
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOAGENT: A FULLY-AUTOMATED AND ZERO-CODE
FRAMEWORK FOR LLM AGENTS

Anonymous authors
Paper under double-blind review

Web
Agent

Coding
Agent

Browser Terminal

Local File
Agent

Markdown

 Profiling
Agent

 Profiling
Agent

 Parsing

 Editor
Agent

 Create /

 Editor
Agent

 Editor
Agent

Create /

 Editor
Agent

LLM Providers DB Providers Tool Platform

Programming
Debugging

...

Veiwing
Analysing

...

Creating
Tools

...

Creating
Agents

...

Creating
Workflow

...

Local Files

Programs

Browser

Automated Generation of Customizable Agents,
Tools, Workflows

User Interface

Top-1 Open-Source General AI Assistant on GAIA

SOTA RAG performance as Generalist Agent System

Fully-Automated and Zero-Code Agent Framework
Language-Driven Framework

Give me a comparative analysis report of AAPL and MSFT stocks.
Self-

DevelopingBrowsing
Websites

...

Workflow Name:
majority_voting_flow
Workflow Description:
System Input: ..
System Output: ..
Agents:[agent1, ..]
Workflow Code:
```python
import autoagent
..

Agent Name:
Financial Agent 
Agent Description: ..
Agent Instruction: ..
Agent Tools: 
[Tool_1, Tool_2, ..]
Agent Code:
```python
import autoagent
..

Tool Name:
get_cash_flow
Tool Description: ..
Tool Argument:
{id: .., period: ..}
Tool Code:
```python
import autoagent
```

I automatically generated all the code and created
Financial Agent. I run the agent and get the analysis
report:
1. Portfolio Allocation Strategy: ...

Figure 1: AutoAgent stands out as a new LLM Agent Framework that enables fully automated,
zero-code development for complex task automation. Ranking #1 among open-source solutions
on the GAIA benchmark, it delivers state-of-the-art RAG performance as a general AI assistant.
Its revolutionary approach democratizes AI development - allowing anyone, regardless of coding
experience, to create and customize their own agents, tools, and workflows with ease.

ABSTRACT

Large Language Model (LLM) Agents have demonstrated remarkable capabili-
ties in task automation and intelligent decision-making, driving the widespread
adoption of agent development frameworks such as LangChain and AutoGen. How-
ever, these frameworks predominantly serve developers with extensive technical
expertise—a significant limitation considering that only 0.03% of the global pop-
ulation possesses the necessary programming skills. This stark accessibility gap
raises a fundamental question: Can we enable everyone, regardless of technical
background, to build their own LLM agents using natural language alone? To
address this challenge, we introduce AutoAgent - a Fully-Automated and highly
Self-Developing framework that enables users to create and deploy LLM agents
through Natural Language Alone. Operating as an autonomous Agent Operating
System, AutoAgent comprises four key components: i) Agentic System Utilities,
ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-
Play Agent Customization module. This lightweight yet powerful system enables
efficient and dynamic creation and modification of tools, agents, and workflows
without coding requirements or manual intervention. Beyond its code-free agent
development capabilities, AutoAgent also serves as a versatile multi-agent system
for General AI Assistants. Comprehensive evaluations on the GAIA benchmark
demonstrate AutoAgent’s effectiveness in generalist multi-agent tasks, surpassing
existing state-of-the-art methods. Furthermore, AutoAgent’s Retrieval-Augmented
Generation (RAG)-related capabilities have shown consistently superior perfor-
mance compared to many alternative LLM-based solutions. Code link: https:
//anonymous.4open.science/r/AutoAgent-NIPS-D4AF/.

1

https://anonymous.4open.science/r/AutoAgent-NIPS-D4AF/
https://anonymous.4open.science/r/AutoAgent-NIPS-D4AF/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has revolutionized AI agent development, en-
abling unprecedented breakthroughs in autonomous task execution and intelligent problem-solving.
LLM-powered agents excel at understanding context, making informed decisions, and seamlessly
integrating with various tools and APIs. Leading frameworks like LangChain LangChain (2023),
AutoGPT Significant-Gravitas (2023), AutoGen Wu et al. (2023), CAMEL Li et al. (2023), and
MetaGPT Hong et al. (2024a) have demonstrated remarkable success in automating increasingly com-
plex workflows - from sophisticated web navigation to advanced data analysis and innovative creative
content production. By leveraging advanced mechanisms such as role-playing, structured operating
procedures, and dynamic agent coordination, these frameworks deliver exceptional problem-solving
capabilities while significantly reducing human intervention.

Despite remarkable advancements in AI agent development, a significant barrier persists: the creation
and optimization of LLM agent systems remains dependent on traditional programming expertise.
Current frameworks primarily cater to technically proficient developers who can navigate complex
codebases, understand API integrations, and implement sophisticated prompt engineering patterns.
This reliance on coding skills creates a substantial accessibility gap, as only 0.03% of the global popu-
lation possesses the necessary programming expertise to effectively build and customize these agents.
Even with well-documented frameworks and development tools, the entry barrier remains dauntingly
high for non-technical users. This limitation becomes particularly problematic given the universal
need for personalized AI assistants in digital age. Everyone, from business professionals seeking
workflow automation to educators designing interactive learning tools, requires customized LLM
agents tailored to their specific needs. For instance, a researcher might need an agent specialized in
literature review and data analysis, while a content creator might require an agent focused on creative
writing and media management. The current paradigm of coding-dependent agent development not
only severely restricts the user base but also creates a bottleneck in meeting the diverse and evolving
demands for personalized AI assistance. This misalignment between universal needs and limited
accessibility calls for a fundamental rethinking of how LLM agents are created and customized.

This stark contrast between universal needs and limited accessibility leads us to a fundamental research
question: Is it possible to democratize LLM agent development by enabling Natural Language-based
Creation and Customization? In this work, we aim to realize this vision by introducing AutoAgent, a
novel framework that fundamentally reimagines agent development as a fully automated, language-
driven process requiring zero programming expertise. To realize this vision, AutoAgentoperates as
an autonomous Agent Operating System with three key capabilities: 1) Natural Language-Driven
Multi-Agent Building - automatically constructing and orchestrating collaborative agent systems
purely through natural dialogue, eliminating the need for manual coding or technical configuration;
2) Self-Managing Workflow Generation - dynamically creating, optimizing and adapting agent
workflows based on high-level task descriptions, even when users cannot fully specify implementation
details; and 3) Intelligent Resource Orchestration - providing unified access to tools, APIs, and
computational resources via natural language while automatically managing resource allocation and
optimization. Through this innovative architecture, AutoAgentdemocratizes LLM agent development
while maintaining enterprise-grade sophistication, transforming a traditionally complex engineering
task into an intuitive conversation accessible to all users.

To enable fully-automated and zero-code LLM agent development, AutoAgent introduces several
synergistic technical innovations that form a complete framework: First, the Agentic System Utilities
provides a foundational multi-agent architecture, where specialized web, code, and file agents
collaborate seamlessly to handle diverse real-world tasks. At its core, the LLM-powered Actionable
Engine serves as the system’s brain, supporting flexible integration of any LLM provider through
both direct and transformed tool-use paradigms for robust action generation. To address the critical
challenge of information management, the Self-Managing File System enhances overall system
capability by automatically converting diverse data formats into queryable vector databases, enabling
efficient information access across all operations. Additionally, the Self-Play Agent Customization
not only transforms natural language requirements into executable agents through structured XML
schemas, but also automatically generates optimized workflows through iterative self-improvement,
eliminating the need for manual agent programming or workflow design. Together, these innovations
enable AutoAgent to democratize agent development while maintaining production-level robustness.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

AutoAgent’s exceptional capabilities have been rigorously validated through comprehensive empirical
evaluation. In standardized benchmarks, it secured a strong second place on the Generalist Agent
Benchmark (GAIA), while significantly outperforming state-of-the-art RAG approaches on the
Retrieval-Augmented Generation benchmark. Beyond these quantitative achievements, extensive
case studies demonstrated AutoAgent’s robust self-development capabilities across diverse real-world
scenarios, highlighting its practical value in automated agent development.

2 RELATED WORK AND PRELIMINARIES

LLM-empowered agents have revolutionized AI systems through tool invocation capabilities. Frame-
works like LangChain LangChain (2023), AutoGPT Significant-Gravitas (2023), CAMEL Li et al.
(2023), MetaGPT Hong et al. (2024a), and OpenAgent Xie et al. (2023) demonstrate diverse ca-
pabilities: CAMEL pioneered role-playing communication, AutoGen Wu et al. (2023) developed
LLM combinations for problem-solving, MetaGPT Hong et al. (2024a) integrated Standardized
Operating Procedures, and OpenAgent Xie et al. (2023) provided specialized web agents. However,
these frameworks require coding skills and domain expertise, limiting accessibility to non-technical
users. We propose a new paradigm that democratizes agent development through natural language
interactions, making agent technology accessible regardless of technical background.

LLM-Empowered Agent. The task-solving process of Large Language Model (LLM) agents can
be formalized as a Markov Decision Process (MDP), providing a comprehensive framework for
modeling their interaction with the environment. Defined as M = (S,A, O, P (·), E), the MDP
captures the agent’s state space S , action space A, observation space O, state transition function P (·),
and the set of environments E it can interact with. At each time step, the LLM agent observes the
current state, selects an action based on its policy, interacts with the environment, and updates its
state, often referred to as the agent’s “context”. The mapping from state to action can follow two
primary paradigms: Tool-Use Yao et al. (2024), where the agent utilizes external capabilities, and
ReAct Yao et al. (2023) (Non-tool-use), where the agent generates the next action solely based on its
internal language model. This MDP formulation provides a powerful framework for understanding,
analyzing, and designing LLM-empowered agents capable of tackling a wide range of complex,
multi-step tasks.

Generalist Multi-Agent System. Multi-agent systems (MAS) overcome single agent limitations
in complex problems by leveraging diverse capabilities of multiple specialized agents. Generalist
Multi-Agent Systems employ agent teams coordinated by an Orchestrator to solve varied tasks
through collaborative intelligence.

In a Generalist MAS, there are multiple agents, denoted as π0 : S0 → A0, π1 : S1 → A1, . . . , πn :

Sn → An. Within each agent’s action set, there exists a special transfer action Âi ∈ Ai, which
enables the delegation of tasks to other agents. The key challenge in a MAS lies in designing an
effective Task Transfer Mechanism, which organizes different agents through appropriate transfer
actions. We define such an agent organization mechanism as the “MAS Design Pattern”. A common
design is the Orchestrator-Workers paradigm Fourney et al. (2024); Anthropic (2024), where the
Orchestrator comprehends the task and distributes subtasks to Workers via transfer actions. The
Workers, acting as sub-agents, execute the subtasks and return the results to the Orchestrator through
transfer actions.

For tasks with deterministic steps, workflow-driven mechanisms have emerged as a particularly
effective approach. Notable examples include GPTSwarm Zhuge et al., which models workflows
as computational graphs for complex data operations, and specialized systems for mathematical
reasoning Wang et al. (2023) and code generation Wang et al. (2024a). These advances have enabled
strong capabilities across various applications, including GUI interaction Hong et al. (2024b); Xu
et al. (2024), software development Wang et al. (2024b); Yang et al. (2024), web browsing Drouin
et al. (2024); Song et al. (2024), and embodied tasks Li et al. (2024), demonstrating the versatility
and potential of LLM-powered agent systems.

Workflow Design in Generalist MAS. While Generalist Multi-Agent Systems offer high flexibility,
particularly for open-ended and complex tasks, they also come with higher costs, increased complexity,
and potential for compounding errors Anthropic (2024). For tasks with deterministic processes and
expert domain knowledge, fixed workflows can be a more stable and effective approach.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

LLM Providers

Direct Tool-Use

Transformed Tool-Use

LLM Toolbox

Agentic System Utilities LLM Actionable Engine

Execute

LLM Constraint Parse

DB Providers
Self-Managing

LLM Organize Retrieve

Self-Managing File System

Customize or

Self-Developing

Editing
 Tools ...

Agents...

Workflows...

Daily Tasks

Delegate Tasks

Searching...

Coding...

Analysing...

Self-Play Agent Customization
User Interface The AutoAgent framework

 Requirement of
 New Workflow(s)

Frontend: Language Input

Backend

 Daily Tasks Requirement of
 New Agent(s)

Figure 2: AutoAgent is a fully automated, language-driven generalist agent system. The core
components that enable this include the Agentic System Utilities, the LLM-powered Actionable
Engine, the Self-Managing File System, and the Self-Play Agent Customization module.
A workflow in a MAS is defined as W = wi,j : πi

ck−→ πj , where πi and πj represent agents, and ck
is the transfer condition. Effective workflow design involves defining conditional transfer equations
between agents based on downstream tasks, ensuring smooth and coordinated transmission - the
“Workflow Design Pattern”. Common patterns include Routing (directing tasks through a sequence),
Parallelization (distributing subtasks concurrently), and Evaluator-Optimizer (using agents to
assess and refine) Anthropic (2024). These can create stable and efficient task-solving in MAS.

Fully-Automated Generalist MAS. While the successful design and execution of both multi-agent
systems and complex workflows typically require substantial expert knowledge and engineering
expertise, the goal of AutoAgent is to fully automate this process. The key challenge lies in seamlessly
bridging the gap from high-level user requirements to the practical implementation of effective MAS
and workflow solutions - all through natural language interactions.

3 THE AUTOAGENT FRAMEWORK
AutoAgent is designed to be the automated operating system for LLM agents and general AI assistant.
Inspired by modern computer operating systems, AutoAgent consists of key components that enable
seamless natural language-driven agent development and task execution, as illustrated in Fig 2.
Its Agentic System Utilities provide foundational building blocks for complex agent-driven tasks,
while the LLM-powered Actionable Engine forms the central brain, understanding inputs and
orchestrating multi-agent coordination. The Self-Managing File System manages structured storage
and retrieval of user multi-modal data, and the Self-Play Agent Customization empowers users to
generate specialized, tailored agents and workflows through natural language, without any coding
requirements. Collectively, these robust capabilities make AutoAgent a versatile and powerful
platform, powering a variety of autonomous agent-based solutions for diverse applications.

3.1 AGENTIC SYSTEM UTILITIES
The AutoAgent framework employs a modular, multi-agent architecture to address the key challenge
of developing intelligent personal assistant agents capable of seamlessly integrating and coordinating
diverse capabilities, from web browsing and information retrieval to data analysis and code execution.
This design choice, which comprises specialized agents for web, coding, and file management tasks,
as well as an orchestrator agent to decompose and delegate user requests, enables the agentic system
utilities to serve as a versatile and extensible foundation that can adapt to a wide range of user
requirements, facilitating the rapid development of tailored, agent-driven solutions. Detailed system
prompts and tool definitions for Agentic System Utilities can be found in Appendix Sec A.
3.1.1 ORCHESTRATOR AGENT
The Orchestrator Agent is the primary interface for interacting with the user. It receives tasks from
the user, comprehends the tasks, decomposes them into sub-tasks, and delegates these sub-tasks to
appropriate sub-agents using the handoff tools OpenAI (2024). Once a sub-agent completes a
sub-task, it returns the result to the Orchestrator also using the handoff tool. Based on the task
completion status, the Orchestrator continues to assign the next sub-task to a suitable agent. This
iterative process continues until the entire task is completed. The Orchestrator, designed with the
handoff mechanism, is a simple yet effective solution, eliminating the need for complex prompts
to handle task planning.
3.1.2 DEDICATED AGENT MODULE
The basic Agent system can be broadly categorized into three types: web interaction, code execution,
and file analysis. We have constructed three functionally complementary dedicated agent modules:
Web Agent, Coding Agent, and Local File Agent, each designed for these respective tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The Web Agent provides a flexible and extensible web-toolkit, enabling the agent to perform a
variety of web-based tasks, from general web searches to file downloads. Its core functionalities
include web searching, page navigation, content browsing, and file downloading, which are abstracted
into 10 high-level operational interfaces (e.g., click, web_search, visit_url, etc.). This
module is built on BrowserGym Drouin et al. (2024), creating a browser environment that combines
low-level code-driven actions to implement high-level tools, thereby enhancing the extensibility of
tool definitions.

