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ABSTRACT

Ego-centric tracing with sparse yet informative cues is a fundamental capability
of embodied agents operating in complex and dynamic environments. However,
existing approaches typically address cue understanding and cue generation in
isolation, which limits their synergy and significantly constrains agents’ ability to
perceive and act effectively. To overcome this limitation, we propose a Unified
Understanding–Generation framework (Uni-UG) that tightly integrates a multi-
granularity disentangled representation learning module for understanding with
a controllable clue generation module. Specifically, a shared encoder first ex-
tracts features from multimodal inputs and interactive feedback, while a temporal
attention mechanism dynamically adapts the representation to the evolving envi-
ronment. The understanding module then disentangles these features into multi-
granular sub-representations, capturing rich categorical and fine-grained attribute-
level information of potential clues. Conditioned on these outputs and specified
control signals, the generation module produces supplementary clue information.
A joint loss function is employed to simultaneously optimize understanding ac-
curacy and generation quality, thereby enforcing semantic consistency between
the two: the understanding module guides clue generation through extracted cate-
gories, while the generated clues in turn iteratively refine the overall understanding
process. Extensive experiments conducted across multiple challenging datasets
validate the effectiveness and generalizability of Uni-UG framework.

1 INTRODUCTION

Ego-centric tracking by embodied agents, particularly Unmanned Aerial Vehicles (UAVs), has be-
come a key technological requirement in various dynamic scenarios, such as wildlife monitoring,
environmental surveillance, and urban security. In these scenarios, agents often adopt a human-
like first-person perspective to perceive their surroundings, interpret environmental cues, and make
decisions to execute their tasks. These ego-centric tracking tasks are essential for supporting long-
horizon perception and reasoning in dynamic scenarios.

In recent years, ego-centric target tracking has garnered increasing attention. To advance the field,
researchers have developed simulation platforms and released benchmark navigation tasks. Given
that most vision-and-language navigation (VLN) tasks focus on ground-based robots, the aerial do-
main has remained relatively underexplored. To address this gap, the AerialVLN (Liu et al., 2023) is
introduced, specifically designed for UAVs. CityNav (Lee et al., 2024) guides aerial agents through
real urban environments using visual and linguistic cues. Similarly, EmbodiedCity (Gao et al., 2024)
focuses on reasoning and tracking within large-scale city settings. NavAgent (Liu et al., 2024c)
leverages vision-language models to enable autonomous UAV navigation by integrating multi-scale
environmental information. AeroVerse (Yao et al., 2024) aims to enhance the perception, cognition,
and action capabilities of aerial and space-based systems, fostering ego-centric interactions among
agents, humans, and the environment. Collectively, these efforts share the goal of empowering
agents to locate and tracing targets in dynamic environments using multimodal clues.

Despite recent progress, significant challenges remain in applying ego-centric methods to real-world
dynamic traceability tasks. First, task-relevant clues in dynamic environments are often sparse,
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Figure 1: Distinction between existing approaches and the proposed Uni-UG framework. a) illus-
trates methods that rely solely on video understanding without generative support. b) shows ap-
proaches that introduce predefined generative conditions to produce auxiliary cues, thereby aiding
the understanding process. c) illustrates our Uni-UG framework, which uses understanding-derived
cues as controllable generative conditions to refine existing cues, establishing bidirectional synergy
between understanding and generation.

and unevenly distributed, making it difficult for agents to extract critical information and formu-
late effective decision from limited observations. For instance, in post-disaster search-and-rescue, a
UAV may receive only a voice command or a blurry visual cue. Extracting multi-granular seman-
tic information from such weak signals and performing reliable reasoning continues to be a major
challenge. Second, there is a severe shortage of real-world training data, which limits the devel-
opment of robust decision-making models using conventional supervised learning. Automatically
generating supplementary training data from both historical and current observations is therefore es-
sential for improving model performance. Third, most existing methods focus solely on either clue
understanding or clue generation, without establishing a synergistic connection between the two.
This disconnect often leading to inefficient information use and suboptimal or failed navigation in
dynamic environments.

