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Abstract

Inhomogeneities in real-world data, e.g., due to changes in the observation noise level or
variations in the structural complexity of the source function, pose a unique set of chal-
lenges for statistical inference. Accounting for them can greatly improve predictive power
when physical resources or computation time is limited. In this paper, we draw on recent
theoretical results on the estimation of local function complexity (LFC), derived from the
domain of local polynomial smoothing (LPS), to establish a notion of local structural com-
plexity, which is used to develop a model-agnostic active learning framework. Due to its
reliance on pointwise estimates, the LPS model class is not robust and scalable with respect
to large input space dimensions that typically come along with real-world problems. Here,
we propose a GPR-based estimate of LFC, which is able to manage the curse of dimension-
ality. To this end, we train a mixture of experts (MoE) model where the experts are GPR
models at different bandwidths. Being the key ingredient in the calculation of LFC, we
then estimate locally optimal kernel bandwidths as the weighted average of these bandwidth
candidates, where the weights are taken from the learned gate of the MoE model. We assess
the effectiveness of our LFC estimate in an active learning application on a prototypical
low-dimensional synthetic dataset, before taking on the challenging real-world task of re-
constructing a quantum chemical force field for a small organic molecule and demonstrating
state-of-the-art performance at a lower rate of sampling.

1 Introduction

Inference problems from real-world data often exhibit inhomogeneities, e.g., the noise level, the density of
the data distribution or the complexity of the target function may change over the input space. There
exist different approaches from various domains that treat specific kinds of inhomogeneities. For example,
Kersting et al. (2007); Cawley et al. (2006) deal with heteroscedasticity by modelling a local noise variance
function that then improves prediction performance by adapting the model regularization locally. Some
approaches adjust bandwidths locally with respect to the input density Wang & Wang (2007); Mackenzie
& Tieu (2004); Moody & Darken (1989); Benoudjit et al. (2002). Inhomogeneous complexity can also be
tackled by stacking several kernel-linear models with different bandwidths, either learned jointly Zheng
et al. (2006); Guigue et al. (2005) or hierarchically Ferrari et al. (2010); Bellocchio et al. (2012). The most
widely applicable approaches treat all types of aforementioned inhomogeneities in a unified way (Tresp, 2001;
Panknin et al., 2021), which is the path we will pursue in this work. In particular, we will focus on the theory
of inhomogeneous complexity under the assumption of homoscedastic noise. In addition, we will apply our
derived framework in a heteroscedastic setting to demonstrate practical implications.

The identified inhomogeneities can shed light on the informativeness of certain locations of the input space,
which subsequently can be used to guide the sampling process while training—also known as active learning.
Active learning (Kiefer, 1959; MacKay, 1992; Seung et al., 1992; Seo et al., 2000) is a powerful tool to enhance
the performance of a model for inference, whenever the acquisition of labeled training data is expensive. It
has been successfully implemented in various regression applications like reinforcement learning (Teytaud
et al., 2007), wind speed forecasting (Douak et al., 2013) and optimal control (Wu et al., 2020). Specifically
in pharmaceutic applications Warmuth et al. (2003) and in the domain of quantum chemistry (Gubaev et al.
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(2018); Tang & de Jong (2019); Huang & von Lilienfeld (2020)) we can benefit from active learning, since
the labels stem from computationally expensive first-principles calculations (Chmiela et al., 2017) or even
laboratory experiments.

Figure 1: An overview of the steps of our contribution and how they are interlinked. We will elaborate on
the main steps in the specified sections.

Our work aims at improving the efficiency of the inference task by identifying local inhomogeneities in the
data and exercising this insight to construct better models and training datasets. Specifically, we contribute
in three ways:
First, we propose a sparse mixture of Gaussian processes model, which extends a single-scale Gaussian
process regression (GPR)-based model to a multi-scale approach in a natural way, raising the prediction
performance whenever the data features multi-scale behavior. In particular, we will set up a mixture of
experts (MoE) model (see Jacobs et al. (1991); Jordan & Jacobs (1994); Pawelzik et al. (1996)), where each
experts is a GPR model that holds an individual, fixed bandwidth. MoE have been applied across the board
in the machine learning (ML) literature of which an introduction and summary can be found in Yuksel et al.
(2012). After training, the latent gate model selects the expert that is best suited for the prediction of a test
input x ∈ X .

Second, we propose an estimate to locally optimal kernel bandwidths (LOB) from the learned gate of our MoE
model, based on which we derive an estimate to the local function complexity (LFC) under homoscedasticity—
a property that describes the local structural complexity of the regression function. Essentially, LFC is the
reciprocal determinant of LOB, calibrated for the local effects of the training input density and noise level,
and was originally defined by Panknin et al. (2021) for the local polynomial smoothing (LPS) model class
(Cleveland & Devlin, 1988). We derive the GPR-based analog by following their definition, but using
asymptotic results on the scaling of optimal bandwidths for GPR by Van der Vaart et al. (2007; 2009).
In contrast to the LPS-based estimate, our GPR-based version is scalable with respect to the input space
dimension. As a scalar-valued function, LFC allows for an easy inspection to gain insights into the local
structural complexity of the target function—even for high-dimensional input spaces—making it a problem
intrinsic, interpretable property of the regression problem. Furthermore, LFC can be used to make models
more parsimonious, for example, by placing additional basis functions of a kernel method in more complex
regions while removing basis functions in simpler regions of the input space. We will discuss both aspects,
interpretability and model parsimony, in the experiments.

Finally, we implement a GPR-based version of the recent active learning framework by Panknin et al. (2021).
As opposed to several active learning approaches—where commonly training data is refined bottom-up in
a more or less greedy manner Kiefer (1959); MacKay (1992); Seung et al. (1992); Seo et al. (2000); Roy
& McCallum (2001); He (2010); Douak et al. (2013); Bull et al. (2013); Gubaev et al. (2018); Goetz et al.
(2018)—the fundamental idea of the considered approach is to analyze the distribution of the hypothetically
optimal training set in the asymptotic limit of the sample size. Assuming that this limiting distribution
exists, we would like to sample training data in a top-down manner from this very distribution, knowing
that with growing sample size the training set will eventually become optimal. Panknin et al. (2021) have
shown for the local polynomial smoothing (LPS) model class that this asymptotic distribution exists, whose
density furthermore factorizes into contributions of the test density, heteroscedastic noise and LFC. Given
a small, but sufficient training set, these factors can be estimated, allowing the construction of the optimal
training density and subsequently enabling the refinement of the training data towards asymptotic optimality.
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Here, our contribution is to replace the LPS-based LFC estimate with our GPR-based LFC estimate in
the construction of the optimal training density. In doing so, we make this active learning approach suited
for problems of higher input space dimensions, which hitherto was missing. It is particularly the almost
assumption-free nature of LPS that made the results of Panknin et al. (2021) model-agnostic. In particular,
they have demonstrated a superior performance of their approach under reasonable model change. To that
effect, we base our results on the nonparametric GPR model with the goal to preserve this property. Hence,
we obtain model-agnostic estimates to LFC and a superior training density, which we can inspect to gain
deeper insights into the MD simulation problem.

In the domain of quantum chemistry, regression problems commonly exhibit multi-scale behavior due to the
complex electronic interactions that give rise to any observable property of interest, like the total energy or
atomic forces of a system (Bereau et al., 2018; Yao et al., 2018; Grisafi & Ceriotti, 2019; Ko et al., 2021; Unke
et al., 2021a). This is why we choose a molecular dynamics (MD) simulation experiment to demonstrate the
capabilities of our framework in practice. Here, we will apply the sGDML model by Chmiela et al. (2019) as
experts, which—besides taking derivative information and invariances of the molecule into account—directly
corresponds to a GPR model.

We begin with a formal definition of the considered regression problem and the asymptotic active learning
task, and review asymptotic results for LPS and GPR in Sec. 2. In Sec. 3, we describe our MoE model
and derive the GPR-based LFC and superior training density estimates. We further discuss related work in
Sec. 4. In experiments in Sec. 5, we will first demonstrate our MoE approach and the proposed estimates to
LFC and the superior training density and compare to related work on toy-data. After that, we will apply
our framework to a 27-dimensional MD simulation dataset. Finally, we conclude in Sec. 6.

2 Preliminaries

We begin with a formal definition of the regression task, the active learning objective and LOB, and a short
review of the asymptotic results on LFC and the optimal training distribution of the LPS model in Sec. 2.1
and 2.2, followed by asymptotic results on the optimal bandwidth of GPR in Sec. 2.3.

In the following, we denote by diag(z) ∈ Rd×d be the diagonal matrix with the entries of the vector z ∈ Rd

on its diagonal, and by Id = diag(1d) the identity matrix, where 1d is the vector of ones in Rd.

2.1 Formal definition of the regression task and active learning objective

Let f be the target regression function defined on an input space X ⊂ Rd that we want to infer from noisy
observations yi = f(xi) + εi, where xi ∈ X are the training inputs and εi is independently drawn from
a distribution with mean E[εi] = 0 and local noise variance V[εi] = v(xi). We denote a training set by
(Xn, Yn), where Xn = (x1, . . . , xn) ∈ Xn and Yn = (y1, . . . , yn) ∈ Rn. For a given model f̂ and a training
set (Xn, Yn), we may define the pointwise conditional mean squared error of f̂ in x ∈ X by

MSE
(

x, f̂ |Xn

)
= Eε

[
(f̂(x)− f(x))2|Xn

]
. (1)

Although the model f̂ depends on the training labels Yn, the conditional MSE of f̂ does not, by construction.
Given a test probability density q ∈ C0 (

X ,R+

)
such that

∫
X

q(x)dx = 1, the conditional mean integrated
squared error of the model under the given training set is then defined as

MISE
(

q, f̂ |Xn

)
=

∫
X

MSE
(

x, f̂ |Xn

)
q(x)dx. (2)

With these preparations, the active learning task is to construct a training set (X ′
n, Y ′

n) such that

X ′
n ≈ argminXn∈X n MISE

(
q, f̂ |Xn

)
. (3)
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2.2 Locally optimal bandwidths, function complexity and optimal training

Let us consider a family f̂Σ of kernel machines which is characterized by a positive definite bandwidth
matrix parameter Σ ∈ Sd

++ of a radial basis function (RBF) kernel kΣ(x, x′) := |Σ|−1
ϕ(∥Σ−1(x − x′)∥)

for a monotonically decreasing function ϕ : R+ → R+. The well known Gaussian kernel is for example
implemented by ϕ(z) = exp{− 1

2 z2}.

Given a bandwidth space S ⊆ Sd
++ we define the locally optimal bandwidth (LOB) function

Σn(x) = argminΣ∈S MSE
(

x, f̂Σ|Xn

)
, (4)

assuming that these pointwise minima uniquely exist.

Denote by mΣ
Q the predictor of the LPS model of order Q under bandwidth Σ and by Σn

Q the LOB function
(4) of LPS, if it is well-defined. This is the case, e.g., for the isotropic bandwidths space S = {σId | σ > 0}
under mild assumptions1, where we particularly can write Σn

Q(x) = σn
Q(x)Id. For the optimal predictor

f̂Q
LPS = m

Σn
Q(x)

Q (x) (5)

of LPS, letting f̂ = f̂Q
LPS in Eq. (3), Panknin et al. (2021) have shown that there exists an optimal training

density pQ,n
Opt such that the optimal training set choice in Eq. (3) can asymptotically be obtained by sampling

independently and identically X ′
n ∼ pQ,n

Opt . This density exhibits a closed-form

pQ,n
Opt (x) ∝

[
Cn

Q(x)q(x)
] 2(Q+1)+d

4(Q+1)+d v(x)
2(Q+1)

4(Q+1)+d (1 + o(1)), (6)

where for an arbitrary training dataset (Xn, Yn) with Xn ∼ p,

Cn
Q(x) =

[
v(x)

p(x)n

] d
2(Q+1)+d ∣∣Σn

Q(x)
∣∣−1 =

[
v(x)

p(x)n

] d
2(Q+1)+d

σn
Q(x)−d (7)

solely depends on the behavior of f in the vicinity of x: It scales with the local variation of f and therefore
serves as a measure of LFC in x. Indeed, for odd Q, it is Cn

Q = C∞
Q (1 + o(1)), where

C∞
Q (x) = bQ [x, Id]

2d
2(Q+1)+d (8)

for the asymptotic leading bias-term bQ [x, Id] of order (Q + 1) (see Eq. (25)), which is a function of the
(Q+1)−th derivative DQ+1

f (x) of the target function f . For example, b1 [x, Id] ∝ trace(D2
f (x)) is a function

of the trace of the Hessian of f (Fan et al., 1997).

