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Abstract

Abstract Visual Reasoning (AVR) entails discerning latent patterns in visual data
and inferring underlying rules. Existing solutions often lack scalability and adapt-
ability, as deep architectures tend to overfit training data, and static neural networks
fail to dynamically capture diverse rules. To tackle the challenges, we propose a
Dynamic and Scalable Reasoning Framework (DSRF) that greatly enhances the
reasoning ability by widening the network instead of deepening it, and dynami-
cally adjusting the reasoning network to better fit novel samples instead of a static
network. Specifically, we design a Multi-View Reasoning Pyramid (MVRP) to
capture complex rules through layered reasoning to focus features at each view
on distinct combinations of attributes, widening the reasoning network to cover
more attribute combinations analogous to complex reasoning rules. Addition-
ally, we propose a Dynamic Domain-Contrast Prediction (DDCP) block to handle
varying task-specific relationships dynamically by introducing a Gram matrix to
model feature distributions, and a gate matrix to capture subtle domain differences
between context and target features. Extensive experiments on six AVR tasks
demonstrate DSRF’s superior performance, achieving state-of-the-art results under
various settings. Code is available here: https://github.com/UNNCRoxLi/DSRF.

1 Introduction

Abstract Visual Reasoning (AVR) aims to identify latent patterns from visual clues and then derive
underlying rules [1]]. It has been widely used for human IQ tests [2]. Recently, AVR has become a
common benchmark for evaluating the reasoning ability of LLMs [3H5]. Among various AVR tasks,
Raven’s Progressive Matrices (RPMs) are most popular [6-10], where the question set is typically
a 2x3 or 3x3 image matrix, with each row/column following a common rule and the bottom-right
slot to be filled in. RPMs reduce language and cultural barriers by creating rules using symbols and
geometric shapes, requiring pure reasoning ability without relying on prior knowledge.
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Figure 1: The DSRF is scalable, as it maps high-level abstract visual features into multiple views and
extracts complex rule from these views through a layered pyramid, and it is dynamic, as each DDCP
is equipped with various dynamic mechanisms to capture task-specific rules within each view.

Existing RPM solvers [9} [11H17] often establish relations between images through a perception
module to encode visual features and a reasoning module to capture underlying rules. Reasoning
modules are often built from shallow networks, which are much smaller than perception modules,
greatly limiting their reasoning ability. As the visual features extracted from AVR tasks are rather
abstract, and the reasoning rules are often concise and intuitive, stacking deep reasoning modules
may increase the risk of overfitting [[18]. Recently, a deeper reasoning network is introduced by
incorporating reasoning blocks at multiple perceptive fields and aggregating the reasoning results
from multiple layers [19]. However, shallow visual features lack the information needed for effective
reasoning. The lack of scalability of reasoning networks compared to the well-established scalability
in visual perception networks greatly limits the ability of existing RPM solvers.

To tackle this challenge, we propose a Multi-View Reasoning Pyramid (MVRP), a scalable layered
reasoning pyramid. As shown in Fig. [I] the multi-view mapping enables the model to easily scale
up to cover more attribute combinations analog to reasoning rules. In addition, rules in RPMs are
often human-understandable, concise and intuitive. Deep reasoner in existing models [[15} [19] may
potentially overfit the training data. Furthermore, images often contain a huge number of feasible rules
across diverse attributes, e.g., Shape, Size, Position, Color, and Number [6} 20]. To effectively
capture these rules, instead of deepening the network, the proposed MVRP focuses on widening the
network to model more complex rules.

Another challenge is that previous methods [9} [15, (17, [19] often employ static reasoning networks
built from convolutional neural networks (CNNs) or multi-layer perceptrons (MLPs), in which static
filters and network weights are derived from the training data and faithfully applied to novel test
samples, expecting a minimum domain shift. These static reasoning modules greatly limit their
adaptability to task-specific demands in novel application scenarios. Thus, it is critical to design a
dynamic task-adaptive mechanism to flexibly handle diverse rule sets in novel test scenarios.

To dynamically model underlying relations and strengthen reasoning ability over tremendous rules,
we propose a Dynamic Domain-Contrast Prediction (DDCP) block, with three dynamic aspects in
network design. 1) The gating mechanism in DDCP, helping the network adapt to various input
features and automatically highlight relevant features for rule construction. 2) Dynamic modeling of
domain differences by a novel Gated Attention Reasoning Block (GARB). A Gram matrix derived
from self-correlation is designed to model the distribution of context features and another for target
features. The GARB dynamically contrasts the domain difference in three aspects, and it is in turn
applied to highlight the context features for better constructing the rules. As shown in [21]], the GARB
allows our model to flexibly adjust its parameters following the input, thereby improving its ability to
handle varying conditions. 3) Dynamic gating in GARB for highlighting domain difference. The



domain difference is complex and diverse, in which irrelevant features may mislead the reasoning
process. The dynamic gate highlights the domain difference related to context features and target
features, adaptively focusing on relevant features for establishing the underlying rules.

Our contributions can be summarized as follows: 1) The proposed Dynamic and Scalable Reasoning
Framework (DSRF) solves RPMs in a scalable and dynamic manner. 2) The proposed MVRP well
captures complex rules through a layered reasoning pyramid, which could scale up the network
easily by mapping high-dimensional features into different views. 3) The proposed DDCP greatly
enhances the generalization capability of the reasoning networks through dynamic domain modeling
and dynamic gating designed in GARB. 4) Extensive results on six AVR datasets show that DSRF
significantly outperforms state-of-the-art models and generalizes well on novel tasks.

2 Related Work

Abstract Visual Reasoning has recently attracted growing research interests. In particular, a lot
of efforts have been made to enhance the reasoning capabilities of large language models [3} |4].
AVR tasks can be broadly categorized as follows [1]]. 1) RPM tasks challenging the subject to
identify the right answer according to the underlying rules in a question panel, including RAVEN [6],
I-RAVEN [8]], RAVEN-FAIR [9], PGM [7]], Unicode [[10], and many others [8} 9]]. 2) Same-different
tasks such as SVRT [22] to discern similarities and differences according to underlying rules. Recently,
it is extended to the CVR task [20] and MC?R task [[18]], where models must identify one or more
outliers from a group of images. 3) Other research directions in AVR, e.g., Bongard Problems [23]
consisting of abstract shapes and rules for assessing reasoning methods in scenarios with limited
samples; Arithmetic Visual Reasoning [24] combining numerical understanding with visual elements;
Relations Game [25] centered on detecting explicit spatial-relational rules among objects in images.

AVR models often consist of a perception module and a reasoning module. As most AVR tasks
are built from regular shapes, relatively shallow networks are often employed in AVR models, e.g.,
RelBase [12], MRNet [9], PredRNet [15], AlgebraicMR [13] and SCAR [17]. Recently, in view of
excellence of transformers in capturing the long-range global interaction, HCV-ARR [14], DRNet [16]
and HP?AI [19] incorporate both transformer branch and CNN branch to enhance visual features.

Traditionally, AVR models are often designed to capture the row- and/or column-wise similarities
using addition, subtraction, and dot product operations, e.g., MRNet [9], DRNet [16] and HCV-
ARR [14], or establish the weights for images to model the underlying relations [[12} [13}[17]]. Recent
works focus on embedding the abstract rules into the reasoning network through a “predict-and-
verify” paradigm [[15, 119, [18]]. Despite the rapid developments, existing AVR models often lack the
scalability to boost their reasoning capability, e.g., both MRNet [9] and HCV-ARR [14] focus on
capturing row and column similarities, leading to a shallow reasoning network that greatly restricts
the scalability. Recently, PredRNet [15] and HP2AI [19] scale the network by stacking the reasoning
blocks, their models have the problem of overfitting after stacking just four reasoning blocks. The
lack of scalability greatly hinders the development of more general and more powerful reasoning
models. Furthermore, existing models such as PredRNet [[15]], R3PCL [18], DBCR [26], DARR [27]
and HP2AI [[19] often fit a static reasoning network to underlying rules, limiting the reasoning ability
and generalizing poor on novel data. In this work, we propose DSREF to tackle the challenge of
dynamically and comprehensively reasoning over complex rules in an easily scalable manner.

3 Proposed DSRF

3.1 Overview of Proposed DSRF

Formally, the RPM problem is defined as (Q; A), where @ is the question matrix, typically consisting
of 3x3 or 2x3 images of size H x W excluding the last slot, and A is the set of candidate answers.
We take the most popular AVR task, the RAVEN problem [[6] of 3 x 3 images as an example, where
Q={Q1,Q2...,Qs}tand A = {A;, As,..., Ag}. The target is to select one image from A
to fill in the missing slot of the question panel, ¥ = Re, (Po,((Q; A); ©,); ©,), where g is the
predicted answer, Re, () and Pe,, (+) are the reasoning module and perception module, respectively.

The overview of DSRF is shown in Fig.[2] We utilize four ResNet blocks [[15] as the perception
module. Other backbones can also be applied as shown in Sec. For scalable reasoning, the



proposed MVRP incorporates a layered pyramid to encapsulate the composition structure of complex
rules, and a multi-view mapping to provide a convenient mechanism to map features into different
views, easily widening the network to cover tremendous complex rules. To handle the domain
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Figure 2: Overview of proposed DSRF-Small. Visual features are mapped into multiple views,
and a DDCP block highlights the domain differences and dynamically encapsulates the underlying
rules through GARBSs in each view. The MRM explores rule combinations across different levels of
granularity. All the views are fused and passed to the next pyramid level, progressively refining rules.

drift between context and target images, a DDCP block is designed in each view, where a GARB
encapsulates the abstract rules under the “predict-and-verify” paradigm [18]], and highlight the
domain difference through dynamic gating and dynamic domain contrast. Additionally, a convolution
gate [28]] is designed to dynamically highlight the most relevant rules in a view. To better comprehend
complex rules, a multi-granularity rule mixer (MRM) is designed to explore rule combinations
through channel-wise, token-wise, sample-wise and row-wise feature mixing.

3.2 Multi-View Reasoning Pyramid

Multi-View Mapping: The MVRP is structured as a layered reasoning pyramid, where each layer
employs a multi-head mechanism to map the features into different views, each representing a different
group of attributes. As a result, different views focus on distinct combinations of attributes, and
complex rules can be constructed layer-by-layer through the reasoning pyramid. More importantly,
by mapping into more views, the proposed method can easily enlarge the network to capture rich
rules. Specifically, consider layer [ in the pyramid with H views, the mapping M is defined as,

ViV, Vi) = M(X'), X! € ROV e RT, (1)

where X' represents the input features of layer [ and V,f represents the h-th view of layer [, T is the
token size, C' and C" denote the number of channels at layer [ and the h-th view, respectively.