To address these challenges, we propose a Unified Understanding and Generation (Uni-UG) frame-
work, which comprises a Decoupled Understanding Module (DUM) and a Controllable Generation
Module (CGM), as illustrated in Fig 2. Uni-UG tightly integrates the understanding and generation
processes through a shared encoder and a joint training strategy. Specifically, the shared encoder ex-
tracts key features from multimodal sensory inputs and interaction feedback, with temporal attention
mechanisms modeling state evolution in dynamic environments. The DUM decouples these features
to identify the categories and attributes of task-relevant clues, while the CGM produces supplemen-
tary clues based on the decoupled representations and task-specific conditions. Through iterative
interaction, the generated clues are fed back into the DUM, establishing a mutually reinforcing loop
that enhances both components over time. The entire framework is optimized using a joint loss
function that simultaneously improves understanding accuracy and generation quality. Additionally,
we introduce a Direct Preference Optimization (DPO) strategy to guide the clue output distribution
toward higher-quality results, and incorporate a temporal consistency constraint to ensure smooth
progression of feature representations across time. Extensive experiments across multiple datasets
demonstrate the effectiveness of the proposed Uni-UG framework.

Our contributions can be summarized as follows:

• A unified understanding and generation framework for ego-centric tracing is presented, effectively
mitigating the challenges posed by sparse, ambiguous, and often unreliable informative cues,
while enabling robust perception and reasoning in complex dynamic environments.

• The proposed Uni-UG framework consists of a multi-granularity decoupled understanding module
for clue perception and a controllable generation module, with both integrated through parameter
sharing and optimized jointly using direct preference optimization.

• Extensive experiments conducted on multiple public benchmarks consistently demonstrate the
superior effectiveness, robustness, and generalizability of the Uni-UG framework.
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2 RELATED WORKS

2.1 EMBODIED SCENE UNDERSTANDING

Embodied scene understanding studies how agents interact with their environment to gather multi-
modal sensory data for semantic interpretation and decision-making in dynamic settings. Recent
progress has moved research from simulation-based environments to scanned real-world indoor
scenes, incorporating multiple modalities to reduce the sim-to-real gap (Wang et al., 2024b; Hong
et al., 2024). However, these efforts mostly focus on indoor spaces and face challenges when applied
to dynamic outdoor environments. Some recent works (Zhu et al., 2024; Gao et al., 2024) address
outdoor scenarios but mainly concentrate on urban areas with well-defined physical rules.

Large language models have shown promise in interpreting visual inputs through text, yet they re-
quire large-scale data, which is limited in embodied contexts. To overcome this, generative methods
have been applied to create synthetic scenes (Yang et al., 2024a), but these focus on structured indoor
environments and often overlook challenges in unstructured, dynamic outdoor settings, such as the
absence of well-defined physical rules. Another line of work uses generated textual descriptions to
represent scenes and produce prompt-based instructions (Yang et al., 2024b; Kong et al., 2024; Lai
et al., 2024), but these often ignore the physical dynamics critical for real-world tasks applicability.

In contrast, our work addresses dynamic environments with an emphasis on specific target tracing.
Operating under sparse clue constraints, we combine disentangled representation learning with con-
trollable generation techniques to improve perception of scene-level clues. This enables effective
and efficient target search in challenging dynamic world.

2.2 EGO-CENTRIC TRACING IN THE WILD

Recently, UAV tracing has attracted significant research attention. Anderson et al.(Anderson et al.,
2018) first introduced navigation via instruction following in discrete indoor environments. Subse-
quently, the R2R dataset was extended(Jain et al., 2019) by concatenating adjacent trajectories to
generate longer and more complex instructions. In real-world scenarios, multi-turn natural language
communication is both common and essential for effective navigation. To simulate this, Thomason
et al.(Thomason et al., 2020) collected the CVDN dataset featuring human-to-human dialogue in
home environments, tasking agents with navigation based on rich dialogue history. Qi et al.(Qi et al.,
2020) introduced remote object grounding and navigation tasks through multiple related datasets to
further advance this area.