The density pQ,n
Opt reflects the need for more training data where the problem is locally more complex or noisy,

or where test instances are more likely. In practice, we obtain X ′
n ∼ pQ,n

Opt by estimating Eq. (6) and (7) from
(Xn′ , Yn′) with Xn′ ∼ p for an arbitrary training density p, where n′ < n, followed by adding the remaining
n− n′ inputs appropriately (see Sec. 3.3).

We can further define a generalized LFC of LPS for f ∈ Cα (X ,R), given by

Cn
Q,Sd

++
(x) =

[
v(x)

p(x)n

] d
2α+d ∣∣∣Σn

Q,Sd
++

(x)
∣∣∣−1

, (9)

which is based on the non-isotropic LOB function Σn
Q,Sd

++
(x) ∈ Sd

++—that is, Eq. (4) for the bandwidth space
S = Sd

++. Panknin et al. (2021) have analyzed that Cn
Q,Sd

++
will asymptotically be invariant with respect

to v, p and n, such that it is solely a function of the target function f even though it exhibits no explicit
solution in terms of f , as was obtained in the isotropic case in Eq. (8).

1For LOB being well-defined in the isotropic case, we generally require a non-vanishing bias and variance in terms of a
bias-variance-decomposition of the MSE of the predictor in x, for all x ∈ X . See, e.g., Eq. (23) for the LPS predictor mQ, or
Silverman (1986); Wand & Jones (1994) in more general.
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In the light of the generalized LFC, the straight-forward extension of the optimal training density is

p
Q,Sd

++,n
Opt (x) ∝

[
Cn

Q,Sd
++

(x)q(x)
] 2α+d

4α+d

v(x) 2α
4α+d (1 + o(1)). (10)

The results to LFC and optimal training of LPS indicate their problem intrinsic nature, as they reflect no
direct dependence on the LPS model. Accordingly, Panknin et al. (2021) claimed their model-agnostic char-
acter, for which they also provided empirical evidence: They observed superior performance when training
a regression forest model and an RBF-network under their AL framework. For more details on the LPS
model and asymptotic results, we refer to Appendix A.

The construction of pQ,n
Opt crucially depends on reliable estimates to LOB as the key ingredient for the

estimation of LFC. While Panknin et al. (2021) provided such an estimate based on Lepski’s method (Lepski,
1991; Lepski & Spokoiny, 1997), it does not scale well with increasing input space dimension d. This is due
to the fact that this pointwise estimate suffers from the curse of dimensionality regarding robustness and
computational feasibility. The goal of this work is to implement the above active learning framework, but
based on a functional LOB estimate in the domain of GPR instead of LPS, since the GPR model class
can naturally deal with high input space dimensions (Williams & Rasmussen, 1996). Here, we rely on the
model-agnosticity of LFC and the optimal training density: We expect that LOB estimates based on GPR
can be exchanged for LOB estimates based on LPS in the active learning framework, when matching the
degree Q to the smoothness of the regression function appropriately.

2.3 On the scaling of GPR bandwidths

The major difference between LPS and GPR is, that we keep a fixed model complexity—in the sense of
number of basis functions—in the former while there is varying model complexity in the latter as we add
further training instances. I.e. for the Gaussian kernel there is an infinite growth of model complexity. When
the regularity of the kernel and the target function f match, then, as soon as the training size n becomes
large enough, there is no further shrinkage of bandwidth necessary anymore to exactly reproduce f . In
particular, given enough samples, there is no need for local bandwidth adaption.

However, there is a mismatch if f ∈ Cα (X ,R) is α-times continuously differentiable since the Gaussian kernel
is infinitely often continuously differentiable. As shown by Van der Vaart et al. (2007; 2009), in order to
obtain optimal minimax-convergence of the predictor (except for logarithmic factors), the associated (global)
bandwidth has to follow the asymptotic law

Σn
GPR ∝ n− 1

2α+d . (11)

Note that for f ∈ Cα (X ,R), where the theoretical results of LPS apply, the scaling factor n− 1
2α+d of LOB in

sample size matches exactly for both classes, LPS and GPR. In our work, we will use this analogy to deduce
a GPR-based LFC estimate in the same way it was done by Panknin et al. (2021) for LPS.

3 Estimating locally optimal bandwidths via mixture of Gaussian processes

In this section, we derive our main contribution, namely the GPR-based active learning framework, which we
summarized in Fig. 2. We first describe our GPR-based MoE model in Sec. 3.1 (Fig. 2, A), of which the gate
function will be used to derive our GPR-based superior training density estimate in Sec. 3.2 (Fig. 2, B). Com-
bining this estimate with the active learning framework from Panknin et al. (2021), we obtain a GPR-based
sampling scheme in Sec. 3.3 (Fig. 2, C), which is model-agnostic, asymptotically optimal and interpretable
while being applicable to problems with high input space dimensions.
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Figure 2: The proposed active learning framework.

3.1 Sparse Mixture of Gaussian Processes

Following the work of Shazeer et al. (2017), we construct a sparse MoE model

f̂MoE(x) =
∑L

l=1
G(x)lŷl(x), (12)

where the gate G : X → [0, 1]L is a probability assignment of an input x to the expert models ŷl. In
particular, it holds

∑L

l=1
G(x)l ≡ 1 and G(x)i ≥ 0,∀x ∈ X and 1 ≤ i ≤ L (see Appendix B.3 for details).

This MoE approach has two hyperparameters, κ and s, for controlling the sparsity of the gate and adding
noise to the gate responses while training in order to escape local optima. We choose the expert models
to be (sparse) Gaussian processes (Williams & Rasmussen, 1996; Hensman et al., 2015), that is, ŷl ∼
GP(θel

) or ŷl ∼ SGP(θel
), which are parameterized by θel

, as described in Appendix B.1 and B.2, and we
choose the single channel gating models gl ∼ SGP(θgl

) to be sparse Gaussian processes. The overall MoE
hyperparameter set is thus given by Θ = ({θel

}L
l=1, {θgl

}L
l=1, κ, s).

We will keep certain hyperparameters of Θ constant after initialization, and share some hyperparameters
across experts and the channels of the gate: While the covariances of the inducing value distributions
S∗ ∈ θ, θ ∈ Θ could be full positive definite matrices, we apply S∗ = 0 throughout, giving favorable stability
and computational efficiency.

For the same reasons we choose to fix the inducing point locations X∗ ∈ θ, θ ∈ Θ after initialization.
Furthermore we share the inducing point locations among the experts, respectively the gate channels, such
that for X∗ ∈ θel

we apply X∗ = X∗
E and for X∗ ∈ θgl

we apply X∗ = X∗
G, for all 1 ≤ l ≤ L.

In this work, our goal is to fit a single, coherent regression problem by a MoE approach. Therefore, we
propose to share all the parameters across the experts that characterize the regression function rather than
the expert model. That is, we share the mean µE , the regularization parameter λE and the noise variance
function v̂, respectively the global noise variance σ2

ε with v̂(x) ≡ σ2
ε in case of homoscedasticity. Furthermore,

we apply a fixed, logarithmically spaced set of individual expert bandwidth scaling factors σ1 < . . . < σL
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that are multiplied to a fixed, shared bandwidth matrix ΣE . Our expert parameters therefore reduce to

θel
= (µE , λE , v̂, σlΣE , X∗

E , µ∗
el

, 0).

For the sake of a simple notation we set X∗
E = µ∗

el
= ∅ in the non-sparse GPR case, noting that there are,

in fact, no inducing points.

Since our objective does not incorporate any likelihood about the gate’s output, there is no noise function to
fit for the gate, such that we set v̂ ≡ 0 for v̂ ∈ θgl

and all 1 ≤ l ≤ L. Each output channel of the gate poses
its own classification problem, which is why we do not share the means. Yet, we share the regularization
parameter and the bandwidth, as the individual channels should be structurally similar. Our gate parameters
therefore reduce to

θgl
= (µgl

, λG, 0, σGId, X∗
G, µ∗

gl
, 0).

This MoE can cope with a varying structural complexity through the individual bandwidth scaling factors
σl of the experts and heteroscedastic noise through the adaptive regularization. The following subsections
will be devoted to the training of our model. We first set up the training objective and describe the training
procedure of our model in Sec. 3.1.1, where we identify hyperparameters of the approach. Then, we discuss
how to choose the essential hyperparameters systematically on the initial training dataset in Sec. 3.1.2.

3.1.1 Training procedure

In this section, we will set up the training objective of our MoE model and discuss which variables of the
MoE are parameters to be learned while training, and which variables remain hyperparameters that need
to be specified or tuned through an external validation step. We implement our model in PyTorch (Paszke
et al., 2019), using the GPyTorch-package (Gardner et al., 2018). Given the training set (Xn, Yn), we update
the objective described below from in batch mode via ADAM-optimization (Kingma & Ba, 2015).

The main objective Denote by ∅ ⊊ B ⊆ {1, . . . , n} the indices of a batch. If we assume our problem to
be (almost) noise-free, we apply the mean squared error (MSE) as the main objective:

MSE(Xn, Yn,B, w, Θ) = w−1
B

∑
b∈B

w(xb)∥yb − ŷ(xb)∥2,

where w is the training importance weight function and wB =
∑

b∈B
w(xb).

If we assume noise, we instead choose the negative predictive marginal log-likelihood

MLL(Xn, Yn,B, w, Θ) = −w−1
B

∑L

l=1

[ ∑
b∈B

vl(xb)Pb,l + 1
nl

KL(ql, pl)
]

as our main objective, where we have defined

nl = n
∑

b∈B
w(xb)

/ ∑
b∈B

vl(xb), vl(x) = G(x)lw(x),

the predictive log-likelihood of the l-th expert in xb by

Pb,l = log Eu∼ql

∫
pl(yb|f)pl(f |u, xb)df,

and ql is the variational distribution and pl is the prior distribution of the inducing function values of the
expert inducing points X∗

E .

A penalty on small bandwidth choices In the spirit of Lepski’s method (Lepski, 1991; Lepski &
Spokoiny, 1997), we prefer the largest choice of bandwidth out of all candidates that perform comparably
well. In order to enforce this, we penalize smaller bandwidth choices by adding the following term:

penσ(Xn, Yn,B, w, Θ) = 2
(L− 1)

∑L

l=1
νl(L− l)

/ ∑L

l=1
νl, (13)
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where ν =
∑

b∈B
w(xb)G(xb). Our total objective then amounts to

Obj(Xn, Yn,B, w, Θ) = MLL(Xn, Yn,B, w, Θ) + ϑσpenσ(Xn, Yn,B, w, Θ),

or in the noise-free case to

Obj(Xn, Yn,B, w, Θ) = MSE(Xn, Yn,B, w, Θ) + ϑσpenσ(Xn, Yn,B, w, Θ).

Recall from Sec. 3.1 that the MoE has two further hyperparameters, κ for enforcing sparse gate responses
and a noise term on the gate responses while training, which is controlled by s.

Instead of learning s as a parameter while training—like proposed by Shazeer et al. (2017)—we propose to
shrink s ← sηs after each training epoch, for a multiplicative factor ηs < 1 and an initial value s := s0 as
hyperparameters. We discuss this heuristic choice in Appendix D.