Reasoning Pyramid: The layered pyramid built from multi-view features aims to encapsulate
the complex reasoning rules. Formally, denote f[l)’[})lcp() as the function of DDCP for the h-th view
at layer [, which dynamically analyzes the domain difference between context and target features

in each view. Denote ]:li,}ﬁM() as the function of MRM, which investigates rule combinations via
multi-granular feature mixing. The output features for the h-th view at the [-th layer are obtained as,

Vil = Rt (Fopcp (Vi) @)

We aggregate the features from all views for layer / as P! = Zthl W,ll V}f, where W}lL represents the
weight matrix for the h-th view at layer [. By aggregating the multi-view features, the model captures
a rich set of rule combinations from different views. Then, as the features pass through consecutive
layers, the model gradually improves its understanding of complex rules.
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Figure 3: Block diagram of GARB. Techniques including Gram matrix for modeling feature distribu-
tion, learnable weights, gating mechanism and attention mechanism enhance dynamic reasoning.

Discussion of Scalability:  Deep networks, while powerful, are prone to overfitting [29] [30].
Typically as abstract rules are concise and intuitively defined for reasoning tasks, deep reasoning
networks may easily overfit [[15, [19]]. Instead of common practice of deepening the network in visual
recognition, the MVRP expands the network by scaling up the number of views to encompass a broad
set of attribute combinations. As shown later in the experiments, the model generalizes better on
Out-Of-Distribution (OOD) settings and reasons better over the complex rules in many datasets.

Specifically, we design three pyramids with small, medium and large configurations, with a pyramid
structure of “2-1", “4-2-1", and “8-4-1", where each number represents the number of views in
each layer. This progressive increase of views enables scalability by covering more combinations of
attributes. As shown in experiments, all three models, DSRF-S, DSRF-M, and DSRF-L, achieve
excellent reasoning accuracy across various settings on different datasets. The large model DSRF-L
performs best without overfitting, but at a higher computational cost.

3.3 Dynamic Domain-Contrast Prediction Block

The proposed DDCP block is built on the “predict-and-verify” paradigm [18]. Given features { F; €
RT*C" }?:1 for the three images, we treat the first two Fy, F5 as the context and F3 as the target, the

goal is to derive a prediction function R that minimizes the prediction error, F¥ = Fy — R(Fy, Fy),

arg%ninHFg, —R(F, B)|]* 3)

By doing so, R could progressively capture the underlying rules. Fig. 2 shows that Gated Attention
Reasoning Block (GARB) serves as the core reasoning module, which leverages self-correlation
to model the distributions of context and target features for dynamic reasoning. Note that for
RAVEN problems [6]], the same reasoning network R(-) is applied across three rows to ensure the
rule consistency. Inspired by [28]], to further highlight the critical rule information, we employ a
convolutional gate as shown in Fig.[2]to selectively emphasize relevant features while suppressing
noisy or irrelevant rules. As a result, DDCP enhances the model’s adaptability and generalization by
allowing dynamic rule hypothesis and validation, effectively handling complex and diverse rule sets.

3.4 Gated Attention Reasoning Block

The proposed GARB is the core reasoning module to dynamically reason over a large number of
rules. As shown in Fig.[3] we resort to the attention mechanism [31H33]] and gate mechanism [31} [28]
to enhance the dynamic nature of the reasoning module. For illustration, we use the first row as an
example. We first linearly project the target features and context features as in [28]],

Fi=F/(F;), F'=Fps({F1,F2}), F‘=FF), F°=F(F, ©)

where F'¢, F¥ and F? are query, key, and value matrices, respectively, }'lq, ]—'lk and F} are three
corresponding linear projections, and Fpg is a Down-Sample function.



Following [34], we utilize the Gram matrix derived from the self-correlation to model the distribution
of context features and target features, and derive the domain-difference features A? e RTXT 4g,

1
VCh

where ® denotes Hadamard product, W7 and W denote learnable weights, o(-) denotes a sigmoid
function to scale the learnable weights into [0, 1] for learning stability. We use two Gram matrices

FiFT and FF* FkT derived from the self-correlation for modeling the feature domain [35]], and
hence effectively capture the context and target feature distributions. Moreover, we introduce learnable
parameters W7 and W* to be applied on the Gram matrices to dynamically highlight the most
relevant context and target features, improving efficiency and avoiding overfitting as illustrated in [29].
The domain difference A? captures the distinctions between context features and target features,
which is applied on F'V at a later stage to highlight variations that are essential for distinguishing
contextual dependencies from target-specific characteristics. To further capture finer-grained domain
differences between context and target features, we introduce two auxiliary branches A‘® and A°?,

A = AY0 o(FIMY); A = A © o(FFM©), (6)

where Mt € RE"*T and M¢ € RE" <7 are learnable matrices, which helps highlight the important
domain-difference features relating to F¢ and F*, respectively. o(F¢M?) and o(F*M¢) can be
treated as gating matrices. As they depend on the input features, their dynamic nature helps the model
to modulate its focus effectively to capture subtle relational patterns specific to each input which
would be missed otherwise, as pointed out in [31]]. Finally, the predicted features F'? are obtained as,

FP — ]:Linear((o'(lad) + U(itd) + O_(A\cd))Fv)- (7
—_—— —— e —

Al = — (oW o (FIFTT) — (W) o (FFFH)), §)

dynamic dynamic dynamic

The three terms are all dynamic and adaptable to the inputs so that the model could flexibly adapt to
task-specific reasoning rules, thereby equipping it with enhanced reasoning capabilities compared to
merely learning static mapping relationships [18/[19]. However, relying solely on dynamic parameters
may lead to training instability, as the parameters continuously drift. We hence incorporate static
linear and convolutional layers to ensure that the features are mapped into a relatively stable space.

3.5 Multi-granularity Rule Mixer

To better establish the reasoning rules, we propose the MRM to explore combinations of rules through
multi-granular rule mixing, thereby enhancing the feature interaction. Specifically, denote the features
after DDCP in the h-th view of layer [ as F}. To mix F} on multiple levels of granularity, we first

adopt a channel-wise mapping F-" and a token-wise mapping .7-"tl " in parallel at the fine-grained
feature level to capture rule combinations across channels and tokens, respectively,

M;, = FOME) + F (). ®
We then apply a coarser row-wise mapping F" and a sample-wise mapping F>" to further refine
the rules, yielding an integrated feature map V}! = Feony (FL(FLH(M]}))), where the convolution

Fconv combines these relationships. By utilizing multi-granularity mapping, the model refines the
complex rules from various perspectives and granularity and hence captures more rule combinations.

4 Experimental Results

4.1 Experiment Settings

DSRF is compared with 16 state-of-the-art models, WReN [[7]], CoPINet [36]], SCL [37]], SRAN [&]],
DCNet [38]], MRNet [9], HCV-ARR [14], AlgeMR [13], ARII [39]], PredRNet [[15]], STSN [40],
SCAR [17]], DRNet [16], TRIVR [41]], HP2AI [19] and Slot Abstractors [42]] on 6 RPM datasets,
namely RAVEN [6]], [-RAVEN [8], RAVEN-FAIR [9], PGM [7], Unicode Analogies (UA) [[10] and
RPM-like Video Prediction (RVP) [41]]. Unless otherwise stated, results of compared methods are
obtained using the source codes provided by the authors. We follow the standard evaluation protocol
in [6,8H10]. The input image size is 80 x 80. No other form of auxiliary supervision is incorporated
during training. The Adam optimizer is applied with a learning rate of le-3 and weight decay of le-5.
The batch size is set to 128. More details are provided in Appendix.



Table 1: Comparisons on RAVENS [6, 8} 9]]. Other results are obtained from their original papers.

Models Avg. O-RVN I-RVN RVN-F
MRNet (cvpr’21) [9] 82.2 84.0 81.0 81.6
HCV-ARR (aaar2zs3) [14] 92.2 87.3 93.9 954
AlgeMR (cvpr23) [13] 93.5 92.9 93.2 94.3
SCAR aAAr24) [17] 93.8 92.8 94.7 93.9
PredRNet acmr23) [15] 96.5 95.8 96.5 97.1
DRNet (aaar24) [16]] 97.4 96.9 97.6 97.6
HP2AI (acM M 24) [19]] 98.9 98.8 99.4 98.6
DSRF-S (Ours) 98.7 98.6 98.8 98.8
DSRF-M (Ours) 99.2 99.1 99.4 99.0
DSRF-L (Ours) 99.2 99.1 99.4 99.1

Table 2: Comparison on RAVENs under OOD settings [6l I8} 9]
Train on O-RVN Train on I-RVN Train on RVN-F
I-RVN RVN-F O-RVN RVN-F O-RVN I-RVN \

Models Avg G ™M

MRNet (cver>21) [9] 7577 65.8 81.2 76.5 78.6 78.8 73.4 3.58 4.96
HCV-ARR (aaarz3) [14] 87.3 79.4 91.9 81.4 89.4 94.1 87.3 8.70 7.72
SCAR (aaar29) [17] 90.7 84.7 95.9 91.9 94.5 91.3 85.6 044 0.55
HP?AI acmmm24) [19] 92.3 87.7 96.9 89.9 94.0 95.3 90.0 |12.82 6.38
PredRNet acmr23) [[15] 94.3 89.2 97.9 939 973  96.2 914 2.05 1.28

DSRF-S (Ours) 96.7 95.1 98.5 95.9 98.2 97.3 954 | 10.10 11.64
DSRF-M (Ours) 973 95.6 98.7 97.4 98.7 97.8 95.8 | 13.92 23.86
DSRF-L (Ours) 97.7 95.9 98.9 97.9 98.9 98.1 96.5 | 22.10 42.29

4.2 Comparisons with State-of-the-Art Models

Results on RAVEN Datasets. Tab. presents the results on the three RAVEN datasets [6} 8, 9]].
We have following observations. 1) DSRF-S is comparable to the previous best performing model,
HP?AI [[19], while DSRF-M and DSRF-L consistently outperform it across three datasets [6} 8, [9],
with a gain of 0.3% over HP2AI [19]. The performance gain is attributed to the scalability of DSRF
that boosts reasoning ability and the dynamic designs that adapt to complex relations. 2) Furthermore,
on RVN-F [9], DSRF-L achieves the largest performance gain over HP?Al [[19]], reducing the error
from 1.4% to 0.9%, highlighting the superiority of DSRF-L in widening the network to capture
more complex rules. 3) Lastly, despite being a lighter version, DSRF-S attains a competitive average
accuracy of 98.7% across three datasets [6} 8} 9]. Our DSRF-M and DSRF-L outperform it by 0.5%,
contributing an enhanced reasoning ability, while showing no sign of overfitting.

