Under review as a conference paper at ICLR 2026

AUTOAGENT: A FULLY-AUTOMATED AND ZERO-CODE
FRAMEWORK FOR LILM AGENTS

Anonymous authors
Paper under double-blind review

“ LAl € Fully-Automated and Zero-Code Agent Framework . User-Ti
Top-1 Open-Source General AT Assistant on GATA Language-Driven Framework
SOTA RAG performance

Pro

e analysis report of AAPL and MSFT stocks
self-
Developing™:
I automatically generated all the code and created &
cial Agent. I run the agent and get the analysis

Programs

Browser

Web | Coding | _ Local File |
§ y Agent

cation Strategy: ...

- AUTOAGENT
EOF-]

@Profiling| 4 Editor| &) Editor|
hgent |G ent | ent |
‘s

v 8 v, A Vg
B G Parsing [create @Y/ (reate Doz p
T ;)

M =N 2 v i
Cyprofiling| &5 i [@y Editor L[Editor
Agent Agent Agent

LLM Providers DB Providers Tool Platform

Automated Generation of Customizable Agents, (w2 M @ @ = @

Tools, Workflows

Figure 1: AutoAgent stands out as a new LLM Agent Framework that enables fully automated,
zero-code development for complex task automation. Ranking #1 among open-source solutions
on the GAIA benchmark, it delivers state-of-the-art RAG performance as a general Al assistant.
Its revolutionary approach democratizes Al development - allowing anyone, regardless of coding
experience, to create and customize their own agents, tools, and workflows with ease.

ABSTRACT

Large Language Model (LLM) Agents have demonstrated remarkable capabili-
ties in task automation and intelligent decision-making, driving the widespread
adoption of agent development frameworks such as LangChain and AutoGen. How-
ever, these frameworks predominantly serve developers with extensive technical
expertise—a significant limitation considering that only 0.03% of the global pop-
ulation possesses the necessary programming skills. This stark accessibility gap
raises a fundamental question: Can we enable everyone, regardless of technical
background, to build their own LLM agents using natural language alone? To
address this challenge, we introduce AutoAgent - a Fully-Automated and highly
Self-Developing framework that enables users to create and deploy LLM agents
through Natural Language Alone. Operating as an autonomous Agent Operating
System, AutoAgent comprises four key components: i) Agentic System Utilities,
ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-
Play Agent Customization module. This lightweight yet powerful system enables
efficient and dynamic creation and modification of tools, agents, and workflows
without coding requirements or manual intervention. Beyond its code-free agent
development capabilities, AutoAgent also serves as a versatile multi-agent system
for General AI Assistants. Comprehensive evaluations on the GAIA benchmark
demonstrate AutoAgent’s effectiveness in generalist multi-agent tasks, surpassing
existing state-of-the-art methods. Furthermore, AutoAgent’s Retrieval-Augmented
Generation (RAG)-related capabilities have shown consistently superior perfor-
mance compared to many alternative LLM-based solutions. Code link: https:
//anonymous.4open.science/r/AutoAgent-NIPS-D4AF/.

https://anonymous.4open.science/r/AutoAgent-NIPS-D4AF/
https://anonymous.4open.science/r/AutoAgent-NIPS-D4AF/

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has revolutionized Al agent development, en-
abling unprecedented breakthroughs in autonomous task execution and intelligent problem-solving.
LLM-powered agents excel at understanding context, making informed decisions, and seamlessly

integrating with various tools and APIs. Leading frameworks like LangChain (),
AutoGPT (), AutoGen (), CAMEL (), and
MetaGPT () have demonstrated remarkable success in automating increasingly com-

plex workflows - from sophisticated web navigation to advanced data analysis and innovative creative
content production. By leveraging advanced mechanisms such as role-playing, structured operating
procedures, and dynamic agent coordination, these frameworks deliver exceptional problem-solving
capabilities while significantly reducing human intervention.

Despite remarkable advancements in Al agent development, a significant barrier persists: the creation
and optimization of LLM agent systems remains dependent on traditional programming expertise.
Current frameworks primarily cater to technically proficient developers who can navigate complex
codebases, understand API integrations, and implement sophisticated prompt engineering patterns.
This reliance on coding skills creates a substantial accessibility gap, as only 0.03% of the global popu-
lation possesses the necessary programming expertise to effectively build and customize these agents.
Even with well-documented frameworks and development tools, the entry barrier remains dauntingly
high for non-technical users. This limitation becomes particularly problematic given the universal
need for personalized Al assistants in digital age. Everyone, from business professionals seeking
workflow automation to educators designing interactive learning tools, requires customized LLM
agents tailored to their specific needs. For instance, a researcher might need an agent specialized in
literature review and data analysis, while a content creator might require an agent focused on creative
writing and media management. The current paradigm of coding-dependent agent development not
only severely restricts the user base but also creates a bottleneck in meeting the diverse and evolving
demands for personalized Al assistance. This misalignment between universal needs and limited
accessibility calls for a fundamental rethinking of how LLM agents are created and customized.