Finally, note that we require appropriate learning rates for the individual types of tunable parameters: Within
a Gaussian process component SGP(θ) with θ = (µ, λ, v̂, Σ, X∗, µ∗, S∗), the hyperparameters (µ, λ, v̂) must
be updated on a smaller scale than the inducing value distribution, given by (µ∗, S∗). In this regard, let
ηH < 1 be the factor such that, if we update µ∗ at rate η, then we update (µ, λ, v̂) at rate ηHη.

Similarly, we need to update the gate parameters θgl
on smaller scale than the expert parameters θel

. In
this regard, let ηG < 1 be the factor such that, if we update θel

at rate η, then we update θgl
at rate ηGη.

The overall set of hyperparameters is thus given by

(B, κ, {σl}L
l=1, σG, λG, X∗, X∗

G, s0, ηs, ϑσ, η, ηH , ηG),

whereas the overall set of parameters is given by

Θ = (µE , λE , v̂, ΣE , µ∗, µG, µ∗
G).

We provide further details on the design choices for our MoE model in Appendix D.

3.1.2 Choosing the hyperparameters

While the set of hyperparameters appears to be large, most of them can be tuned in advance on the initial
training dataset of moderate size and can be held fixed in the subsequent training data refinement process.
In addition, some hyperparameters (|X∗| , |X∗

G| , κ) are not crucial for our approach to work, as long as they
are not underestimated, where smaller values are desirable with regard to computational cost.

• The MoE is robust with respect to unnecessarily large choices of the gate output sparsity κ, and
so, we can initialize κ = L while choosing the remaining hyperparameters, followed by tuning κ
as the last hyperparameter, where we successively reduce κ until we observe a significant loss of
performance of the MoE.

• The numbers mE = |X∗|, mG = |X∗
G| of inducing points of the expert and the gate models are

the main driver of the computational complexity of our MoE. While unnecessarily large numbers
will not hurt the model performance, they should therefore be set to the smallest value that leads
to no significant loss of performance to keep the computational complexity of the model moderate
at larger training sizes. We suggest to use mE = n0 for the experts and mG = n0

4 in the initial
iteration. After having a first estimate of LFC and a refinement of the initial training data, their
number can be adapted via validation of the MoE in the second iteration, and held fixed afterwards.

• Note that the choice of the locations of the inducing points X∗, X∗
G are discussed in Appendix C,

which are not subject to optimization in our work.
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Let us begin with the base learning rate and the expert’s internal hyperparameters learning rate (η, ηH) and
the batch size B that are related to a single GPR expert rather than the whole MoE model. Generally, we
suggest to apply an adaptive base learning rate, where we shrink ηi ← 1

2 ηi−1 with η0 = η while training as
soon as the validation performance gets stuck, until ηi crosses a lower threshold like, e.g., ηi < η0/1000.

• First, we hold ηH = 0.2, B = n0 fixed at reasonable initial values to train and validate a single,
isotropic, sparse GPR expert with respect to η. Here, too small values of η lead to a very slow
convergence of the objective, in which case we interrupt the training immediately. We then increase
η as long as the first objective updates are consistently decreasing.

• Next, we validate ηH , where we gradually decrease from ηH = 1. Again, we interrupt the training
for too large choices of ηH , where the training objective will diverge.

• Finally, we validate B, where we gradually decrease from B = n0.

Next, we have to deal with the remaining hyperparameters that are related to the MoE model. For this,
we first initialize the less crucial hyperparameters at reasonable values, tuning them afterwards: We apply
a set of experts with {σl}L

l=1, where L = 7, and σl = σ̂GPR2 l−4
d , which are logarithmically spaced around

the global bandwidth estimate σ̂GPR of the best performing model that we obtained from the above tuning
of the hyperparameters related to a single GPR expert. The noise added to the gate (s0, ηs) as well as
the regularization ϑσ of the bandwidth function are about fine-tuning of the model. We set them to s0 =
0.1, ηs = 1/

√
2 and ϑσ = 0.01. Note that we suggest to keep ηs = 1/

√
2 throughout without further tuning.

• We validate σG, λG over a grid, where we gradually decrease the gate learning rate from ηG = 1.

As a last step, we choose the hyperparameters for fine-tuning of the MoE model:

• First, we validate the MoE for ϑσ

• Next, we tune {σl}L
l=1: First, we observe that unreasonable bandwidths will be automatically

dropped while training. Therefore, if the minimal or maximal candidate associated to σ1, σL is
not chosen while training, we remove the respective expert and retrain the MoE. Vice versa, we
expand the bandwidth candidate range beyond σ1, σL with a factor of 2∓ 1

d as long as the boundary
candidates are not dropped while training.

• Finally, we validate the MoE for s0

3.2 GPR-based estimates of LOB and LFC

Inspired by the generalized results to LFC and the optimal training density of LPS in Eq. (9) and (10),
we are now able to deduce their GPR-based analog: This result deals with models in combination with a
bandwidth space S that adapt universally2 to functions f ∈ Cα (X ,R)—which is the case for GPR. The
idea of the LFC estimate was to adjust LOB appropriately so that it becomes invariant with respect to the
influence of the training density, heteroscedasticity and its global decay with respect to the training size n.
After training of the model from Sec. 3.1, we use the learned gate G from (12) to predict LOB of GPR as

Σn
GPR(x) = σn

GPR(x)ΣE , where σn
GPR(x) = exp

{ ∑L

l=1
G(x)l log(σl)

}
. (14)

Combining the local effective sample size p(x)n with the scaling result of Σn
GPR in (11) from Sec. 2.3, we

propose an LFC estimate for GPR as follows:

2That is, the MISE decays at the minimax-rate n
− 2α

2α+d of nonparametric models.
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Definition 1 (LFC of GPR). For f ∈ Cα (X ,R), Xn ∼ p and homoscedastic noise, our GPR-based LFC
estimate of f in x ∈ X is asymptotically given by

Cn
GPR(x) =

[
1

p(x)n

] d
2α+d

|Σn
GPR(x)|−1 =

[
1

p(x)n

] d
2α+d

σn
GPR(x)−d. (15)

In analogy to Eq. (9) Cn
GPR measures the structural complexity of f , as it asymptotically does not depend

on p, v and n. Note that from the theoretical side we have made the restriction of homoscedastic noise in
the definition of Cn

GPR, since we are not aware of a theory on the scaling of GPR-based LOB with respect to
heteroscedasticity. Nevertheless, as opposed to GPR, the LPS model provides no explicit way to adapt to the
local noise variance v(x), such that the LOB of LPS scales with respect to v to address heteroscedasticity. In
contrast, when deploying a heteroscedastic GPR model that adapts for v via the regularization, we observe
only very little influence of heteroscedasticity on LOB function, which we will demonstrate in Sec. 5.1.

Now, when putting Cn
GPR into Eq. (10), we obtain the superior training density

pGPR,n
Sup (x) ∝ [Cn

GPR(x)q(x)]
2α+d
4α+d v(x) 2α

4α+d (1 + o(1)). (16)

While pGPR,n
Sup will not be optimal for our model, we expect it to be asymptotically superior to the naive

random test sampling, i.e., Xn ∼ q, due to the model-agnosticity of the LPS-based result. In order to assess
the asymptotic superiority of a training density p (such as pGPR,n

Sup ) quantitatively, we define the following:
Definition 2. Over the space of square-integrable functions f ∈ L2 (X ), for a nonparametric regression
model f̂ and a training density p, we define by ϱ(f̂ , p) > 0 the relative required sample size such that for
n′ = ϱ(f̂ , p)n, X ′

n′ ∼ p and Xn ∼ q it holds that

MISE
(

q, f̂ |Xn

)
= MISE

(
q, f̂ |X ′

n′

)
+ o(1).

For a nonparametric model defined over L2 (X ), the law of the MISE does not change with respect to p,
except for a constant multiple. Now, if ϱ(f̂ , p) < 1 it means that we achieve the same performance as random
test sampling with only a fraction of the number of training samples. In Sec. 5 we will demonstrate the
superiority of the training density pGPR,n

Sup for our GPR-based MoE model.

Note that, if α→∞, the estimates in Eq. (15) and (16) converge to the simpler form

Cn
GPR(x) = σn

GPR(x)−d, and pGPR,n
Sup (x) ∝ [Cn

GPR(x)q(x)v(x)]
1
2 . (17)

Besides being an ingredient to active learning, LFC can also be used to reduce the required model complexity.
For example, in an RBF-network or a sparse GPR model, we can coarsen or refine the model resolution by
placing an adequate amount of basis functions or inducing points, respecting LFC. We will discuss this
choice in Appendix C and demonstrate its ability to reduce the overall model complexity in Sec. 5.1. Finally,
LFC can be inspected to obtain deeper insights into the research field of the regression problem, which is
particularly hard for high-dimensional data (see Sec. 5.2).

3.3 The active learning framework

Starting with an initial training set Xn0
, Yn0

of size n0 with Xn0
∼ p0 for some initial training distribution

such as p0 ≡ q, we implement the online sampling procedure as described in Panknin et al. (2021), such that
Xn ∼ pGPR,n

Sup as n→∞. We grow the training set as follows:

Given the current training set Xnk
, Ynk

we estimate Σ̂nk

GPR as described in Sec. 3.2. Using (15), (16), it is

Ĉ
nk

GPR(x) ∝
[
1
/

pk(x)
] 1

2α+d

∣∣∣Σ̂nk

GPR(x)
∣∣∣−1

, and

p̂
GPR,nk
Sup (x) ∝

[
Ĉ

nk

GPR(x)q(x)
] 2α+d

4α+d

v(x) 2α
4α+d .

10
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Note that, letting the next sample size be nk+1 = 2nk, we have already drawn half the samples of nk+1

according to a potentially different distribution pk than the new proposed p̂
GPR,nk
Sup . The closest we can

get in distribution to p̂
GPR,nk
Sup is given by Xnk+1

∼ pk+1, where pk+1 := γ2pk + (1 − γ2)p̂GPR,nk
Sup , for γ2 =

max
{

0,
0.5− γ−1

1
1− γ−1

1

}
∈ [0, 0.5) and γ1 = max

x∈X

pk(x)
p̂

GPR,n
k

Sup (x)
. This is achieved by sampling xnk+1, . . . , xnk+1 ∼

p̃k+1 for p̃k+1 = 2pk+1 − pk, which is a valid probability density (Panknin et al., 2021).

Adaptions in the pool-based active learning scenario In the active learning framework described
above, we deal with properly normalized probability densities. But in the pool-based active learning scenario
such normalization is usually impossible, since our information about the input space X is restricted to a
large, unlabeled pool of samples XMD ∈ XN . This pool follows a distribution XMD ∼ pMD, for which it is
common to assume an (unnormalized) density estimate p̂MD to be given: Unlabeled inputs are considered
cheaply accessible, whereas querying labels is expensive.

Now, for our framework to be applicable, it suffices to keep all considered densities such as p̂
GPR,nk
Sup at equal

norm, which we can enforce via normalizing a density p by p̃ = p/norm(p), where

norm(p) = |XMD|−1 ∑
x∈XMD

p(x)/p̂MD(x).

To see this, note that first of all p̂MD is an unnormalized estimate to pMD such that we can write p̂MD ≈ c·pMD

for some unknown constant c > 0. On the one hand it is
∫

X
p̂MD(x)dx = c by definition. On the other hand

it is
norm(p) ≈

∫
X

p(x)
p̂MD(x)pMD(x)dx = 1

c

∫
X

p(x)dx,

such that also ∫
X

p̃(x)dx = 1
norm(p)

∫
X

p(x)dx ≈ c

holds for any unnormalized density p.

Subsequently, the required samples xnk+1, . . . , xnk+1 ∼ p̃k+1 are obtained via importance sampling from the
pool with importance weights p̃k+1(x)/[norm(p̃k+1)p̂MD(x)] for x ∈ XMD.