The Coding Agent is a comprehensive solution for code-related tasks, capable of handling a wide
range of applications—from data processing and numerical computation to machine learning and
system management. It offers diverse tools and supports execution in a secure, isolated interactive
terminal environment. All code execution results are fed back to the agent via terminal output, with
pagination support (e.g., using commands like terminal_page_up, terminal_page_down,
and terminal_page_to.), effectively bypassing the context length limitations of LLMs. To
ensure security, all operations run within a Docker sandbox, with optional integration of third-party
secure execution platforms like E2B E2B (2024).

The Local File Agent is designed to uniformly process various local multimodal file types (e.g.,
text documents, audio, video, spreadsheets) and convert them into structured formats for analysis.
This agent standardizes different file formats (e.g., .pdf, .mp4, .csv, .docx) and displays them
in a terminal-like Markdown browser with pagination, enabling efficient handling of long texts or
complex file structures for everyday tasks.

These three agent modules work collaboratively, forming light-weight yet complete basic Agent
System, laying the foundation for future functional expansion.

3.2 LLM-POWERED ACTIONABLE ENGINE

As the CPU executes instructions, manages resources, and coordinates processes in an OS, the
LLM-powered actionable engine can understand natural language, generate plans, and coordinate
tasks across agents. This enables seamless human-agent collaboration and task completion.

We utilize LiteLLM BerriAI (2024) to standardize LLM requests through an OpenAI-like interface,
supporting 100+ models from various providers. For agent collaboration, the LLM receives all
action-observation pairs up to time t as state st to determine the next action. These pairs serve as
system RAM, facilitating efficient retrieval and enabling language-driven system coordination.

3.2.1 GENERATING ACTIONABLE REFLECTIONS

We generate reflections (i.e., actions) based on LLM context, which can be broadly categorized into
two distinct approaches that leverage the language model’s capabilities.

Direct Tool-Use Paradigm. This approach is suitable for commercial LLMs or LLM serving
platforms that support tool-use. These LLMs can directly generate a parsed next-step tool to execute
based on the provided tool set and the current state, reducing errors during the tool parsing phase.
However, this method heavily relies on the optimization of the third-party platform’s capabilities.

Transformed Tool-Use Paradigm. This approach does not rely on the LLM’s inherent tool-use capa-
bilities. Leveraging the superior code-generation abilities of modern LLMs, we transform the tool-use
paradigm into a structured XML code generation task, e.g., <function=function_name>
<parameter=parameter_1>value_1</parameter> ... </function>. This
structured output is then parsed to extract critical information like tool arguments and others. It
improves the performance of commercial models with suboptimal tool-use capabilities and enables
the integration of open-source LLMs into the system, providing greater flexibility and customization.

3.3 SELF-MANAGING FILE SYSTEM

The file system in AutoAgent is a vector database that LLM agents can retrieve and understand. In our
design framework, users can upload text files in any format (e.g., .pdf, .doc, .txt) or compressed
archives and folders containing any text files. The system tools in the file system automatically
convert these files into a consistent text format and store them in a user-defined collection within
the vector database (using the save_raw_docs_to_vector_db tool). This enables agents to
self-manage their database memory and perform efficient and accurate retrieval and generation using
tools like query_db and answer_query. The detailed definitions of the tools are presented in
Tab 4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 SELF-PLAY AGENT CUSTOMIZATION

To allow users to customize tools and agents for specific scenarios or build their own multi-agent sys-
tems and workflows, it is designed as a code-driven, controllable self-programming agent framework.
By implementing constraints, error-handling mechanisms, and customized workflows, it enables
controlled code generation, facilitating the creation of tools, agents, and workflows. The AutoAgent
supports two distinct modes: agent creation without workflow and agent creation with workflow.

3.4.1 AGENT CREATION WITHOUT WORKFLOW
Building effective multi-agent systems often requires domain-specific expertise, such as in-depth
knowledge of financial regulations or healthcare protocols. However, this level of specialized know-
how may not always be available to users. For example, in the financial services, constructing
a multi-agent system to automate complex investment portfolio management would necessitate
expertise in areas like asset allocation, risk modeling, and regulatory compliance.

To address this challenge, our AutoAgent provides a powerful workflow-based mode allowing users to
generate sophisticated agent systems with minimal domain expertise. In this mode, the user provides
high-level descriptions of the desired agent(s), such as the agent’s name and a brief sentence-level
description for the expected agent functionalities. AutoAgent then uses this input to automatically
generate the appropriate agent(s) and the necessary workflow(s) to orchestrate their collaborative
efforts. This is all done based on the current state of the framework, including the available tools,
agents, and workflows. The key steps in this workflow-based agent generation approach are:

•Analyze Requirements and Existing Components. The process begins by carefully analyzing the
user’s requirements in the context of the existing tools and agents already available in the system.
This in-depth analysis is performed using the specialized profiling agent, which helps thoroughly
assess the current capabilities and resources that can be leveraged to fulfill the user’s needs.

•Analyze Tools and Structure Agents. Based on the comprehensive analysis performed, the system
then carefully determines the need for creating new tools, meticulously evaluates whether existing
tools can be effectively utilized, and subsequently structures the seamless collaboration between
multiple agents as appropriate. This ensures the optimal and comprehensive use of available resources,
ultimately leading to the efficient agent system design.

•Generate Detailed XML Agent Specifications. This step is designed to generate structured XML
code that accurately represents the detailed agent creation requirements. This comprehensive XML
representation captures the necessary information, including the agent’s functionality, dependencies,
and interactions, to enable the seamless and efficient subsequent process of agent generation.

Optimized Tool Creation with Third-Party APIs. The Tool Editor Agent can seamlessly integrate
various third-party APIs, such as LangChain, RapidAPI, and Hugging Face, to create powerful tools.
It expertly utilizes advanced retrieval techniques to search for and surface relevant API documentation,
including comprehensive details like names, descriptions, and invocation methods. The robust system
currently supports an extensive collection of 145 APIs from 8 diverse categories in RapidAPI,
LangChain LangChain (2023), and a wide range of models from 9 categories in Hugging Face. Future
plans include seamlessly integrating more cutting-edge platforms like Composio Composio (2024).

The agent also generates tool code based on its knowledge, automatically checking for syntax errors.
It designs test cases, runs the tool, and verifies functionality. If the tool fails, the agent automatically
debugs the code until successful. This targeted approach allows a more customized and adaptable
tool set, rather than a bloated, integrated system.

Agent Creation and Execution. When the user’s requirements involve multiple agents focused on
different tasks, the Agent Editor Agent automatically identifies this need and performs the necessary
multi-step agent creation operations. After all agents are successfully created, the system invokes the
create_orchestrator_agent tool to generate an orchestrator agent that connects the required
agents. This orchestrator adheres to the Orchestrator-Workers MAS design pattern, with a system
prompt that includes task descriptions, sub-task decomposition rules, and other scenario-specific
details. Detailed algorithms and system prompts are provided in Appendix Sec A.6.1.

3.4.2 AGENT CREATION WITH WORKFLOW
When users have specific requirements for a MAS’s workflow and domain knowledge, AutoAgent
allows a tailored approach. In this mode, users provide descriptions of the desired agent(s) and
specify the tasks they want the created agent(s) or workflows to accomplish. AutoAgent then uses this

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

information about the target tasks to generate not just the individual agent(s), but also the necessary
workflow(s) to coordinate their collaborative efforts in achieving the specified objectives.

Traditional graph-based methods often require strict adherence to graph theory principles Zhuge et al.
(2024); LangChain (2024); Hu et al. (2024); Zhang et al. (2024), a task challenging for LLMs when
generating workflows. To overcome these challenges, AutoAgent adopts an event-driven approach
where we model each agent’s task-solving as an event. By leveraging event listening and triggering
mechanisms, AutoAgent enables seamless collaboration between agents, offering greater flexibility
and adaptability compared to rigid graph structures.

Constructing New Workflows. The process of creating a new workflow is itself a multi-agent
workflow. The Workflow Form Agent analyzes the requirements and existing tools/agents to determine
if new agents need to be created, which agents should form the workflow, and what the listening and
triggering logic between events should be. It then generates structured XML code.

During the parsing phase, a robust error detection mechanism verifies whether the generated workflow
form complies with system constraints (e.g., constraints on the on_start event). If the constraints
are not satisfied, detailed error messages are sent back to the Workflow Form Agent as feedback for
regeneration. If the constraints are satisfied, the workflow form is passed to the Workflow Editor
Agent, which creates new agents (if needed), constructs the new workflow, and executes it on the
task. Detailed algorithms and system prompts are shown in Appendix Sec A.6.2.

4 EVALUATION

4.1 EVALUATION FOR A GENERALIST AGENT SYSTEM

Dataset and Evaluation Protocols.

The GAIA benchmark Mialon et al. (2024) evaluates General AI Assistants through 466 test and
165 validation questions across 3 difficulty levels, assessing Reasoning, Multi-Modality Handling,
Web Browsing, and Tool-Use Proficiency. We evaluated AutoAgent on GAIA’s validation set using
success rate as the metric, measuring task completion performance on human-like challenges.

Table 1: Performance comparison between the baseline
models and our AutoAgent on the GAIA benchmark.
The results we report are those published on the GAIA.

Agent Name Avg. L1 L2 L3
TapeAgent v0.1 33.94 47.17 34.88 3.85

FRIDAY 34.55 45.28 34.88 11.54
Magentic-1 36.97 54.72 33.72 11.54
AgentIM 37.58 50.94 36.05 15.38

Multi-Agent Exp v0.1 39.39 54.72 38.37 11.54
AgentIM v1.1 40.00 50.94 40.70 15.38
Trase Agent 40.00 47.17 40.70 23.08

HuggingFace Agents 44.24 58.49 43.02 19.23
Magentic-1 (o1) 46.06 56.60 46.51 23.08

omne 46.06 60.38 44.19 23.08
Trase Agent v0.2 47.27 58.49 46.51 26.92
Barcelona v0.1 50.30 62.26 50.00 26.92

Langfun Agent v2.0 54.55 60.38 59.30 26.92
h2oGPTe Agent v1.6.8 63.64 67.92 67.44 42.31

AutoAgent 55.15 71.70 53.49 26.92

Baseline Methods. The baselines
we selected are divided into two cate-
gories: Open-Source: FRIDAY Wu et al.
(2024), Magentic-1 Fourney et al. (2024),
Multi-Agent Experiment v0.1 (powered
by AutoGen)Microsoft (2024), Hugging-
Face AgentsHuggingFace (2024), Lang-
fun Agent Google (2024); Closed-Source:
TapeAgent, AgentIM, Trase Agent Trase
(2024), Omne, Barcelona1, and the
h2oGPTe Agent H2O.ai (2024). These di-
verse baselines represent the current state-
of-the-art in open-source and proprietary
multi-agent systems, providing a compre-
hensive landscape for evaluating the per-
formance and capabilities of our proposed
AutoAgent framework.

Implementation Details. To address tasks
in the GAIA benchmark, we utilize a combination of the System Utilities of the Model and the
Tool Editor Agent from the Agentic-SDK. The basic agents first attempt to complete the task while
collecting relevant information and reflections. If successful, the result is directly returned. If not, the
Tool Editor Agent creates new tools to continue the task. During validation, Claude-Sonnet-3.5 is
used by default.

Evaluation Results and Analysis. The results in Table 1 reveal the following key observations:

• Obs.1. Overall Superiority of AutoAgent: Our method significantly outperforms all open-
source agent systems and achieves performance close to the latest agent system, h2oGPTe Agent
v1.6.8 (submitted on December 16, 2024), securing a stable position in the top 2 rankings. Notably,

1TapeAgent, AgentIM, Omne, and Barcelona are anonymous.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

our approach demonstrates superior performance on Level 1 tasks compared to all state-of-the-art
baselines, becoming the first method to achieve over 70% accuracy rate. This success is attributed to
the well-designed System Utilities and the stable interaction of basic agents with the environment,
enabling efficient solutions to everyday simple tasks.

• Obs.2. Effectiveness of Key Components: Specifically, our framework demonstrates significantly
superior performance compared to Magentic-1 Fourney et al. (2024), a recent representative open-
source MAS, and FRIDAY, a classic self-improved framework. While Magentic-1 leverages the
powerful reasoning capabilities of o1-preview to design complex Orchestrator Agent (also the Coder
Agent), our framework emphasizes the stability of interactions between sub-agents and their respective
environments, as well as the precision of tool definitions. Under these conditions, the Orchestrator
Agent achieves better results with simple prompts and handoff tools.

4.2 EVALUATION OF AUTOAGENT ON THE RETRIEVAL-AUGMENTED GENERATION TASK
Benchmark Dataset and Evaluation Protocols. To test the basic functionalities of the AutoAgent,
we use the RAG task as the testing benchmark. MultiHop-RAG Tang & Yang (2024) is a dataset
designed to evaluate RAG capabilities, requiring the RAG methods to gather information from
multiple sources and generate responses, which aligns with the file functionality logic of AutoAgent.
We evaluate using two metrics: Accuracy (Acc) measures response consistency with expected
answers (e.g., “ChatGPT” or “OpenAI’s ChatGPT” are both correct for “Which AI tool reached
100M daily users in March?”). Error (Err) counts confident but incorrect responses (e.g., answering
“Bard” to the above query).

Baseline Methods. The baselines represent a diverse range of LLM-based RAG techniques. The
chunk methods, such as NaiveRAG Mao et al. (2020) and HyDE Gao et al. (2022), utilize the original
text segmentation. The graph methods, including MiniRAG Fan et al. (2025) and LightRAG Guo
et al. (2024), manage files as sophisticated graphs. In contrast, Langchain’s Agentic RAG LangChain
(2023) innovatively accesses files through intelligent software agents. These baselines cover a wide
array of strategies for leveraging large language models to retrieve and generate robust responses.

Implementation Details. We used gpt-4o-mini OpenAI (2023) as the LLM and text-embedding-
3-small for embeddings. We followed MultiHopRAG Tang & Yang (2024) for text chunking, with
256-token chunks and top-6 retrieval. This leverages the gpt-4o-mini’s language abilities while
text-embedding-3-small provides retrieval, with MultiHopRAG’s chunking managing information
effectively.

Table 2: Evaluation of AutoAgent for RAG.
Method acc err acc err

Chunk-Based NaiveRAG HyDE
53.36% 12.28% 56.59% 16.55%

Graph-Based MiniRAG LightRAG
57.81% 34.78% 58.18% 35.40%

Agent-Based Langchain AutoAgent
62.83% 20.50% 73.51% 14.20%

Evaluation Results and Analysis. We summa-
rize the key observations from Table 2.

• Superior Performance of AutoAgent. The
results clearly demonstrate the superior perfor-
mance of our proposed AutoAgent model com-
pared to other baselines on the Multihop-RAG
task. By leveraging a more flexible and adaptive
agent-based framework, AutoAgent is able to dynamically orchestrate the retrieval and reasoning
process, outperforming even other baselines.

• AutoAgent vs. LangChain. Our method significantly outperforms LangChain, which is also an
agentic RAG. This is due to AutoAgent’s more flexible framework, where agents do not need to rely
on predefined workflows and tools to execute file search tasks. The proposed model can orchestrate
workflows on the fly during the search process, leading to more efficient and accurate results.