This stark contrast between universal needs and limited accessibility leads us to a fundamental research
question: Is it possible to democratize LLM agent development by enabling Natural Language-based
Creation and Customization? In this work, we aim to realize this vision by introducing AutoAgent, a
novel framework that fundamentally reimagines agent development as a fully automated, language-
driven process requiring zero programming expertise. To realize this vision, AutoAgentoperates as
an autonomous Agent Operating System with three key capabilities: 1) Natural Language-Driven
Multi-Agent Building - automatically constructing and orchestrating collaborative agent systems
purely through natural dialogue, eliminating the need for manual coding or technical configuration;
2) Self-Managing Workflow Generation - dynamically creating, optimizing and adapting agent
workflows based on high-level task descriptions, even when users cannot fully specify implementation
details; and 3) Intelligent Resource Orchestration - providing unified access to tools, APIs, and
computational resources via natural language while automatically managing resource allocation and
optimization. Through this innovative architecture, AutoAgentdemocratizes LLM agent development
while maintaining enterprise-grade sophistication, transforming a traditionally complex engineering
task into an intuitive conversation accessible to all users.

To enable fully-automated and zero-code LLM agent development, AutoAgent introduces several
synergistic technical innovations that form a complete framework: First, the Agentic System Utilities
provides a foundational multi-agent architecture, where specialized web, code, and file agents
collaborate seamlessly to handle diverse real-world tasks. At its core, the LLM-powered Actionable
Engine serves as the system’s brain, supporting flexible integration of any LLM provider through
both direct and transformed tool-use paradigms for robust action generation. To address the critical
challenge of information management, the Self-Managing File System enhances overall system
capability by automatically converting diverse data formats into queryable vector databases, enabling
efficient information access across all operations. Additionally, the Self-Play Agent Customization
not only transforms natural language requirements into executable agents through structured XML
schemas, but also automatically generates optimized workflows through iterative self-improvement,
eliminating the need for manual agent programming or workflow design. Together, these innovations
enable AutoAgent to democratize agent development while maintaining production-level robustness.

Under review as a conference paper at ICLR 2026

AutoAgent’s exceptional capabilities have been rigorously validated through comprehensive empirical
evaluation. In standardized benchmarks, it secured a strong second place on the Generalist Agent
Benchmark (GAIA), while significantly outperforming state-of-the-art RAG approaches on the
Retrieval-Augmented Generation benchmark. Beyond these quantitative achievements, extensive
case studies demonstrated AutoAgent’s robust self-development capabilities across diverse real-world
scenarios, highlighting its practical value in automated agent development.

2 RELATED WORK AND PRELIMINARIES

LLM-empowered agents have revolutionized Al systems through tool invocation capabilities. Frame-

works like LangChain (), AutoGPT (), CAMEL

(), MetaGPT (), and OpenAgent () demonstrate diverse ca-
pabilities: CAMEL pioneered role-playing communication, AutoGen () developed
LLM combinations for problem-solving, MetaGPT () integrated Standardized
Operating Procedures, and OpenAgent () provided specialized web agents. However,

these frameworks require coding skills and domain expertise, limiting accessibility to non-technical
users. We propose a new paradigm that democratizes agent development through natural language
interactions, making agent technology accessible regardless of technical background.

LLM-Empowered Agent. The task-solving process of Large Language Model (LLM) agents can
be formalized as a Markov Decision Process (MDP), providing a comprehensive framework for
modeling their interaction with the environment. Defined as M = (S, A4, O, P(-), &), the MDP
captures the agent’s state space S, action space .4, observation space O, state transition function P(-),
and the set of environments £ it can interact with. At each time step, the LLM agent observes the
current state, selects an action based on its policy, interacts with the environment, and updates its
state, often referred to as the agent’s “context”. The mapping from state to action can follow two
primary paradigms: Tool-Use (), where the agent utilizes external capabilities, and
ReAct () (Non-tool-use), where the agent generates the next action solely based on its
internal language model. This MDP formulation provides a powerful framework for understanding,
analyzing, and designing LLM-empowered agents capable of tackling a wide range of complex,
multi-step tasks.