4 Discussion of model construction and related work

First of all, let us recall that we have chosen to share all parameters across the experts that describe a single
regression function. In contrast, the common assumption of MoE approaches is that the overall problem
to infer is too complex for a single, comparably simple expert. This is the case, for example in regression
of nonstationary or piecewise continuous data, and naturally in classification where each cluster shape may
follow its own pattern. In such a scenario each expert of the MoE model can specialize on modelling an
individual, (through the lens of a single expert) incompatible subset of the data, where the gate learns a
soft assignment of data to the experts. Under these assumptions the hyperparameters of each expert can be
tuned individually on the respective assigned data subset. In the light of this paradigm there exist several
instances of mixture of Gaussian processes, for example Tresp (2001); Meeds & Osindero (2006); Yuan &
Neubauer (2009); Yang & Ma (2011); Chen et al. (2014).

Now that we assume a single regression problem, there is no such segmentation as described above: Each
individual (reasonably specified) expert of our mixture model is eventually capable of modelling the whole
problem on its own. Yet, if the problem possesses an inhomogeneous structure, the prediction performance
can be increased by allowing for a locally individual bandwidth choice. This less common assumption was also
made by Pawelzik et al. (1996), where—locally dependent—some experts are expected to perform superior
compared to the others.

There exist other sparse GPR approaches that could be considered for the gate or the experts of our MoE
model. Some are computationally appealing as they solve for the inducing value distribution analytically
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(Seeger et al., 2003; Titsias, 2009) as opposed to the variational, stochastic gradient descent based method
we deployed (Hensman et al., 2015). For the gate however, this kind of approach comes with complications
as it requires labels. Such labels do not exist for the gate, and so we would need so train the MoE in an
expectation maximization loop, where the likelihood of an expert to have produced a training label functions
as a pseudo-label to the gate. For the experts on the other hand, any choice of GPR model is possible.

Recall from Appendix C that we choose the inducing point locations of the gate and the experts of our MoE
model in a diverse and representative way, but also in alignment with the structural complexity of the target
function, interpreting this choice as a nested AL problem. Of course, there are a variety of inducing point
selection approaches in the literature. Zhang et al. (2008) interpreted the choice of inducing point locations
from a geometric view that is similar to ours: They derived a bound on the reconstruction error of a full
kernel matrix by a Nyström low-rank approximation in terms of the sum of distances of all training points
to their nearest inducing point. This exposes a local minimum by letting the inducing point locations be
the result of k-Means clustering. This choice of inducing point locations is representative and diverse, while
it solely considers input space information. In this sense, our approach extends their work by additionally
considering label information. This and our approach draw a fixed number of inducing points at once. There
are also a lot of Nyström method based inducing point selection approaches that select columns of the full
kernel matrix according to a fixed distribution (Drineas et al., 2005) or one-by-one in a greedy, adaptive way
(Smola & Schölkopf, 2000; Fine & Scheinberg, 2001; Seeger et al., 2003). An intensive overview of Nyström
method based inducing point selection methods was given by Kumar et al. (2012), where they also analyzed
ensembles of low-rank approximations.

In this work, we consider model-agnostic active learning with persistent performance at large (or even
asymptotic) training size. In this sense, we delimit us from active learning approaches that are tied to a
model, e.g., when they are based on a parametric model Kiefer (1959); MacKay (1992); He (2010); Sugiyama
& Nakajima (2009); Gubaev et al. (2018), or which build up training data in a greedy way to maximize its
information content at small sample size, where the information is either based on the inputs only (Teytaud
et al., 2007; Yu & Kim, 2010; Wu, 2019; Liu et al., 2021) or also incorporates the labels Seo et al. (2000);
Burbidge et al. (2007); Cai et al. (2013). Note that depending on the use-case, such approaches can exceed
the performance of our approach. For example, if there is enough domain knowledge such that we can deduce
a reasonable parametric model without the need of a model change in hindsight, an active sampling scheme
based on this model will be best. Our category of interest is for the other case, when domain knowledge
is scarce, where we have no idea about the regularity or structure of the problem to decide on a terminal
model. Panknin et al. (2021) already have compared favorably to related work within this category. They
compared to Goetz et al. (2018) in a heteroscedastic setting, using a regression forest model and to Bull et al.
(2013) in a setting of inhomogeneous complexity, using an RBF-network. This demonstrates the flexibility
of this AL approach in terms of learning problem specifications as well as model choices. As we extend on
their work, we claim this favorable performance by transitivity.

There exists a lot of research on active learning for GPR (Seo et al., 2000; Pasolli & Melgani, 2011; Schreiter
et al., 2015; Yue et al., 2020), which is typically based on minimizing prediction uncertainties of the model.
Now, with our proposed active learning approach being based on a mixture of GPR models, this research
area is the most related competitor to our work.

For a standard GPR model, the prediction uncertainty is the higher the farther away we move from training
inputs. In this way, GP uncertainty sampling does not depend on the regression function to infer and is
instead an input space geometric argument: Uncertainty sampling makes up for a low-dispersion sequence
(Niederreiter, 1988). In this sense, it samples (pseudo-)uniformly from the input space, which is inferior to
following the distribution of our proposed optimal sampling scheme, as we will show in Sec. 5.1. Using the
fact that our approach is a mixture of GPR models, we can come up with a straight-forward extension of
GP uncertainty sampling which takes the inhomogeneous complexity of data into account: We can derive
a mixture of Gaussian process uncertainties (MoGPU) by simply weighting the predictive variances of all
experts in some input x with respect to the gate values G(x) from (12) as

MoGPU(x) =
∑L

l=1
G(x)lC

∗
θl

(x), (18)
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where C∗
θl

is the predictive variance of the l-th expert (see (28)). We consider MoGPU as a baseline com-
petitor to our approach, which is itself superior to GP uncertainty sampling as it can cope with structural
inhomogeneities. We will show that our approach outperforms MoGPU (and therefore implicitly GP uncer-
tainty sampling) and discuss the difference between MoGPU and our approach on synthetic data in Sec. 5.1.

5 Experiments

In this section, we will first analyze our approach on toy-data, regarding the MoE model, LFC and the
superior training density. Here, we also compare to related work. Then, we apply our approach to a high-
dimensional MD simulation dataset from quantum chemistry, by which we can deduce deeper insights into
this regression problem.

First, let us denote the mean absolute error (MAE), the maximum absolute error (max AE) and the root
mean squared error (RMSE) of a model f̂ for a test set XT

N ⊂ XN with XT
N ∼ q by

MAE(f̂ , Xn, Yn) = N−1
∑

x∈XT
N

∣∣∣f(x)− f̂(x)
∣∣∣ , max AE(f̂ , Xn, Yn) = max

x∈XT
N

∣∣∣f(x)− f̂(x)
∣∣∣ and

RMSE(f̂ , Xn, Yn) =
[
N−1

∑
x∈XT

N

∣∣∣f(x)− f̂(x)
∣∣∣2

] 1
2

.

For our model f̂MoE and f ∈ Cα (X ,R), we can estimate the relative sample size that is required for samples
drawn according to p to perform on par with samples drawn according to q, as defined in Definition 2 , by

ϱ(f̂MoE, p) =
[

RMSE(f̂MoE,X′
n,Y ′

n)
RMSE(f̂MoE,Xn,Yn)

]2β

, with β =
{

2α+d
2α , α <∞

1, α =∞
, (19)

where it is X ′
n ∼ p and Xn ∼ q with respective labels Y ′

n and Yn. Setting p = p̂GPR,n
Sup , we can quantify the

active learning performance of our proposed active learning framework in the following experiments.

5.1 Doppler function

Figure 3: The Doppler experiment: An exemplary dataset and the locations of 128 inducing points, once
sampled most naively—that is, random according to the test distribution—and once optimized regarding
diversity as well as structural complexity and representativeness, shown on natural x-scale (left) and on
logarithmic x-scale (right).

We will first demonstrate our approach on the Doppler function (see, for example, Donoho & Johnstone
(1994)), which was also discussed in related work that deals with inhomogeneous complexity Panknin et al.
(2021); Bull et al. (2013). This one-dimensional, homoscedastic toy-example allows for an easy and intuitive
visualization. For x ∈ X = [0, 1], let

P(y|x) = N (y; f(x), 1), f(x) = C
√

x(1− x) sin (2π(1 + ϵ)/(x + ϵ)) ,
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where ϵ = 0.05, C is chosen such that ∥f∥
2

= 7 and N (·; µ, σ2) denotes the Gaussian distribution with mean
µ and variance σ2. Fig. 3 shows an example dataset as blue dots and the true function f to infer in black.
We assume a uniform test distribution, such that q ∼ U(X ).

Due to the strong variation of structural complexity, a single-scale GPR model does not cope well with the
Doppler function, as we discuss in Appendix E.1.

We implement our proposed MoE model as described in Sec. 3.1 with sparse Gaussian processes as the
expert and gate models and using the Gaussian kernel k. We apply 512, respectively 128 inducing points
for the experts and the gate, which are chosen via SVGD (see Appendix C). Furthermore we apply σj =
10(j−10)/3, 1 ≤ j ≤ 7, as the expert bandwidths, λE = 20 as the initial expert regularization, and σG = 0.05
and λG = 10 for the gate. For the training, we apply a batch size of B = 512, a terminal expert sparsity
κ = 2, a penalty factor of ϑσ = 0.5 for small bandwidth choices, gate noise parameters s0 = 0.1 and
ηs = 1/

√
2, and learning rate parameters η = 0.01, ηH = 0.2, ηG = 1.

Figure 4: The Doppler experiment: The gate function (left) and the associated estimates to LOB, LFC and
superior training density (right) trained on the dataset from Fig. 3 and shown on a logarithmic x-scale.

Fig. 4 shows the gate function after training of the MoE model, as described in Sec. 3.1.1, and the associated
estimates to LOB, LFC and the superior training density, calculated according to (14) and (17).

Necessity of the small bandwidth penalty We impose a penalty on small bandwidth choices through
the factor ϑσ = 0.5 to regularize the bandwidth function and prevent overfitting, as described in Appendix D.
We demonstrate this overfitting issue in Appendix E.2 that results from applying no regularization (ϑσ = 0).

Figure 5: The Doppler experiment: The LOB estimates (left) and the resulting superior training density of
our proposed GPR-based approach in comparison to the LPS-based approach of order Q = 1, 3 (right). The
results are averaged over 20 repetitions.

Parsimonious modelling using LFC In Sec. 3.2 we mentioned that LFC can also be used to coarsen
or refine the model resolution adequately to reduce the overall complexity of the model. While we fixed the
inducing points to reasonable numbers in the other parts of the Doppler experiment, that is, m = 512 and
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m = 1024 inducing points under active, respectively random test sampling, we here investigate the influence
of the number of inducing points and their distribution on the capability to resemble the Doppler function.
Recall from Appendix C that we interpret the choice of the inducing points as a nested AL task at small
sample size (m≪ n), where it is reasonable for them to be samples in a diverse way, respecting the training
distribution but also the structural complexity of the target function. In Fig. 3 (right) we show a naive
choice and our optimized choice of inducing points.

In Fig. 6 we compare the RMSE for the fixed training size n = 215 for both settings, active and passive,
when sampling the inducing points according to the training density p, the LFC and their geometric mean√

p · Ĉn
GPR. First of all, we observe that we generally require less inducing points with active sampling

compared to random test sampling, which originates from the fact that the superior training density p̂GPR,n
Sup

already respects LFC to some degree. Next, we observe that the geometric mean of the training density and
LFC performs best, provided that the number of inducing points m is large enough. Finally, we observe
that, non surprisingly, we are able to shrink m the most under the LFC distribution, namely to m = 128,
before the performance of the model degrades substantially.

In summary, we are able to shrink the model complexity up to a factor of 8 for the Doppler function without
a significant loss of performance, when respecting LFC in the model design.

Figure 6: The Doppler experiment: The curves show the RMSE at training size n = 215 for a varying number
of expert inducing points m. The colors correspond to different inducing point distributions, whereas the
line styles correspond to the underlying training distribution. The results are averaged over 20 repetitions.