For UAV navigation in complex urban settings, the AerialVLN dataset (Liu et al., 2023) was pro-
posed, containing 100 diverse flight scenarios across 10 major cities with high-resolution panoramic
UAV images. The OpenUAV platform (Wang et al., 2024c) facilitates realistic and scalable UAV
vision-and-language navigation tasks. CityNav (Lee et al., 2024) provides a city-scale aerial VLN
dataset that demands advanced planning, high-level spatial reasoning, and robust decision-making.
AeroVerse (Yao et al., 2024) addresses a critical research gap in UAV embodied world modeling,
significantly enhancing end-to-end autonomous perception, cognition, and action capabilities.

In this work, we focus on first-person UAV trajectory tracing and demonstrate promising results
across multiple datasets using the proposed Uni-UG framework.

3 UNI-UG FRAMEWORK

Autonomous tracing in dynamic environments reflects an agent’s perceptual and decision-making
capabilities. However, sparse informative cues in such settings make it challenging to extract key
features from limited sensory input, hindering tracking performance. Most existing methods treat
cue understanding and generation independently, lacking integration. This limits their ability to fully
model and respond to dynamic scenes.

To overcome this, we propose the Unified Understanding and Generation (Uni-UG) framework,
which jointly optimizes cue understanding and generation in a closed-loop system. This enables
both modules to reinforce each other, improving scene modeling and decision-making. Specifically,
the Decoupled Understanding Module (DUM) uses a shared encoder and temporal attention to ex-
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Figure 2: The proposed Uni-UG framework. Multimodal inputs are first encoded for feature extrac-
tion and processed by the Cue Understanding Module for initial semantic modeling. The Decoupled
Understanding Module identifies critical sparse cues, which condition the Controllable Generation
Module to produce supplementary clues, enhancing overall scene understanding. The two modules
are jointly optimized via direct preference optimization, enabling mutual reinforcement between un-
derstanding and generation, significantly improving environmental modeling and decision-making.

tract and separate multi-granular features from multimodal inputs. These are used to infer latent cue
categories and attributes. The Controllable Generation Module (CGM) leverages the outputs from
DUM along with control conditions to generate supplementary cues, enriching the agent’s scene
representation. Moreover, the two modules are jointly optimized using Direct Preference Optimiza-
tion, reinforcing synergy between understanding and generation, and improving the agent’s object
tracing performance in dynamic environments.

3.1 MULTIMODAL TOKENIZATION

Given the task description Itask and the instruction Iinstr, we first tokenize both using a pre-trained
language tokenizer to obtain the corresponding textual tokens. For multimodal inputs, we adopt the
EVA-CLIP and Q-former to extract visual features. Each image is transformed into a set of tokens,
consisting of one context token that captures global information and 16 content tokens that represent
local details via grid pooling. For other modalities inputs, we apply the same processing pipeline
as used for RGB images to obtain their token representations. Finally, we concatenate all token
types, including image tokens Timg , task description tokens Ttask, and instruction tokens Tinstr, to
construct the final multimodal input token sequence, denoted as Tinput =< Timg, Ttask, Tinstr >.

3.2 DECOUPLED UNDERSTANDING MODULE

In dynamic world, reward cues are often sparse and unevenly distributed. Traditional works strug-
gle to capture their diversity and fail to meet the demands of complex tasks. This project proposes
a continual decoupled understanding method based on multi-granularity representations, which in-
crementally separates features from coarse-grained (e.g., cue existence) to fine-grained (e.g., cue
category) levels. The method progressively enhances the independence and task relevance of each
representation, thereby improving the agent’s ability to interpret dynamic and sparse reward signals.

Specifically, the input multimodal data is first processed through an encoder to obtain initial features
f0, representing the state at the current time step. For features at different levels of granularity
that span coarse to fine semantic details, a multi-layer decoupling strategy is adopted. Features are
decomposed into multiple sub-representations, with each layer focusing on a specific granularity
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level, isolating entangled information, and applying a linear transformation as follows:

fl = Wlfl−1 + bl, (1)

where Wl is the transformation matrix, bl is the bias term, and fl represents the features at gran-
ularity level l.To adapt to environmental dynamics, continual optimization is introduced. Sub-
representations are updated dynamically via orthogonality constraints that prevent feature overlap
and task-oriented loss functions:

Llayer =
∑
l

λl · Ltask(hl(fl), yl) + Lorth(fl), (2)

where hl and yl is the task head and ground-truth label at level l, respectively, λl is the weight coef-
ficient for each layer, Ltask denotes a task loss (e.g., cross-entropy or MSE), Lorth is an orthogonal-
ity constraint promoting disentanglement. To maintain temporal consistency under environmental
changes, we introduce a time-consistency loss:

Ltemporal = ∥ft − ft−1∥2. (3)

The overall loss for DUM is formulated as:

LDUM total = Ldecouple + α · Ltemporal. (4)

where α is the temporal weighting factor. By using multi-granularity representations and continual
decoupling, this method effectively isolates reward cues at different levels, addressing the challenge
of sparsity and providing a solid foundation for downstream decision-making and causal tracing.

3.3 CONTROLLABLE GENERATION MODULE

Sparse reward cues in dynamic environments limit an agent’s ability to make effective decisions
and trace the source of rewards. To address this issue, we design a controllable generation module
(CGM) conditioned on the outputs of the DUM. The CGM module leverages interaction feedback
from the environment to generate fine-grained reward cues, thereby enhancing the agent’s under-
standing of dynamic surroundings. First, given multimodal input data x and interaction feedback g,
we extract their featur representations via:

z = Encx(x), g = Encg(g), (5)

where Enc(·) is feature encoder. Then, using a weighted attention mechanism, the two input are
fused to obtain a joint conditional representation:

c =
∑
i

αi · Enccond(zi, gi), (6)

where αi is attention weights, Enccond is the conditional encoder. A diffusion model with a U-Net
architecture is used as the generator to iteratively refine and produce new reward cues based on the
fused multi-granular features:

ŷ ∼ pθ(y | c), (7)

where pθ is the conditional generation distribution, and ŷ is the generated cue constrained to match
both the environment and control conditions. The loss for controllable generation is defined as:

Lgen = β1 · LMSE(ŷ, y) + β2 · Lcond(ŷ, c), (8)

where LMSE is the pixel-level mean squared error, Lcond ensures consistency with control conditions
(e.g., cross-entropy), β1, β2 are balancing coefficients.

In summary, by integrating environmental interaction feedback with controllable generation, this
produces richer informative reward cues, guiding agents to better understand their relationship with
the environment and improving decision-making performance.
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3.4 UNIFIED UNDERSTANDING-GENERATION

In the preceding modules, the DUM first employs disentangled representation learning to extract
multi-granular cue features. These features are then linearly transformed and used as conditions for
the CGM to generate reward-related cues via a diffusion model. However, a key challenge remains:
how to jointly optimize DUM and CGM to enable mutual enhancement between understanding
and generation. To address this, we adopt Direct Preference Optimization (DPO) to jointly train
both modules, encouraging the agent to effectively model sparse cues in dynamic environments and
thereby improve overall performance.

Following the previous modules, we have already obtained the shared input feature representation
f , multi-granularity disentangled representations {f1, f2, . . . , fL}, and the output from the DUM:

o = Decoder(fL), o = {ĉ, â}, (9)

where ĉ and â denote the predicted class and attributes at the finest granularity level, respectively, and
the decoder parameters remain fully trainable. These outputs from the DUM serve as informative
conditional signals to guide the subsequent generation process:

ŷ ∼ pθ(y | f, ĉ, â), (10)

where the generator takes the shared features f and the understanding output ĉ, â as input to generate
new reward cues, where pθ is the conditional generation distribution. To ensure consistency between
understanding and generation while maintaining the independence of disentangled representations,
we formulate a unified joint optimization objective as follows:

Ljoint = Lgen(y, ŷ) + LDUM total + Lorth, (11)

where Lgen is the generation loss (e.g., MSE or diffusion-specific loss), LDUM total is the understand-
ing loss (e.g., classification and attribute prediction), Lorth is an orthogonality loss to maintain the
disentanglement of features. To optimize the joint training of the DUM and CGM modules, DPO is
introduced as strategy:

LDPO = log
σ((s+ − s−)/τ)