We further conduct Out-Of-Distribution (OOD) experiments on the three RAVEN datasets [16} 8} 9],
where models are trained on one dataset while evaluated on another. Tab. [2l summarizes the results.
We can observe the following. 1) Our models consistently and significantly outperforms all compared
methods across all settings, reaching average accuracies of 96.7%, 97.3%, and 97.7% for small,
medium, and large models, respectively. Specifically, DSRF-L outperforms the second best model,
PredRNet [[15]], by 3.4% on average. 2) When trained on O-RVN [[6] and tested on I-RVN [§]], all
the compared models perform poorly with accuracies below 90%, showing the defects of static
reasoning models in handing domain shift. In contrast, DSRF-L maintains an accuracy of 95.9%,
achieving a performance gain of 6.7% compared to PredRNet [15]]. 3) Across six OOD settings, the
proposed models demonstrate minimal accuracy fluctuations, indicating that our models maintain
their robustness across different scenarios.

As shown in Tab. [2] the DSRF-S requires competitive 10.10 GFLOPs with 11.64M parameters, while
significantly outperforming other methods in accuracy. As the model scales up, despite the increase
of GFLOPs and model parameters, the DSRF-M and DSRF-L consistently bring performance gain,
indicating that the MVRP could well expand the reasoning network without overfitting.



Table 3: Comparison results on the Unicode Analogy/Unicode Analogy OOD [10].
Accuracy (%) on Unicode / Unicode-OOD

Models

Avg. Arith Const Dist3 Prog Union
MRNet (cver’21) [9] 24.3/22.9 25.5/20.9 22.9/23.7 24.4/26.1 27.4/23.5 21.5/20.2
SCAR (aaar24) [17] 31.4/23.1 26.6/22.3 34.0/25.0 28.6/24.9 25.9/24.5 41.8/18.9

HCV-ARR aaAr23) [14] 25.9/24.1 26.8/23.6 25.0/26.4 23.5/26.4 24.2/23.0 30.0/26.6
PredRNet acmr23) [15]  57.7/27.7 65.5/26.3 51.4/30.7 48.5/32.4 57.6/27.0 65.6/22.3
HP2AI acMmm24) [19]  55.2/30.2 59.4/26.2 50.6/28.8 53.7/34.6 54.2/28.4 58.2/33.0

DSRF-S (Ours) 72.1/34.5 74.4/29.1 61.0/34.3 76.6/37.9 72.8/33.0 75.6/38.2
DSRF-M (Ours) 73.2/35.9 76.5/30.3 61.9/35.6 76.8/38.9 73.6/35.4 77.1/39.5
DSRF-L (0urs) 73.8/37.3 79.4/32.5 61.9/36.4 77.0/39.8 73.7/36.7 77.2/41.2

Table 4: Comparisons on PGM [[7]. Results of other methods are obtained from their original papers.

Models Avg. PGM-N PGM-I PGM-E HAP HTP HT HALT HASC
CoPINet (N1ps’19) [136]] - 56.4 51.2 16.4 - - - - -
WReN acmr18) [7]] 324  62.6 64.4 172 272 419 19.0 144 125
DCNet acLr21) [38] - 68.6 59.7 17.8 - - - - -

SRAN aaar2n [8]] - 71.3 60.1 18.4 - - - -
MRNet (cvpr21) [9] 434 934 68.1 19.2 384 553 259 301 169

ARII (N1ps»22) [39] 455 88.0 72.0 29.0 50.0 64.1 32.1 16.0 127
PredRNet acmr23) [15] 47.8 974 70.5 19.7 634 678 234 273 13.1
STSN acLr?23) [40] - 98.2 78.5 20.4 - - - - -

HP2AI acmMm29) [19] - 99.3 80.0 22.6 - - - - -
Slot Abs.acmr24) [42] 519 91.5 91.6 393 633 783 204 1677 143

DSRF-S (Ours) 509 993 824 252 63.1 757 293 162 16.1
DSRF-M (Ours) 5277 995 84.5 274 657 788 313 174 16.7
DSRF-L (Ours) 549 99.8 87.3 315 67.7 823 342 189 17.8

Results on Unicode Dataset. = We conduct experiments on the UA dataset [[10] across five rule
types under two settings: 1) Normal setting, where the dataset is randomly divided into training,
validation, and test sets; and 2) OOD setting, where all the symbols in the training set do not appear
in the test set. The UA dataset [[10] provides a comprehensive evaluation of conceptual schema across
multiple levels of abstraction. The following observations can be made from Tab. {3} 1) All three
proposed DSRF models significantly and consistently outperform existing methods across five rule
types under both settings. Specifically, in the normal setting, the proposed DSRF-L achieves the
highest average accuracy of 73.8%, demonstrating a substantial performance gain of 16.1% compared
to the previous-best model, PredRNet [15]. 2) Under the OOD setting, all models experience a
significant performance drop due to distribution shifts and unfamiliar data patterns. While most
existing models achieve poor accuracies of approximately 25%, approaching random guessing, our
DSRF-L obtains a significantly higher average accuracy of 37.3%, presenting a notable improvement
of 7.1% over the previous-best model HP?Al [19], highlighting the robustness of our model by
dynamically capturing the domain difference.

Results on PGM Dataset. Then, we benchmark our DSRF models against state-of-the-art models
on the PGM dataset [[7]. Following [42], experiments are evaluated across eight regimes: neutral
(PGM-N), interpolation (PGM-I), extrapolation (PGM-E), held-out attribute pairs (HAP), held-out
triple pairs (HTP), held-out triples (HT), held-out attribute line type (HALT), held-out attribute
shape color (HASC). The last seven regimes evaluate OOD generalization. (See Appendix [B.1.4]
for more details.) The results in Tab. f]reveal the following: 1) Both DSRF-M and DSRF-L surpass
existing approaches across nearly all regimes. Notably, DSRF-L achieves a new state-of-the-art
average accuracy of 54.9%, substantially outperforming the previous best result of 51.9% by Slot
Abstractors [42]], validating our framework’s effectiveness. 2) The performance gains of DSRF
become even more pronounced under challenging held-out and transfer regimes such as HAP, HTP,
HT and HASC, where DSRF-L reaches 82.3% on HTP and 34.2% on HT, significantly outperforming



Table 5: Comparisons on RVP dataset [41]]. Other results are obtained from their original papers.
CoPINet [36] SRAN [8] SCL[37] TRIVR [41] DSRF-S DSRF-M DSRF-L

62.3 63.9 66.3 71.6 854 87.7 88.8

Table 6: Ablation of major components of DSRF-M on three RAVEN datasets [6, |8} 9.

Avg. O-RVN I-RVN RVN-F
w/o DDCP 95.2 94.9 95.1 95.6
w/o GARB 95.9 95.9 95.6 96.3
w/o CNN gate 98.0 97.9 97.8 98.3
w/o dynamic gate 98.0 97.8 98.1 98.2
w/o MRM 98.7 98.7 98.8 98.6
DSRF-M 99.2 99.1 99.4 99.0

all baselines and demonstrating strong domain-difference modeling and compositional generalization.
3) We observe a clear monotonic improvement as we scale the model from DSRF-S to DSRF-M
and then to DSRF-L. This is evidenced across all metrics: the overall average accuracy sees a steady
gain from 50.9% to 52.7% and finally to 54.9%. The improvement is especially notable in the
HTP regime, where performance increases from 75.7% (DSRF-S) to 78.8% (DSRF-M) and reaches
82.3% (DSRF-L). This consistent progression demonstrates that our framework’s effectiveness scales
reliably with increased model capacity.

Results on RVP Dataset.  Lastly, we evaluate DSRF variants on the RVP dataset [41]] for real-world
traffic scenarios. RVP is built on the RPM framework, where future frames are predicted from two
historical frames sampled every 15 frames, leveraging reasoning patterns learned from other videos.
As shown in Tab. [5] our model largely outperforms the second-best model, thanks to the MVRP
that enables the integration of more reasoning blocks into the reasoning module, allowing the model
to capture more complex and subtle underlying rules in real-world scenarios. In contrast, previous
models with simpler reasoning modules struggle to generalize to such complex environments.

4.3 Ablation Studies

Ablation of Major Components. To evaluate the major components of DSRF, we conduct an
ablation study across three RAVEN datasets [6, 18, 9], by systematically removing one component at
a time to assess its individual performance contribution. The results are presented in Tab.[§] When
removing DDCP and GARB, a single convolutional layer is used to replace them. It can be observed
that the accuracy on all three datasets will drop significantly if removing either DDCP or GARB, i.e.,
4.0% for DDCP and 3.3% for GARB, demonstrating their importance in dynamically encapsulating
the task-specific rules. Additionally, removing the CNN gate in DDCP or removing the dynamic
gate in GARB both leads to a significant accuracy decline of 1.2%, highlighting their significance in
dynamically emphasizing the relevant features while suppressing irrelevant features. Finally, MRM
also shows its effectiveness in aggregating features from different levels of granularity.

DSREF as Plug-and-Play Reasoning Module. The proposed DSRF could serve as a plug-and-play
reasoning module. We replace the original reasoning module of state-of-the-art models, i.e., RM+PM
of MRNet [9], ARR of HCV-ARR [14], PRB of PredRNet [15] and PredAl of HP?AI [19], by
DSRF-S and DSRF-M respectively, and conduct comparison experiments on the three RAVEN
datasets [6l 8, 9] as shown in Tab. We can observe that DSRF-S and DSRF-M consistently
improve performance compared to the original reasoning modules, indicating their robustness and
effectiveness in reasoning complex underlying relations. Lastly, DSRF-M consistently outperforms
DSREF-S across all four perception modules on all three datasets, indicating the effectiveness of our
scalable MVRP in boosting the model’s reasoning ability.

Lightweight DSRF. The MVRP module enables scalable model efficiency by reducing the channel
dimensions of feature mappings per view. This allows the creation of lightweight variants (DSRF-S-
Light, DSRF-M-Light) that preserve core reasoning capabilities with significantly reduced parameters



Table 7: Replacing reasoning modules by DSRF-S and DSRF-M on RAVEN datasets [6, |8} 9.

Perception Reasoning Avg. O-RVN I-RVN RVN-F
RM+PM [9] 83.9 84.0 81.0 86.8
MSE [9] DSRF-S 96.5 96.3 96.7 96.5
DSRF-M 97.1 96.4 96.9 97.9
ARR [14] 92.2 87.3 93.9 95.4
HCV [14] DSRF-S 96.9 96.4 96.5 97.9
DSRF-M 97.6 97.5 97.2 98.1
PRB [15] 96.5 95.8 96.5 97.1
RN-4B [15] DSRF-S 98.7 98.6 98.8 98.8
DSRF-M 99.2 99.1 99.4 99.0
PredAlI [19] 98.9 98.8 99.4 98.6
HPALC [19] DSRF-S 99.2 99.1 99.4 99.2
DSRF-M 99.4 99.3 99.5 99.4

Table 8: Ablation of lightweight DSRF-S and DSRF-M on RAVENS [6, 8, 9] and PGM [/7]].