Comparing the active learning framework in the LPS and GPR domain Since f ∈ C∞ (X ,R),
our deduced superior training density estimate is given by Eq. (17). In Fig. 5 we plot our estimates of LOB
and the superior training density in comparison to the LPS-based results for polynomial degrees of order
Q = 1, 3, and with implementation and hyperparameters as described in Panknin et al. (2021). Here, we
can observe the qualitative similarity of the LPS- and GPR-based estimates of LOB.

Figure 7: The Doppler experiment: The max AE (left) and the RMSE (right) of our proposed GPR-based
approach in comparison to the LPS-based approach of order Q = 3 (see Eq. (5) and (6)), once using the
respective AL scheme and once, applying random test sampling. The results are averaged over 20 repetitions.
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When conducting the proposed GPR-based active sampling scheme as described in Sec. 3.2, we additionally
observe quantitative benefits in Fig. 7 over random test sampling—quite similar to the LPS-based result
for Q = 3: When estimating the relative sample size (19) we require to achieve the same RMSE via active
sampling compared to random test sampling, we obtain ϱ(f̂MoE, p̂GPR,n

Sup ) = 0.64± 0.04. This means that we
save more than one third of samples via our active sampling scheme.

This provides evidence for the effectiveness of our proposed active learning framework, combining the theo-
retical foundation of the LPS domain with the efficient access to LOB estimates in the GPR domain.

Heteroscedastic noise treatment While the treatment of heteroscedastic noise is not the focus of this
work, we will now demonstrate our approach on a heteroscedastic version of the Doppler experiment. For
this, we let v(x) = (3 − 4 |x− 0.5|))2 ∈ [1, 9], which we plot in Fig. 8 (top left) together with the resulting
dataset. Here, we assume the local noise variance (or an estimate to it) to be provided externally, again,

Figure 8: The Doppler experiment under heteroscedastic noise: (Top left) An exemplary dataset; (Top
right) The LOB estimates, when comparing the homoscedastic to the heteroscedastic Doppler experiment;
(Bottom left) The training densities of random test sampling, pGPR,n

Sup and pGPR,n
Sup when wrongly assuming

homoscedasticity; (Bottom right) The RMSE at several training sizes of the compared sampling schemes.
The results are averaged over 20 repetitions.

since its estimation is out of the scope of this work. However, note that the estimation of v is well-studied in
the literature, especially for Gaussian processes Kersting et al. (2007); Cawley et al. (2006); Tresp (2001).

In Fig. 8 (top right) we compare the LOB estimates obtained from the homoscedastic dataset and the
heteroscedastic version. As we have suggested in Sec. 3.2, the influence of v on the LOB estimates obtained
from heteroscedastic GPR experts is relatively small. Likewise, we proceed with the evaluation of our
proposed AL scheme under heteroscedasticity. Here, we compare to random test sampling, but also to
pGPR,n

Sup under the wrong assumption of homoscedastic noise. Note that we use the heteroscedastic MoE in
all cases, since the wrong assumption of homoscedastic noise in the experts makes the MoE very volatile.
The respective training densities and RMSE learning curves can be seen in the bottom row in Fig. 8.
Due to the stronger noise (compared to the homoscedastic experiment), the asymptotic behavior begins to
materialize later from n = 213 training samples. Until this point, sampling only with respect to the structural
complexity looks also promising. However, as soon as the target function is roughly resembled, respecting
the inhomogeneity in the noise level becomes crucial to achieve a homogeneous pointwise convergence and,
thus, maintain asymptotic superiority.
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On Gaussian process uncertainty In Sec. 4 we mentioned that GP uncertainty sampling is the most
related approach to our proposed framework, since both build on GPR models. However, standard GP
uncertainty sampling generates uniformly distributed training data with advantages at small sample sizes,
where the chosen samples are spread out more evenly than for actual uniform random sampling.

Remark 3. The training inputs Xn sampled according to GP uncertainty sampling possess the low-dispersion
property: The dispersion, given by supx∈X min1≤i≤n ∥x− xi∥ (Niederreiter, 1988) is a measure of how well
spread out the training sample is. We say that a sequence has low-dispersion if its dispersion is lower that
the dispersion of random uniform sampling.

At larger sample size this benefit diminishes. And since we have shown test distribution (uniform) sampling
to be inferior to the proposed optimal sampling scheme, we can already deduce that standard GP uncertainty
sampling is inferior, too.

Figure 9: A Comparison of the mixture of Gaussian process uncertainty sampling baseline to our proposed
active sampling scheme for the Doppler experiment: (Top left) The training data histograms after 213

samples, contrasted with functions of σn
GPR, and RMSE (top right), MAE (bottom left) and the max AE

(bottom right) at several training sizes of the compared schemes. The results are averaged over 20 repetitions.

Instead—given the gate function of our MoE from the previous part of this experiment, which was obtained
for 215 training samples and which we now keep fixed—we implement the proposed MoGPU as defined in
(18). Intuitively, the uncertainty estimate in x ∈ X increases as the applied bandwidth σn

GPR(x) decreases.
Now, in order to equalize uncertainty over the input space, MoGPU will sample more in regions where σn

GPR
is smaller. For Xn drawn according to MoGPU, we expect Xn ∼ [σn

GPR]−d. This expectation holds as can
be seen to the upper left in Fig. 9.

For evaluation, we combine the fixed gate function with full GPR experts and compare our proposed sampling
scheme with MoGPU (both determined through the gate). In all error measures the beneficial effect of the
low-dispersion property of Xn drawn according to MoGPU has already vanished for about 512 training
samples, from where the asymptotic law dominates. As expected, our approach is superior to MoGPU when
comparing RMSE. Interestingly, MoGPU is superior to our approach regarding the max AE, suggesting
that Xn ∼ [σn

GPR]−d is the optimal training distribution under the supremum-norm.
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5.2 Force field reconstruction

We now turn our attention to a real-world example in which we predict the potential energy surface (PES)
and corresponding force field (FF) of a molecule from first-principles calculations. The PES function links
the geometry x = [R1, . . . , Ra] ∈ R3×a of a molecule to its potential energy E ∈ R, where Ri are the
Cartesian positions of the a atoms of the molecule. In ab-initio computations, this mapping is achieved by
solving the time-independent Schrödinger equation. The PES encodes essential information on the properties
of a molecule. Due to thermal and quantum effects, molecules are never perfectly rigid but assume different
configurations. The distribution of these configurations is determined by the shape of the PES. For example,
minima of the PES will be sampled more frequently than other regions and correspond to stable structures.
This has practical implications, since many experimental techniques measure an expectation value over
molecular distributions. In order to achieve a meaningful comparison, sampling needs to be taken into
account in theoretical simulations as well. One of the most successful approaches to sample molecular
distributions are MD simulations. They model the time evolution of the atomic positions, sampling the PES
by integrating Newtons equations of motion. To this end, energy conserving forces acting on each atom are
required. These forces are the negative derivative of the PES with respect to the atomic positions F ∈ R3×a.

This type of proxy for the prohibitively expensive ab initio quantum mechanical calculations is commonly
used to enable long-time scale MD simulations that consist of millions of steps, each requiring the evaluation
of the PES and FF for a new geometry. Converged MD trajectories give unique insight into the dynamic
behavior and structure-function relationships of physical systems at atomic scale. They are widely used in
molecular biology research and play a crucial role in applications such as protein folding and drug discovery.
ML has the potential to profoundly advance this field, as it bears the promise of offering a unique cost-
accuracy trade-off that is not achievable with traditional methods Noé et al. (2020); von Lilienfeld et al.
(2020); Unke et al. (2021b); Keith et al. (2021). However, almost all current ML-based FFs rely on rather
naive exhaustive sampling schemes to gather training data, which stands in the way of scaling to larger
system sizes, both, from a data acquisition cost and training perspective. Here, we demonstrate how our
method can be use to construct smaller, yet more effective training datasets.

LFC Estimate

Test density
Optimized data distributionGeometry

sampling
Energies &

Forces

e.g. 500K

Superior training
       density

A B C D E

Figure 10: Reconstructing ML-based FFs using our MoE approach: (Left) The inputs and outputs of the
regression task are the geometries and energies (including forces, i.e., energy gradients) of malonaldehyde.
As an example, we highlight the geometries of the two energetically stable states found in the local minima
of the energy surface. (Middle) The density estimate to the true MD geometry distribution. (Right) The
superior training density estimate (17) based on our approach. All properties are evaluated at the relaxed
malonaldehyde configurations and plotted with respect to the angles of the two aldehyde rotors of malon-
aldehyde (see Chmiela et al. (2018); Sauceda et al. (2020)).

In this experiment, we reconstruct a FF for the molecule malonaldehyde, which has a = 9 atoms and the
chemical formula C3O2H4 (see Fig. 10 (A)). Formally, we try to infer the high-dimensional target function
f : X → Y, R 7→ [E, F ], where X = R3a and Y = R1+3a. For visualization purpose we only show a
two-dimensional subspace of the PES, which is characterised by the two main features of this molecule, its
two rotors (aldehyde groups) (Chmiela et al., 2018; Sauceda et al., 2020). Their relative orientation is the
dominant driver of the potential energy in this case and therefore most descriptive. Each point on the surface
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depicted in Fig. 10 (B) is generated by fixing the rotor pair at a particular angle and relaxing all remaining
degrees of freedom to obtain a minimal energy configuration. We will refer to these geometries as the relaxed
configurations in the following.

To reconstruct the FF, we use the symmetric gradient-domain machine learning (sGDML) FF (Chmiela
et al., 2018; 2019), which is a GPR model that takes energy and force labels and also roto-translational and
permutational invariances of the geometries into account (see Appendix B.4 for details). We anticipate that
sGDML will benefit from our MoE approach, as the transition paths along the PES vary in complexity, due
the interplay between distinct atom types with different characteristic interaction length scales. Our active
learning approach can only improve training efficiency, if there are inhomogeneities in the data. Using our
LFC estimate, we therefore first verify our intuition that the PES of malonaldehyde varies in complexity.
Based on this, we derive the superior training density, which we finally feed to our active learning framework
to refine the training dataset in a superior way.

Experimental setup All experiments use an extensive pre-computed reference trajectory (almost a million
data points (XMD, YMD)) as ground truth, as opposed to generating new data points on demand. This test
setup allows a post-hoc verification of the training distribution generated by our active learning approach,
while still providing ample redundancy and therefore sampling freedom.

Recall from Sec. 3.3 that we require an unnormalized density estimate of the trajectory XMD ∼ pMD, since
we are dealing with a pool-based active learning scenario. We estimate p̂MD by standard kernel density
estimation, based on the energy-to-energy entry of the sGDML kernel k̃ from (31) at σ = 0.03. Fig. 10 (C)
shows the density estimate of the relaxed configurations, where we observe that pMD is very unbalanced,
with strong concentration of mass near the stable configurations.

We implement our MoE approach, using the sGDML kernel k̃ from (31) with a Gaussian base kernel function
k. While we sample the training data randomly (with appropriate weights) from the pool, we will draw sub-
samples (i.e. for choosing the inducing points of sparse expert and gate models) via symmetrized DC with
distributional k-means++ initialization (see Appendix C).

Since this dataset comes with practically noise-free labels (we consider the first principle calculations as
ground-truth), we tune the experts (and MoE model) with respect to MSE rather than the MLL objective.
For stability, we will apply v̂(x) = 10−9 even though we assume no noise.

Anisotropic bandwidths sGDML operates on d = a(a − 1)/2 = 36 features that are based on the
interatomic distances of the molecule. In contrast to the work of Chmiela et al. who restrict themselves to
an isotropic bandwidth ΣE = σEId, our implementation of sGDML in GPyTorch naturally enables us to
tune an anisotropic bandwidth ΣE = diag(σ1, . . . , σd) in the preprocessing step.