1 + σ((s+ − s−)/τ)
, (12)

where s+, s− represent the scores for preferred and less preferred cues, τ is the temperature parame-
ter, σ(·) is the Sigmoid function. This encourages the model to assign higher generation probabilities
to superior reward cues over inferior ones. The DPO is computed relative to a reference model (e.g.,
a pre-trained baseline). The final loss for the unified understanding-generation framework is defined
as follows:

Ltotal = Ljoint + γ · LDPO, (13)

where γ is the weighting coefficient for preference optimization. Moreover, the generated reward
cues ŷ can be fed back as additional input for the next round of DUM, forming a closed-loop learning
mechanism that enhances adaptive performance over iterations by refining feature representations
and aligning them more closely with task objectives.

In conclusion, the proposed Uni-UG framework establishes a unified and adaptive mechanism that
not only generates fine-grained reward cues from interpreted information but also continuously re-
fines its understanding by leveraging these generated cues in return. This bi-directional synergy
creates a closed-loop semantic modeling process, enabling more robust, explainable, and accurate
tracing, perceptual reasoning, and decision-making in dynamic real-world environments character-
ized by sparse and ambiguous reward cues.

4 EXPERIMENTS

4.1 DATASET

AirVLN (Liu et al., 2023) is a dataset for aerial VLN, where agents follow language instructions
to navigate from a start point to a goal. It spans 25 city-scale environments, including downtowns,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of the proposed Uni-UG framework on the UrbanVideo-Bench dataset.
Method Avg. Recall Perception Reasoning Navigation

TCap SeR OR ScR SP/EP Prox Dur LandP GlD CMap Cau Cnt Assoc PEval HighP ActGen
Gemini-1.5-Flash
(Team et al., 2024) 40.5 39.7 51.8 61.7 79.3 61.3 47.1 59.8 37.8 28.7 47.9 60.0 42.4 20.0 43.3 32.6 34.4

Gemini-1.5-Pro
(Team et al., 2024) 42.5 58.6 61.6 65.0 72.1 66.2 66.4 63.6 37.4 33.8 46.0 63.6 46.2 23.0 38.8 43.8 31.9

Gemini-2.0-Flash
(Google, 2025) 38.3 47.9 58.9 63.3 75.7 57.0 66.4 47.7 27.9 27.8 45.3 62.7 24.2 17.8 39.2 48.4 30.5

GPT-4o-mini
(OpenAI, 2025) 36.5 33.0 53.6 48.3 59.5 56.3 69.7 51.5 33.3 31.3 42.4 65.5 47.7 22.9 30.8 57.5 25.4

GPT-4o
(OpenAI, 2025) 43.6 47.6 58.9 65.0 67.6 61.3 63.0 47.7 36.8 42.4 52.8 66.4 44.7 45.8 34.2 67.8 33.8

Qwen-VL-Max-latest
(Cloud, 2025) 45.5 44.9 70.5 64.2 75.7 73.9 78.2 43.9 44.8 44.7 61.1 77.3 49.2 23.9 38.8 70.0 29.6

LLaVA-NeXT-Video-7B
(Liu et al., 2024a) 38.6 55.7 39.3 43.3 61.3 40.8 58.8 52.3 49.5 16.7 26.8 44.5 20.5 58.7 36.6 52.3 19.2

Phi-3.5-vision-instruct
(Abdin et al., 2024) 38.7 67.0 57.1 57.5 64.9 45.1 48.7 45.5 49.2 17.0 52.1 51.8 34.8 13.9 33.2 59.7 15.6

Kangaroo
(Liu et al., 2024b) 39.2 27.0 66.1 60.8 69.4 53.5 75.6 57.6 35.5 37.2 60.0 64.5 42.4 19.1 32.5 41.9 32.4

InternVL2-2B
(Chen et al., 2024) 27.6 19.2 29.5 37.5 55.9 22.5 57.1 37.9 19.3 24.6 39.2 33.6 45.5 33.5 29.2 37.6 20.9

InternVL2-4B
(Chen et al., 2024) 28.1 19.2 37.5 33.3 62.2 24.6 66.4 42.4 23.2 26.5 32.8 36.4 35.6 24.8 29.5 32.2 22.1