4.3 AUTOAGENT’S PERFORMANCE ON OPEN-ENDED TASKS
This section thoroughly explores the capabilities of the AutoAgent framework in generating agents
and workflows based on even vague, natural language inputs across various scenarios. To illustrate
the breadth of AutoAgent’s abilities, we will examine its performance on tasks of varying difficulty -
from the creation of a single agent to the orchestration of multiple, coordinated agents. (We put the
results of single agent in Appendix A.7.1)

Task with Multi-Agents. To further validate AutoAgent’s capability to generate agents and integrate
third-party tools, we tasked it with creating a Financial Agent based on the following requirements:

I want to create ‘Financial Agent‘ that can help me to do two kinds of
tasks:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison between single LLMs and the AI-generated Majority Voting workflow.
Models gpt-4o

0806
claude-3.5-sonnet

1022
deepseek-v3 Majority Voting Workflow

(3 models)

pass@1 66.4 66.4 74.2 75.6

1. Manage the private financial docs. I have a folder that contain the
financial docs in my local machine, and I want to help me to manage them.
2. Search the financial information online. You may help me to:
- get balance sheets for a given ticker over a given period.
- get cash flow statements for a given ticker over a given period.
- get income statements for a given ticker over a given period.

Building a Comprehensive Financial Agent. The Agent Form Agent created two agents:
the Document Manager Agent and Market Research Agent, with XML structure shown in
List 18. The Tool Editor Agent created tools: get_balance_sheet, get_cash_flow,
get_income_statement, and analyze_financial_data. The Agent Editor Agent then
composed these agents and established a Financial Analysis Orchestrator for coordination.

The Financial Analysis Orchestrator leveraged new tools and existing capabilities to conduct research
on local documents and external data sources. This process produced a comprehensive research report,
shown in List 19 in the Appendix. The agent trajectory is detailed in Tab 6 in the Appendix. Despite
encountering a SyntaxError during initial creation, the Agent Editor successfully self-debugged and
completed the task, demonstrating the robustness of AutoAgent system.

Workflow Generation. Scaling Test-Time Compute has been validated as a superior approach for
solving reasoning problems. However, manually constructing workflows poses a high barrier to entry.
We aim to explore whether AutoAgent’s automatic creation of agents and workflows can bridge
the gap between the idea of Test-Time Compute and the implementation of workflows. Taking the
majority voting method with multiple models as an example:

I want to create a workflow that can help me to solving the math problem.
The workflow should:
1. Parallelize solving the math problem with the same ‘Math Solver
Agent‘ using different language models (‘gpt-4o‘, ‘claude-3-5-sonnet‘,
‘deepseek-chat‘)
2. Aggregate the results from the ‘Math Solver Agent‘ and return the
final result using majority voting.

Potential Test-Time Scaling Law. Upon receiving the requirements, the Workflow Form Agent
generated an XML-formatted workflow table (List 20). This table includes two new agents:
Math Solver Agent and Vote Aggregator Agent. After validation, the Agent Editor Agent cre-
ated agents. The Workflow Editor Agent then constructed a new workflow based on the form
and conducted tests. To validate the workflow’s practicality, we performed comparative experi-
ments on the MATH-500 dataset Lightman et al. (2024) using 3 LLMs (gpt-4o-20240806,
claude-3.5-sonnet-20241022, deepseek-v3) and a Majority Voting workflow. As
shown in Tab 3, the generated workflow performs significantly better than state-of-the-art base-
lines. We selected cases from deepseek-v3 (Tab 5) where AutoAgent’s workflow effectively
corrected errors through multi-model collaboration, demonstrating its potential to establish scaling
laws in LLMs.

5 CONCLUSION

The AutoAgent framework marks a significant advancement in democratizing LLM-powered agent
technology, making it accessible to the non-programming majority. By bridging high-level natural
language requirements with the practical implementation of multi-agent systems and workflows,
MetaChain empowers users to create, customize, and deploy agents, tools, and workflows without
requiring substantial technical expertise. Its modular architecture, versatile Agentic System Utilities,
and LLM-powered Actionable Engine work together to enable seamless automation of agent devel-
opment and task execution. Unique features such as the Self-Organizing File System and Self-Play
Agent Customization further enhance AutoAgent’s capabilities, allowing for dynamic agent evolution
and task-specific optimization. Extensive evaluations demonstrate AutoAgent’s superior performance,
highlighting its transformative potential in making LLM capabilities accessible to a broad user base.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Building effective agents. https://www.anthropic.com/research/
building-effective-agents, 2024. URL https://www.anthropic.com/
research/building-effective-agents.

BerriAI. Litellm: Proxy server (llm gateway) to call 100+ llm apis in openai format. https:
//github.com/BerriAI/litellm, 2024. URL https://github.com/BerriAI/
litellm.

Composio. Composio: Production ready toolset for ai agents. https://github.
com/ComposioHQ/composio, 2024. URL https://github.com/ComposioHQ/
composio.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capable
are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 11642–11662. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/drouin24a.html.

E2B. Secure open source cloud runtime for ai apps & ai agents. https://github.com/
e2b-dev/e2b, 2024. URL https://github.com/e2b-dev/e2b.

Tianyu Fan, Jingyuan Wang, Xubin Ren, and Chao Huang. Minirag: Towards extremely simple
retrieval-augmented generation. arXiv preprint arXiv:2501.06713, 2025.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang Zhu,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and Saleema
Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks. CoRR,
abs/2411.04468, 2024.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. arXiv preprint arXiv:2212.10496, 2022.

Google. Langfun: Oo for llms. https://github.com/google/langfun, 2024. URL
https://github.com/google/langfun.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. 2024.

H2O.ai. Autonomous agentic ai: execute multi-step workflows autonomously. https://h2o.
ai/platform/enterprise-h2ogpte/#AgenticAI, 2024. URL https://h2o.ai/
platform/enterprise-h2ogpte/#AgenticAI.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=VtmBAGCN7o.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for GUI agents.
In CVPR, pp. 14281–14290. IEEE, 2024b.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. CoRR, abs/2408.08435,
2024.

HuggingFace. Transformers documentation: Agents and toos. https://huggingface.
co/docs/transformers/agents, 2024. URL https://huggingface.co/docs/
transformers/agents.

10

https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://github.com/ComposioHQ/composio
https://github.com/ComposioHQ/composio
https://github.com/ComposioHQ/composio
https://github.com/ComposioHQ/composio
https://proceedings.mlr.press/v235/drouin24a.html
https://github.com/e2b-dev/e2b
https://github.com/e2b-dev/e2b
https://github.com/e2b-dev/e2b
https://github.com/google/langfun
https://github.com/google/langfun
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://openreview.net/forum?id=VtmBAGCN7o
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LangChain. Langchain: Build context-aware reasoning applications. https://github.com/
langchain-ai/langchain, 2023. URL https://github.com/langchain-ai/
langchain.

LangChain. Langgraph: sbuild resilient language agents as graphs. https://github.com/
langchain-ai/langgraph, 2024. URL https://github.com/langchain-ai/
langgraph.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL:
communicative agents for "mind" exploration of large language model society. In NeurIPS, 2023.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
Tony Lee, Li Erran Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
embodied decision making. In NeurIPS 2024, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR.
OpenReview.net, 2024.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, and Weizhu
Chen. Generation-augmented retrieval for open-domain question answering. arXiv preprint
arXiv:2009.08553, 2020.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a
benchmark for general AI assistants. In ICLR. OpenReview.net, 2024.

Microsoft. Multi-agent experiment v0.1 msr ai frontiers (autogen team members). https://
aka.ms/gaia_multiagent_v01_march_1st, 2024. URL https://aka.ms/gaia_
multiagent_v01_march_1st.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Educational framework exploring ergonomic, lightweight multi-agent orchestra-
tion. https://github.com/openai/swarm, 2024. URL https://github.com/
openai/swarm.

Significant-Gravitas. Autogpt. https://github.com/Significant-Gravitas/
AutoGPT, 2023.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web agents.
arXiv preprint arXiv:2410.16464, 2024. URL https://arxiv.org/abs/2410.16464.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-hop
queries. CoRR, abs/2401.15391, 2024.

Trase. Meet trase systems, the ai agent platform. https://www.trasesystems.com/, 2024.
URL https://www.trasesystems.com/. Accessed: 2025-01-15.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves LLM search
for code generation. CoRR, abs/2409.03733, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software
Developers as Generalist Agents, 2024b. URL https://arxiv.org/abs/2407.16741.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR. OpenReview.net, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
multi-agent conversation framework. CoRR, abs/2308.08155, 2023.

11

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://aka.ms/gaia_multiagent_v01_march_1st
https://aka.ms/gaia_multiagent_v01_march_1st
https://aka.ms/gaia_multiagent_v01_march_1st
https://aka.ms/gaia_multiagent_v01_march_1st
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://arxiv.org/abs/2410.16464
https://www.trasesystems.com/
https://www.trasesystems.com/
https://arxiv.org/abs/2407.16741

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning
Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong,
and Tao Yu. Openagents: An open platform for language agents in the wild, 2023.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. 2024.
URL https://arxiv.org/abs/2412.04454.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://arxiv.org/abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR. OpenReview.net, 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. CoRR, abs/2406.12045, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation. CoRR, abs/2410.10762, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In ICML. OpenReview.net,
2024.

12

https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2405.15793

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

In the supplementary materials, we provide a detailed technical description of the ’Agentic System
Utilities’ implementation within our AutoAgent framework.

A.1 SYSTEM-LEVEL TOOLS

To empower our diverse array of system-level agents, we have carefully curated and predefined seven
distinct categories of powerful tools. These tools span a wide range of functionalities, including
coding, web browsing, file management, creating new tools, agents, and workflows, as well as natural
language question answering for documents. The detailed names and comprehensive descriptions of
these versatile tools are presented in Table 4.

Table 4: List of detailed information of system-level tools.

Tool Name Category Description
run_python Coding Run a python script.

execute_command Coding Execute a command in the system shell. Use
this function when there is a need to run a sys-
tem command, and execute programs.

gen_code_tree_structure Coding Generate a tree structure of the code in the
specified directory. Use this function when
you need to know the overview of the codebase
and want to generate a tree structure of the
codebase.

create_directory Coding Create a directory if it does not exist. Use this
function when there is a need to create a new
directory.

list_files Coding List all files and directories under the given
path if it is a directory. Use this function when
there is a need to list the contents of a directory.

write_file Coding Write content to a file. Use this function when
there is a need to write content to an existing
file.

create_file Coding Create a file with the given path and content.
Use this function when there is a need to create
a new file with initial content.

read_file Coding Read the contents of a file and return it as a
string. Use this function when there is a need
to check an existing file.

terminal_page_to Coding Move the viewport to the specified page index.
The index starts from 1.
Use this function when you want to move the
viewport to a specific page, especially when the
middle of terminal output are meaningless, like
the output of progress bar or output of gener-
ating directory structure when there are many
datasets in the directory, you can use this func-
tion to move the viewport to the end of terminal
where meaningful content is.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

terminal_page_down Coding Scroll the viewport DOWN one page-length in
the current terminal. Use this function when
the terminal is too long and you want to scroll
down to see the next content.

terminal_page_up Coding Scroll the viewport UP one page-length in the
current terminal. Use this function when the
terminal is too long and you want to scroll up
to see the previous content.

input_text Web Types the given text value into the specified
field.

click Web Clicks the mouse on the target with the given
element bid.

page_down Web Scrolls the entire browser viewport one page
DOWN towards the end.

page_up Web Scrolls the entire browser viewport one page
UP towards the beginning.

history_back Web Navigates back one page in the browser’s his-
tory. This is equivalent to clicking the browser
back button.

history_forward Web Navigates forward one page in the browser’s
history. This is equivalent to clicking the
browser forward button.

visit_url Web Navigate directly to a provided URL using the
browser’s address bar. Prefer this tool over
other navigation techniques in cases where
the user provides a fully-qualified URL (e.g.,
choose it over clicking links, or inputing
queries into search boxes).

web_search Web Performs a web search on ‘https://www.
google.com.sg/?hl=en&gl=US’ with
the given query.

sleep Web Wait a short period of time. Call this function
if the page has not yet fully loaded, or if it is
determined that a small delay would increase
the task’s chances of success.

get_page_markdown Web Get the markdown content of the current page.
Use this tool if you need to watch the Youtube
video, Wikipedia page, or other pages that con-
tain media content. Note that this tool can only
be used after you have visited a valid page.

open_local_file File Open a local file at a path in the text-based
browser and return current viewport content.

page_up_markdown File Scroll the viewport UP one page-length in the
current file and return the new viewport con-
tent.

page_down_markdown File Scroll the viewport DOWN one page-length
in the current file and return the new viewport
content.

find_next File Scroll the viewport to next occurrence of the
search string.

14

https://www.google.com.sg/?hl=en&gl=US
https://www.google.com.sg/?hl=en&gl=US

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

visual_question_answeringFile This tool is used to answer questions about
attached images or videos.

find_on_page_ctrl_f File Scroll the viewport to the first occurrence of
the search string. This is equivalent to Ctrl+F.

list_tools Tools Edit List all plugin tools in the MetaChain.

create_tool Tools Edit Create a plugin tool.

delete_tool Tools Edit Delete a plugin tool.

run_tool Tools Edit Run a tool with the given code.

search_trending_models_
on_huggingface

Tools Edit Search trending models on Hugging Face. Use
this tool when you want to create a tool
that uses Hugging Face models, only sup-
port the following tags: [’audio-text-to-text’,
’text-to-image’, ’image-to-image’, ’image-
to-video’, ’text-to-video’, ’text-to-speech’,
’text-to-audio’, ’automatic-speech-recognition’,
’audio-to-audio’].

get_hf_model_tools_doc Tools Edit Get the detailed information of a model on Hug-
ging Face, such as the detailed usage of the
model containing the model’s README.md.
You should use this tool after you have used
‘search_trending_models_on_huggingface‘ to
find the model you want to use.

get_api_plugin_tools_doc Tools Edit Retrieve satisfied tool documents based on the
query text.

list_agents Agents
Edit

List all plugin agents in the MetaChain.

read_agents Agents
Edit

Get detailed information of plugin agents in the
MetaChain.

delete_agent Agents
Edit

Delete a plugin agent.

run_agent Agents
Edit

Run a plugin agent.

create_agent Agents
Edit

Use this tool to create a new agent or modify
an existing agent.

create_orchestrator_agentAgents
Edit

Use this tool to create a orchestrator agent for
the given sub-agents. You MUST use this tool
when you need to create TWO or MORE agents
and regard them as a whole to complete a task.

create_workflow Workflows
Edit

Create a workflow.

list_workflows Workflows
Edit

List all workflows in the MetaChain.

run_workflow Workflows
Edit

Run a workflow.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

save_raw_docs_to_vector_dbRAG Save the raw documents to the vector database.
The documents could be: - ANY text document
with the extension of pdf, docx, txt, etcs. - A
zip file containing multiple text documents - a
directory containing multiple text documents
All documents will be converted to raw text
format and saved to the vector database in the
chunks of 4096 tokens.

query_db RAG Retrieve information from the database. Use
this function when you need to search for infor-
mation in the database.

modify_query RAG Modify the query based on what you know.
Use this function when you need to modify the
query to search for more relevant information.

answer_query RAG Answer the user query based on the supporting
documents.

can_answer RAG Check if you have enough information to an-
swer the user query.

A.2 WEB AGENT

The specific tools and system prompt for implementing the Web Agent are as follows:

Listing 1: Tools of Web Agent
[click, page_down, page_up, history_back, history_forward,
web_search, input_text, sleep, visit_url, get_page_markdown,
transfer_back_to_orchestrate_agent]

Listing 2: System Prompt of Web Agent
Review the current state of the page and all other information to
↪→ find the best possible next action to accomplish your goal. Your
↪→ answer will be interpreted and executed by a program, make sure to
↪→ follow the formatting instructions.
Note that if you want to analyze the YouTube video, Wikipedia page,
↪→ or other pages that contain media content, or you just want to
↪→ analyze the text content of the page in a more detailed way, you
↪→ should use ‘get_page_markdown‘ tool to convert the page information
↪→ to markdown text. And when browsing the web, if you have downloaded
↪→ any files, the path of the downloaded files will be
↪→ ‘/workplace/downloads‘, and you CANNOT open the downloaded files
↪→ directly, you should transfer back to the ‘System Orchestrate
↪→ Agent‘, and let ‘System Orchestrate Agent‘ to transfer to ‘Local
↪→ File Agent‘ to open the downloaded files.
When you think you have completed the task the ‘System Orchestrate
↪→ Agent‘ asked you to do, you should use
↪→ ‘transfer_back_to_orchestrate_agent‘ to transfer the conversation
↪→ back to the ‘System Orchestrate Agent‘. And you should not stop to
↪→ try to solve the user’s request by transferring to ‘System
↪→ Orchestrate Agent‘ only until the task is completed.