We partially offset the increased memory footprint of the model due to the tunable ΣE by implementing the
sparse GPR model from Appendix B.2 under the sGDML kernel k̃ from (31) and limiting the number of
inducing points to m = 128 configurations. Since all our features are of the same type—pairwise interatomic
distances—they are inherently calibrated in terms of scale. Hence, the reciprocal entries of ΣE directly
translate into importance of the features, which we display in Fig. 11.

We observe, that the importance assigned to some pairs of atoms agree with chemical intuition, e.g., interac-
tions with light hydrogen atoms are generally weaker. Furthermore, the important role of the opposing alde-
hyde groups in malonaldehyde emerges in the form of a heavily weighted path that connects the O-C-C-C-O
backbone of the molecule. Unsurprisingly, the dataset also yields informative spurious atomic interactions,
that are not chemically obvious.

In Fig. 12 we see that our anisotropic variant of sGDML performs consistently better than the original
isotropic sGDML model. Similar to the calculation of the relative sample size in (19) we can compare two
models of equal asymptotic MSE law. When comparing anisotropic to isotropic sGDML, both under random
test sampling, we can save about 10% of samples.

Setting up the MoE model After having trained ΣE , we apply dense sGDML experts with Σj =
σjΣE , where σj = 2−5/4+j/2, 1 ≤ j ≤ 8 as the individual expert bandwidths, λE = 1 as the initial expert
regularization, and σG = 0.1 and λG = 104 for the sparse gate with 1024 inducing points. For the training,
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Figure 11: A visualization of the individual feature importance of malonaldehyde in the anisotropic
case: The structural formula of the molecule is plotted in black. The importance of the in-
dividual interatomic distances is reciprocal to ΣE , which is the bandwidth estimate obtained by
training the anisotropic sGDML model. Hence, we express the importance of each interatomic
distance of the molecule in red, where the importance corresponds to the line saturation γ =
[[− log(ΣE)−min(− log(ΣE))]/[max(− log(ΣE))−min(− log(ΣE))]]2.

we apply a batch size of B = 1024, a terminal expert sparsity κ = 8, a penalty factor of ϑσ = 0.01 for small
bandwidth choices, gate noise parameters s0 = 0.01 and ηs = 1/

√
2, and learning rate parameters η = 0.005,

ηH = 0.05, ηG = 0.1. Like we will discuss in Appendix D, for tuning the MoE with dense sGDML experts,
we either require an additional training set, which is independent of the training set for the experts, or we
could provide leave-one-out (LOO) responses of the experts for the training of the gate. In our experiment,
we use an additional gate training set XG

nG
of fixed size nG = 214. The anisotropic MoE model performs

consistently better than anisotropic sGDML, as can be seen in Fig. 12. When comparing the anisotropic
MoE model to isotropic sGDML, both under random test sampling, we can save about 26% of samples.

Active learning We assume an intrinsic dimension of d = 2 (the two aldehyde rotor angles, the most
salient features of malonaldehyde) and a smooth target function f ∈ C∞ (X ,Y). The test distribution is
given by the MD trajectory such that q = pMD. Prior to the active learning procedure, we separate the
validation samples xval and test samples xtest at random from the pool XMD. We apply an initial expert
training size of n0 = 29, doubling the sample size with each iteration of the active learning procedure. The
initial expert training set Xn0

and the gate training set XG
nG

are drawn via importance sampling from the
remaining pool with weights p̂

−1/2
MD (XMD \(xval∪xtest)). By this it is Xn0

∼ q1/2, which is more in alignment
with the superior training density (17) than sampling Xn0

∼ q.

In Fig. 10 (D, E) we show the estimates to LFC and the superior training density under the pool test
distribution, evaluated on the relaxed configurations of malonaldehyde. The LFC estimates confirm our
expectation that the transition areas are more complex to model than the regions near the stable configu-
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Figure 12: The RMSE under the true MD trajectory test distribution for different variants of sGDML and
training distribution at varying training size: The performance is given for passive sampling, using the
original isotropic sGDML (dotted), anisotropic sGDML (dash-dotted) and our MoE model with anisotropic
sGDML experts (dashed), and for the MoE model, applying the proposed active learning framework (solid).
The results are averaged over 5 repetitions.

rations. Subsequently, our active sampling scheme shifts sample mass away from the stable regimes in favor
of the transition areas.

We have plotted the error curves of passive and active sampling schemes in Fig. 12. When estimating the
relative sample size (19) that we require to achieve the same RMSE via active sampling compared to random
test sampling, we obtain ϱ(f̂MoE, p̂GPR,n

Sup ) = 0.925 ± 0.013. This means that we save about 7.5% of samples
under the MoE model with our active sampling scheme compared to random test sampling. In total, when
comparing our actively trained MoE approach to the passively trained, original sGDML model, we can save
about 31% of samples. Notably, DFT level calculations (Perdew et al., 1996; Blum et al., 2009; Tkatchenko
& Scheffler, 2009) for the studied system require minutes to hours of computation per sample, CCSD(T)
level computations even require days of computation per sample. So in the field of quantum chemistry saving
roughly a third of computing power is of practical importance.

6 Conclusion

Standard machine learning tasks implicitly assume a certain homogeneity in the data scales. However in
practice this structural property of the learning problem may not be fulfilled, e.g., in multiscale problems
from the sciences such as turbulence Brunton et al. (2020) or quantum chemistry Noé et al. (2020); von
Lilienfeld et al. (2020); Unke et al. (2021b); Keith et al. (2021).

In this work, we aimed at identifying local inhomogeneities in regression tasks, which can be used to construct
better models and training datasets and for domain interpretation. To this end, we combined recent results
on model-agnostic LFC estimates and asymptotically optimal sampling, which are founded in the domain of
LPS, with estimates to LOB, which are derived in the GPR domain. By this, we benefit from both sides,
having a theoretically sound optimal sampling scheme on the on hand, and having access to the required
estimates from a model that naturally can cope with high input space dimensions on the other hand.

On synthetic data, we showcased and validated our approach, where we analyzed similarities with the LPS-
based analog, but also compared to the most related GP uncertainty sampling concepts for active learning. To
show the full potential of our approach, we studied a real-world, high-dimensional force field reconstruction
task. Here, we first identified the multi-scale structure of the problem, whose treatment also reflects in a
substantial performance gain of the broadly adopted method sGDML. Our approach then not only gave
access to an interpretable visualization of this inhomogeneity, but also guided the sampling process in a way
that takes the structural changes into account, enhancing the quality of the training data. Future work
will include the investigation of sparse Gaussian process models that analytically solve for the inducing
values (Seeger et al., 2003; Titsias, 2009) as experts for our MoE model. This would reduce the number
of parameters and, hence, the computational complexity of our approach. Furthermore, we will focus on
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the application of our approach to real-world problems from chemistry, physics and further domains also
applying techniques from explainable AI (e.g. Samek et al. (2021); Letzgus et al. (2022)). In particular,
recent advances on sGDML regarding the scalability by Chmiela et al. (2022) will enable the application of
our approach to large molecular systems.
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A Asymptotic results for local polynomial smoothing

In this section, we will review the theory of Panknin et al. (2021).

The prediction of the LPS model of order Q under the bandwidth Σ ∈ Sd
++ in x ∈ X can be understood as

follows: First, the the regression problem is localized around x according to weights kΣ(·, x) that decrease
with growing distance to x. Then we search for the polynomial up to order Q that fits the localized regression
problem best. Finally, the evaluation of this polynomial in x is returned as the prediction. Formally, it is

mΣ
Q(x) = p∗

Q,Σ,x(0), where (20)

p∗
Q,Σ,x = argmin

p∈PQ(Rd)

∑n

i=1
kΣ(xi, x) (yi − p(xi − x))2

,

and PQ(Rd) is the space of the real polynomial mappings p : Rd → R up to order Q.

The localization is controlled by Σ through the kernel weights KΣ(x, xi) for xi ∈ Xn: For an RBF-kernel,
kΣ(x, x′) decays monotonically with growing distance of x′ to x. This decay is dampened or amplified as Σ
increases, respectively decreases (in the sense of the Loewner order).

For readability, since Σ will be replaced by terms with more involved notation, we redefine (1) by

MSE
(

x, f̂ , Σ|Xn

)
:= MSE

(
x, f̂Σ|Xn

)
. (21)

For a bandwidth space S ⊆ Sd
++, Panknin et al. (2021) proposed to minimize the active learning objective

MISE
(

q, f̂ |Xn

)
=

∫
X

infΣ∈S MSE
(

x, f̂ , Σ|Xn

)
q(x)dx, (22)
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which is the optimal mean integrated squared error, obtained by predictions that are based on locally optimal
chosen bandwidths. If these locally optimal bandwidth choices are well-defined, that is, if for all x ∈ X there
exists a unique Σ′ ∈ S such that

MSE
(

x, f̂ , Σ′|Xn

)
= infΣ∈S MSE

(
x, f̂ , Σ|Xn

)
,

we are able to define the locally optimal bandwidth (LOB) function

Σn(x) = argminΣ∈S MSE
(

x, f̂ , Σ|Xn

)
.

This function exists, for example, in the isotropic case S = {σId | σ > 0} for LPS under mild conditions,
where we denote Σn(x) = σn(x)Id (see, e.g., Masry (1996; 1997); Fan et al. (1997) or Panknin et al. (2021)
for an overview).

Assuming the isotropic bandwidths candidate space S = {σId | σ > 0}, the LOB as in Eq. (4) is an
asymptotically well-defined function under mild assumptions3: Denoting the LOB of LPS of order Q by
Σn

Q(x) = σn
Q(x)Id such that

σn
Q(x) = argminσ>0 MSE

(
x, mQ, σId|Xn

)
, (23)

asymptotically it holds

σn
Q(x) = CQ

[
v(x)

p(x)n

] 1
2(Q+1)+d bQ [x, Id]−

2
2(Q+1)+d + op

[
n− 1

2(Q+1)+d

]
, (24)

where CQ is a constant, and bQ [x, Id] is a function of x taken from the asymptotic conditional bias f(x)−
E

[
mhnId

Q (x)
∣∣∣Xn

]
of LPS (Masry, 1996; 1997). That is, for a sequence hn → 0 as n→∞ we can write the

conditional bias, which is of order Q + 1, as

f(x)− E
[
mhnId

Q (x)
∣∣∣Xn

]
= hQ+1

n bQ [x, Id] + op

[
hQ+1

n

]
. (25)

Eq. (24) shows how LOB scales asymptotically with respect to the training size n, the local noise level
function v(x) and the training density p(x). The remaining bias-component depends on the local structural
complexity, which can be characterized by the derivatives of f in a non-trivial way. Therefore it encodes the
local structural complexity of f . Given all other properties and LOB itself, we are able to formulate LFC in
a closed form.
Definition 4 (Panknin et al. (2021)). For LPS of order Q, the LFC of f in x ∈ X is asymptotically given
by

Cn
Q(x) =

[
v(x)

p(x)n

] d
2(Q+1)+d ∣∣Σn

Q(x)
∣∣−1 =

[
v(x)

p(x)n

] d
2(Q+1)+d

σn
Q(x)−d.

As already mentioned in Eq. (22), given a test density q, the active learning task is to minimize
MISE

(
q, mQ|Xn

)
. Now, if LOB is well-defined, we can rewrite

MISE
(
q, mQ|Xn

)
=

∫
X

infΣ∈S MSE
(
x, mQ, Σ|Xn

)
q(x)dx

=
∫

X
MSE

(
x, mQ, Σn

Q(x)|Xn

)
q(x)dx.