Generalist Multi-Agent System. Multi-agent systems (MAS) overcome single agent limitations
in complex problems by leveraging diverse capabilities of multiple specialized agents. Generalist
Multi-Agent Systems employ agent teams coordinated by an Orchestrator to solve varied tasks
through collaborative intelligence.

In a Generalist MAS, there are multiple agents, denoted as mg : Sg — Ag,m1 : 51 — A1,..., 7 :
Sn — A,. Within each agent’s action set, there exists a special transfer action A; € A;, which
enables the delegation of tasks to other agents. The key challenge in a MAS lies in designing an
effective Task Transfer Mechanism, which organizes different agents through appropriate transfer
actions. We define such an agent organization mechanism as the “MAS Design Pattern”. A common
design is the Orchestrator-Workers paradigm (); (), where the
Orchestrator comprehends the task and distributes subtasks to Workers via transfer actions. The
Workers, acting as sub-agents, execute the subtasks and return the results to the Orchestrator through
transfer actions.

For tasks with deterministic steps, workflow-driven mechanisms have emerged as a particularly

effective approach. Notable examples include GPTSwarm , which models workflows
as computational graphs for complex data operations, and specialized systems for mathematical
reasoning () and code generation (). These advances have enabled
strong capabilities across various applications, including GUI interaction ();

(), software development (); (), web browsing

(); (), and embodied tasks (), demonstrating the versatility

and potential of LLM-powered agent systems.

Workflow Design in Generalist MAS. While Generalist Multi-Agent Systems offer high flexibility,
particularly for open-ended and complex tasks, they also come with higher costs, increased complexity,
and potential for compounding errors (). For tasks with deterministic processes and
expert domain knowledge, fixed workflows can be a more stable and effective approach.

Under review as a conference paper at ICLR 2026

User_ Interface The AutoRgent framework ________________________
.Frontend. Language Input Agentic System Utilities ___ LLM Actionable Engine__ Self-Play. Agent Customization
Direct Tool-Us
= Requirement of . A
' g Daily Tasks g N(:N Agent(s) g Daily Tasks '% ﬂ ﬁ g Customize £ or‘()

1 LLM Toolbox Execute

1
'
'
1
‘
1 "y :
H g Requirement of ﬁ :: ﬂ Delegate Tasksg ;, 2 Transformed Tool-Use ﬁ Self-Developing '
New Workflow(s) " -] P, o~ :
' " D . _Seqrchmg. LLM Constraint Parse @ ch‘sg :
' H s =
1Backend :: Codmg Self-Managing File System. . IEII “ﬂl Agents.. :
"y S 1
: DB Providers LLM Providers :: nSelf %ﬂgmgq A%{/:}Workﬂows.v :
') ' = <
: ‘ ©> @ & H‘E :E Analysing LLM Organize Retrieve & i
'

Figure 2: AutoAgent is a fully automated, language-driven generalist agent system. The core
components that enable this include the Agentic System Utilities, the LLM-powered Actionable
Engine, the Self-Managing File System, and the Self-Play Agent Customization module.

A workflow in a MAS is defined as W = w; ; : 7; Lk m;, where 7; and 7; represent agents, and ci,
is the transfer condition. Effective workflow design involves defining conditional transfer equations
between agents based on downstream tasks, ensuring smooth and coordinated transmission - the
“Workflow Design Pattern”. Common patterns include Routing (directing tasks through a sequence),
Parallelization (distributing subtasks concurrently), and Evaluator-Optimizer (using agents to
assess and refine) (). These can create stable and efficient task-solving in MAS.

Fully-Automated Generalist MAS. While the successful design and execution of both multi-agent
systems and complex workflows typically require substantial expert knowledge and engineering
expertise, the goal of AutoAgent is to fully automate this process. The key challenge lies in seamlessly
bridging the gap from high-level user requirements to the practical implementation of effective MAS
and workflow solutions - all through natural language interactions.