InternVL2-8B
(Chen et al., 2024) 28.1 23.4 23.2 35.0 52.3 22.5 58.0 44.7 23.1 27.4 28.3 33.6 45.5 27.0 31.5 35.7 21.4

Qwen2-VL-2B-Instruct
(Wang et al., 2024a) 31.9 29.9 54.5 30.8 57.7 24.6 69.7 47.7 22.0 22.1 64.2 46.4 35.6 13.5 28.8 44.2 27.3

Qwen2-VL-7B-Instruct
(Wang et al., 2024a) 36.2 36.5 50.9 47.5 65.8 47.2 52.1 48.5 25.1 28.4 55.8 55.5 29.5 11.7 33.9 59.3 32.7

Uni-UG (Ours) 39.6 37.1 52.0 48.3 66.7 45.8 60.4 51.5 24.8 27.4 60.1 58.7 32.4 13.8 35.2 63.6 33.4

*Note: Trajectory Captioning (TCap), Sequence Recall (SeR), Object Recall (OR), Scene Recall (ScR), Start/End Position (SP/EP), Proximity
(Prox), Duration (Dur), Landmark Position (LandP), Goal Detection (GD), Cognitive Map (CMap), Causal (Cau), Counterfactual (Cnt),
Association (Assoc), Progress Evaluation (PEval), High-level Planning (HighP), Action Generation (ActGen).

parks, and villages, and features over 870 distinct objects. A total of 8,446 UAV trajectories are
collected, each paired with three natural language instructions. In total, the dataset provides 25,338
instructions, averaging 83 words in length and using a vocabulary of 4,470 unique words.

CityNav (Lee et al., 2024) offers 32,637 human-demonstrated trajectories linked to 5,850 real-world
objects like buildings and vehicles. Collected via a web-based 3D simulator integrated with MTurk,
it supports large-scale aerial VLN research across varied urban and suburban environments and is
split into train, validation seen/unseen, and test unseen sets.

UrbanVideo-Bench (Zhao et al., 2025) contains 1,547 real-world drone videos (1280×720), ranging
from 10 seconds to 10 minutes across diverse urban and natural settings. The dataset captures
complex 3D flight patterns and provides over 5,200 multiple-choice questions, covering tasks from
low-level perception to high-level reasoning and navigation.

4.2 EVALUATION METRICS.

Drawing on commonly used evaluation metrics in the VLN domain (Liu et al., 2023; Lee et al.,
2024; Zhao et al., 2025; Anderson et al., 2018), this paper adopts several sub-metrics, including
Success Rate (SR), Oracle Success Rate (OSR), Success weighted by Path Length (SPL), and Navi-
gation Error (NE). Specifically: SR: Measures the proportion of tasks in which the UAV successfully
reaches the target location within a predefined tolerance range. OSR: Measures whether the UAV
reaches any point along the optimal trajectory, even if it does not exactly reach the final destina-
tion, accounting for partial success cases. SPL: Evaluates both the success of task completion and
the efficiency of the path taken, encouraging shorter and more optimal navigation paths relative to
ground truth. NE: Represents the average Euclidean distance between the UAV’s final position and
the target location, quantifying precision errors accurately.

4.3 IMPLEMENTATION DETAILS

In all experiments, we adopted encoder configurations consistent with those used in the respective
baseline models for each task-specific dataset. For general models such as Seq2Seq (Anderson
et al., 2018) and CMA (Vaswani et al., 2017), training was performed using the Adam optimizer
for 5 epochs, with a learning rate of 1.5 × 10−3 and a batch size of 12. For the MGP model (Lee
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Table 2: Performance of the proposed Uni-UG framework on the AerialVLN dataset.
Validation Seen Validation Unseen Test UnseenMehtod NE ↓ SR ↑ OSR ↑ SDTW ↑ NE ↓ SR ↑ OSR ↑ SDTW ↑ NE ↓ SR ↑ OSR ↑ SDTW ↑

