scaled by learnable scalars cimg and ctxt, respectively,
before being mapped by the exponential map. These scalars are initialized to cimg = ctxt = 1/

√
512.

The negative curvature αi for factor i is initialized at 1.0 and clamped in [0.1, 10.0]. For the contrastive
loss Lcont in Eq. (3), the temperature τ is initialized to 0.07 and clipped at a minimum value of 0.01.
For the entailment loss Lent in Eq. (5), the hyperparameter η is set to η = 0.7 for inter-modality
entailments (I ⪯ T and Ibox ⪯ T box) and η = 1.2 for intra-modality entailments (T ⪯ Ibox and
T ⪯ T box). These scalars are learned on a logarithmic scale.
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The hyperparameter γ for the overall loss in Eq. (1) is set to γ = 0.2. We trained each model on 4
A100 GPUs for 500,000 iterations with a batch size of 768. For the large Vision Transformer, we used
8 A100 GPUs. We used the AdamW optimizer (Loshchilov & Hutter, 2019) with hyperparameters
β1 = 0.9, β2 = 0.98. We applied weight decay of 0.2 to model parameters but not to scalar
parameters. We used a cosine learning rate scheduler (Loshchilov & Hutter, 2017) with a maximum
learning rate of 5× 10−4 and a warm-up of 4,000 steps.

C.4 BENCHMARKS

Zero-shot Image Classification. We follow the protocol in Desai et al. (2023). Each class is
accompanied by a set of short text templates, such as “a photo of a {class name}”. The prediction is
made by selecting the class whose text templates are closest on average to the image in the embedding
space. We summarize the datasets below.

• ImageNet (Russakovsky et al., 2015): A large-scale dataset of diverse, everyday object categories.
• Food-101 (Bossard et al., 2014): A fine-grained dataset of 101 different types of food dishes.
• CIFAR-10 (Krizhevsky & Hinton, 2009): A dataset of low-resolution natural images across 10

general object classes.
• CIFAR-100 (Krizhevsky & Hinton, 2009): Similar to CIFAR-10, but with 100 fine-grained object

classes.
• CUB-2011 (Wah et al., 2011): A fine-grained dataset for the identification of 200 bird species.
• SUN397 (Xiao et al., 2010): A large-scale scene recognition dataset with 397 scene categories.
• Stanford Cars (Krause et al., 2013): A fine-grained dataset of cars, annotated with make, model,

and year.
• FGVC-Aircraft (Maji et al., 2013): A fine-grained dataset for aircraft model recognition.
• DTD (Cimpoi et al., 2014): The Describable Textures Dataset for texture recognition.
• Oxford-IIIT Pets (Parkhi et al., 2012): A fine-grained dataset of 37 different pet breeds.
• Caltech-101 (Fei-Fei et al., 2004): One of the classic object recognition datasets with 101

categories.
• Flowers-102 (Nilsback & Zisserman, 2008): A fine-grained dataset for the classification of 102

flower categories.
• STL-10 (Coates et al., 2011): An image recognition dataset inspired by CIFAR-10, but with higher

resolution.
• EuroSAT (Helber et al., 2019): A dataset of Sentinel-2 satellite images for land use and land

cover classification.
• RESISC45 (Cheng et al., 2017): A benchmark for Remote Sensing Image Scene Classification

(RESISC).
• Country211 (Radford et al., 2021): A dataset for predicting the country of origin from pho-

tographs.

Zero-shot Image and Text Retrieval In text-to-image retrieval, given a text query, the model
retrieves the nearest images in the embedding space, and vice versa in image-to-text retrieval. Please
refer to the detailed protocol in Desai et al. (2023). We summarize the datasets used as follows.

• COCO (Lin et al., 2014): A large-scale dataset of complex everyday scenes with rich annotations.
• Flickr30K (Young et al., 2014; Karpathy & Fei-Fei, 2015): A dataset of images from the Flickr

website, each paired with five descriptive captions.

Hierarchical Classification. This task was introduced in Russakovsky et al. (2015), and we used
the implementation in Pal et al. (2025). The class labels are enriched by WordNet (Miller, 1995), and
the embeddings of class labels are obtained in the same way as the zero-shot image classification task.
Errors between predicted and true classes are measured using the WordNet graph with unit-length
edges. Tree Induced Error (TIE) is the distance between the nodes corresponding to predicted and true

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Results with different model sizes.

w
/b

ox
es Hierarchical Classification VL-CheckList–Object

WordNet Location Size
TIE(↓) LCA(↓) J(↑) PH (↑) RH (↑) Center Mid Margin Large Medium Small