Avg.| O-RVN [-RVN RVN-F|PGM-N PGM-I PGM-E| (G) (M)
DSRF-S 83.8| 98.7 98.6 98.8 99.3 824 252 |10.10 11.64
DSRF-S-Light 83.5| 98.5 985 98.6 99.1 81.7 24.8 4.06 4.96
DSRF-M 84.8| 99.1 994  99.0 99.5 84.5 274 |13.92 23.86
DSRF-M-Light 84.2| 98.8 989  98.8 99.3 83.1 26.1 5.11 872

Table 9: Ablation of column-wise reasoning DSRF-M and DSRF-L on the PGM dataset [[7].

Avg. PGM-N PGM-I PGM-E HAP HTP HT HALT HASC
DSRF-M 527 995 84.5 274 657 788 313 174 16.7
DSRF-M-RC 55.8 99.7 88.9 351 689 821 34.1 19.1 181
DSRF-L 549 99.8 87.3 315 6777 823 342 189 178
DSRF-L-RC 584 999 92.1 40.2 713 86.7 373 199 194

and GFLOPs. Evaluations on three RAVEN and PGM datasets (Tab. [8)) confirm that these variants
maintain competitive accuracy while achieving substantial efficiency gains.

Column-wise reasoning of DSRF. While DSRF’s row-wise design efficiently handles standard
row-centric RPMs, it faces limitations on datasets like PGM that emphasize column-wise reasoning.
Although weight-sharing across rows allows for implicit column-wise pattern recognition, we explic-
itly enhance this capability by integrating a dedicated column-wise DDCP branch. The modularity of
the DDCP design permits this seamless extension, enabling explicit fusion of column-wise features
with the original row-wise processing. As shown in Tab.[9] the revised models (DSRF-M-RC and
DSRF-L-RC) yield significant gains, improving the average reasoning accuracy of DSRF-M from
52.7% to 55.8% and DSRF-L from 54.9% to 58.4%, respectively.

5 Conclusion

The proposed Dynamic and Scalable Reasoning Framework is designed to tackle the challenges of
scalability and the dynamic nature of abstract visual reasoning, in order to boost the reasoning ability
of our model and generalize it well to novel tasks. Specifically, the proposed MVRP tackles the
scalability challenges by hierarchically widening the network to capture a broad range of complex
rules. In addition, the proposed DDCP blocks enhance the adaptability to diverse rules by dynam-
ically highlighting task-specific relationships respective to the domain difference through a novel
Gated Attention Reasoning Block. Extensive results on six AVR datasets demonstrate that DSRF
outperforms state-of-the-art models on different datasets and tasks.
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A Significance of This Research

Abstract Visual Reasoning (AVR) is a pivotal yet challenging research in artificial intelligence,
focusing on inferring complex abstract rules from visual data [1]]. Progress in this field is critical
for enhancing machine comprehension and learning capabilities [1]. However, recent works [3} 4]]
indicate that LLMs often fail to comprehend abstract concepts and relationships within images for
visual reasoning tasks. Additionally, although multimodal models attempt to integrate visual and
linguistic information, they still fall short in complex visual reasoning tasks [43]. Specifically, as
stated in [44], in AVR tasks, enhancing the amount of information is more important than enforcing
disentangled representations because the amount of information has a greater impact on downstream
task performance.

The proposed method provides a novel solution to tackle the challenges of existing AVR models
on scalability and generalization ability. Specifically, the proposed method leverages the Multi-
View Reasoning Pyramid to map high-level visual features into different views, and hierarchically
constructs the complex reasoning rules through the layered pyramid, thereby greatly enhancing the
scalability of the model. In addition, in contrast to the static reasoning networks in existing models,
the proposed Dynamic Domain-Contrast Prediction Block incorporates different mechanisms to
dynamically model the underlying rules, including a CNN gate to selectively highlight the important
reasoning features, and a set of Gated Attention Reasoning Blocks to dynamically reason over a large
number of rules. Furthermore, in each GARB, we model the distribution of context features and
target features by utilizing Gram matrix, contrast the domain differences through learning parameters,
and further modulate its focus to capture subtle relational patterns specific to the inputs by using two
gate matrices. As shown in the experiments, our work pushes the edge of abstract visual reasoning,
achieving state-of-the-art performance across six benchmark datasets.

B Experimental Settings
B.1 Dataset Description

Table 10: Summary of benchmark datasets.

Datasets ~ #Samples #Images #Attributes #Relations

O-RVN [6]] 70K 1.12M 7 4
I-RVN [8] 70K 1.12M 7 4
RVN-F [9] 70K 1.12M 7 4
PGM [7] 1.42M  22.72M 5 5
UA [10] 50K 0.45M / 5
RVP [41] 3K 48K / /

B.1.1 Original RAVEN Dataset

The original RAVEN dataset [[6] comprises 70,000 question sets, generated by converting sentences
derived from an Attributed Stochastic Image Grammar (A-SIG) [45]]. Each question set consists of
eight context images and eight candidate options, resulting in a total of 1.12 million images. Each
question is defined by five rule-governing attributes such as Number, Position, Type, Size and
Color, and two noise attributes such as Uniformity and Orientation. Each attribute follows
one of the four rules, namely Constant, Progression, Arithmetic, and Distribute_Three.
This design yields an average of 6.29 rules per problem, which is significantly higher than the
rule complexity in the PGM dataset [7]. The RAVEN dataset [6] is evenly divided into seven
configurations, i.e., Center, 2x2Grid (2x2G), 3x3Grid (3 x3G), Left-Right (L-R), Up-Down (U-D),
Out-InCenter (O-1C), and Out-InGrid (O-1G), which are generated using three levels from A-SIG [45]].
The standard 10-fold evaluation protocol [6] is applied, where six folds are used for training, and
two folds each for validation and testing. However, as identified in [8, [9], there is a loophole in
the RAVEN dataset, i.e., candidate options in the RAVEN dataset are created by modifying one
single attribute from the correct answer, which allows models to easily select the correct answer by
identifying common properties among candidates rather than understanding the underlying relational
patterns in the context matrix. The samples of RAVEN are shown in Fig.
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Figure 4: Three typical samples in RAVEN dataset.

B.1.2 I-RAVEN Dataset

The I-RAVEN dataset [8] eliminates the vulnerability of the original RAVEN dataset [6], differing
in the way of generating negative candidate answers. Specifically, it utilizes an Attribute Bisection
Tree to generate impartial and balanced candidate options, where each option has exactly three
differing attributes from the other through three iterations. This makes the candidate options more
indistinguishable without identifying the context matrix, leading to a more rigorous and fair evaluation
of the models’ abstract reasoning capability. Other settings are exactly the same as the original
RAVEN dataset [6]. The samples of I-RAVEN are shown in Fig. 5]

B.1.3 RAVEN-FAIR Dataset

The RAVEN-FAIR dataset [9] also addresses the shortcut issue of the RAVEN dataset [6]. The
negative candidates are systematically generated by randomly selecting an existing option, either a
negative answer or the correct answer, and modifying one of its attributes. This design ensures that
the correct answer cannot be selected by only identifying the most common candidate options. Other
settings are exactly the same as the original RAVEN dataset [6]. Three samples of RAVEN-FAIR are
shown in Fig.[d

B.1.4 PGM Dataset

The PGM dataset [7]] is widely recognized as the first large-scale RPM benchmark to evalu-
ate the reasoning ability of deep learning models. It consists of 1.42M question sets, with
1.2M questions for training, 20K for validation, and 200K for testing. Each question set con-
tains 8 context images and 8 candidate images, resulting in a total of 22.72M images. Each
matrix in PGM [7]] is a set of triples, S = {[r,0,d]|r € R,0 € O,a € A}, where R =
{Progression, XOR, OR, AND, Consistent_Union} defines the set of rules, O = {Shape,Line}
represents the set of objects and A = {Size, Type, Color,Position, Number} indicates the set of
attributes. The PGM dataset comprises 8 regimes.

Neutral regime (PGM-N): In this regime, both training and test sets can contain any rela-
tion—object—attribute triples. They are disjoint at the pixel level but share identical structural distribu-
tions, serving as the baseline for reasoning performance.
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Interpolation regime (PGM-I): Training and test sets share the same attribute types, but ordered
attributes like color and size use even-indexed values in training and odd-indexed values in testing. It
evaluates the model’s ability to interpolate within known attribute ranges.

Extrapolation regime (PGM-E): Training samples include the lower half of ordered attribute values,
while testing uses the upper half. This regime measures whether the model can extrapolate to unseen
attribute ranges beyond the training distribution.

Held-out Attribute Pairs regime (HAP): In this regime, 20 viable attribute pairs are defined, with 16
used for training and 4 held out for testing. While training samples contain each attribute separately,

16



test samples include both together, assessing compositional generalization to unseen attribute co-
occurrences.

Held-out Triple Pairs regime (HTP): In this regime, each structure contains at least two triples,
forming 400 viable triple pairs, with 360 used for training and 40 reserved for testing. The held-out
pairs never co-occur in training, evaluating the model’s ability to generalize to unseen combinations
of triple relations.

Held-out Triples regime (HT): In this regime, 7 of the 29 unique triples are randomly reserved for
testing, ensuring all attribute types are represented. These triples never appear in training, and every
test sample includes at least one, evaluating reasoning over entirely unseen combinations.

Held-out Attribute Line Type regime (HALT): In this regime, all line—type combinations are
excluded from the training data but appear in every test sample. It tests the model’s structural
generalization to unseen line-style and type relations.

Held-out Attribute Shape Color regime (HASC): In this regime, no shape—color combinations are
included in the training data, but every test sample contains at least one. It evaluates the model’s
ability to generalize compositionally to unseen pairings of object shape and color.

Most methods are evaluated on the Neutral regime, where the training and test sets are sampled
from the same distribution of the Neutral regime. Other regimes are designed to assess the model’s
generalization capability, where the test set contains rules that are excluded from the training and
validation sets, leading to a rigorous evaluation under Out-Of-Distribution (OOD) settings. The
samples in PGM are shown in Fig.[7
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Figure 7: Three typical samples in PGM dataset.

B.1.5 Unicode Analogies Dataset

The Unicode Analogies (UA) dataset [[10] provides a comprehensive framework for representing
conceptual schema across multiple levels of abstraction. Each problem is generated by one of the five
rule types, i.e.Constant, Progression, Arithmetic, Distribution_Three, and Union. The
UA dataset [10] contains 2500 annotated characters with an average of 2.8 annotated features per
character. Following the standard evaluation protocol in [10]], a 10-fold evaluation is used, with seven
folds for training, and one fold for validation and two folds for testing. In addition, it introduces
complexities by blurring the lines between objects and features, as well as between perception and
cognition. Compared to the three RAVEN datasets [6, 18, 9], the UA dataset [[LO] poses additional
challenges as it requires models to incorporate contextual information at all stages of problem
solving [10]. The samples in Unicode are shown in Fig.[§]
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Figure 8: Three typical samples in the Unicode dataset.