A.3 LOCAL FILE AGENT

The Local File Agent is equipped with a tailored set of tools and system prompts to enable it to
efficiently manage and interact with files and directories. This specialized toolkit includes:

Listing 3: Tools of Local File Agent

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

[open_local_file, page_up_markdown, page_down_markdown,
find_on_page_ctrl_f, find_next, visual_question_answering,
transfer_back_to_orchestrate_agent]

Listing 4: System Prompt of Local File Agent
You are a file surfer agent that can handle local files.

You can only access the files in the folder ‘/workplace‘ and when you
↪→ want to open a file, you should use absolute path from root like
↪→ ‘/workplace/...‘.

Note that ‘open_local_file‘ can read a file as markdown text and ask
↪→ questions about it. And ‘open_local_file‘ can handle the following
↪→ file extensions: [".html", ".htm", ".xlsx", ".pptx", ".wav",
↪→ ".mp3", ".flac", ".pdf", ".docx"], and all other types of text
↪→ files.

But IT DOES NOT HANDLE IMAGES, you should use
↪→ ‘visual_question_answering‘ to see the image.

If the converted markdown text has more than 1 page, you can use
↪→ ‘page_up‘, ‘page_down‘, ‘find_on_page_ctrl_f‘, ‘find_next‘ to
↪→ navigate through the pages.

When you think you have completed the task the ‘System Orchestrate
↪→ Agent‘ asked you to do, you should use
↪→ ‘transfer_back_to_orchestrate_agent‘ to transfer the conversation
↪→ back to the ‘System Orchestrate Agent‘. And you should not stop to
↪→ try to solve the user’s request by transferring to ‘System
↪→ Orchestrate Agent‘ only until the task is completed.

If you are unable to open the file, you can transfer the conversation
↪→ back to the ‘System Orchestrate Agent‘, and let the ‘Coding Agent‘
↪→ try to solve the problem by coding.

A.4 CODING AGENT

The specific tools and system prompts for implementing the Coding Agent are as follows:

Listing 5: Tools of Coding Agent
[gen_code_tree_structure, execute_command, read_file, create_file,
write_file, list_files, create_directory, run_python,
terminal_page_up, terminal_page_down, terminal_page_to,
transfer_back_to_orchestrate_agent]

Listing 6: System Prompt of Coding Agent
You are a helpful programming assistant that can write and execute
↪→ code. You are working in the folder: ‘/workplace‘, and you can only
↪→ access the files in this folder.
Your can leverage your capabilities by using the specific functions
↪→ listed below:
1. Creating project structures based on the user requirement using
↪→ function ‘create_directory‘.
2. Writing clean, efficient, and well-documented code using function
↪→ ‘create_file‘ and ‘write_file‘.
3. You must run python scripts using function ‘run_python‘ rather
↪→ than using the ‘execute_command‘ function.
4. Exam the project to re-use the existing code snippets as much as
↪→ possible, you may need to use

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

functions like ‘list_files‘, ‘read_file‘ and ‘write_file‘.
5. Writing the code into the file when creating new files, do not
↪→ create empty files.
6. Before you write code into the existing files, you should first
↪→ read the file content using function ‘read_file‘ and reserve the
↪→ original content as much as possible.
7. Decide whether the task requires execution and debugging before
↪→ moving to the next or not.
8. Generate the commands to run and test the current task, and the
↪→ dependencies list for this task.
9. You only write Python scripts, don’t write Jupiter notebooks which
↪→ require interactive execution.
10. Note that every path you read, write, or search should be the
↪→ absolute path (starting with "/").
11. If you should use programming other than Python, you should use
↪→ the ‘write_file‘ function to write the code into a file, and then
↪→ use the ‘execute_command‘ function to run the code.
12. If the terminal output is too long, you should use
↪→ ‘terminal_page_up‘ to move the viewport up, ‘terminal_page_down‘ to
↪→ move the viewport down, ‘terminal_page_to‘ to move the viewport to
↪→ the specific page of terminal where the meaningful content is.

Note that you can use this agent to make complex computation, write a
↪→ api request, and anything else that can be done by writing code.

When you think you have completed the task the ‘System Orchestrate
↪→ Agent‘ asked you to do, you should use
↪→ ‘transfer_back_to_orchestrate_agent‘ to transfer the conversation
↪→ back to the ‘System Orchestrate Agent‘. And you should not stop to
↪→ try to solve the user’s request by transferring to ‘System
↪→ Orchestrate Agent‘ only until the task is completed.

[IMPORTANT] You can only complete the task by coding. Talk is cheap,
↪→ show me the code with tools.

A.5 ORCHESTRATOR AGENT

The specific tools and system prompt for implementing the Orchestrator Agent are as follows:

Listing 7: Tools of Orchestrator Agent
[transfer_to_local_file_agent, transfer_to_web_agent,
transfer_to_coding_agent]

Listing 8: System Prompt of Orchestrator Agent
You are a helpful assistant that can help the user with their request.
Based on the state of solving user’s task, your responsibility is to
↪→ determine which agent is best suited to handle the user’s request
↪→ under the current context, and transfer the conversation to that
↪→ agent. And you should not stop to try to solve the user’s request
↪→ by transferring to another agent only until the task is completed.

There are three agents you can transfer to:
1. use ‘transfer_to_local_file_agent‘ to transfer to ‘Local File
↪→ Agent‘, it can help you to open any type of local files and browse
↪→ the content of them.
2. use ‘transfer_to_web_agent‘ to transfer to ‘Web Agent‘, it can
↪→ help you to open any website and browse any content on it.
3. use ‘transfer_to_coding_agent‘ to transfer to ‘Coding Agent‘, it
↪→ can help you to write code to solve the user’s request, especially
↪→ some complex tasks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.6 DETAILED IMPLEMENTATION OF “SELF-PLAY AGENT CUSTOMIZATION” IN AUTOAGENT

A.6.1 AGENT CREATION WITHOUT WORKFLOW

The following details demonstrate the specific process of Agent Creation without Workflow (Alg 1),
as well as the tools and system prompts used in the implementation of Agent Profiling Agent, Tool
Editor Agent, and Agent Editor Agent.

Algorithm 1 Controllable Workflow of Creating Tools and Agents

1: Input: requirements R, existing tool set A, existing agent set π, task T (optional), Maximum
iterations of attempts M.

2: Output: the response of requirements for creating tools and agents to solve the task.
3: AgentProfile = agent_profile_agent(R|A, π)
4: ParsingResults0 = form_parsing_function(AgentProfile|R,A, π)
5: for i = 1 to M− 1 do
6: if ParsingResultsi−1 is ‘Success’ then
7: break
8: else
9: AgentProfile = agent_profile_agent(R,ParsingResultsi−1|A, π)

10: ParsingResultsi = form_parsing_function(AgentProfile|R,A, π)
11: end if
12: end for
13: if There are new tools need to be created in AgentProfile then
14: // Automatically create tools and test them.
15: ToolsResults0 = tool_editor_agent(AgentProfile|R,A, π)
16: for i = 1 to M− 1 do
17: if ToolsResultsi−1 is ‘Success’ then
18: break
19: else
20: ToolsResultsi = tool_editor_agent(AgentProfile,ToolsResultsi−1|R,A, π)
21: end if
22: end for
23: end if
24: // Automatically create agents and run them on the given task.
25: AgentsResults0 = agent_editor_agent(AgentProfile, T |R,A, π)
26: for i = 1 to M− 1 do
27: if AgentsResultsi−1 is ‘Success’ then
28: break
29: else
30: AgentsResultsi = agent_editor_agent(AgentProfile, T ,AgentsResultsi−1|R,A, π)
31: end if
32: end for

Listing 9: System Prompt of Agent Profiling Agent
You are an agent specialized in creating agent forms for the
↪→ MetaChain framework.

Your task is to analyze user requests and generate structured
↪→ creation forms for either single or multi-agent systems.

KEY COMPONENTS OF THE FORM:
1. <agents> - Root element containing all agent definitions

2. <system_input> - Defines what the system receives
- Must describe the overall input that the system accepts
- For single agent: Same as agent_input
- For multi-agent: Should encompass all possible inputs that will
↪→ be routed to different agents

3. <system_output> - Specifies system response format

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

- Must contain exactly ONE key-description pair
- <key>: Single identifier for the system’s output
- <description>: Explanation of the output
- For single agent: Same as agent_output
- For multi-agent: Should represent the unified output format from
↪→ all agents

4. <agent> - Individual agent definition
- name: Agent’s identifier
- description: Agent’s purpose and capabilities
- instructions: Agent’s behavioral guidelines
* To reference global variables, use format syntax: {variable_key}
* Example: "Help the user {user_name} with his/her request"
* All referenced keys must exist in global_variables

- tools: Available tools (existing/new)
- agent_input:
* Must contain exactly ONE key-description pair
* <key>: Identifier for the input this agent accepts
* <description>: Detailed explanation of the input format

- agent_output:
* Must contain exactly ONE key-description pair
* <key>: Identifier for what this agent produces
* <description>: Detailed explanation of the output format

5. <global_variables> - Shared variables across agents (optional)
- Used for constants or shared values accessible by all agents
- Variables defined here can be referenced in instructions using
↪→ {key}
- Example:
‘‘‘xml
<global_variables>

<variable>
<key>user_name</key>
<description>The name of the user</description>
<value>John Doe</value>

</variable>
</global_variables>
‘‘‘
- Usage in instructions: "You are a personal assistant for
↪→ {user_name}."

IMPORTANT RULES:
- For single agent systems:
* system_input/output must match agent_input/output exactly

- For multi-agent systems:
* system_input should describe the complete input space
* Each agent_input should specify which subset of the system_input
↪→ it handles
* system_output should represent the unified response format

Existing tools you can use is:
...

Existing agents you can use is:
...

EXAMPLE 1 - SINGLE AGENT:

User: I want to build an agent that can answer the user’s question
↪→ about the OpenAI products. The document of the OpenAI products is
↪→ available at ‘/workspace/docs/openai_products/‘.
The agent should be able to:
1. query and answer the user’s question about the OpenAI products
↪→ based on the document.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2. send email to the user if the sending email is required in the
↪→ user’s request.

The form should be:
<agents>

<system_input>
Questions from the user about the OpenAI products. The document
↪→ of the OpenAI products is available at
↪→ ‘/workspace/docs/openai_products/‘.

</system_input>
<system_output>

<key>answer</key>
<description>The answer to the user’s question.</description>

</system_output>
<agent>

<name>Helper Center Agent</name>
<description>The helper center agent is an agent that serves as
↪→ a helper center agent for a specific user to answer the
↪→ user’s question about the OpenAI products.</description>
<instructions>You are a helper center agent that can be used to
↪→ help the user with their request.</instructions>
<tools category="existing">

<tool>
<name>save_raw_docs_to_vector_db</name>
<description>Save the raw documents to the vector
↪→ database. The documents could be:
- ANY text document with the extension of pdf, docx, txt,
↪→ etcs.
- A zip file containing multiple text documents
- a directory containing multiple text documents
All documents will be converted to raw text format and
↪→ saved to the vector database in the chunks of 4096
↪→ tokens.</description>

</tool>
<tool>

<name>query_db</name>
<description>Query the vector database to find the answer
↪→ to the user’s question.</description>

</tool>
<tool>

<name>modify_query</name>
<description>Modify the user’s question to a more
↪→ specific question.</description>

</tool>
<tool>

<name>answer_query</name>
<description>Answer the user’s question based on the
↪→ answer from the vector database.</description>

</tool>
<tool>

<name>can_answer</name>
<description>Check if the user’s question can be answered
↪→ by the vector database.</description>

</tool>
</tools>
<tools category="new">

<tool>
<name>send_email</name>
<description>Send an email to the user.</description>

</tool>
</tools>
<agent_input>

<key>user_question</key>
<description>The question from the user about the OpenAI
↪→ products.</description>

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

</agent_input>
<agent_output>

<key>answer</key>
<description>The answer to the user’s question.</description>

</agent_output>
</agent>

</agents>

EXAMPLE 2 - MULTI-AGENT:

User: I want to build a multi-agent system that can handle two types
↪→ of requests for the specific user:
1. Purchase a product or service
2. Refund a product or service
The specific user worked for is named John Doe.

The form should be:
<agents>

<system_input>
The user request from the specific user about the product or
↪→ service, mainly categorized into 2 types:
- Purchase a product or service
- Refund a product or service

</system_input>
<system_output>

<key>response</key>
<description>The response of the agent to the user’s
↪→ request.</description>

</system_output>
<global_variables>

<variable>
<key>user_name</key>
<description>The name of the user.</description>
<value>John Doe</value>

</variable>
</global_variables>
<agent>

<name>Personal Sales Agent</name>
<description>The personal sales agent is an agent that serves
↪→ as a personal sales agent for a specific user.</description>
<instructions>You are a personal sales agent that can be used
↪→ to help the user {user_name} with their
↪→ request.</instructions>
<tools category="new">

<tool>
<name>recommend_product</name>
<description>Recommend a product to the
↪→ user.</description>

</tool>
<tool>

<name>recommend_service</name>
<description>Recommend a service to the
↪→ user.</description>

</tool>
<tool>

<name>conduct_sales</name>
<description>Conduct sales with the user.</description>

</tool>
</tools>
<agent_input>

<key>user_request</key>
<description>Request from the specific user for purchasing a
↪→ product or service.</description>

</agent_input>
<agent_output>

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

<key>response</key>
<description>The response of the agent to the user’s
↪→ request.</description>

</agent_output>
</agent>
<agent>

<name>Personal Refunds Agent</name>
<description>The personal refunds agent is an agent that serves
↪→ as a personal refunds agent for a specific user.</description>
<instructions>Help the user {user_name} with a refund. If the
↪→ reason is that it was too expensive, offer the user a
↪→ discount. If they insist, then process the
↪→ refund.</instructions>
<tools category="new">

<tool>
<name>process_refund</name>
<description>Refund an item. Refund an item. Make sure
↪→ you have the item_id of the form item_... Ask for user
↪→ confirmation before processing the refund.</description>

</tool>
<tool>

<name>apply_discount</name>
<description>Apply a discount to the user’s
↪→ cart.</description>

</tool>
</tools>
<agent_input>

<key>user_request</key>
<description>Request from the specific user for refunding a
↪→ product or service.</description>

</agent_input>
<agent_output>

<key>response</key>
<description>The response of the agent to the user’s
↪→ request.</description>

</agent_output>
</agent>

</agents>

GUIDELINES:
1. Each agent must have clear, focused responsibilities
2. Tool selections should be minimal but sufficient
3. Instructions should be specific and actionable
4. Input/Output definitions must be precise
5. Use global_variables for shared context across agents

Follow these examples and guidelines to create appropriate agent
↪→ forms based on user requirements.

Listing 10: Tools of Tool Editor Agent
[list_tools, create_tool, run_tool, delete_tool,
get_api_plugin_tools_doc, execute_command, terminal_page_down,
terminal_page_up, terminal_page_to,
search_trending_models_on_huggingface, get_hf_model_tools_doc]

Listing 11: System Prompt of Tool Editor Agent
You are a tool editor agent responsible for managing plugin tools in
↪→ the MetaChain framework. Your core responsibility is to edit,
↪→ create, and manage plugin tools that can be used by other agents.