CLIP 4.127 2.434 0.7526 0.8295 0.8304 64.6 65.7 61.2 66.3 63.2 62.5
MERU 4.201 2.435 0.7479 0.8273 0.8256 63.5 60.5 59.6 63.2 61.9 61.2

HyCoCLIP ✓ 3.637 2.209 0.7831 0.8528 0.8507 67.2 66.1 65.3 69.1 65.0 65.8
ViT
S/16

PHyCLIP ✓ 3.715 2.241 0.7778 0.8492 0.8476 70.4 69.5 70.8 72.8 67.0 69.7
CLIP 3.705 2.254 0.7805 0.8498 0.8503 67.1 65.5 64.3 69.9 63.8 64.2
CLIP ✓ 3.720 2.265 0.7797 0.8487 0.8509 66.1 61.6 64.7 67.0 64.6 63.3

MERU 3.832 2.292 0.7720 0.8451 0.8439 63.3 60.0 60.5 66.6 57.3 58.6
MERU ✓ 3.793 2.277 0.7740 0.8462 0.8454 62.6 58.3 59.8 62.6 60.3 59.8

HyCoCLIP ✓ 3.378 2.113 0.8008 0.8653 0.8636 65.9 65.6 63.1 67.6 63.1 63.9

ViT
B/16

PHyCLIP ✓ 3.285 2.088 0.8065 0.8684 0.8682 73.0 72.0 71.4 76.4 69.2 69.0
CLIP 3.475 2.158 0.7957 0.8605 0.8607 64.2 60.7 60.2 64.6 61.2 58.0

MERU 3.558 2.178 0.7891 0.8574 0.8553 58.9 56.3 55.3 61.0 56.4 54.0
HyCoCLIP ✓ 3.100 2.007 0.8179 0.8770 0.8751 73.9 71.2 70.9 75.3 69.3 70.1

ViT
L/16

PHyCLIP ✓ 3.044 1.993 0.8223 0.8795 0.8790 74.3 72.7 70.5 75.1 70.5 70.8
Among methods with the same backbone, the best and second performances are emphasized by bold fonts and underlines, respectively.

classes. Lowest Common Ancestor (LCA) error is the maximum of the distances from predicted and
true classes to their LCA. Jaccard similarity J , hierarchical precision PH , and hierarchical recall RH

are similarities between the sets of ancestors of predicted and true classes. Intuitively, hierarchical
precision PH quantifies correctness under over-generalization: it takes value 1 if the predicted label is
the ground truth or one of its ancestors in the taxonomy. Conversely, hierarchical recall RH quantifies
correctness under over-specialization: it takes value 1 if the predicted label is the ground truth or one
of its descendants.

Compositional Understanding. Samples in typical multi-modal datasets are diverse enough
that there are few near-duplicate image–text pairs; consequently, models insensitive to detailed
semantics can still perform well on retrieval tasks. To assess whether a model truly understands
the compositionality of words in a caption, hard negative captions are generated, which are almost
correct but differ in a small, targeted way and evaluate whether models can select the true caption.

In VL-CheckList–Object, nouns in the caption are replaced. Because the difficulty varies with the
replaced object’s location (center/mid/margin) and size (small/medium/large) in image, results are
reported separately for each subset.

In SugarCrepe, three operations (replace, swap, and add) are applied to objects, attributes, and
relations. Replace-Obj is similar to VL-CheckList–Object. Swap exchanges roles or pairings. In
Swap-Obj, the model must correctly resolve agent–action combinations. Add introduces nouns or
adjectives that were absent from the original caption.

D ADDITIONAL RESULTS AND VISUALIZATIONS

D.1 ADDITIONAL EXPERIMENTAL RESULTS

We obtained results with the small and large Vision Transformers as the image encoder (Dosovitskiy
et al., 2021; Chen et al., 2021; Touvron et al., 2021) in Table 6. As the model size increases, the
overall performance improves in most cases. Nevertheless, PHyCLIP remains the best or at least
competitive across all evaluation metrics for hierarchy and compositionality.

D.2 ADDITIONAL VISUALIZATIONS

In this section, we provide additional visualizations that complement Fig. 4 in Section 4.3. We embed
each word using the single-concept prompt “a photo of a {word}” and the composition of two words
using the conjunctive prompt “a photo of a {word 1} and a {word 2}.”