B.1.6 RVP Dataset

The RVP dataset is built upon the UA-DETRAC dataset [46]], which includes 100 challenging
real-world traffic videos captured from 24 locations using a Canon EOS 550D camera. These videos
represent diverse traffic conditions such as urban highways, intersections, and T-junctions. The
original UA-DETRAC dataset contains over 140,000 annotated frames with details like vehicle type,
illumination, occlusion, truncation ratio, and bounding boxes. Under the RPM framework, RVP
predicts a future frame based on two historical frames sampled every 15 frames, using reasoning
rules derived from other videos. Unlike traditional video prediction tasks, RVP uses non-consecutive
frames, making the task more challenging. The goal is to select the correct answer from eight
candidate frames by analyzing the progression in vehicle size and position. The incorrect options are
sampled at least 15 frames apart from the correct answer to avoid trivial clues. In total, the dataset
includes 3,000 questions and 48,000 frames, featuring visually complex scenes with multiple vehicles
and detailed urban backgrounds. The samples in RVP are shown in Fig.[9]

Figure 9: Three typical samples in RVP dataset.

B.2 Detailed Description of Compared Methods

The proposed DSRF is compared with the following state-of-the-art methods.
WReN [[7] utilizes a Relation Network to derive the inter-feature relations for solving RPM problems.

CoPINet [36] estimates the probability of each candidate answer by applying a contrastive module
on top of a perception module built from ResNet blocks, using the question panel and each candidate
as the input.
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SCL [37] is designed to discover the underlying compositional structure. It consists of three integrated
networks: an object network, an attribute network, and a relationship network.

SRAN [8]] employs a hierarchical rule embedding module and a gated embedding fusion module to
produce rule embeddings from two row sequences.

DCNet [38] incorporates a rule contrast module and a choice contrast module to leverage the intrinsic
structure of RPMs, enhancing distinctions among options by comparing latent rules across rows.

MRNet [9] utilizes a multi-resolution convolution layer for visual perception and computes the row
similarity as the reasoning strategy.

ARII [39]] is a framework that learns abstract rule representations through internal inference mecha-
nisms, combining a rule encoder, a reasoner, and an internal referrer. It repeatedly applies the same
rule to different instances to achieve a comprehensive understanding.

HCV-ARR [14] utilizes a mixed model combining convolutional blocks and vision transformer
blocks to capture multi-level features from RPM images, and employs an attention mechanism to
dynamically determine the relations between a row/column of panel images.

AlgeMR [[13] includes an object detector to identify discrete entity attributes and uses algebraic
methods such as Grobner bases and ideal containment to solve RPMs as computational problems.

SCAR [17] utilizes a Structure-Aware dynamic Layer (SAL) that enables the processing of AVR
tasks with diverse structures by adapting its weights to the problem instance.

PredRNet [15] employs sequential residual convolutional layers to extract high-level visual features
from images and utilizes convolutional blocks to identify abstract rules by predicting the target images
using the context images.

STSN [40] combines slot attention for object-centric encoding and a transformer for reasoning,
scoring each answer by concatenating its slots with context panel slots, and optimizing with both task
and reconstruction losses.

DRNet [16] is a dual-stream neural network inspired by the two-stream visual processing hypothesis,
which achieves strong generalization on RPM benchmarks by integrating spatial and semantic features
to extract abstract reasoning rules.

TRIVR [41] is a two-stage visual reasoning model that separates perception and reasoning to reflect
better the human approach to solve RPM problems. By introducing a “2+1” formulation to extract
explicit reasoning rules from each sample, TRIVR significantly reduces the model complexity and
outperforms state-of-the-art methods on multiple RPM-like datasets.

HP2AI [19] extracts multi-scale visual features via a hierarchical encoder and infers row-wise
relations using Predictive Analogy-Inference (PredAl) blocks, focusing on key attributes to solve
RPM tasks effectively.

Slot Abstractors [42] integrates slot-based object-centric representations with the scalable, multi-
head Transformer architecture. By incorporating strong relational inductive biases, it effectively
handles reasoning tasks involving many objects and multiple relations.

B.3 Implementation Details

We strictly follow the standard evaluation protocol outlined in [6,[8H10]. Input images are resized to
80 x 80, and datasets are divided into training, validation, and test sets, with the validation set used
for hyper-parameter tuning. No additional auxiliary supervision is employed during training. The
model is optimized using the Adam optimizer with a learning rate of le-3 and weight decay of le-5.
The models are trained with a batch size of 128 on an Intel Xeon Silver 4216 CPU with two NVIDIA
RTX A5000 GPUs. The code will be released upon the acceptance of this paper.
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Table 11: Ablation studies of different reasoning blocks on RAVEN [6], -RAVEN [8]], and RAVEN-
FAIR [9]. The proposed GARB significantly improves the reasoning accuracy compared with other
reasoning modules.

Accuracy (%) on Different RAVEN Configurations

Datasets Components
Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG
PredAl 97.5 999 96.7 926 999 997 99.7 938
O-RVN[6] TRB 982 1000 98.1 945 982 998 997 974
DDCP 99.1 100.0 993 96.2 999 100.0 999 98.2
PredAl 973 999 96.9 91.8 999 999 997 929
LRVN [§] TRB 979 999 981 935 997 999 999 945
DDCP 994 100.0 999 97.6 100.0 999 100.0 984
PredAl 982 999 98.1 96.5 99.9 100.0 100.0 93.1
RVN-F [9] PRB 98.5 100.0 98.7 974 999 100.0 999 938
DDCP 99.0 100.0 99.8 973 100.0 999 100.0 96.3

Table 12: Ablation studies of MRM on RAVEN [6], I-RAVEN [8]], and RAVEN-FAIR [9] datasets.

\ Accuracy (%) on Different RAVEN Configurations
Components

\ Avg. Center 2x2G 3x3G L-R U-D O-IC  O-IG
g | MLP 98.7 99.9 98.4 96.1 99.9 99.9 99.9 96.9
Z CNN 98.9 100.0 99.3 95.8 100.0 100.0 99.9 97.1
? Attention 98.5 100.0 98.4 95.1 99.9 100.0 99.9 96.4
© | MRM 99.1 100.0 99.3 96.2 99.9 100.0 99.9 98.2
& | MLP 98.9 100.0 99.3 95.9 99.9 100.0 99.9 97.2
. CNN 99.1 100.0 99.5 96.4 100.0 100.0  100.0 97.9
§ Attention 98.6 100.0 98.5 95.1 99.9 99.9 99.8 96.7
=~ | MRM 99.4  100.0 99.9 97.6 1000 999 1000 984
= | MLP 98.5 100.0 98.9 97.2 99.9 100.0 99.9 93.9
e CNN 98.7 100.0 99.2 97.8 99.9 99.9 100.0 94.3
E Attention 98.3 99.9 98.5 96.6 100.0 99.9 99.8 93.4
% | MRM 99.0 1000 998 973 1000 999  100.0  96.3

C More Experimental Results

C.1 More Ablation Results on Three RAVEN Datasets
C.1.1 Ablation of DDCP

DDCP is the main reasoning block in this paper. To evaluate its contributions, we replace it with
two previously best-performing reasoning blocks such as PredAl [19]] and PRB [[15]. For a fair
comparison, we also equip these three reasoning blocks with an additional CNN gate as in DDCP.
The results are summarized in Tab. [IT] The results highlight the notable performance gain by DDCP.
Compared to PredAl [19]] and PRB [[13]], the average improvement is 1.5% and 1.0% respectively
across all configurations over three datasets. This indicates that the dynamic structure in DDCP
effectively captures task-specific information, leading to performance improvements.

C.1.2 Ablation of MRM

The proposed MRM leverages multi-granular rule mixing to explore diverse rule combinations,
thereby enriching feature interactions. To evaluate its effectiveness, we replace MRM with commonly-
used structures for feature mixing, e.g., MLP, CNN and Attention. MLP maps features along a single
dimension, processing all features uniformly, making it incapable of achieving multi-perspective
understanding, while CNN focuses more on local feature extraction, making it challenging to capture
global information comprehensively. On the other hand, Attention focuses more on the weight
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Table 13: Ablation studies of the three branches in GARB on RAVEN [6]], I-RAVEN [8]], and
RAVEN-FAIR [9] datasets.

Accuracy (%) on Different RAVEN Configurations

Components

\ Avg. Center 2x2G 3x3G L-R U-D O-IC  O-IG
S | B 97.8 99.8 98.2 93.2 99.7 99.9 99.6 94.1
z | B+C 98.5 100.0 98.4 94.8 99.8 100.0 99.6 97.1
Z | B+T 98.8 100.0 99.1 95.5 100.0 100.0  99.8 97.3
O | B+C+T 99.1 100.0 99.3 96.2 99.9 100.0 99.9 98.2
< | B 98.1 100.0 98.6 93.7 99.9 99.8 99.7 95.2
z | B+C 98.6 100.0 98.5 94.8 100.0 100.0 100.0 97.1
2 | B+T 98.9 100.0 99.2 95.6 99.9 100.0 99.8 98.1
=~ | B+C+T 99.4 100.0 99.9 97.6 100.0 99.9 100.0 984
= | B 98.2 100.0 98.6 96.1 99.9 100.0 99.8 93.6
m | B+C 98.6 100.0 99.3 96.4 99.9 100.0 100.0 95.1
E B+T 98.8 100.0 99.1 97.1 100.0  100.0 99.8 95.9
~ | B+C+T 99.0 100.0 99.8 97.3 100.0 99.9 100.0 96.3

Table 14: Detailed ablation results of major components on RAVEN [6], I-lRAVEN [8]], and RAVEN-
FAIR [9]] datasets.