LingUNet (Misra et al., 2018) 383.8 0.6 6.9 0.2 368.4 0.4 3.6 0.9 399.8 0.1 3.1 0.1
Seq2Seq (Anderson et al., 2018) 146.0 4.8 19.8 1.6 218.9 2.3 11.7 0.7 214.6 2.2 9.4 0.7

CMA (Vaswani et al., 2017) 121.0 3.0 23.2 0.6 172.1 3.2 16.0 1.1 178.5 3.9 13.1 1.4
Seq2Seq-DA (Anderson et al., 2018) 85.5 9.9 24.1 4.5 143.5 4.0 10.9 0.7 140.2 3.5 9.5 0.6

CMA-DA (Vaswani et al., 2017) 92.2 9.9 26.5 3.7 122.7 4.5 13.9 1.0 125.4 4.3 14.8 1.2
LAG (Liu et al., 2023) 90.2 7.2 15.7 2.4 127.9 5.1 10.5 1.4 128.3 4.5 11.6 1.3

Uni-UG (Ours) 88.6 8.0 22.4 3.9 122.5 5.2 14.1 1.3 123.6 4.3 15.0 1.4

Table 3: Performance of the proposed Uni-UG framework on the CityNav dataset. Learning-based
models are evaluated with shortest path (SP) or human demonstrations (HD) trajectories.

Validation Seen Validation Unseen Test UnseenMehtod NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
Seq2Seq w/ SP (Anderson et al., 2018) 148.4 4.52 10.61 4.47 201.4 1.04 8.03 1.02 174.5 1.73 8.57 1.69
Seq2Seq w/ HD (Anderson et al., 2018) 257.1 1.81 7.89 1.58 317.4 0.79 8.82 0.61 245.3 1.50 8.34 1.30

CMA w/ SP (Vaswani et al., 2017) 151.7 3.74 10.77 3.70 205.2 1.08 7.89 1.06 179.1 1.61 10.07 1.57
CMA w/ HD (Vaswani et al., 2017) 240.8 0.95 9.42 0.92 268.8 0.65 7.86 0.63 252.6 0.82 9.70 0.79

MGP w/ SP (Lee et al., 2024) 75.0 6.53 22.26 6.27 93.4 4.32 15.00 4.24 109.0 4.73 17.47 4.62
MGP w/ HD (Lee et al., 2024) 59.7 8.69 35.51 8.28 75.1 5.84 22.19 5.56 93.8 6.38 26.04 6.08

Uni-UG (Ours) 55.4 9.10 36.62 8.61 71.3 6.02 23.74 5.94 89.9 6.75 29.18 6.70

et al., 2024), we followed the original paper’s setup, employing the AdamW optimizer for 10 epochs
with a lower learning rate of 1.0 × 10−3 and a smaller batch size of 8. For large-scale pre-trained
models involved in our experiments, we used their official APIs for inference or fine-tuning. All
experiments were conducted on 6× NVIDIA A100-40G GPUs.

4.4 QUANTITATIVE RESULT

To validate the effectiveness of the proposed Uni-UG framework, we conducted comparative ex-
periments against several mainstream methods, including Gemini-1.5 (Team et al., 2024), GPT-
4o (OpenAI, 2025), Qwen-VL-Max-latest (Cloud, 2025), InternVL2 (Chen et al., 2024), and others,
As shown in Tab 1, the performance of different large models on the UrbanVideo-Bench dataset
varies significantly. We selected Qwen2-VL-7B-Instruct (Wang et al., 2024a) as the LLM API for
our experiments. The results indicate that Uni-UG achieves substantial improvements across all sub-
metrics as well as the overall performance metric. We also observe that the model’s performance
does not match that of larger models such as GPT-4o (OpenAI, 2025), primarily due to differences
in parameter scale. Given the limitations in computational resources, we conducted our experiments
using only Qwen2-VL-7B-Instruct (Wang et al., 2024a). Despite this, the results remain compelling,
further demonstrating the effectiveness of the proposed Uni-UG framework. Furthermore, the results
on the AerialVLN dataset, presented in Tab 2, clearly demonstrate that the proposed framework out-
performs other baseline methods on most sub-metrics, showcasing superior navigation and environ-
mental understanding capabilities. In addition, we evaluated our framework on the newly released
CityNav dataset. Although the simulation platform for this dataset is not yet publicly available, the
original data can be accessed. As shown in Tab 3, Uni-UG also delivers strong performance on
CityNav. It is worth noting that our method utilizes human demonstration trajectories in this setting.
In summary, the proposed Uni-UG framework achieves consistently strong results across multiple
challenging benchmark datasets, providing solid evidence of its effectiveness in dynamic world.