Finally, when solving for the optimal training dataset

X ′
n ≈ argminXn∈X n MISE

(
q, mQ|Xn

)
,

as in Eq. (3), the optimal training inputs X ′
n can be written asymptotically as an independent and identically

distributed sample from the optimal training distribution, whose density pQ,n
Opt possesses an asymptotic closed

form.
3We require non-vanishing leading bias- and variance-terms of mQ(x), which is guaranteed if ∀x ∈ X it holds that bQ [x, Id] ̸=

0 from Eq. (25) and v(x) > 0.
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Theorem 5 (Panknin et al. (2021)). Let v, q ∈ C0 (
X ,R+

)
for a compact input space X , where q is a test

probability density. Additionally, assume that v and q are bounded away from zero. I.e., v, q ≥ ϵ for some
ϵ > 0. Let k be a RBF-kernel with bandwidth parameter space S = {σId | σ > 0}. Let Q ∈ N be odd and
f ∈ CQ+1 (X ) such that the bias of order Q+1 does not vanish almost everywhere. Then the optimal training
density for LPS of order Q is asymptotically given by

pQ,n
Opt (x) ∝

[
Cn

Q(x)q(x)
] 2(Q+1)+d

4(Q+1)+d v(x)
2(Q+1)

4(Q+1)+d (1 + o(1)).

We will use this optimal distribution to sample X ′
n ∼ pQ,n

Opt with a proposed estimator for Cn
Q that is scalable

with respect to the input space dimension.

For LPS with X ′
n ∼ p and Xn ∼ q, we can asymptotically calculate the relative required sample size from

Definition 2 in Sec. 3.2 by

ϱ(mQ, p) =
[

MISE(q,mQ|X′
n)

MISE(q,m
Q

|Xn)

] 2(Q+1)+d
2(Q+1)

. (26)

B Preliminaries on the applied models

In this section, we give further details on all the models that we implement in this work. For the RBF-kernel
k, we define the kernel matrix between X ∈ Xn and X ′ ∈ Xm as KΣ(X, X ′) =

[
kΣ(x, x′)

]
x∈X,x′∈X′ . As a

shorthand notation we furthermore define KΣ(X) := KΣ(X, X).

B.1 Gaussian process regression

The GPR model ŷ ∼ GP(θ) (see, e.g. Williams & Rasmussen (1996)) is defined as follows: The Gaussian
process is described by the hyperparameters θ = (µ, λ, v̂, Σ), which are the global constant prior mean µ, the
regularization parameter λ, the label noise variance function v̂ and the bandwidth matrix Σ of the kernel.
If we can assume homoscedastic noise, we let v̂(x) ≡ σ2

ε .

The prior Gaussian process then assumes the labels Yn of Xn to be distributed according to Yn = ŷ(Xn) ∼
N (·; µ(Xn), C(Xn)|θ), for the constant mean function µ(Xn) = µ1n, and the covariance function

C(Xn) = λKn + diag(v̂(Xn)),

where Kn = KΣ(Xn) is the kernel matrix of Xn.

For test inputs X∗, the posterior predictive distribution of Y∗ is then given by

ŷ(X∗) ∼ N (·; µ∗(X∗), C∗(X∗)|θ),

where the predictive mean and covariance are given by

µ∗(X∗) = µ(X∗) + C∗nC−1
n (Yn − µ(Xn)), (27)

C∗(X∗) = C∗ −C∗nC−1
n C⊤

∗n, (28)

and we have defined
C(Xn ∪X∗) =

[
Cn C⊤

∗n

C∗n C∗

]
.

Note that test predictions f̂GP(x) = µ∗(x) are given by Eq. (27).

B.2 Sparse Gaussian processes

Let us define the sparse GPR model ŷ ∼ SGP(θ) (see, e.g. Williams & Rasmussen (1996); Hens-
man et al. (2015)) as follows: The sparse Gaussian process is described by the (hyper-) parameters
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θ = (µ, λ, v̂, Σ, X∗, µ∗, S∗), which are the global constant prior mean µ, the regularization parameter λ,
the label noise variance function v̂, the bandwidth matrix Σ of the kernel and the prior distribution, given
by the inducing point locations X∗ ∈ Xm as well as their inducing value distribution, characterized by the
moments µ∗ and S∗. That is, for the inducing values Y ∗ of X∗ we assume Y ∗ = ŷ(X∗) ∼ N (·; µ∗, S∗).
Here, the degree of sparsity is described by m inducing points: This number can be fixed in advance or
gradually increased with training size n, where the increase mn = o[n] is typically much slower than n. If
we can assume homoscedastic noise, we let v̂(x) ≡ σ2

ε .

The sparse Gaussian process then outputs

ŷ(Xn) ∼ N (·; µ(Xn), C(Xn)|θe)

for the mean function
µ(Xn) = Kn∗K

−1/2
∗ (µ̃∗ −K

−1/2
∗ µ̄(X∗)) + µ̄(Xn),

and the covariance function

C(Xn) = λ
[
Kn + Kn∗K

−1/2
∗ (S̃∗ − Im)K−1/2

∗ K⊤
n∗

]
+ diag(v̂(Xn)),

where µ̃∗ = K
−1/2
∗ µ∗ and S̃∗ = K

−1/2
∗ S∗K

−1/2
∗ are the whitened moments of the inducing value dis-

tribution (Pleiss et al. (2020), Sec. 5.1), and we have defined Kn = KΣ(Xn), K∗ = KΣ(X∗) and
Kn∗ = KΣ(Xn, X∗).

We choose µ̄ to be the constant mean function, i.e. µ̄(X) = µ1n for X ∈ Xn, noting that other mean
functions are possible.

B.3 Sparse mixture of experts

Given a finite set of expert models ŷl that are parameterized by θel
, the mixture of experts (MoE) model is

given by

f̂MoE(x) =
∑L

l=1
G(x)lŷl(x),

where the gate G : X → [0, 1]L is a probability assignment of an input x to the experts. In particular, it
holds

∑L

l=1
G(x)l ≡ 1 and G(x)i ≥ 0,∀x ∈ X and 1 ≤ i ≤ L.

We implement the approach of Shazeer et al. (2017) to model the gate G as follows: Let us define the softmax
function of a ∈ RL as

softmax(a)i = exp{ai}
/ ∑L

l=1
exp{al}. (29)

Shazeer et al. (2017) propose to set

G(x) = softmax(h̃1(x), . . . , h̃L(x)), where h̃il
(x) =

{
hil

(x) , l < κ

−∞ , l ≥ κ + 1
(30)

for an adequate permutation (i1, . . . , iL) of {1, . . . , L} such that hil
(x) > hil+1(x) are ordered decreasingly.

Here, hl(x) = gl(x)+N (0, s2
l ) is a noisy version of single-channel gating models gl with parameters θgl

. Note
that these models can be chosen freely and may also deviate from the choice of expert models ŷl.

The cutoff value 1 ≤ κ ≤ L controls the sparsity of the MoE, as it enforces the minor mixture weights to
strictly equal zero. For stability reasons, while training, we give each expert a chance to become an element
of the top-κ components by adding independent Gaussian noise N (0, s2

l ) before thresholding, where s ∈ RL
++

is another hyperparameter to set or learn. This noisy gating prevents a premature discarding of initially
underperforming experts.

The overall MoE hyperparameter set is thus given by

Θ = ({θel
}L

l=1, {θgl
}L

l=1, κ, s).
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B.4 The sGDML model

The GDML model by Chmiela et al. (2017) represents the geometry x = [R1, . . . , Ra] ∈ R3×a of each
molecule in terms of the reciprocal distances Φ(x)kl = ∥Rk − Rl∥−1 of all atom pairings to achieve roto-
translational invariance of the input. This representation gives us a total d = a(a − 1)/2 input features.
The similarity of a pair of configurations (z, E, F ) and (z′, E′, F ′) is then given by the extended covariance
function

Cov(E, E′) = k(Φ(z), Φ(z′)),

Cov(E, F ′) = dk(Φ(z), Φ(z′))
dΦ′

dΦ(z′)
dx

,

Cov(F, F ′) =
[

dΦ(z)
dx

]⊤
dk(Φ(z), Φ(z′))

dΦdΦ′
dΦ(z′)

dx
.

Hence, we denote the overall kernel function of two configurations by

k(z, z′) = Cov((E, F ), (E′, F ′)) ∈ R(3a+1)×(3a+1) .

Atoms of the same type are physically identical and therefore exchangeable, albeit only a small subset of
such symmetries is exercised at a given (low) MD simulation temperature. Full permutational invariance is
only needed, when enough energy is put into the system for all bonds to break and all atoms to disassociate.

The symmetric extension sGDML Chmiela et al. (2018; 2019) automatically identifies all accessed atom
permutations from the training set and adds this symmetric prior to the covariance function. Formally, let
(πs)s

s=1 be atomic permutations that lead to an equivalent molecular representation. Then, the extended
symmetric kernel of sGDML is given by

k̃(z, z′) =
∑s

s=1

∑s

t=1
k(πsz, πtz

′). (31)

Malonaldehyde possesses s = 4 such permutations.
Remark 6. The identified set of permutations is transitively closed to form a group. Under isotropy, it
suffices to permute only one of the two configurations given to the kernel: Permuting both entries (as in 31)
equals permuting one entry and multiplying by the constant s. However, if the applied bandwidth is not of
the form Σ = σId, this property does not hold.

C Initializing the inducing point locations

Since the number of inducing points of the gate X∗
G, as well as the experts X∗

E are the computational
bottleneck of our model, they should be chosen advisedly. Let us interpret the choice of inducing points as
a nested AL task at small sample size. In the small sample size regime, input space geometric arguments
have proven to be robust and superior in comparison to naive approaches like random sub-sampling from the
training inputs (Teytaud et al., 2007; Yu & Kim, 2010; Wu, 2019; Liu et al., 2021). They are representative,
respecting the training distribution, and diverse (with low-dispersion) so that they achieve an acceptable
representation of the dataset at the smallest possible number of inducing points. Indeed, by sampling the
inducing points in this manner, we can reduce the distance of an evaluation point x to its closest neighbor
in X∗

E , which is known to reduce the reconstruction error of a full kernel matrix by a sparse representation
(Zhang et al., 2008), as also discussed in Sec. 4.

In addition, recall that our derived LFC measure of local structural complexity quantifies the local variation
of the target function. Intuitively it is clear that we require more inducing points to sense and reconstruct
the target function where this local variation is higher. In summary, we therefore propose to choose the
inducing points X∗

E , X∗
G ∼

√
p · Cn

GPR in a diverse way, respecting LFC and the training density Xn ∼ p.

In order to obtain diverse inducing point locations with a certain distribution, we consider two approaches,
Stein variational gradient descent (SVGD) (Liu & Wang, 2016; Han & Liu, 2018) and distributional clustering
(DC) (Krishna et al., 2019).
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Stein Variational Gradient Descent SVGD takes a particle swarm and tries to align the empirical
distribution of the particles with a target distribution, of which we require the density, as well as its derivative
(Liu & Wang, 2016). In addition, the individual particles repel each other, such that we have both diversity
and representativeness. In our scenario we have no access to this derivative, such that we resort to the work
of Han & Liu (2018) that is solely based on the density. Since the particles move freely in the input space
and we have to evaluate the target density a considerable number of times, we suggest to apply SVGD, when
we deal with well-behaved input spaces and target densities that are easy to evaluate. If the input spaces is
only given through high-dimensional features from a finite set of samples, SVGD might move particles into
regions far apart from the data manifold.

Distributional Clustering DC is similar to the known k-means clustering (Gan et al., 2020), but solves
a different inertia objective, that is modified such that asymptotically, as the number of cluster centers
|X∗| → ∞, the distribution of the training data is preserved (Krishna et al., 2019). Under the standard
k-means clustering objective, we would observe X∗ ∼ p

d
2+d (Graf & Luschgy, 2007), where it was Xn ∼ p.

Since we intend to use clustering for sub-sampling rather than identifying a fixed number of true cluster
centers, we deal with a comparably large number of cluster centers, here. Thus, we will use DC so as
to obtain a representative set of inducing points. Due to very mild assumptions on the problem, DC is
specifically easy to perform in higher dimensions.