| Components

Accuracy (%) on Different RAVEN Configurations

\ Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG
w/o DDCP 94.9 99.9 96.7 90.3 98.8 98.8 99.4 80.3

g | w/o GARB 959  100.0 98.2 91.8 99.7 99.5 100.0 823
Z | w/o CNN gate 97.9  100.0 98.5 93.7 99.7 99.8 98.9 94.4
E w/o dynamic gate  97.8 99.8 98.2 93.2 99.7 99.9 99.6 94.1
o | w/o MRM 98.7 99.8 98.8 95.5 99.8 999 99.5  98.0
DSRF-M 99.1 100.0 99.3 96.2 99.9 100.0 999  98.2

w/o DDCP 95.1 100.0 97.7 91.6 99.7 99.8 994 779

od | w/o GARB 95.6  100.0 98.6 93.0 99.9 99.8 99.6 78.9
7| w/o CNN gate 97.8 99.8 98.8 93.0 99.9  100.0 99.7 93.5
E w/o dynamic gate  98.1 100.0 98.6 93.7 99.9 99.8 99.7 95.2
~ | w/o MRM 98.8  100.0 98.7 95.6 100.0 100.0 999 97.7
DSRF-M 994  100.0 99.9 97.6 1000 999 100.0 984

w/o DDCP 95.6 99.5 95.0 91.3 99.3 99.6 99.3 85.3

2 | w/o GARB 96.3 99.8 95.8 923 99.2 99.3 98.7 89.6
= | w/o CNN gate 98.3  100.0 98.5 95.8 99.8 99.9 99.8 94.4
E w/o dynamic gate  98.2  100.0 98.6 96.1 99.9 100.0 99.8 93.6
& | w/o MRM 98.6  100.0 98.2 96.5 100.0 99.9 99.7 963
DSRF-M 99.0 100.0 99.8 973 1000 999 100.0 96.3

distribution between features rather than the structured decomposition or reorganization of features.
The results are shown in Tab. 12l

The proposed MRM showcases its ability to excel in reasoning tasks that involve complex rule com-
positions, outperforming static or locally focused methods like MLP and CNN, as well as Attention
mechanisms that lack explicit feature decomposition. For relatively simpler configurations such as
Center, L-R, U-D, and 0-IC, all components, including MLP, CNN, and Attention, achieve near-
perfect performance, with accuracies close to 100% in many cases. However, for more challenging
configurations like 3x3G and 0-IG, the proposed MRM consistently outperforms other compared
methods. For instance, on the RAVEN dataset [6]], the proposed MRM achieves an accuracy of 96.2%
and 98.2% on 3x3G and 0-IG, respectively, significantly outperforming 95.1% and 96.4% achieved
by the Attention mechanism.
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Table 15: Detailed ablation results for the proposed DSRF as a plug-and-play reasoning module on
three RAVEN datasets [16, 18, 19].

Module Accuracy (%) on Different RAVEN Configurations
| Perception Reasoning Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG
RM+PM 84.0 987 72.5 52.3 994 992 996 66.3
MSE DSRF-S 96.3 100.0 97.7 87.7 99.9 998 99.7 89.6
DSRF-M 96.4 99.9 97.7 89.6 100.0 100.0 99.5 88.5
g ARR 87.3 99.8 71.4 65.9 99.9 998 980 762
z HCV DSRF-S 96.4  99.9 97.4 88.8 99.6 999 999 89.1
z DSRF-M 97.5 100.0 98.8 93.1 99.9 1000 999 91.0
o) PRB 95.8 99.8 95.1 87.6 99.2 994 999 894
RN-4B DSRF-S 98.6 100.0 99.3 96.1 100.0 999 999 949
DSRF-M 99.1 100.0 99.3 96.2 99.9 100.0 999 982
PredAl 98.8 100.0 98.8 95.3 99.9 998 999 98.0
HPALC DSRF-S 99.1 100.0 99.5 96.4 99.8 100.0 100.0 98.4
DSRF-M 99.3 100.0 99.6 97.1 100.0 999 100.0 984
RM+PM 81.0 99.6 634 59.2 98.7 983 957 519
MSE DSRF-S 96.7 99.8 97.1 92.0 99.6 996 99.6 89.2
DSRF-M 969 1000 97.7 90.6 99.8 99.8 99.8 90.9
— ARR 939 999 96.2 75.5 994 99.6 995 873
2 | HCV DSRF-S 96.5 100.0 99.2 91.5 100.0 999 99.8 852
E DSRF-M 97.2 100.0 99.2 94.9 999 999 999 86.7
E PRB 96.5 99.9 97.8 91.2 99.7 99.7 99.6 87.7
RN-4B DSRF-S 98.8 100.0 99.5 96.7 100.0 99.9 998 958
DSRF-M 99.4 1000 999 97.6 100.0 99.9 100.0 984
PredAl 994 100.0 999 97.4 99.9 100.0 100.0 98.8
HPALC DSRF-S 99.4 100.0 99.5 98.2 100.0 100.0 100.0 98.5
DSRF-M 99.5 100.0 99.9 984 100.0 100.0 100.0 98.5
RM+PM 86.8 97.0 72.7 69.5 98.7 989 976 733
MSE DSRF-S 96.5 100.0 93.6 89.7 99.1 1000 999 934
DSRF-M 97.9 99.9 98.8 92.7 100.0 100.0 99.7 94.1
= ARR 954  99.8 92.9 87.9 99.8 996 99.7 885
o HCV DSRF-S 97.9 99.8 98.9 93.0 100.0 998 996 943
Z DSRF-M 98.1 99.9 99.0 94.0 99.8 999 99.7 948
E PRB 97.1 99.8 97.3 92.6 99.7 995 997 912
RN-4B DSRF-S 98.8 100.0 99.6 96.2 100.0 99.9 100.0 96.2
DSRF-M 99.0 100.0 99.8 97.3 100.0 999 100.0 963
PredAl 98.6 100.0 994 96.9 99.9 999 997 942
HPALC DSRF-S 99.2 999 99.6 97.5 100.0 999 999 978
DSRF-M 994 100.0 99.9 98.3 99.9 1000 999 97.8

C.1.3 Ablation of Three Branches in GARB

In Tab. we conduct an ablation study to evaluate the contributions of the three branches in
the proposed GARB module: B represents the base branch for fundamental feature extraction, C
denotes the context-enhancement branch that emphasizes context features, and T stands for the
target-enhancement branch designed to refine target-specific features. The results are summarized in
Tab.[13

The results demonstrate a clear progressive performance improvement as more branches are integrated.
The base branch alone achieves an average accuracy of 98.0% over three datasets across different
configurations. Adding the context-enhancement branch (B+C) improves the average accuracy
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Table 16: Comparison with state-of-the-art models on the original RAVEN dataset [6], I denotes that
the original method is based on contrasting over candidate answers.

Models Acc.(%) on RAVEN Dataset [6] Under In-Distribution Settings

Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG
1+ HCV-ARR aaar23 [13] 960 994 86.9 89.1 999 999 998  96.8

# MRNet (cver21) [9] 96.6  99.9 97.8 91.2 99.7 997 996 877
MRNet (cver’21) [9)] 84.0 987 72.5 523 994 992 99.6 663
HCV-ARR (aaAr23) [14] 87.3  99.8 71.4 65.9 99.9 998 98.0 76.2
SCAR (aAar29) [17]] 92.8  98.7 80.4 92.9 99.1 993 982 812
AlgeMR (cver’23) [13]] 929  98.8 91.9 93.1 99.2 99.1 982  70.1

PredRNet acmr23) [I15] 95.8 99.8 95.1 87.6 99.2 994 999 894
HP2AI (acM MM24) [[19]] 98.8  100.0 98.8 95.3 99.9 99.8 99.9  98.0

DSRF-S (Ours) 98.6 100.0  99.3 9.1 1000 999 999 949
DSRF-M (Ours) 99.1 100.0 993 96.2 999 100.0 999 982
DSRF-L (0urs) 99.1 1000 993 96.5 999 100.0 999 983

Table 17: Comparison with state-of-the-art models on I-RAVEN [§]] and RAVEN-FAIR [9] datasets.

Acc.(%) on I-RAVEN [8]/RAVEN-FAIR [9] Datasets Under In-Distribution Settings
Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG

MRNet (cver21) [9] 81.0/86.8 99.6/97.0 63.4/72.7 59.2/69.5 98.7/98.7  98.3/98.9  95.7/97.6 51.9/73.3
AlgeMR (cver23) [13]  93.2/94.3 99.5/99.8 89.6/93.2 89.7/88.0 99.7/99.8  99.5/99.8  99.6/99.9 74.7/79.6
HCV-ARR aaAr23) [14] 93.9/95.4 99.9/99.8 96.2/92.9 75.5/87.9 99.4/99.8  99.6/99.6  99.5/99.7 87.3/88.5
SCAR (aaar24) [17] 94.7/93.9 99.1/98.6 95.7/93.1 80.4/81.3 99.3/99.8  99.3/99.8  98.2/99.3 91.2/85.7
PredRNet acmr23) [15]  96.5/97.1 99.9/99.8 97.8/97.3 91.2/92.6 99.7/99.7  99.7/99.5  99.6/99.7 87.7/91.2
HP?Al acmmm24) [19]  99.4/98.6 100.0/100.0 99.9/99.4 97.4/96.9 99.9/99.9  100.0/99.9 100.0/99.7 98.8/94.2

Models

DSRF-S (Ours) 98.8/98.8 100.0/100.0 99.5/99.6 96.7/96.2 100.0/100.0 99.9/99.9  99.8/100.0 95.8/96.2
DSRF-M (Ours) 99.4/99.0 100.0/100.0 99.9/99.8 97.6/97.3 100.0/100.0 99.9/99.9 100.0/100.0 98.4/96.3
DSRF-L (Ours) 99.4/99.1 100.0/100.0 99.9/99.8 97.6/97.4 99.9/100.0 100.0/100.0 99.9/100.0 98.8/96.5

to 98.6%, highlighting the benefit of incorporating contextual features. Incorporating the target-
enhancement branch (B+T) provides a more significant boost, achieving an average accuracy of
98.8%, indicating the importance of target-specific adjustments. Finally, the full three-branch structure
(B+C+T) achieves the highest average accuracy of 99.2%, demonstrating the complementary strengths
of the three branches and their effectiveness in capturing task-specific information for enhanced
reasoning performance.

C.1.4 Detailed Ablation of Major Components

In Tab. 5 of the manuscript, we summarize the ablation study of the major components on the three
RAVEN datasets [6} 8, 9]. Now, we present the detailed ablation study results in Tab. @ showcasing
the contributions of key components, including DDCP, GARB, CNN gate, dynamic gate, and MRM.
As shown in Tab. @], we observe that for simpler configurations such as Center, L-R, and U-D on
all three datasets, our method achieves an accuracy of 100% in most cases even when some of our
components are removed. However, for more challenging configurations such as 2x2G, 3x3G, and
O-IG, removing specific components leads to significant performance drops, particularly those related
to dynamic reasoning. For example, for O-IG on the RAVEN dataset [6], removing the DDCP module
results in a sharp decline from 98.2% to 80.3%, highlighting the importance of DDCP in dynamically
identifying and contrasting features. Similarly, for 3x3G on the RAVEN-FAIR dataset [9]], removing
the dynamic gate reduces accuracy from 97.3% to 96.1%, demonstrating the critical role of dynamic
adaptability for handling complex rules.