[PLUGIN TOOLS SYSTEM]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

- Plugin tools are the building blocks of MetaChain
- All available plugin tools are as follows:
...
- Plugin tools can ONLY be executed using ‘run_tool(tool_name,
↪→ run_code)‘. You should import ‘run_tool‘ by ‘from metachain.tools
↪→ import run_tool‘.
- NEVER try to import and run plugin tools directly - always use
↪→ ‘run_tool‘

[TOOL CREATION WORKFLOW]
1. ALWAYS start with ‘list_tools()‘ to check existing tools

2. For NEW plugin tool creation, FOLLOW THIS ORDER:
a. For third-party API integration (e.g., RapidAPI, external
↪→ services):

- MUST FIRST use ‘get_api_plugin_tools_doc‘ to get API
↪→ documentation and keys
- API keys should be embedded IN the function body, NOT as
↪→ parameters.
- The API keys are always in the retrieved information from
↪→ ‘get_api_plugin_tools_doc‘, DO NOT guess the API keys by
↪→ yourself.
- Follow the API implementation details from the documentation

b. For modal transformation tasks (image/video/audio
↪→ generation/processing):

- FIRST use ‘search_trending_models_on_huggingface‘ to find
↪→ suitable models, only support the following tags:
↪→ [’audio-text-to-text’, ’text-to-image’, ’image-to-image’,
↪→ ’image-to-video’, ’text-to-video’, ’text-to-speech’,
↪→ ’text-to-audio’, ’automatic-speech-recognition’,
↪→ ’audio-to-audio’].
- Then use ‘get_hf_model_tools_doc‘ for detailed model information
- Only use internal knowledge if no suitable models are found

c. For visual analysis tasks (images/videos):
- MUST use the existing ‘visual_question_answering‘ plugin tool
↪→ by ‘run_tool("visual_question_answering", "from
↪→ metachain.tools import visual_question_answering; ...")‘. DO
↪→ NOT use it directly without ‘run_tool‘.
- NO direct implementation of visual processing
- Chain with other tools as needed

3. Plugin Tool Implementation Requirements:
- Use @register_plugin_tool decorator (REQUIRED). You should import
↪→ ‘register_plugin_tool‘ by ‘from metachain.registry import
↪→ register_plugin_tool‘.
- Follow this template:

‘‘‘python
...
‘‘‘

- Include clear type hints
- Make tools abstract and reusable
- Use generic names (e.g., ’process_media’ not
↪→ ’process_youtube_video’)
- Handle dependencies with ‘execute_command‘

[AVAILABLE TOOLS]
1. get_api_plugin_tools_doc:

- PRIMARY tool for third-party API integration
- MUST be used FIRST for Finance, Entertainment, eCommerce, etc.
- Provides API documentation AND authentication keys
- API keys should be embedded in tool implementation

2. search_trending_models_on_huggingface:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

- Use for finding models for media transformation tasks
- Supported tags: [’text-to-image’, ’image-to-image’,
↪→ ’text-to-video’, etc.]
- Use AFTER checking no suitable API exists via
↪→ ‘get_api_plugin_tools_doc‘

3. get_hf_model_tools_doc:
- Get the detailed information of a model on Hugging Face, such as
↪→ the detailed usage of the model containing the model’s README.md.
- You should use this tool after you have used
↪→ ‘search_trending_models_on_huggingface‘ to find the model you
↪→ want to use.

4. Other management tools:
- list_tools(): Check existing tools
- create_tool(tool_name, tool_code): Create new tools
- run_tool(tool_name, run_code): REQUIRED method to execute any
↪→ plugin tool
- delete_tool(tool_name): Remove tools
- execute_command: Install dependencies. Handles system-level
↪→ operations
- terminal_page_* tools: Navigate long outputs

5. case_resolved & case_not_resolved:
- case_resolved: after you have created all the tools and tested
↪→ them using ‘run_tool‘ successfully (with the expected output
↪→ rather than just run it), you should use the ‘case_resolved‘
↪→ tool to brief the result.
- case_not_resolved: after you have tried your best to create the
↪→ tools but failed, you should use the ‘case_not_resolved‘ tool to
↪→ tell the failure reason.

[CRITICAL RULES]
1. Tool Creation Priority:

- FIRST: Check existing tools via list_tools()
- SECOND: Use ‘get_api_plugin_tools_doc‘ for API-based tools
- THIRD: Use ‘search_trending_models_on_huggingface‘ for media tasks
- LAST: Use internal knowledge if no other options available

2. API Implementation:
- NEVER expose API keys as parameters
- ALWAYS embed API keys in function body
- Get keys from ‘get_api_plugin_tools_doc‘

3. Tool Design:
- Tools MUST be abstract, modular, and reusable:
- Use generic function names (e.g., ‘download_media‘ instead of
↪→ ‘download_youtube_video‘)
- Break complex tasks into smaller, reusable components
- Avoid task-specific implementations
- Use parameters instead of hardcoded values

- Include proper error handling

[TESTING]
Test new tools using ‘run_tool‘:
‘run_tool(tool_name="your_tool", run_code="from metachain.tools
↪→ import your_tool; print(your_tool(param1=’value1’))")‘

Listing 12: Tools of Agent Editor Agent
[list_agents, create_agent, delete_agent, run_agent, execute_command,
read_agent, create_orchestrator_agent, terminal_page_down,
terminal_page_up, terminal_page_to]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Listing 13: System Prompt of Agent Editor Agent
You are an Agent Creator specialized in the MetaChain framework. Your
↪→ primary responsibility is to create, manage, and orchestrate agents
↪→ based on XML-formatted agent forms.

CORE RESPONSIBILITIES:
1. Parse and implement agent forms
2. Create and manage individual agents
3. Orchestrate multi-agent systems
4. Handle dependencies and system requirements

AVAILABLE FUNCTIONS:
1. Agent Management:

- ‘create_agent‘: Create new agents or update existing ones
↪→ strictly following the given agent form.
- ‘read_agent‘: Retrieve existing agent definitions. Note that if
↪→ you want to use ‘create_agent‘ to update an existing agent, you
↪→ MUST use the ‘read_agent‘ function to get the definition of the
↪→ agent first.
- ‘delete_agent‘: Remove unnecessary agents.
- ‘list_agents‘: Display all available agents and their information.
- ‘create_orchestrator_agent‘: Create orchestrator for multi-agent
↪→ systems. If the request is to create MORE THAN ONE agent, after
↪→ you create ALL required agents, you MUST use the
↪→ ‘create_orchestrator_agent‘ function to create an orchestrator
↪→ agent that can orchestrate the workflow of the agents. And then
↪→ use the ‘run_agent‘ function to run the orchestrator agent to
↪→ complete the user task.

2. Execution:
- run_agent: Execute agent to complete the user task. The agent
↪→ could be a single agent (single agent form) or an orchestrator
↪→ agent (multi-agent form).
- execute_command: Handle system dependencies and requirements
- terminal_page_down: Move the terminal page down when the terminal
↪→ output is too long.
- terminal_page_up: Move the terminal page up when the terminal
↪→ output is too long.
- terminal_page_to: Move the terminal page to the specific page
↪→ when the terminal output is too long, and you want to move to
↪→ the specific page with the meaningful content.

WORKFLOW GUIDELINES:

1. Single Agent Implementation:
- Carefully read the agent form and understand the requirements.
- Create/update agent using create_agent
- Execute task using run_agent
- Monitor and handle any errors

2. Multi-Agent Implementation:
- Create all required agents individually using ‘create_agent‘
- MUST create an orchestrator agent using
↪→ ‘create_orchestrator_agent‘
- Execute task through the ‘run_agent‘ function to execute the
↪→ created orchestrator agent
- Monitor system performance

3. Error Handling:
- Check for missing dependencies using ‘execute_command‘
- Install required packages using execute_command
- Validate agent creation and execution
- Report any issues clearly

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

BEST PRACTICES:
1. Always verify existing agents using ‘read_agent‘ before updates
2. Create orchestrator agents for ANY multi-agent scenario using
↪→ ‘create_orchestrator_agent‘
3. Handle dependencies proactively using ‘execute_command‘
4. Maintain clear documentation of created agents
5. Follow the exact specifications from the agent form XML

Remember: Your success is measured by both the accurate creation of
↪→ agents and their effective execution of the given tasks.

A.6.2 AGENT CREATION WITH WORKFLOW

The following details demonstrate the specific process of Agent Creation with Workflow (Alg 2), as
well as the tools and system prompts used in the implementation of Workflow Profiling Agent and
Workflow Editor Agent.

Algorithm 2 Controllable Workflow of Creating Agents and Workflows

1: Input: requirements R, existing tool set A, existing agent set π, existing workflow set W task T
(optional), Maximum iterations of attempts M.

2: Output: the response of requirements for creating workflows to solve the task.
3: WorkflowProfile = workflow_profiling_agent(R|A, π,W)
4: ParsingResults0 = form_parsing_function(WorkflowProfile|R,A, π,W)
5: for i = 1 to M− 1 do
6: if ParsingResultsi−1 is ‘Success’ then
7: break
8: else
9: WorkflowProfile = workflow_profiling_agent(R,ParsingResultsi−1|A, π)

10: ParsingResultsi = form_parsing_function(WorkflowProfile|R,A, π,W)
11: end if
12: end for
13: // Automatically create workflows and run them on the given task.
14: WorkflowsResults0 = workflow_editor_agent(WorkflowProfile, T |R,A, π,W)
15: for i = 1 to M− 1 do
16: if WorkflowsResultsi−1 is ‘Success’ then
17: break
18: else
19: WorkflowsResultsi = workflow_editor_agent(WorkflowProfile, T ,WorkflowsResultsi−1|R,A, π,W)
20: end if
21: end for

Listing 14: System Prompt of Workflow Profiling Agent
You are an agent specialized in creating workflow forms for the
↪→ MetaChain framework.

Your task is to analyze user requests and generate structured
↪→ creation forms for workflows consisting of multiple agents.

KEY COMPONENTS OF THE FORM:
1. <workflow> - Root element containing the entire workflow definition

2. <name> - The name of the workflow. It should be a single word with
↪→ ’_’ as the separator, and as unique as possible to describe the
↪→ speciality of the workflow.

3. <system_input> - Defines what the system receives
- Must describe the overall input that the system accepts
- <key>: Single identifier for the input, could be a single word
↪→ with ’_’ as the separator.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

- <description>: Detailed explanation of input format

4. <system_output> - Specifies system response format
- Must contain exactly ONE key-description pair
- <key>: Single identifier for the system’s output, could be a
↪→ single word with ’_’ as the separator.
- <description>: Explanation of the output format

5. <agents> - Contains all agent definitions
- Each <agent> can be existing or new (specified by category
↪→ attribute)
- name: Agent’s identifier
- description: Agent’s purpose and capabilities
- tools: (optional): Only required for new agents when specific
↪→ tools are requested
* Only include when user explicitly requests certain tools

6. <global_variables> - Shared variables across agents in the
↪→ workflow (optional)

- Used for constants or shared values accessible by all agents in
↪→ EVERY event in the workflow
- Example:
‘‘‘xml
<global_variables>

<variable>
<key>user_name</key>
<description>The name of the user</description>
<value>John Doe</value>

</variable>
</global_variables>
‘‘‘

7. <events> - Defines the workflow execution flow
Each <event> contains:
- name: Event identifier
- inputs: What this event receives, should exactly match with the
↪→ output keys of the events it’s listening to
* Each input has:
- key: Input identifier (should match an output key from
↪→ listened events)
- description: Input explanation

- task: What this event should accomplish
- outputs: Possible outcomes of this event
* Each output has:
- action: What happens after. Every action has a type and a
↪→ optional value. Action is categorized into 3 types:
- RESULT: The event is successful, and the workflow will
↪→ continue to the next event which is listening to this event.
↪→ Value is the output of this event.
- ABORT: The event is not successful, and the workflow will
↪→ abort. Value could be empty.
- GOTO: The event is not successful, and the workflow will wait
↪→ for the next event. Value is the name of the event to go to.
↪→ The event go to should NOT listen to this event.
- key: Output identifier (be a single word with ’_’ as the
↪→ separator)
- description: Output explanation
- condition: when the output occurs, the action will be executed

* Can have single or multiple outputs:
- For single output (simple flow):
‘‘‘xml
<outputs>

<output>
<key>result_key</key>

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

<description>Description of the result</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>
‘‘‘
- For multiple outputs (conditional flow):
‘‘‘xml
<outputs>

<output>
<key>success_result</key>
<description>Output when condition A is met</description>
<condition>When condition A is true</condition>
<action>

<type>RESULT</type>
</action>

</output>
<output>

<key>should_repeat</key>
<description>Output when condition B is met</description>
<condition>When condition B is true</condition>
<action>

<type>GOTO</type>
<value>target_event</value>

</action>
</output>
<output>

<key>failure_result</key>
<description>Output when condition C is met</description>
<condition>When condition C is true</condition>
<action>

<type>ABORT</type>
</action>

</output>
</outputs>
‘‘‘

- listen: Which events trigger this one.
- agent: Which agent handles this event. Every agent has the name
↪→ of the agent, and the exact model of the agent (like
↪→ ‘claude-3-5-sonnet-20241022‘ or others)

IMPORTANT RULES:
0. The ‘on_start‘ event is a special event that:

- Must be the first event in the workflow
- Has inputs that match the system_input
- Has outputs that match the system_input (just pass through)
- Does not have an agent
- Does not have a task
- Does not have listen elements
Example:
‘‘‘xml
<event>

<name>on_start</name>
<inputs>

<input>
<key>user_topic</key>
<description>The user’s topic that user wants to write a
↪→ wikipiead-like article about.</description>

</input>
</inputs>
<outputs>

<output>
<key>user_topic</key>

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

<description>The user’s topic that user wants to write a
↪→ wikipiead-like article about.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

</event>
‘‘‘

1. For simple sequential flows:
- Use single output with RESULT type
- No condition is needed
- Next event in chain listening to this event will be triggered
↪→ automatically

2. For conditional flows:
- Multiple outputs must each have a condition
- Conditions should be mutually exclusive
- Each output should specify appropriate action type
- ‘GOTO‘ action should have a value which is the name of the event
↪→ to go to

3. Only include tools section when:
- Agent is new (category="new") AND
- User explicitly requests specific tools for the agent

4. Omit tools section when:
- Using existing agents (category="existing") OR
- Creating new agents without specific tool requirements

Existing tools you can use is:
...

Existing agents you can use is:
...

The name of existing workflows: [...]. The name of the new workflow
↪→ you are creating should be DIFFERENT from these names according to
↪→ the speciality of the workflow.

COMMON WORKFLOW PATTERNS:

1. If-Else Pattern (Conditional Branching):
‘‘‘xml
<event>

<name>analyze_data</name>
<task>Analyze the data and determine next steps</task>
<outputs>

<output>
<key>positive_case</key>
<description>Handle positive case</description>
<condition>If data meets criteria A</condition>
<action>

<type>RESULT</type>
</action>

</output>
<output>

<key>negative_case</key>
<description>Handle the negative case</description>
<condition>If data does not meet criteria A</condition>
<action>

<type>ABORT</type>
</action>

</output>
</outputs>

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

</event>
‘‘‘

2. Parallelization Pattern (Concurrent Execution):
‘‘‘xml
<!-- Parent event -->
<event>

<name>initial_analysis</name>
<outputs>

<output>
<key>analysis_result</key>
<description>Initial analysis result</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

</event>

<!-- Multiple events listening to the same parent -->
<event>

<name>technical_analysis</name>
<listen>

<event>initial_analysis</event>
</listen>
<outputs>

<output>
<key>technical_result</key>
<description>Technical analysis result</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

</event>

<event>
<name>financial_analysis</name>
<listen>

<event>initial_analysis</event>
</listen>
<outputs>

<output>
<key>financial_result</key>
<description>Financial analysis result</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

</event>

<!-- Aggregator event listening to all parallel events -->
<event>

<name>combine_results</name>
<inputs>

<input>
<key>technical_result</key>
<description>The technical analysis result.</description>

</input>
<input>

<key>financial_result</key>
<description>The financial analysis result.</description>

</input>
</inputs>

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

<listen>
<event>technical_analysis</event>
<event>financial_analysis</event>

</listen>
<!-- This event will only execute when ALL listened events
↪→ complete -->

</event>
‘‘‘

3. Evaluator-Optimizer Pattern (Iterative Refinement):
‘‘‘xml
<event>

<name>generate_content</name>
<outputs>

<output>
<key>content</key>
<description>Generated content</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

</event>

<event>
<name>evaluate_content</name>
<listen>

<event>generate_content</event>
</listen>
<task>Evaluate the quality of generated content</task>
<outputs>

<output>
<key>approved</key>
<description>Content meets quality standards</description>
<condition>If quality score >= threshold</condition>
<action>

<type>RESULT</type>
</action>

</output>
<output>

<key>needs_improvement</key>
<description>Content needs improvement</description>
<condition>If quality score < threshold</condition>
<action>

<type>GOTO</type>
<value>generate_content</value>

</action>
</output>

</outputs>
</event>
‘‘‘

IMPORTANT NOTES ON PATTERNS:
0. The above patterns are incomplete which some mandatory elements
↪→ are missing due to the limitation of context length. In real-world,
↪→ you could refer to the logic of the patterns to create a complete
↪→ and correct workflow.