4.5 ABLATION STUDIES

In this subsection, we present a comprehensive analysis of the contributions made by each compo-
nent within the Decoupled Understanding Module (DUM) and the Controllable Generation Module
(CGM), using the AerialVLN dataset as a representative case study. As shown in Table 4, removing
either the DUM (w/ DUM) or the CGM (w/ CGM) results in a substantial decline in performance
across both aggregate and task-specific metrics. This clearly indicates that both modules are inte-
gral to the overall effectiveness of the Uni-UG framework. In particular, the absence of the CGM
significantly limits the framework’s capacity for detailed understanding, as the Uni-UG model must
then rely solely on Qwen2-VL-7B-Instruct (Wang et al., 2024a) to produce coarse-grained scene de-
scriptions, without the benefit of context-aware cue generation. This simplification undermines the
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Table 4: The impact of different modules within the Uni-UG on performance in the AerialVLN.
Validation Seen Validation Unseen Test UnseenAerialVLN-S NE ↓ SR ↑ OSR ↑ SDTW ↑ NE ↓ SR ↑ OSR ↑ SDTW ↑ NE ↓ SR ↑ OSR ↑ SDTW ↑

w/ DUM 101.4 7.4 22.0 3.7 129.3 4.8 13.5 1.3 126.6 4.1 14.0 1.1
w/ CGM 95.1 7.7 21.2 3.5 126.4 4.9 12.3 1.2 127.4 4.0 12.9 1.2

Uni-UG (Ours) 88.6 8.0 22.4 3.9 122.5 5.2 14.1 1.3 123.6 4.3 15.0 1.4

Figure 3: Visualization results. Subfigures (a) and (b) represent urban and rural scenes in a sim-
ulated environment, respectively, while (c) shows a real-world urban scene. The visualizations
demonstrate that the Uni-UG framework is capable of capturing critical sparse cues and enabling
accurate decision-making and execution by the agent.

agent’s ability to model complex, dynamic environments. These ablation results highlight not only
the individual importance of the DUM and CGM, but also the synergistic effect achieved through
their integration. Collectively, they validate the design choices underlying Uni-UG and demonstrate
its robustness in addressing the challenges of UAV Tracing navigation in dynamic real-world scenar-
ios. Overall, the ablation results clearly demonstrate the effectiveness and necessity of the Uni-UG
framework and its individual modules in handling dynamic environment tasks.

4.6 VISUALIZATION

To further validate the effectiveness of the Uni-UG framework, we conducted comprehensive visu-
alization experiments across a diverse set of scenarios, including simulated urban and rural environ-
ments as well as complex real-world urban scenes. As shown in Fig. 3, panels (a) and (b) correspond
to the simulated urban and rural settings, respectively, while (c) depicts a real-world urban scene.
The results clearly demonstrate that Uni-UG can accurately identify and capture critical sparse cues
in dynamic and visually complex environments, thereby substantially enhancing the agent’s capa-
bility to understand its surroundings and make more informed, context-aware decisions.

5 CONCLUSION

In this work, we propose a unified understanding and generation (Uni-UG) framework to address the
challenges faced by agents in dynamic world, where sparse cues hinder effective decision-making
and execution. Uni-UG comprises a Decoupled Understanding Module (DUM) and a Controllable
Generation Module (CGM). The DUM is designed to extract critical cues from dynamic scenes
and provide them as control conditions for the CGM, which in turn generates richer cues to further
enhance the agent’s understanding of the environment. To enable effective synergy between the
two modules, we adopt a DPO strategy for joint training, allowing understanding and generation to
reinforce each other. Extensive experiments on multiple datasets demonstrate the effectiveness of
the proposed Uni-UG framework.

9
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