C.1.5 Detailed Results of DSRF as Plug-and-Play Reasoning Module

Due to the page limit, we only summarize the average performance for DSRF serving as a plug-
and-play reasoning module across different configurations in Tab. 6 of the manuscript. Here, we
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Table 18: Comparison with state-of-the-art models under OOD settings on three RAVEN datasets [0,
8. 9]

Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG
Training on RAVEN [6] while testing on I-RAVEN [8] / RAVEN-FAIR [9] Datasets

MRNet (cvere21) [9] 65.8/81.2 86.8/96.1 40.3/58.9 35.3/54.3 87.2/99.3 86.1/98.9  88.4/97.6 36.7/63.3
HCV-ARR (aaarzs) [14] 79.4/91.9 99.4/99.9 54.6/34.1 51.2/30.4 98.9/99.7 98.7/99.4  96.3/99.5 60.4/30.2
SCAR (aaar24) [17] 84.7/95.9 99.8/99.9 65.5/95.1 59.4/86.6 99.7/99.8  99.8/99.8  99.9/99.6 68.6/90.3
HP2AI (acmmv29) [19] 87.7/96.9 100.0/100.0 72.1/93.7 63.1/91.4 100.0/99.9 100.0/99.9 99.9/99.9 78.2/93.2
PredRNet acmu23) [15]  89.2/97.9 100.0/100.0 75.4/95.4 68.8/94.9 100.0/99.9 99.9/99.9  100.0/99.9 80.9/95.1

Models

DSRF-S (Ours) 95.1/98.5 100.0/100.0 91.3/99.5 80.9/95.2 100.0/100.0 100.0/99.9 100.0/100.0 93.7/95.1
DSRF-M (Ours) 95.6/98.7 100.0/100.0 91.9/99.7 82.5/96.2 100.0/100.0 100.0/100.0 100.0/100.0 94.5/95.2
DSRF-L (Ours) 95.9/98.9 100.0/100.0 92.5/99.9 84.0/96.9 100.0/100.0 100.0/100.0 99.9/100.0 95.2/95.8

Training on I-RAVEN [8] while testing on RAVEN [6] / RAVEN-FAIR [9] Datasets

MRNet (cver21) [9] 76.5/78.6  98.7/98.5 60.7/58.5 47.6/48.2 95.7/96.3  96.3/97.4  91.9/96.9 44.3/54.2
HCV-ARR (aaar23) [14] 81.4/89.4 99.7/98.9 61.7/79.9 49.5/69.8 98.8/98.3  98.9/98.9  98.1/98.5 63.3/81.3
HP2AI acMmm24) [19]  89.9/94.0 99.2/99.5 77.2/86.6 74.1/83.0 99.9/100.0 99.7/100.0  99.8/99.9 79.5/89.4
SCAR (aaar2g) [17] 91.9/94.5 99.1/99.9 84.8/87.8 82.4/83.9 99.6/99.9  99.5/99.8  99.6/99.9 78.6/90.1
PredRNet acmr23) [15]  93.9/97.3  99.3/99.4 93.9/97.3 84.1/93.0 99.6/99.9  99.5/99.7 99.4/100.0 81.5/92.0

DSRF-S (Ours) 95.9/98.2 100.0/100.0 96.3/98.2 87.6/94.7 99.8/100.0 100.0/100.0 99.6/99.9 87.9/95.0
DSRF-M (Ours) 97.4/98.7 100.0/100.0 96.8/97.5 92.3/95.7 99.9/100.0 100.0/100.0 99.6/99.9 93.4/98.0
DSRF-L (Ours) 97.9/98.9 100.0/100.0 97.6/98.5 93.7/96.6 100.0/100.0 100.0/99.9 99.9/100.0 94.3/97.4

Training on RAVEN-FAIR [9] while testing on RAVEN [6] / I-RAVEN [8] Datasets

MRNet (cver21) [9] 78.8/73.4 93.9/91.1 61.3/53.5 49.2/41.3 93.1/89.1  92.1/89.4  95.9/89.1 66.1/60.5
SCAR (aaar2g) [17] 91.3/85.6 98.4/98.3 84.3/64.3 73.6/51.5 99.4/99.4  99.4/99.3  99.0/99.4 84.8/87.3
HCV-ARR aaar23) [14] 94.1/87.3 99.1/98.8 88.5/68.5 79.4/56.2 99.7/99.4  99.5/99.5  99.2/99.5 93.1/89.1
HP2AI acmmm24) [19]  95.3/90.0  99.2/99.7  90.3/72.9 84.9/65.7 99.8/99.8  99.5/99.7  99.3/99.9 94.1/92.8
PredRNet acmr23) [15]  96.2/91.4  99.6/100.0 97.4/86.5 88.9/68.3 99.6/100.0 99.1/99.4  99.6/99.8 89.7/86.3

DSRF-S (Ours) 97.3/95.4 99.9/99.9 98.1/96.0 90.8/82.3 99.6/100.0 99.6/100.0  99.6/99.9 93.8/90.4
DSRF-M (Ours) 97.8/95.8 100.0/100.0 97.9/96.9 93.3/82.7 99.9/100.0 99.9/100.0 99.8/100.0 93.8/90.7
DSRF-L (Ours) 98.1/96.5 100.0/100.0 98.1/97.7 94.9/88.9 99.9/99.9  100.0/99.9  99.9/99.9 93.7/89.5

supplement the detailed evaluation results on all configurations in Tab. For most configurations,
the proposed method demonstrates significant performance gains when combined with different
visual perception modules. Specifically, for easier configurations such as Center, L-R, U-D, and O-IC,
our reasoning module, when combined with certain perception modules, achieves perfect reasoning
with 100% accuracy. For more challenging configurations like 3x3G, O-1G, and 2x2G, our reasoning
module also delivers significant improvements. For example, on the 3x3G configuration, DSRF-M
achieves 97.1% accuracy with HPALC [19] on the RAVEN dataset [6]], a substantial enhancement
compared to the 52.3% achieved by MSE with RM+PM [9]].

C.2 Detailed Results on Three RAVEN Datasets Under In-Distribution Settings

In Tab. 1 of the manuscript, we summarize the comparison results on the three RAVENSs over all
configurations. Here, we supplement the results for all configurations on RAVEN [6]], -RAVEN [§]],
and RAVEN-FAIR [9] datasets. Detailed results on three RAVEN datasets are presented in Tab. @] and
Tab. From these two tables, we can observe the following. 1) When the shortcut in RAVEN [6]
is not leveraged, MRNet [9] and HCV-ARR [14] both experience a notable performance drop. In
contrast, the proposed DSRF-L achieves the highest average accuracy of 99.1% without relying on
the shortcut, demonstrating the superiority of its reasoning capability. 2) On simple configurations,
such as Center, 2x2G, L-R, U-D, and O-IC, our three methods all comprehensively understand
the underlying rules, achieving accuracies exceeding 99.0% across three RAVEN datasets [6} (8} 9]].
3) However, on challenging configurations such as 3 x3G, all compared methods perform relatively
poorly. In contrast, the proposed DSRF-L obtains the highest average accuracies of 96.5%, 97.6%,
and 97.4% on RAVEN [6], I-RAVEN [8]] and RAVEN-FAIR [9], respectively, improving the second-
best model HP?AI [[19] by 1.2%, 0.2% and 0.5%. These results demonstrate the robustness and
effectiveness of the model’s dynamic reasoning ability. 4) On the challenging O-IG configuration,
the proposed DSRF-L obtains the largest performance gain over the second-best model HP?AI [19]
by 2.3% on the RAVEN-FAIR dataset [9]]. This highlights the reasoning ability of the DDCP to
dynamically encapsulate complex relational patterns.
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C.3 Detailed Results on Three RAVEN Datasets Under Out-Of-Distribution Settings

We report the comparison results on the three RAVEN datasets [6, 8l 9] under OOD settings in Tab. 2
of the manuscript. Here, we supplement the results on different configurations to show the model’s
generalization ability to transfer knowledge across different settings, where the model is trained on
one dataset while tested on the other two. Detailed results under OOD settings are presented in Tab.
From this table, we can observe the following. 1) Our three models consistently and significantly
outperform all existing models across almost all configurations under all OOD settings. 2) The
proposed DSRF-L exhibits consistent performance across 7 configurations, demonstrating accuracy
fluctuations of 16.0% and 4.2% under RAVEN OOD setting, 6.3% and 3.4% under I-RAVEN OOD
setting, and 6.3% and 11.1% under RAVEN-FAIR OOD setting. Specifically, considering RAVEN
OOD setting where the accuracy fluctuations are the highest, our DSRF-L still outperforms the
second-best model PredRNet [15] with 15.2% and 0.9% reduction in accuracy fluctuation, illustrating
the robustness of our models across diverse testing configurations.

D Failure Case Analysis

Fig. [I0] presents failure cases to visually illustrate the benefit of our method, in contrast to PredR-
Net’s [[15]. In Case 1, PredRNet [[15] overfits the RAVEN dataset [6] by selecting the most common
option from the answer panels, where eight objects have varying colors, failing to derive the un-
derlying abstract rules, whereas DSRF-M effectively identifies the correct answer by capturing the
rule-based patterns dynamically. In Case 2, the task involves complex rule combinations, making
it challenging for PredRNet’s [15]] static “predict-and-verify”” approach to reason about the correct
solution. In contrast, DSRF-M leverages dynamic attention mechanisms to focus on the layout
structure, enabling it to reason and select the correct answer. Case 3 also represents a more complex
problem due to the combination of multiple rules, which results in a significantly challenging task.
The proposed DSRF could solve it but PredRNet [[15] cannot.

In Cases 4, 5, and 6, both methods fail to select the correct answer. In particular, Case 4 and Case
5 both involve highly complex layouts, where it is challenging to precisely derive the intricate
arrangement of objects. In Case 6, there are two irrelevant attributes Position and Type that may
confuse both models. Indeed, reasoning over complex layout and being robust to irrelevant attributes
are remaining challenges, which are worth to further explore in future.

E Limitation

Although the Multi-View Reasoning Pyramid (MVRP) enables scalable and structured reasoning
by mapping features into multiple views, the current implementation adopts a manually predefined
number of views per layer (e.g., “2-17, “4-2-17, “8-4-1"). While these settings have shown strong
performance across benchmarks, they may not be optimal for all tasks. Automatically discovering
the number and composition of views could further improve the model’s adaptability. In particular,
different problem types may benefit from different view granularities, and a one-size-fits-all design
might limit the model’s flexibility in some scenarios. Additionally, for certain complex tasks, fine-
grained or hierarchical view configurations could be beneficial but have not yet been explored in
the current framework. Investigating how view configurations interact with rule complexity would
provide valuable insights for future enhancements.