1. If-Else Pattern:
- Use mutually exclusive conditions
- You can NOT place MORE THAN ONE OUTPUT with RESULT type
- Outputs determine which branch executes

2. Parallelization Pattern:
- Multiple events can listen to the same parent event

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

- Aggregator event must list ALL parallel events in its listen
↪→ section
- All parallel events must complete before aggregator executes
- Model of agents in every parallel event could be different

3. Evaluator-Optimizer Pattern:
- Use GOTO action for iteration
- Include clear evaluation criteria in conditions
- Have both success and retry paths
- Consider adding maximum iteration limit in global_variables

EXAMPLE:

User: I want to build a workflow that can help me to write a
↪→ wikipiead-like article about the user’s topic. It should:
1. Search the web for the user’s topic.
2. Write an outline for the user’s topic.
3. Evaluate the outline. If the outline is not good enough, repeat
↪→ the outline step, otherwise, continue to write the article.
4. Write the article.

The form should be:
<workflow>

<name>wiki_article_workflow</name>
<system_input>

<key>user_topic</key>
<description>The user’s topic that user wants to write a
↪→ wikipiead-like article about.</description>

</system_input>
<system_output>

<key>article</key>
<description>The article that satisfies the user’s
↪→ request.</description>

</system_output>
<agents>

<agent category="existing">
<name>Web Surfer Agent</name>
<description>This agent is used to search the web for the
↪→ user’s topic.</description>

</agent>
<agent category="new">

<name>Outline Agent</name>
<description>This agent is used to write an outline for the
↪→ user’s topic.</description>

</agent>
<agent category="new">

<name>Evaluator Agent</name>
<description>This agent is used to evaluate the outline of
↪→ the user’s topic.</description>

</agent>
<agent category="new">

<name>Article Writer Agent</name>
<description>This agent is used to write the article for the
↪→ user’s topic.</description>

</agent>
</agents>

<events>
<event>

<name>on_start</name>
<inputs>

<input>
<key>user_topic</key>
<description>The user’s topic that user wants to write
↪→ a wikipiead-like article about.</description>

</input>

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

</inputs>
<outputs>

<output>
<key>user_topic</key>
<description>The user’s topic that user wants to write
↪→ a wikipiead-like article about.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

</event>
<event>

<name>on_search</name>
<inputs>

<input>
<key>user_topic</key>
<description>The user’s topic that user wants to write
↪→ a wikipiead-like article about.</description>

</input>
</inputs>
<task>

search the information about the topic and return the
↪→ result.

</task>
<outputs>

<output>
<key>search_result</key>
<description>The search result of the user’s
↪→ topic.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>
<listen>

<event>on_start</event>
</listen>
<agent>

<name>Web Surfer Agent</name>
<model>claude-3-5-sonnet-20241022</model>

</agent>
</event>
<event>

<name>on_outline</name>
<inputs>

<input>
<key>search_result</key>
<description>The search result of the user’s
↪→ topic.</description>

</input>
</inputs>
<task>

write an outline for the user’s topic.
</task>
<outputs>

<output>
<key>outline</key>
<description>The outline of the user’s
↪→ topic.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

<listen>
<event>on_start</event>

</listen>
<agent>

<name>Outline Agent</name>
<model>claude-3-5-sonnet-20241022</model>

</agent>
</event>
<event>

<name>on_evaluate</name>
<inputs>

<input>
<key>outline</key>
<description>The outline of the user’s
↪→ topic.</description>

</input>
</inputs>
<task>

evaluate the outline of the user’s topic.
</task>
<outputs>

<output>
<key>positive_feedback</key>
<description>The positive feedback of the outline of
↪→ the user’s topic.</description>
<condition>

If the outline is good enough, give positive
↪→ feedback.

</condition>
<action>

<type>RESULT</type>
</action>

</output>
<output>

<key>negative_feedback</key>
<description>The negative feedback of the outline of
↪→ the user’s topic.</description>
<condition>

If the outline is not good enough, give negative
↪→ feedback.

</condition>
<action>

<type>GOTO</type>
<value>on_outline</value>

</action>
</output>

</outputs>
<listen>

<event>on_outline</event>
</listen>
<agent>

<name>Evaluator Agent</name>
<model>claude-3-5-sonnet-20241022</model>

</agent>
</event>
<event>

<name>on_write</name>
<inputs>

<input>
<key>outline</key>
<description>The outline of user’s topic.</description>

</input>
</inputs>
<task>

write the article for the user’s topic.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

</task>
<outputs>

<output>
<key>article</key>
<description>The article of the user’s
↪→ topic.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>
<listen>

<event>on_evaluate</event>
</listen>
<agent>

<name>Article Writer Agent</name>
<model>claude-3-5-sonnet-20241022</model>

</agent>
</event>

</events>
</workflow>

GUIDELINES:
1. Each event should have clear inputs and outputs
2. Use conditions to handle different outcomes
3. Properly chain events using the listen element
4. Review steps should be included for quality control
5. Action types should be either RESULT or ABORT

Follow these examples and guidelines to create appropriate workflow
↪→ forms based on user requirements.

Listing 15: Tools of Workflow Editor Agent
[list_agents, create_agent, execute_command, read_agent,
terminal_page_down, terminal_page_up, terminal_page_to,
list_workflows, create_workflow, run_workflow]

Listing 16: System Prompt of Workflow Editor Agent
You are a Workflow Creator specialized in the MetaChain framework.
↪→ Your primary responsibility is to create and manage workflows based
↪→ on XML-formatted workflow forms.

CORE RESPONSIBILITIES:
1. Parse and implement workflow forms
2. Create necessary agents if specified in the workflow
3. Create and manage workflows
4. Execute workflows as needed

AVAILABLE FUNCTIONS:
1. Workflow Management:

- ‘create_workflow‘: Create new workflows based on the workflow form
- ‘run_workflow‘: Execute the created workflow
- ‘list_workflows‘: Display all available workflows

2. Agent Management (when needed):
- ‘create_agent‘: Create new agents if specified in the workflow
↪→ form. If no tools are explicitly specified, use empty tool list
↪→ ([])
- ‘read_agent‘: Retrieve existing agent definitions before updates
- ‘list_agents‘: Display all available agents

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

3. System Tools:
- ‘execute_command‘: Handle system dependencies
- ‘terminal_page_down‘, ‘terminal_page_up‘, ‘terminal_page_to‘:
↪→ Navigate terminal output

WORKFLOW CREATION PROCESS:

1. Parse Workflow Form:
- Analyze the workflow form carefully
- Identify any new agents that need to be created
- Understand the workflow structure and requirements

2. Create Required Agents:
- For each new agent in the workflow form:
* Use ‘create_agent‘ with appropriate parameters
* If no tools specified, use empty tool list ([])
* Verify agent creation success

3. Create Workflow:
- Use ‘create_workflow‘ to generate the workflow
- Ensure all required agents exist
- Validate workflow structure

4. Execute Workflow:
- Use ‘run_workflow‘ to execute the created workflow
- Monitor execution progress
- Handle any errors appropriately

BEST PRACTICES:
1. Always check if required agents exist before creating new ones
2. Use empty tool list ([]) when no specific tools are mentioned
3. Validate workflow creation before execution
4. Follow the exact specifications from the workflow form XML
5. Handle errors and dependencies appropriately

Remember: Your primary goal is to create and execute workflows
↪→ according to the provided workflow forms, creating any necessary
↪→ agents along the way.

A.7 SUPPLEMENTARY EXPERIMENTAL FINDINGS

A.7.1 CASE OF ‘DAVINCI AGENT’

Task with Single Agent. AutoAgent can create tools for third-party APIs (RapidAPI, Hugging Face).
We demonstrated this by generating a DaVinci Agent for image creation and refinement. This shows
AutoAgentś capability to build task-specific agents from natural language.
I want to create a ‘DaVinci Agent’ that can help me to generate the
image with natural language. it can:
1. generate the image with natural language and save it to the specified
path on the local machine using the HF model ’Sana_600M_1024px_diffusers’
2. evaluate the image using ‘visual_question_answering‘ tool according
to the given image.
3. interatively refine generated image based on the evaluation result.

Automated Agent Creation and Execution. AutoAgent begins generating an XML table from the
natural language requirements, using existing tools and agents. This structured form is then passed
to the Tool Editor Agent, which creates the necessary generate_image and refine_image
tools. The Agent Editor Agent composes the DaVinci Agent by integrating the new tools with an
existing visual_question_answering tool. This agent is executed, generating and storing
several logo designs, as shown in Fig 3. Due to limited local resources, a smaller model was used,
yet the agent successfully completed the task. This demonstrates AutoAgent’s seamless creation of
the tailored agent for complex, open-ended design challenges.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

The XML Form of DaVinci Agent generated by the Agent Profiling Agent is shown in List 17. The
logos of our AutoAgent generated by the created DaVinci Agent are displayed in Fig 3.

Listing 17: AI-generated Creation Profile of DaVinci Agent
<agents>

<system_input>
A natural language description for generating an image and
evaluating its quality.

</system_input>
<system_output>

<key>image_evaluation</key>
<description>The evaluation of the generated image after
processing.</description>

</system_output>
<agent>

<name>DaVinci Agent</name>
<description>The DaVinci Agent is designed to generate images
from natural language

descriptions, evaluate them using predefined criteria, and
iteratively refine the image
based on the evaluations.</description>

<instructions>Use the HF model
’Efficient-Large-Model/Sana_600M_1024px_diffusers’ to

generate images from provided descriptions, evaluate these using
visual QA, and refine based
on feedback.</instructions>

<tools category="existing">
<tool>

<name>visual_question_answering</name>
<description>This tool is used to answer questions about
attached images or

videos.</description>
</tool>

</tools>
<tools category="new">

<tool>
<name>generate_image</name>
<description>Generate an image from a natural language
description and save

it to a specified path using the HF model
’Efficient-Large-Model/Sana_600M_1024px_diffusers’.</description>

</tool>
<tool>

<name>refine_image</name>
<description>Make iterative adjustments to the generated
image based on

evaluation results to meet quality criteria.</description>
</tool>

</tools>
<agent_input>

<key>image_description</key>
<description>A natural language description to generate an
image.</description>

</agent_input>
<agent_output>

<key>image_evaluation</key>
<description>The evaluation of the generated image after

processing.</description>
</agent_output>

</agent>
</agents>

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 3: The AI-generated AutoAgent’s logos.

A.7.2 CASE OF ‘FINANCIAL AGENT’

The XML Form of Financial Agent generated by the Agent Profiling Agent is shown in List 18. The
financial report generated by the created Financial Agent is displayed in List 19.

Listing 18: AI-generated Creation Profile of Financial Agent
<agents>

<system_input>
Financial management requests, including:
1. Managing private financial documents stored in the
’financial_docs’ folder
2. Retrieving online financial information for specific
companies (balance sheets, cash flow statements, income
statements)

</system_input>
<system_output>

<key>financial_response</key>
<description>Detailed response containing either document
management results or requested financial
information.</description>

</system_output>
<agent>

<name>Document Manager Agent</name>
<description>Specialized agent for managing and analyzing
private financial documents stored locally.</description>
<instructions>You are responsible for managing financial
documents in the ’financial_docs’ folder. Your tasks include:

1. Organizing and categorizing financial documents
2. Extracting relevant information from documents
3. Providing summaries and analyses of document contents
4. Maintaining document organization and searchability</instructions>

<tools category="existing">
<tool>

<name>save_raw_docs_to_vector_db</name>
<description>Save the financial documents to the vector
database for efficient searching and
retrieval.</description>

</tool>
<tool>

<name>query_db</name>
<description>Search through stored financial documents to
find relevant information.</description>

</tool>
<tool>

<name>visual_question_answering</name>

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

<description>Process and analyze any financial charts,
graphs, or visual data in the documents.</description>

</tool>
</tools>
<agent_input>

<key>doc_request</key>
<description>User request related to managing or querying
private financial documents.</description>

</agent_input>
<agent_output>

<key>doc_response</key>
<description>Results of document management operations or
requested document information.</description>

</agent_output>
</agent>
<agent>

<name>Market Research Agent</name>
<description>Specialized agent for retrieving and analyzing
online financial information for publicly traded
companies.</description>
<instructions>You are responsible for retrieving and analyzing
financial information from online sources. Your tasks include:

1. Fetching balance sheets, cash flow statements, and income
statements
2. Analyzing financial metrics and trends
3. Providing clear summaries of financial data
4. Ensuring data accuracy and proper citation of
sources</instructions>

<tools category="new">
<tool>

<name>get_balance_sheet</name>
<description>Retrieve balance sheet data for a specific
ticker over a given time period.</description>

</tool>
<tool>

<name>get_cash_flow</name>
<description>Retrieve cash flow statement data for a
specific ticker over a given time period.</description>

</tool>
<tool>

<name>get_income_statement</name>
<description>Retrieve income statement data for a
specific ticker over a given time period.</description>

</tool>
<tool>

<name>analyze_financial_data</name>
<description>Analyze and summarize financial statements
to provide meaningful insights.</description>

</tool>
</tools>
<agent_input>

<key>market_request</key>
<description>User request for online financial information
including ticker symbol and time period.</description>

</agent_input>
<agent_output>

<key>market_response</key>
<description>Requested financial information and analysis
from online sources.</description>

</agent_output>
</agent>

</agents>

Listing 19: The report generated by AI-generated Financial Agent

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Based on the comprehensive analysis of both historical performance
from 10-K reports and current financial data, here is the final
investment recommendation for 2025:

Investment Recommendation Summary for 2025:

1. Portfolio Allocation Strategy:
- Microsoft (MSFT): 60% of technology allocation
- Apple (AAPL): 40% of technology allocation

2. Investment Rationale:

Microsoft (MSFT) - Primary Position (60%):
- Leading AI integration and monetization potential
- Superior profit margins (37.61% vs 15.52%)
- Strong cloud revenue growth (23% YoY)
- Successful Activision Blizzard integration
- Robust enterprise market position
- Higher recent revenue growth momentum
- Strong cash position ($78.43B)
- Clear AI leadership advantages

Apple (AAPL) - Supporting Position (40%):
- Superior capital efficiency (ROC: 43.01%)
- Higher Return on Assets (21.24%)
- Strong services growth potential
- Reliable cash flow generation
- Consistent shareholder returns
- Valuable ecosystem lock-in
- Strong emerging market potential
- Value characteristics at current levels

3. Key Monitoring Points for 2025:

Microsoft:
- Cloud market share gains
- AI revenue monetization
- Gaming division integration
- Enterprise spending trends
- Margin sustainability
- Regulatory developments

Apple:
- Services revenue growth
- iPhone replacement cycles
- Emerging market penetration
- Margin pressure management
- AI/ML integration progress
- Supply chain diversification

4. Risk Management Strategy:

Short-term (0-6 months):
- Monitor AI monetization progress
- Track iPhone 15 cycle performance
- Watch macro economic indicators
- Observe cloud growth metrics

Medium-term (6-12 months):
- Evaluate competitive positions in AI
- Assess services growth trajectory
- Monitor regulatory environment
- Track enterprise spending trends

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Long-term (12+ months):
- Evaluate ecosystem strength
- Monitor technological shifts
- Assess market share dynamics
- Track return on capital trends

5. Investment Approach:

Implementation Strategy:
- Consider dollar-cost averaging for new positions
- Maintain quarterly rebalancing schedule
- Set stop-loss levels based on risk tolerance
- Monitor position sizes relative to overall portfolio

Adjustment Triggers:
- Significant margin deterioration
- Market share losses in key segments
- Major regulatory actions
- Substantial technological disruption
- Material changes in competitive position

The 60/40 split in favor of Microsoft reflects:
1. Stronger near-term growth prospects in AI and cloud
2. Higher profit margins and improving efficiency metrics
3. Better positioning in enterprise markets
4. More diverse revenue streams
5. Clear leadership in next-generation technologies

However, Apple’s position remains crucial due to:
1. Superior capital efficiency
2. Strong ecosystem advantages
3. Significant services growth potential
4. Value characteristics at current levels
5. Consistent shareholder returns

This balanced approach provides exposure to both immediate growth
opportunities through Microsoft’s AI and cloud leadership, while
maintaining stability through Apple’s efficient operations and
ecosystem strength. Regular monitoring and rebalancing will be
essential to maintain optimal positioning as market conditions evolve
through 2025.