Figure 5 is a larger version of Fig. 4 (b) with labels, where HoroPCA (Chami et al., 2021) projects
embeddings in d = 8-dimensional hyperbolic factors onto 2D disks. Embeddings of mammal-related
terms are spread over a wide area in factor i = 39. Dog-related terms cluster in the left half, cat-
related terms in the right, and “chihuahua,” “corgi,” and “puppy” are positioned farther from the
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van
car

truck

bus

cellphone

smartphone

bag
fire truck

semi-trailer
 truck school bus

wolf
fox

cat kitty

persian cat

feline

canine

dog

corgi

hunting dog

chihuahua puppy

poodle

vehicle

wallet

Mammals

Vehicles and 
everyday-carry items

Figure 5: Embeddings projected onto 2D disks by HoroPCA. A set of relevant concepts (hyponyms
of mammals or words related to vehicles and everyday-carry items) forms a hierarchical structure in
the corresponding factor (i = 39 or i = 9), while the same concepts cluster near the origin in another
factor (i = 9 or i = 39).

Images with Largest Norms in Images with Largest Norms in 

Factor Index 

(a) boy and bicycle

Images with Largest Norms in Images with Largest Norms in 

Factor Index 

(b) sunset and ocean

Figure 6: Visualization of embedding norms in hyperbolic factors. See also Fig. 4

origin than “dog.” These patterns indicate that factor i = 39 encodes a hierarchy of a concept family
of mammals (or more specifically, Carnivora). In contrast, in factor i = 9, the same embeddings
concentrate near the origin, suggesting that this factor does not capture mammals. Conversely, terms
related to vehicles and everyday-carry items form a hierarchical arrangement in factor i = 9 but
cluster near the origin in factor i = 39. Together, these observations indicate that distinct hyperbolic
factors capture taxonomies of different concept families.

Figure 6 visualizes factor-wise embedding norms of single concepts and conjunctive prompts,
complementing Fig. 4 (a). In Fig. 6 (a), the “boy” embedding activates factor i = 51, which is
also activated by various human images, indicating that this factor captures humans; the “bicycle”
embedding activates factor i = 4, associated with bicycles and wheels. The conjunctive prompt
“boy and bicycle” activates both factors i = 4 and i = 51. In Fig. 6 (b), the “sunset” embedding
activates factor i = 14, which captures a family of skies, whereas the “ocean” embedding activates
factor i = 36, which captures a family of natural landscapes. The conjunctive prompt “sunset and
ocean” activates both factors i = 14 and i = 36.

Figure 7 shows top-10 GRIT images retrieved using conjunctive prompts and the factor-wise “max”
of single-concept prompts. Specifically, we embed two single-concept prompts (e.g., “a photo of
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(a) conjunctive prompt “a dog and a car” (b) “max” of single-concept prompts
“a dog” and “a car”

(c) conjunctive prompt “a boy and a bicycle” (d) “max” of single-concept prompts
“a boy” and “a bicycle”

(e) conjunctive prompt “a sunset and an ocean” (f) “max” of single-concept prompts
“a sunset” and “an ocean”

Figure 7: Retrieval results by conjunctive prompts and factor-wise “max” of single-concept
prompts. A new embedding is constructed by taking, for each factor, the factor-wise embedding
with the larger norm between two single-concept prompts. The retrieval results are appropriate in
both cases.

a dog” and “a photo of a car”) as Xa = (x
(1)
a , . . . ,x

(k)
a ) and Xb = (x

(1)
b , . . . ,x

(k)
b ), and then we

construct a new embedding Xmax{a,b} by selecting, for each factor, the factor-wise embedding with
the larger norm between two single-concept prompts, i.e., we take

Xmax{a,b} = (x
(1)
max{a,b}, . . . ,x

(k)
max{a,b}) with x

(i)
max{a,b} = argmax

x∈{x(i)
a ,x

(i)
b }

∥x∥Hd
i

for i = 1, . . . , k.

Then, the factor-wise norms satisfy ∥x(i)
max{a,b}∥Hd

i
= max{∥x(i)

a ∥Hd
i
, ∥x(i)

b ∥Hd
i
}. If each factor were

a bit {0, 1}, this operation would reduce to the union operation or the logical OR for a Boolean
algebra. If each factor were a real number R, it coincides with an element-wise max, examined in
order embeddings (Vendrov et al., 2016). The retrieval results by both methods are appropriate in most
cases and often overlap. Concepts specified in the prompt are embedded with large norms in factors
that capture their corresponding concept families, whereas unspecified concepts are represented with
small norms. Consequently, by retaining only the high-norm factors, we can compose concepts
without corrupting the semantics of the original prompts. These results suggest that PHyCLIP
expresses cross-family composition in a manner analogous to Boolean algebra and order embeddings.

In conclusion, in PHyCLIP, different hyperbolic factors capture distinct concept families, and the ℓ1-
product metric represents cross-family composition through the simultaneous activation of multiple
factors.

THE USE OF LARGE LANGUAGE MODELS.

We used ChatGPT and GitHub Copilot as assistance tools for polishing the manuscript and imple-
menting the experimental code. We did not use large language models for research ideation or for
proofs.
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