F Summary of Network Architecture

We provide the detailed architecture of our proposed DDCP in Tab. [[9) MRM in Tab. [20] and
core component GARB in Tab. [21] For readability, we do not include batch normalization, layer
normalization, dropout layer and activation functions in the structure. For example, F(8, 32, 3, 25)
represents a feature with a group size of 8, 32 channels, 3 context features in a row, and a token
size of 25. The group size is 8 because we concatenate 8 answer images with the question panel.
Additionally, before transforming into multiple heads in GARB, our features are three-dimensional,
such as F(8, 25, 32), which represents a batch size of 8, a token size of 25, and 32 channels. More
details will be provided in our released code upon the paper acceptance.

25



Case 1 Case 2 Case 3

e OO0 OQ‘.‘Q
0532999 T/ ooome -
S00| 6@ @v OQ = eme@

O ec 00
] N P

B )
]

e 8|00 o0
e e o000 00O

A i =¥
2 CIAKE g%
AAD @ ||
23, e g
900 [ |
O-RVN -> I-RVN out: I-RVN -> RVN-F RVN-F -> O-RVN
Number: Distribution Three ‘Number: Constant Number: Constant
Position: NA Position: Constant Position: Constant
Type: Constant Type: Distribution Three Type: Constant
Size: Distribution Three Size: Constant Size: Distribution Three
Color: Distribution Three Color: Constant Color: Progression
In: Number: Constant
Position: Distribution Three
Type: Constant
Size: Constant
Color: Constant
Case 4 Case 5 Case 6
o @ Svws [« o e e 090 o
o0 \ 4 <
00 e0@® b « |4 4] « ve O O
vee (OO0 @ B[ » |» o ol O»
v & O Qo0 e o
»rv| mmO o |o o e 0O
OoaQg|e oo 4 ‘
L >4 oabs|obso
o o CO|®
[V e Jm 50 o600 S ™=
® 5 =8 Dooesdjoa . ® % ©)
] ® =] =] b oo mE O rq|e =
OCe (moD e ©Oa ~
= | o0 @ omeiso ooD oe L 10
[©) @ iso0vi O o e [
O-RVN -> I-RVN I-RVN -> RVN-F RVN-F -> O-RVN
Number: Constant Number: Constant Number: Progression
Position: NA Position: NA Position: NA
Type: Distribution Three Type: Constant Type: NA
Size: Constant Size: NA Size: Progression
Color: Distribution Three Color: Progression Color: Distribution Three
|:| Choice of DSRF-M f_______-i Choice of PredRNet Correct Answer

Figure 10: Failure cases on RAVEN datasets under OOD settings. The choices of DSRF-M and
PredRNet [13]] are compared.
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Table 19: Detailed network architecture of the proposed DDCP, with the number of parameter
channels «, the kernel size 8. To better illustrate the CNN gate, we denote the G as the gate matrix.

Function Operations Input Output
Permute F(8, 32,9, 25) F(8, 9, 25, 32)
Linear(a=64) F(8,9, 25, 32) F(8,9, 25, 64)
Split F(8, 9, 25, 64) F(8, 9, 25, 32)
&G(8, 9, 25, 32)
Permute F(8, 9, 25, 32) F(8, 32,9, 25)
Split F(8, 32,9, 25) F(8, 32, 3, 25)x3
Reason Ist Row GARB(a=32) F(8, 32, 3, 25) F(8, 32, 3, 25)
Reason 2nd Row GARB(a=32) F(8, 32, 3, 25) F(8, 32, 3, 25)
Reason 3rd Row GARB(a=32) F(8, 32, 3, 25) F(8, 32, 3, 25)
Concat F(8, 32, 3,25)x3 F(8, 32,9, 25)
Permute F(8, 32,9, 25) F(8, 9, 25, 32)
CNN Gate
Conv2d(a=36, 5=(3, 3)) G(8,9, 25, 32) G(8, 36, 25, 32)
Conv2d(a=9, 8=(3,3)) G(8, 36, 25, 32) G(8,9, 25,32)
Linear(a=32) G(8,9,25,32) G(8, 9, 25, 32)
Hadamard Product F(8, 9, 25, 32)&G(8, 9, 25, 32) F(8, 9, 25, 32)
Permute F(8,9, 25, 32) F(8, 32,9, 25)
Conv2d(a=128, 5=(3, 3)) F(8, 32,9, 25) F(8, 128, 9, 25)
Conv2d(a=32, 8=(3, 3)) F(8, 128, 9, 25) F(8, 32,9, 25)
Residual Add F(8, 32,9, 25)x2 F(8, 32,9, 25)

Table 20: Detailed network architecture of the proposed MRM. « denotes the number of channels.
To illustrate the parallel structure in the model, we denote the feature for the channel-wise linear map
as C and the feature for the token-wise linear map as T.

Function Operations Input Output
Token-wise Map  Linear(a=25) F(8, 32,9, 25) T(8, 32,9, 25)
Permute TG, 32, 9, 25) T(8, 9, 25, 32)
Permute F(8, 32,9, 25) F(8, 9, 25, 32)
Channel-wise Map Linear(a=32) F(8, 9, 25, 32) C(8,9, 25, 32)
Add T(8, 9, 25, 32)&C(8, 9, 25, 32) F(8,9, 25, 32)
Reshape&Permute F(8,9, 25, 32) F(8, 25, 32, 3, 3)
Row-wise Map Linear(a=3) F(8, 25, 32, 3, 3) F(, 25, 32, 3, 3)
Reshape&Permute F(8, 25, 32, 3, 3) F(8, 25, 32,9)
Sample-wise Map Linear(a=9) F(8, 25, 32,9) F(8, 25, 32,9)
Permute F(8, 25,32,9) F(8, 32,9, 25)
Conv2d(a=128, 5=(3, 3)) F(8, 32,9, 25) F(8, 128, 9, 25)
Conv2d(a=32, 8=(3, 3)) F(8, 128, 9, 25) F(8, 32,9, 25)
Residual Add F(8, 32,9, 25)x2 F(8, 32,9, 25)
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Table 21: Detailed network architecture of the proposed GARB, with the number of parameter
channels «, the kernel size 3. W is the learnable matrix. GQ and GK denote the two Gram matrices.
DGQ and DGK are Q-wise and K-wise dynamic gates. DQ and DK represent two enhanced features

after dynamic gates. D is the domain difference. E is the prediction error.

Function Operations Input Output

Split F(8, 32, 3, 25) F(8, 32, 2, 25)

&F(8, 32, 1, 25)
Downsample Conv2d(a=32, 5=(2, 1)) E(8, 32, 2, 25) F(8, 32, 1, 25)
Q Generation Reshape&Permute F(8, 32, 1, 25) F(8, 25, 32)
K Generation Reshape&Permute F(@8, 32, 1, 25) F(8, 25, 32)
V Generation Reshape&Permute F(8, 32, 1, 25) F(8, 25, 32)
Q Mapping Linear(a=32) F(8, 25, 32) Q(S, 25, 32)
K Mapping Linear(a=32) F(8, 25, 32) K(8, 25, 32)
V Mapping Linear(a=32) F(8, 25, 32) V(8, 25, 32)
Q Multi-head Reshape&Permute Q(8, 25, 32) QG, 8,25,4)
K Multi-head Reshape&Permute K(8, 25, 32) K8, 8, 25, 4)
V Multi-head Reshape&Permute V(8, 25, 32) V@, 8,25, 4)
Basic Branch

Gram GQ Dot Product Q8, 8, 25, H&Q(8, 8, 25, 4) GQ(8, 8, 25, 25)
Gram GK Dot Product K(8, 8, 25, )&K(8, 8, 25, 4) GK(8, 8, 25, 25)
GQ Highlight Hadamard Product GQ(8, 8, 25,25)&W(8, 8, 25,25) GQ(8, 8, 25, 25)
GK Highlight Hadamard Product GK(8, 8, 25, 25)&W(8, 8, 25,25) GK(8, 8, 25, 25)

Difference D

Minus

Conv2d(a=32,8=(3,3)) D(8, 8, 25, 25)
D(8, 32, 25, 25)

Conv2d(a=8,5=(3,3))

GQ(8, 8, 25, 25)&GK(8, 8, 25, 25) D(8, 8, 25, 25)

D(8, 32, 25, 25)
D(8, 8, 25, 25)

Context-enhanced Branch

DGK Dynamic Gate Dot Product

DK Highlight

Hadamard Product

Conv2d(a=32,5=(3,3)) DK(8, 8, 25, 25)
DK(8, 32, 25, 25)

Conv2d(a=8,8=(3,3))

K(8, 8, 25, H&W(S, 8, 25, 4)

DGK(8, 8, 25, 25)

D(8, 8, 25, 25)&DGK(8, 8, 25, 25) DK(8, 8, 25, 25)

DK(8, 32, 25, 25)
DK(8, 8, 25, 25)

Target-enhanced Branch

DGQ Dynamic Gate Dot Product

DQ Highlight

Hadamard Product
Conv2d(a=32,8=(3,3))
Conv2d(a=8,8=(3,3))

Q(8, 8,25,4)&W(8, 8, 25, 4)

DGQ(8, 8, 25, 25)

D(8, 8, 25, 25)&DGQ(S, 8, 25, 25) DQ(S, 8, 25, 25)

DQ(S, 8, 25, 25)
DQ(8, 32, 25, 25)

DQ(S, 32, 25, 25)
DQ(S, 8, 25, 25)

Prediction {

Error E

Plus

Dot Product
Reshape&Permute
Linear(a=32)
Reshape&Permute
Minus

Concat

D&DK&DQ(S, 8, 25, 25)x3
D(8, 8, 25, 25)&V(8, 8, 25, 4)

F(8, 8, 25, 4)
F(8, 25, 32)
F(8, 25, 32)

F(8, 32, 1, 25)&F(8, 32, 1, 25)
F(8, 32, 2, 25)&E(8, 32, 1, 25)

D(8, 8, 25, 25)
F(8, 8, 25, 4)
F(8, 25, 32)
F(8, 25, 32)
F(8, 32, 1, 25)
E(, 32, 1, 25)
F(8, 32, 3, 25)
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the proposed method and its
contributions, aligning well with the main content of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the supplementary material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
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Justification: The formulas presented in our paper do not involve theoretical proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce the entire model framework and hyperparameters in the experi-
mental section and the supplementary materials, and we commit to open-sourcing the code
upon acceptance of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We do not provide the code during the review phase due to privacy concerns,
but we will open-source it immediately upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training and testing details in the experiments section and
the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper strictly follows previous experiments in the field and does not
introduce new error analysis.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the hardware conditions and a time complexity analysis in the
experiments section and supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work strictly adheres to the ethical guidelines.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work does not have direct societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: This work provides proper citations for all the assets involved.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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