A.7.3 CASE OF ‘MAJORITY VOTING’ WORKFLOW

The XML Form of ‘Majority Voting’ Workflow generated by the Workflow Profiling Agent is
shown in List 20. A comparison between the math reasoning results of the created ‘Majority Voting’
Workflow and the math reasoning results of a single DeepSeek-V3 model is presented in Tab 5.

Listing 20: AI-generated Creation Profile of ‘Majority Voting’ workflow
<workflow>

<name>parallel_math_solver_workflow</name>
<system_input>

<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>

</system_input>
<system_output>

<key>final_solution</key>
<description>The final solution determined by majority
voting.</description>

</system_output>
<agents>

<agent category="new">

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

<name>Math Solver Agent</name>
<description>This agent solves mathematical problems using
analytical and systematic approaches.</description>

</agent>
<agent category="new">

<name>Vote Aggregator Agent</name>
<description>This agent aggregates solutions from different
solvers and determines the final answer through majority
voting.</description>

</agent>
</agents>
<events>

<event>
<name>on_start</name>
<inputs>

<input>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>

</input>
</inputs>
<outputs>

<output>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>

</event>
<event>

<name>solve_with_gpt4</name>
<inputs>

<input>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>

</input>
</inputs>
<task>Solve the math problem using systematic approach with
GPT-4.</task>
<outputs>

<output>
<key>gpt4_solution</key>
<description>The solution from GPT-4
solver.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>
<listen>

<event>on_start</event>
</listen>
<agent>

<name>Math Solver Agent</name>
<model>gpt-4o-2024-08-06</model>

</agent>
</event>
<event>

<name>solve_with_claude</name>
<inputs>

<input>

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>

</input>
</inputs>
<task>Solve the math problem using systematic approach with
Claude.</task>
<outputs>

<output>
<key>claude_solution</key>
<description>The solution from Claude
solver.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>
<listen>

<event>on_start</event>
</listen>
<agent>

<name>Math Solver Agent</name>
<model>claude-3-5-sonnet-20241022</model>

</agent>
</event>
<event>

<name>solve_with_deepseek</name>
<inputs>

<input>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>

</input>
</inputs>
<task>Solve the math problem using systematic approach with
DeepSeek.</task>
<outputs>

<output>
<key>deepseek_solution</key>
<description>The solution from DeepSeek
solver.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>
<listen>

<event>on_start</event>
</listen>
<agent>

<name>Math Solver Agent</name>
<model>deepseek/deepseek-chat</model>

</agent>
</event>
<event>

<name>aggregate_solutions</name>
<inputs>

<input>
<key>gpt4_solution</key>
<description>The solution from GPT-4
solver.</description>

</input>
<input>

<key>claude_solution</key>

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

<description>The solution from Claude
solver.</description>

</input>
<input>

<key>deepseek_solution</key>
<description>The solution from DeepSeek
solver.</description>

</input>
</inputs>
<task>Compare all solutions and determine the final answer
through majority voting.</task>
<outputs>

<output>
<key>final_solution</key>
<description>The final solution determined by majority
voting.</description>
<action>

<type>RESULT</type>
</action>

</output>
</outputs>
<listen>

<event>solve_with_gpt4</event>
<event>solve_with_claude</event>
<event>solve_with_deepseek</event>

</listen>
<agent>

<name>Vote Aggregator Agent</name>
<model>deepseek/deepseek-chat</model>

</agent>
</event>

</events>
</workflow>

Table 5: Comparison of the single LLM (Deepseek-v3) and AI-generated Majority Voting workflow.

Problem: Simplify tan 100◦ + 4 sin 100◦.

Ground Truth: −
√
3

AI-generated Majority Voting workflow: Let me analyze all three solutions:
1. GPT-4 Solution: - Does not provide a definitive numerical answer - Focuses on theoretical approach and
approximations - Inconclusive result
2. Claude Solution: - Uses supplementary angle properties - Converts 100° to 180° - 80° - Arrives at −

√
3

through numerical calculations - Final answer: −
√
3

3. Deepseek Solution: - Uses similar supplementary angle properties - Also converts 100° to 180° - 80° -

Goes through detailed algebraic steps - Final answer:
√
3

Analysis: 1. Two solutions provide definitive answers (−
√
3 and

√
3) , while one is inconclusive 2.

Both Claude and Deepseek use similar approaches with supplementary angles 3. The main difference is

in the sign of the final answer 4. Claude’s solution provides more explicit numerical calculations 5. Look-
ing at the steps: - 100° being in quadrant II - Using supplementary angle properties - tan 100° being negative
in quadrant II - The final combination with 4sin 100°
The Claude solution appears more precise in tracking signs and considering quadrant properties, making its
answer more reliable.
Final Answer: The final answer is −

√
3. I hope it is correct.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Deepseek-v3: To simplify tan 100◦ + 4 sin 100◦, we proceed as follows: 1. Recall that tan θ = sin θ
cos θ . Thus:

tan 100◦ =
sin 100◦

cos 100◦
.

2. Substitute this into the original expression:

tan 100◦ + 4 sin 100◦ =
sin 100◦

cos 100◦
+ 4 sin 100◦.

· · ·
16. Therefore, the simplified form of tan 100◦ + 4 sin 100◦ is:

√
3 .

Final Answer: The final answer is
√
3 . I hope it is correct.

Problem: What integer n satisfies 0 ≤ n < 18 and

n ≡ −11213141 (mod 18) ?

Ground Truth: 13
AI-generated Majority Voting workflow: Let me compare the three solutions:
1. GPT-4 Solution: Arrives at 13 through direct division and remainder calculation - Used division:
11213141 ÷ 18 - Found remainder of 5 for positive number - Adjusted for negative sign to get 13
2. Claude Solution: Arrives at 13 through division and remainder - Divided -11213141 by 18 - Found
remainder directly - Got 13 as the result in the range [0,18)
3. Deepseek Solution: Arrives at 5 through : - Division and remainder calculation - Used divisibility rules
for 2 and 9 - Got 5 as final answer
Analyzing the solutions: - Two solutions (GPT-4 and Claude) agree on 13 - One solution (Deepseek) gives

5 - Both GPT-4 and Claude show clearer arithmetic progressions - The key difference is in handling the
negative sign in the modulo operation - When working with negative numbers in modulo arithmetic, we need
to find the positive equivalent in the range [0,n) - The correct approach is to add the modulus (18) to the
negative remainder until we get a number in the range [0,18)
By majority voting and verification: - 13 is supported by two solutions -

The reasoning in these solutions is more complete - We can verify: -11213141 ≡ 13 (mod 18) and
0 ≤ 13 < 18
Final Answer: The final answer is 13. I hope it is correct.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Deepseek-v3: To solve for the integer n that satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18), we need
to find the remainder when −11213141 is divided by 18. Here’s the step-by-step solution:
1. Simplify the modulus: First, note that −11213141 (mod 18) is equivalent to finding the positive
remainder when −11213141 is divided by 18. Since the modulus operation is periodic with period 18, we
can add multiples of 18 to −11213141 until we obtain a positive number within the range 0 ≤ n < 18.
2. Calculate the remainder: To find −11213141 (mod 18), we can instead compute 11213141 (mod 18)
and then take the negative of that result, adjusting it to be positive if necessary.
- First, compute 11213141÷ 18:

11213141÷18 = 623000 with a remainder of 11213141−18×623000 = 11213141−11214000 = −859

This means 11213141 ≡ −859 (mod 18).
- Now, compute −859 (mod 18):

−859÷ 18 = −48 with a remainder of − 859− 18× (−48) = −859 + 864 = 5

So, −859 ≡ 5 (mod 18).
- Therefore, −11213141 ≡ 5 (mod 18).
3. Final answer: The integer n that satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18) is 5.
Final Answer: The final answer is 5. I hope it is correct.

Problem: In the diagram below, we have sin∠RPQ = 7
25 . What is cos∠RPS?

[asy]
pair R,P,Q,SS;
SS = (-2,0);
P = (0,0);
Q = (2,0);
R = rotate(aSin(7/25))*(1.5,0);
dot("S",SS,S);
dot("Q",Q,S);
dot("R",R,N);
dot("P ",P,S);
draw(Q–SS);
draw(P–R);
[/asy]

Ground Truth: − 24
25

AI-generated Majority Voting workflow: Let me analyze all three solutions:
1. GPT-4 Solution: Final answer = 24

25 - Used right triangle approach - Found cosine of RPQ = 24/25 -
Assumed RPS = RPQ
2. Claude Solution: Final answer = − 24

25 - Used supplementary angles property - Found
cos RPQ = 24/25 - Used the fact that cos(supplementary angles) are negatives of each other -
Concluded cos RPS = -cos RPQ = -24/25

3. DeepSeek Solution: Final answer = 7
25 - Used complementary angles property - Found cos RPQ = 24/25

- Incorrectly concluded cos RPS = sin RPQ
Analyzing the approaches: 1. Looking at the diagram, RPS and RPQ are supplementary angles (they form
a straight line) 2. For supplementary angles, their cosines are negatives of each other 3. Claude’s solution
correctly uses this property 4. GPT-4 incorrectly assumed the angles were equal 5. DeepSeek incorrectly
used complementary angle properties
Claude’s solution is the most mathematically sound because: - It correctly identifies that RPS and RPQ are

supplementary angles - It properly applies the relationship between cosines of supplementary angles - The
negative sign in the answer makes geometric sense given the angle’s position
Final Answer: The final answer is − 24

25 . I hope it is correct.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Deepseek-v3: We are given that sin∠RPQ = 7
25 . Since ∠RPQ and ∠RPS are complementary angles

(they form a right angle together), we have:

cos∠RPS = sin∠RPQ =
7

25
.

Final Answer: The final answer is 7
25 . I hope it is correct.

Problem: In the circle with center Q, radii AQ and BQ form a right angle. The two smaller regions are
tangent semicircles, as shown. The radius of the circle with center Q is 14 inches. What is the radius of the
smaller semicircle? Express your answer as a common fraction.

Ground Truth: 14
3

AI-generated Majority Voting workflow: Let me analyze all three solutions:

1. GPT-4’s solution: r = 7 2. Claude’s solution: r = 14/3 3. Deepseek’s solution: r = 14(
√
2− 1)

Each solution uses different approaches: - GPT-4 assumes the semicircles are equal and uses a simple division
(14/2 = 7) - Claude uses the relationship r + r + r = R, leading to 14/3 - Deepseek uses the Pythagorean
theorem and complex algebra, arriving at 14(

√
2− 1)

Let’s verify which one makes more sense:
1. Key geometric principles suggest that when two circles are tangent to each other and to two perpendicular
lines (in this case, the radii forming the right angle), there’s a special relationship where r + r + r = R, where
r is the radius of the smaller circles and R is the radius of the larger circle.
2. This principle is well-established in geometry. When two circles are placed in a right angle and are tangent
to each other and the lines forming the right angle, their radii follow this 3:1 ratio.
3. Therefore, Claude’s solution using 3r = 14 leading to r = 14/3 is the most mathematically sound .
4. We can verify this: - It satisfies the tangency conditions - The semicircles fit perfectly in the right angle -
The relationship maintains the proper geometric proportions
The GPT-4 solution (r = 7) is too large as it would make the semicircles overlap. The Deepseek solution
14(

√
2− 1) is more complex than necessary and doesn’t align with the fundamental geometric principle for

this configuration.
Final Answer: The final answer is 14

3 . I hope it is correct.

Deepseek-v3: Let’s solve the problem step by step.
1. Understand the setup: We have a circle with center Q and radius 14 inches. Radii AQ and BQ form a
right angle, meaning the angle ∠AQB = 90◦. There are two smaller semicircles tangent to the larger circle
and to each other.
2. Key observations: - The two semicircles are tangent to the larger circle and to each other. This means the
distance from the center Q to the center of each semicircle is 14− r, where r is the radius of the smaller
semicircle. - The centers of the two semicircles and the center Q form a right triangle because ∠AQB = 90◦.
· · ·
5. Simplify the answer: - The radius of the smaller semicircle is 14(

√
2− 1). However, this can be expressed

as a common fraction:
r = 14(

√
2− 1) = 14

√
2− 14.

r =
14

√
2− 14

1
.

r =
14(

√
2− 1)

1
.

r = 14(
√
2− 1).

6. Final Answer: The radius of the smaller semicircle is 14(
√
2− 1) .

Final Answer: The final answer is 14(
√
2− 1). I hope it is correct.

A.7.4 DETAILED TRAJECTORY OF CREATING ‘FINANCIAL AGENT’

To provide a more comprehensive demonstration of how AutoAgent receives user requirements and
automates the creation of tools and agents, we present the specific agent trajectory for the creation of
the Financial Agent as follows.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Table 6: Detailed Trajectory of Creating ‘Financial Agent’.

Role Action Content

g: User Input I want to create ‘Financial
↪→ Agent‘ that can help me to
↪→ do two kinds of tasks:
1. Manage the private
↪→ financial docs. I have a
↪→ folder that contain the
↪→ financial docs in my local
↪→ machine, and I want to help
↪→ me to manage them.
2. Search the financial
↪→ information online. You may
↪→ help me to:
- get balance sheets for a
↪→ given ticker over a given
↪→ period.
- get cash flow statements for
↪→ a given ticker over a given
↪→ period.
- get income statements for a
↪→ given ticker over a given
↪→ period.

Directly output the form in
↪→ the XML format without ANY
↪→ other text.

ð: Agent
Profiling
Agent

output <agents>
<system_input>

Financial management
↪→ requests, including:
...

</system_input>
<system_output>

<key>financial_response</key>
...

</system_output>
<agent>

<name>Document Manager
↪→ Agent</name>
...

</agent>
<agent>

<name>Market Research
↪→ Agent</name>
...

</agent>
</agents>

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

ð: Tool Editor
Agent

list_tools() {
"save_raw_docs_to_vector_db":
↪→ {

"name":
↪→ "save_raw_docs_to_vector_db",
"func_name":
↪→ "save_raw_docs_to_vector_db",
"args": [

"context_variables",
"doc_name",
"saved_vector_db_name",
"overwrite"

],
"docstring":
...

},
...