Dealing with local optima of DC The inertia objective of DC is given by

inertiaDC[c|Xn] =
∑

c∈c

∑
x∈Ic

1x ̸=c log ∥x− c∥, (32)

where

Ic =
{

x ∈Xn

∣∣ ∥x− c∥ ≤ ∥x− c′∥,∀c′ ∈ c
}

(33)

are those elements in Xn that are closest to the center c.

In the classical Lloyd-step the centers are updated so as to minimize the intra-cluster inertia, which is given
in the case of DC by

c∗ = argminz∈Ic

∑
x∈Ic

1x ̸=z log ∥x− z∥. (34)

It is a known problem that k-means-related inertia objectives suffer from local optima Arthur & Vassilvitskii
(2007): The converged solution of cluster centers will typically lie close to their initialization. One way to
tackle this issue in practice is to run multiple repetitions of the procedure, followed by choosing the solution
with minimal inertia. Unfortunately, the amount of local optima increases with the number of cluster centers.
And in our case, where we use DC for sub-sampling rather than clustering in its usual sense, we deal with a
large amount of clusters such that this strategy becomes computationally tedious.

Complementary to running multiple repetitions of k-means, we will extend the state-of-the-art method
k-means++ for choosing the initial set of clusters in a more sophisticated way, where we additionally account
for the training distribution. Given the inertia objective

inertia[c|Xn] =
∑n

i=1
minc∈c ∥xi − c∥2

of the cluster centers c, the k-means++ procedure builds the set of initial cluster centers as follows: Draw
the first center c1 randomly from Xn. Then keep track on the current closest squared distance

dm
i = min

j∈{1,...,m}
∥xi − cj∥2 (35)

of each element xi ∈ Xn to the so far drawn centers c1, . . . , cm and sample the next center cm+1 with
probability ∝ (dm

i )n
i=1 from Xn. This procedure is repeated until the desired number of cluster centers is

reached.

The advantage of k-means++ is that the initial centers are more diverse than if they were sampled at random
from Xn. However, in its standard form the centers initialized by k-means++ are themselves distributed

32



Under review as submission to TMLR

flatter than Xn. And so, in the case of DC, we propose the following adjustment for a distributional
k-means++:

We sample with probability ∝
(
dm

i p(xi)2/d
)n

i=1 from Xn, where Xn ∼ p.

Symmetrized DC for molecules Since any symmetric molecule has multiple equivalent representations,
care must be taken when measuring distances in DC. The key idea is to always compare the two configurations
in its closest representation. Using the notation from Appendix B.4, let

d(z, z′) = min1≤s≤s ∥Φ(z)− Φ(πsz′)∥

be the symmetrized distance between two molecule representations. The symmetrized DC algorithm is then
obtained by replacing all occurrences of ∥z − z′∥ with d(z, z′) in the cluster assignments Ic, the objective
inertiaDC[c|Xn], the cluster updates c∗ and closest distances dm

i from Equations 33, 32, 34 and 35.

D Design choices of the sparse MoE model

In Sec. 3.1 we have made several design choices with computational feasibility in mind. We will discuss these
summarized in this section.

The gate model While in Sec. 3.1 we have chosen the gate gl ∼ SGP(θgl
) to be a GPR model, note that any

choice of model with sufficient flexibility would have been possible. GPR features universal approximation
properties, which makes it a favorable choice.

Furthermore, the gate should come with a small degree of freedom to prevent compared to the experts to
prevent those from overfitting while training the MoE. For this reason, and the fact that we have no ground
truth labels for the training of the gate anyhow, we choose our GPR-based gate to be sparse.

Finally, note that we share the set of gate inducing point locations X∗
G across all gate channels. While this

is not necessary, it simplifies our method without costs as the MoE is rather insensitive with respect to the
gate inducing point locations, as long as these are well-spread.

The expert models While we made clear why we use GPR experts in our work, we left open in Sec. 3.1,
whether these experts should be sparse or dense. Here, the deciding factor is plainly the amount of n training
samples that we have to deal with: When n goes beyond a few thousands, we suggest switching to sparse
GPR experts for computational reasons. Note that after training of the MoE, it is also possible to switch
back to full GPR experts, if one aims for a high accuracy predictor. For the purpose of active learning, this
is not necessary.

Similar to the gate, we share the inducing point locations X∗ across all experts, which simplifies our model.
In contrast to the gate situation, the MoE is sensitive to the choice of expert inducing point locations. Now,
if we were to allow individual inducing point locations for each expert, it might happen that an elsewise
locally underperforming expert works better than the remaining experts due to a lucky choice of its individual
inducing points. Subsequently, this would result in a sub-optimal gate and, hence, ultimately in a wrong
superior training density estimate.

For better generalization, if dense GPR experts are applied while training of the MoE, we will either have
to rely on individual training sets for the experts and the gate, or we use leave-one-out expert responses on
a shared training set.

In the sparse expert case, it is necessary to learn reasonable inducing values µ∗ prior to the actual learning
procedure of the MoE to not get stuck in a spurious solution. Therefore, there should be a short pre-training
phase of each individual expert.

In addition—whether or not the experts are sparse—the shared expert parameters µE , λE , v̂, ΣE should be
initialized reasonably. In this regard, we suggest to train a single, global expert model before the (pre-
)training of the actual experts to obtain those initial parameter estimates for which we have no prior knowl-
edge. If we assume isotropic bandwidths to be sufficient, we can simply set ΣE = σEId and learn the scalar
σE > 0 instead. Note that, from practice, the training of the MoE suffers tremendously from online changes
of the expert bandwidths. Thus, we suggest to keep ΣE fixed after initialization.
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Finally, note that, if we stick with sparse experts after training of the MoE, it can be beneficial for the
prediction accuracy to re-train the MoE, where we keep the gate fixed. In this post-processing step, we
would like to apply larger learning rates on the experts in order to escape local optima. However, larger
learning rates also lead to underperforming intermediate steps, in which an actively trained gate might
reject the best fitting expert at random—therefore pushing the gate towards a local optimum. Keeping the
pre-trained gate fixed at this point prevents this undesired behavior.

The inducing points Recall that we have set the covariance S∗ = 0 of the inducing value distribution
to zero, whereas it could have also been a diagonal or positive definite matrix. Playing around with this
parameter, we have seen no significant improvement that would justify the considerable amount of additional
model parameters from a computational point-of-view.

In our approach we suggest to keep the inducing point locations fixed, which is also for reasons of computa-
tional feasibility, but more importantly, adaptive inducing point locations come along with heavy prediction
instabilities while training.

We found it necessary and sufficient to initialize the inducing point locations by state-of-the-art methods, as
described in Appendix C.

The MoE objective While training of our MoE in Sec. 3.1.1, we added a penalty on small bandwidth
choices. As described in (Lepski, 1991; Lepski & Spokoiny, 1997), the optimal bandwidth choice is the
largest one which is capable of modelling the function. Now that we are able to model a comparably flat
function by small bandwidths, as long as we have got enough training support, it can occur that, with no
regularization, we choose a too small bandwidth for such a flat region. A too small bandwidth choice might
cause overfitting. But even worse, in the subsequent active learning loop the flat region is falsely identified as
complex, leading to more training queries in this location, which then allow for even smaller bandwidths to
model this flat region. We will demonstrate this pathological behavior for the unregularized case on toy-data
in Sec. 5.1.

The gate noise s Like already mentioned in Sec. 3.1.1, it is possible to tune s in the training process:
Remark 7. Shazeer et al. (2017) proposed to learn the s parameter by adding a penalty term to the main
objective that penalizes the imbalance of how likely training inputs are assigned to each expert: Let πb ∈
[0, 1]L be the expert assignment probabilities of xb and define πB =

∑
b∈B

πb. Then they add a penalty
V[πB]

/
[EπB]2 to the objective, which is the squared coefficient of variation—a coefficient that accounts for

the non-uniformity of a set of positive variables.

We justify our simple heuristic to shrink s in a static way as follows: Recall from Sec. 3.1 that s prevents
premature commitment to a spurious solution. When treating s as a trainable parameter, it does not decay
towards zero. Maintaining the noise then prevents the locally best performing experts from converging by
randomly withholding training samples. For this reason, we find that s behaves best when decaying towards
zero as the training progresses.

E Supplemental results on the Doppler experiment

E.1 The single-scale GPR model

When training a single-scale GPR model on the Doppler dataset, the tuned bandwidth parameter will
typically take an intermediate value, trying to compromise between more complex and simpler regions. This
is reflected in the predictions in Fig. 13, where the single-scale GPR model suffers from the inhomogeneous
structure, underfitting the complex region to the left while simultaneously overfitting the simple region to
the right.

In Fig. 14 we compare the performance of our multi-scale MoE approach to the single-scale GPR model.
The consistently inferior performance of the single-scale GPR model shows that the issue above persists even
for large training sizes.
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Figure 13: The Doppler experiment: An exemplary dataset and the predictions of a global GPR model,
shown on natural x-scale (left) and on logarithmic x-scale (right).

Figure 14: The Doppler experiment: The max AE (left) and the RMSE (right) of our proposed MoE model
in comparison to a single-scale GPR model. The results are averaged over 20 repetitions.

E.2 Necessity of the small bandwidth penalty

In Appendix D we discuss overfitting issues with too small local bandwidth estimates as a consequence of
inadequate regularization of LOB. To address this issue, we have proposed to penalize such small bandwidth
choices by ϑσpenσ(Xn, Yn,B, w, Θ) with the penalty term penσ from (13) and a scaling factor ϑσ ≥ 0.

Now, while the LOB estimate with ϑσ = 0.5 (see Fig. 4) consistently behaves as expected, we show for
comparison a typical LOB estimate in Fig. 15 that results from applying no regularization (ϑσ = 0). By
chance—here, the flat region of the Doppler function to the right—the trained model suffers from massive
overfitting by too small LOB estimates. These falsely obtained small LOB estimates then lead to overesti-
mation of LFC, which subsequently results in a detrimental oversampling of these locations by the active
learning procedure.
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Figure 15: The Doppler experiment: An actively sampled dataset (top) with our MoE fit at n = 212 training
samples without small bandwidth penalty (ϑσ = 0), and the associated LOB estimate (bottom).

F The malonaldehyde MD simulation experiment under a uniform test distribution

In this scenario, we assume a uniform test density q = U(X ). Accordingly, we weight the validation and test
MSE by the importance weights 1/p̂MD(xval) and 1/p̂MD(xtest). We draw the initial expert training set Xn

of size n = 29 and the gate training set XG
nG

via importance sampling from the remaining pool with weights
1/p̂MD(XMD \ (xval ∪ xtest)). By this it is Xn ∼ U(X ).

Figure 16: The RMSE under the uniform test distribution for different variants of sGDML and training
distribution at varying training size: The performance is given for passive sampling, using the original
isotropic sGDML (dotted), anisotropic sGDML (dash-dotted) and our MoE model with anisotropic sGDML
experts (dashed), and for the MoE model, applying the proposed active learning framework (solid). The
results are averaged over 2 repetitions.

In Fig. 17 we show the estimates to LOB, LFC and the superior training density under the pool test
distribution, evaluated on the relaxed configurations of malonaldehyde. The LFC estimates in Fig. 17
confirm our expectation that the transition areas are more complex to model than the regions near the
stable configurations. Subsequently, our active sampling scheme shifts sample mass away from the stable
regimes in favor of the transition areas.

We have plotted the error curves of passive and active sampling schemes in Fig. 16. When estimating the
relative sample size (19) that we require to achieve the same RMSE via active sampling compared to random
test sampling, we obtain ϱ(f̂MoE, p̂GPR,n

Sup ) = 0.965 ± 0.009. This means that we save about 3.5% of samples
with our active sampling scheme. With similar calculations, we save about 27%, when comparing the original
sGDML approach with passive sampling to our MoE model with active sampling.
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Figure 17: Estimates to LOB (left), LFC (middle) and the superior training density (right) under the pool
test distribution q = U(X ), evaluated at the relaxed malonaldehyde configurations, plotted with respect to
the angles of the two aldehyde rotors of malonaldehyde.
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