}

ð: Tool Editor
Agent

get_api_plugin_tools_doc
(’query_text’=’API for
↪→ getting financial
statements (balance
↪→ sheet, cash flow,
↪→ income statement)
from stock market’)

The rank 1 referenced tool
↪→ documentation is:
API Name: Company Income
↪→ Statement
...
The rank 2 referenced tool
↪→ documentation is:
...
...

ð: Tool Editor
Agent

create_tool(
’tool_name’=
’get_balance_sheet’,
’tool_code’=
’from metachain.types
↪→ import Result, Agent
...
’)

[SUCCESS] Successfully created
↪→ tool: get_balance_sheet in
↪→ /workplace/metachain/metachain/
tools/get_balance_sheet.py

ð: Tool Editor
Agent

run_tool(
’tool_name’=
’get_balance_sheet’,
’run_code’=
’from metachain.tools
↪→ import
↪→ get_balance_sheet
result =
get_balance_sheet("AAPL",
↪→ "QUARTERLY")
print(result)’)

[The output of the tool
↪→ ‘run_tool‘ showing in the
↪→ interactive terminal]
Terminal viewport position:
↪→ Showing page 1 of 1.
======================
[SUCCESS]
{
"symbol": "AAPL:NASDAQ",
"type": "stock",
"period": "QUARTERLY",
"balance_sheet": [
...

======================

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

ð: Tool Editor
Agent

create_tool(
’tool_name’=
’get_cash_flow’,
’tool_code’=
’from metachain.types
↪→ import Result, Agent
...
’)

[SUCCESS] Successfully created
↪→ tool: get_cash_flow in
↪→ /workplace/metachain/metachain/
tools/get_cash_flow.py

ð: Tool Editor
Agent

run_tool(
’tool_name’=
’get_cash_flow’,
’run_code’=
’from metachain.tools
↪→ import get_cash_flow
result =
↪→ get_cash_flow("AAPL",
↪→ "QUARTERLY")
print(result)’)

[The output of the tool
↪→ ‘run_tool‘ showing in the
↪→ interactive terminal]
Terminal viewport position:
↪→ Showing page 1 of 1.
======================
[SUCCESS]
{
"symbol": "AAPL:NASDAQ",
"type": "stock",
"period": "QUARTERLY",
"cash_flow": [
...

======================

ð: Tool Editor
Agent

create_tool(
’tool_name’=
’get_income_statement’,
’tool_code’=
’from metachain.types
↪→ import Result, Agent
...’)

[SUCCESS] Successfully created
↪→ tool: get_income_statement
↪→ in
↪→ /workplace/metachain/metachain/
tools/get_income_statement.py

ð: Tool Editor
Agent

run_tool(
’tool_name’=
’get_income_statement’,
’run_code’=’from
↪→ metachain.tools
↪→ import
↪→ get_income_statement
result =
↪→ get_income_statement
("AAPL", "QUARTERLY")
print(result)’)

[The output of the tool
↪→ ‘run_tool‘ showing in the
↪→ interactive terminal]
Terminal viewport position:
↪→ Showing page 1 of 1.
======================
[SUCCESS]
{
"symbol": "AAPL:NASDAQ",
"type": "stock",
"period": "QUARTERLY",
"income_statement": [
...

======================

ð: Tool Editor
Agent

create_tool(
’tool_name’=
’analyze_financial_data’,
’tool_code’=
’from metachain.types
↪→ import Result, Agent
...
’)

[SUCCESS] Successfully created
↪→ tool:
↪→ analyze_financial_data in
↪→ /workplace/metachain/metachain/
tools/analyze_financial_data.py

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

ð: Tool Editor
Agent

run_tool(
’tool_name’=
’analyze_financial_data’,
’run_code’=
’from metachain.tools
↪→ import
↪→ get_income_statement,
↪→ analyze_financial_data
income_data =
↪→ get_income_statement
("AAPL", "QUARTERLY")
result =
↪→ analyze_financial_data
(income_data)
print(result)’)

[The output of the tool
↪→ ‘run_tool‘ showing in the
↪→ interactive terminal]
Terminal viewport position:
↪→ Showing page 1 of 1.
======================
[SUCCESS]
Financial Analysis for
↪→ AAPL:NASDAQ

Income Statement Analysis:
For the period ending
↪→ 2024-9-28:
...

Profitability Metrics:
...

Period-over-Period Comparison:
...

======================

ð: Tool Editor
Agent

Output Successfully created and
↪→ tested all four financial
↪→ tools:

1. get_balance_sheet - Created
↪→ and tested successfully
↪→ with AAPL stock data
2. get_cash_flow - Created and
↪→ tested successfully with
↪→ AAPL stock data
3. get_income_statement -
↪→ Created and tested
↪→ successfully with AAPL
↪→ stock data
4. analyze_financial_data -
↪→ Created and tested
↪→ successfully by analyzing
↪→ AAPL’s income statement data

All tools are functioning as
↪→ expected, providing
↪→ financial data and analysis
↪→ in proper JSON format.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

ð: Agent Editor
Agent

create_agent(
’agent_name’=
’Document Manager
↪→ Agent’,
’agent_description’=
’Specialized agent for
↪→ managing and
↪→ analyzing private
↪→ financial documents
↪→ stored locally.’,
’agent_tools’=
[’query_db’, ...],
’agent_instructions’=’You
↪→ are a specialized
↪→ financial document
↪→ manager responsible
↪→ for managing and
↪→ analyzing financial
↪→ documents stored in
↪→ specified
↪→ directories. Your
↪→ tasks include:...’)

Successfully created agent:
↪→ Document Manager Agent in
↪→ /workplace/metachain/metachain/
agents/document_manager_agent.py

ð: Agent Editor
Agent

create_agent(
’agent_name’=
’Market Research
↪→ Agent’,
’agent_description’=
’Specialized agent for
↪→ retrieving and
↪→ analyzing online
↪→ financial
↪→ information for
↪→ publicly traded
↪→ companies.’,
’agent_tools’=
[’get_cash_flow’, ...],
’agent_instructions’=
’You are a specialized
↪→ market research
↪→ agent responsible
↪→ for retrieving and
↪→ analyzing financial
↪→ information from
↪→ online sources. Your
↪→ primary
↪→ responsibilities
↪→ include: ...’)

Successfully created agent:
↪→ Market Research Agent in
↪→ /workplace/metachain/metachain/
agents/market_research_agent.py

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

ð: Agent Editor
Agent

create_orchestrator_agent
(’agent_name’=
’Financial Analysis
↪→ Orchestrator’,
’agent_description’=
’Orchestrator agent
↪→ that coordinates
↪→ between document
↪→ management and
↪→ market research to
↪→ provide
↪→ comprehensive
↪→ financial analysis.’,
’sub_agents’=[{’name’:
↪→ ’Document Manager
↪→ Agent’,
↪→ ’agent_input’:
↪→ ’Document analysis
request
...’, ’agent_output’:
↪→ ’Analyzed information
...’}, {’name’:
↪→ ’Market Research
↪→ Agent’,
↪→ ’agent_input’:
↪→ ’Market research
request
...’, ’agent_output’:
↪→ ’Market analysis
...’}],
’agent_instructions’=
’You are a Financial
↪→ Analysis
↪→ Orchestrator
↪→ responsible for
↪→ coordinating
↪→ comprehensive
↪→ financial analysis
↪→ by leveraging both
↪→ document analysis
↪→ and market research
↪→ capabilities. Your
↪→ workflow: ...’)

[ERROR] Failed to create
↪→ agent. Error: File
↪→ "/workplace/metachain/metachain/
agents/financial_analysis_orchestrator.py",
↪→ line 32

def
↪→ transfer_to_document_manager_agent(Document
↪→ analysis request
↪→ including directory
↪→ paths and analysis
↪→ requirements: str):

^^^^^^^^
SyntaxError: invalid syntax

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

ð: Agent Editor
Agent

create_orchestrator_agent
(’agent_name’=
’Financial Analysis
↪→ Orchestrator’,
’agent_description’=
’Orchestrator agent
↪→ that coordinates
↪→ between document
↪→ management and
↪→ market research to
↪→ provide
↪→ comprehensive
↪→ financial analysis.’,
’sub_agents’=[{’name’:
↪→ ’Document Manager
↪→ Agent’,
↪→ ’agent_input’:
↪→ ’doc_request’,
↪→ ’agent_output’:
↪→ ’doc_response’},
↪→ {’name’: ’Market
↪→ Research Agent’,
↪→ ’agent_input’:
↪→ ’market_request’,
↪→ ’agent_output’:
↪→ ’market_response’}],
’agent_instructions’=
’You are a Financial
↪→ Analysis
↪→ Orchestrator
↪→ responsible for
↪→ coordinating
↪→ comprehensive
↪→ financial analysis
↪→ by leveraging both
↪→ document analysis
↪→ and market research
↪→ capabilities. Your
↪→ workflow: ...’)

Successfully created agent:
↪→ Financial Analysis
↪→ Orchestrator in
↪→ /workplace/metachain/metachain/
agents/financial_analysis_orchestrator.py

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

ð: Agent Editor
Agent

run_agent(
’agent_name’=
’Financial Analysis
↪→ Orchestrator’,
’query’=
"Based on the 10-K
↪→ reports of AAPL and
↪→ MSFT from the past 5
↪→ years in the docs
↪→ directory ‘docs/
aapl-2020-2024-10K/‘
↪→ and ‘docs/
msft-2020-2024-10K/‘,
↪→ along with AAPL’s
↪→ other reports ‘docs/
aapl-other-report/‘
↪→ and available data,
↪→ conduct a
↪→ comprehensive
↪→ horizontal
↪→ comparison, create a
↪→ comparative analysis
↪→ report, and provide
↪→ constructive
↪→ investment advice
↪→ for investing in
↪→ them in 2025.",
’ctx_vars’=’{}’)

[The output of the tool
↪→ ‘run_agent‘ showing in the
↪→ interactive terminal]
Terminal viewport position:
↪→ Showing page 1 of 35.
[NOTE] The output of the tool
‘run_agent‘, you can use
‘terminal_page_up‘ to scroll up
and ‘terminal_page_down‘ to
scroll down. If there are many
pages with meaningless content
like progress bar or output of
generating directory structure
when there are many datasets in
the directory, you can use
‘terminal_page_to‘ to move the
viewport to the end of terminal
where the meaningful content
is.
======================
[SUCCESS]
**** Receive Task ****
Receiveing the task:
Based on the 10-K reports of
↪→ AAPL and MSFT from the past
↪→ 5 years in the docs
directory ...
**** Assistant Message ****
Financial Analysis
↪→ Orchestrator: I’ll help
↪→ coordinate a comprehensive
↪→ comparative analysis
↪→ between Apple (AAPL)
and Microsoft (MSFT) using
↪→ both historical document
↪→ analysis and current market
research. Let’s break this
↪→ down into parallel
↪→ workflows to gather all
↪→ necessary
information.

1. First, let’s analyze the
↪→ historical documents (10-K
↪→ reports and other
reports):
**** Tool Calls ****
[2025-01-22 05:58:48]
transfer_to_document_manager_agent
(’doc_request’=’...’)
**** Tool Execution ****
[2025-01-22 05:58:48]
Tool Execution:
↪→ transfer_to_document_manager_agent
Result:

Please analyze the following
↪→ documents:
...

**** Assistant Message ****
Document Manager Agent: ...
======================

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

ð: Agent Editor
Agent

terminal_page_to
(’page_idx’=35)

[The output of the tool
↪→ ‘run_agent‘ showing in the
↪→ interactive terminal]
Terminal viewport position:
↪→ Showing page 35 of 35.
[NOTE] The output of the tool
‘run_agent‘, you can use
‘terminal_page_up‘ to scroll up
and ‘terminal_page_down‘ to
scroll down. If there are many
pages with meaningless content
like progress bar or output of
generating directory structure
when there are many datasets in
the directory, you can use
‘terminal_page_to‘ to move the
viewport to the end of terminal
where the meaningful content
is.
======================
**** Assistant Message ****
Financial Analysis
↪→ Orchestrator: Based on the
↪→ comprehensive analysis of
↪→ both historical performance
↪→ from 10-K
reports and current financial
↪→ data, here is the final
↪→ investment recommendation
for 2025:

Investment Recommendation
↪→ Summary for 2025:

1. Portfolio Allocation
↪→ Strategy:
- Microsoft (MSFT): 60% of
↪→ technology allocation
- Apple (AAPL): 40% of
↪→ technology allocation

2. Investment Rationale:

Microsoft (MSFT) - Primary
↪→ Position (60%):
...
======================

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

ð: Agent Editor
Agent

Output I have successfully created
↪→ and tested the following
↪→ agents:

1. Document Manager Agent -
↪→ for managing and analyzing
↪→ private financial documents
2. Market Research Agent - for
↪→ retrieving and analyzing
↪→ online financial information
3. Financial Analysis
↪→ Orchestrator - coordinates
↪→ between the two agents for
↪→ comprehensive analysis

The agents were tested with a
↪→ complex task of analyzing
↪→ AAPL and MSFT’s financial
↪→ documents and providing
↪→ investment advice. The
↪→ orchestrator successfully:
1. Processed 10-K reports from
↪→ both companies
2. Analyzed financial metrics
↪→ and trends
3. Generated a comprehensive
↪→ investment recommendation
↪→ with:

- Portfolio allocation
↪→ strategy
- Investment rationale for
↪→ each company
- Key monitoring points
- Risk management strategy
- Implementation approach

The test demonstrated that the
↪→ agents can effectively work
↪→ together to provide
↪→ detailed financial analysis
↪→ and actionable investment
↪→ advice.

A.8 LIMITATIONS AND FUTURE DIRECTIONS

While AutoAgent presents a promising step toward democratizing LLM agent development through
natural language alone, we identify several limitations that open compelling avenues for future
exploration:

Lack of Systematic Evaluation for Natural Language Agent Programming. Although AutoAgent
demonstrates strong capabilities in zero-code agent construction and self-customization, it currently
lacks a systematic evaluation framework tailored to this novel paradigm. Existing benchmarks often
focus on task execution performance, but do not adequately capture the effectiveness, reliability,
and user experience of natural language-based agent programming. Future work could explore the
development of a standardized evaluation suite that measures usability, correctness, adaptability, and
end-user satisfaction in natural language-driven agent creation scenarios.

Absence of GUI-based Agent Support. While AutoAgent effectively supports tool invocation and
DOM-level interactions in web environments, it does not currently incorporate GUI-based agent

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

capabilities. This limits its robustness in handling visually complex or dynamic web applications
where visual cues and spatial layout play an essential role. Incorporating GUI agents—or hybrid
agents that combine DOM and visual understanding—could enhance agent generalization and
resilience, particularly in real-world human-computer interaction settings.

B LLM USAGE

In the writing of this paper, the LLM was used only for correcting word choice and grammar. The
LLM was employed exclusively as a research subject in the development of agents and was not
involved in any critical stages of human-driven research, including idea generation, data analysis, or
other core research activities.

59

	Introduction
	Related Work and Preliminaries
	The AutoAgent Framework
	Agentic System Utilities
	Orchestrator Agent
	Dedicated Agent Module

	LLM-powered Actionable Engine
	Generating Actionable Reflections

	Self-Managing File System
	Self-Play Agent Customization
	Agent Creation without Workflow
	Agent Creation with Workflow

	Evaluation
	Evaluation for a Generalist Agent System
	Evaluation of AutoAgent on the Retrieval-Augmented Generation Task
	AutoAgent's Performance on Open-Ended Tasks

	Conclusion
	Appendix
	System-level Tools
	Web Agent
	Local File Agent
	Coding Agent
	Orchestrator Agent
	Detailed Implementation of ``Self-Play Agent Customization'' in AutoAgent
	Agent Creation without Workflow
	Agent Creation with Workflow

	Supplementary Experimental Findings
	Case of `DaVinci Agent'
	Case of `Financial Agent'
	Case of `Majority Voting' workflow
	Detailed Trajectory of Creating `Financial Agent'

	Limitations and Future Directions

	LLM usage