3 THE AUTOAGENT FRAMEWORK

AutoAgent is designed to be the automated operating system for LLM agents and general Al assistant.
Inspired by modern computer operating systems, AutoAgent consists of key components that enable
seamless natural language-driven agent development and task execution, as illustrated in Fig 2.
Its Agentic System Utilities provide foundational building blocks for complex agent-driven tasks,
while the LLM-powered Actionable Engine forms the central brain, understanding inputs and
orchestrating multi-agent coordination. The Self-Managing File System manages structured storage
and retrieval of user multi-modal data, and the Self-Play Agent Customization empowers users to
generate specialized, tailored agents and workflows through natural language, without any coding
requirements. Collectively, these robust capabilities make AutoAgent a versatile and powerful
platform, powering a variety of autonomous agent-based solutions for diverse applications.

3.1 AGENTIC SYSTEM UTILITIES

The AutoAgent framework employs a modular, multi-agent architecture to address the key challenge
of developing intelligent personal assistant agents capable of seamlessly integrating and coordinating
diverse capabilities, from web browsing and information retrieval to data analysis and code execution.
This design choice, which comprises specialized agents for web, coding, and file management tasks,
as well as an orchestrator agent to decompose and delegate user requests, enables the agentic system
utilities to serve as a versatile and extensible foundation that can adapt to a wide range of user
requirements, facilitating the rapid development of tailored, agent-driven solutions. Detailed system
prompts and tool definitions for Agentic System Ultilities can be found in Appendix Sec A.

3.1.1 ORCHESTRATOR AGENT

The Orchestrator Agent is the primary interface for interacting with the user. It receives tasks from
the user, comprehends the tasks, decomposes them into sub-tasks, and delegates these sub-tasks to
appropriate sub-agents using the handoff tools (). Once a sub-agent completes a
sub-task, it returns the result to the Orchestrator also using the handof £ tool. Based on the task
completion status, the Orchestrator continues to assign the next sub-task to a suitable agent. This
iterative process continues until the entire task is completed. The Orchestrator, designed with the
handof f mechanism, is a simple yet effective solution, eliminating the need for complex prompts
to handle task planning.

3.1.2 DEDICATED AGENT MODULE

The basic Agent system can be broadly categorized into three types: web interaction, code execution,
and file analysis. We have constructed three functionally complementary dedicated agent modules:
Web Agent, Coding Agent, and Local File Agent, each designed for these respective tasks.

Under review as a conference paper at ICLR 2026

The Web Agent provides a flexible and extensible web-toolkit, enabling the agent to perform a
variety of web-based tasks, from general web searches to file downloads. Its core functionalities
include web searching, page navigation, content browsing, and file downloading, which are abstracted
into 10 high-level operational interfaces (e.g., click, web_search, visit_url, etc.). This
module is built on BrowserGym (), creating a browser environment that combines
low-level code-driven actions to implement high-level tools, thereby enhancing the extensibility of
tool definitions.

The Coding Agent is a comprehensive solution for code-related tasks, capable of handling a wide
range of applications—from data processing and numerical computation to machine learning and
system management. It offers diverse tools and supports execution in a secure, isolated interactive
terminal environment. All code execution results are fed back to the agent via terminal output, with
pagination support (e.g., using commands like terminal_page_up, terminal_page_down,
and terminal_page_to.), effectively bypassing the context length limitations of LLMs. To
ensure security, all operations run within a Docker sandbox, with optional integration of third-party
secure execution platforms like E2B ().

The Local File Agent is designed to uniformly process various local multimodal file types (e.g.,
text documents, audio, video, spreadsheets) and convert them into structured formats for analysis.
This agent standardizes different file formats (e.g., . pdf, .mp4, .csv, .docx) and displays them
in a terminal-like Markdown browser with pagination, enabling efficient handling of long texts or
complex file structures for everyday tasks.

These three agent modules work collaboratively, forming light-weight yet complete basic Agent
System, laying the foundation for future functional expansion.

3.2 LLM-POWERED ACTIONABLE ENGINE

As the CPU executes instructions, manages resources, and coordinates processes in an OS, the
LLM-powered actionable engine can understand natural language, generate plans, and coordinate
tasks across agents. This enables seamless human-agent collaboration and task completion.

We utilize LiteLLM () to standardize LLM requests through an OpenAl-like interface,
supporting 100+ models from various providers. For agent collaboration, the LLM receives all
action-observation pairs up to time ¢ as state s; to determine the next action. These pairs serve as
system RAM, facilitating efficient retrieval and enabling language-driven system coordination.

3.2.1 GENERATING ACTIONABLE REFLECTIONS
We generate reflections (i.e., actions) based on LLM context, which can be broadly categorized into
two distinct approaches that leverage the language model’s capabilities.

Direct Tool-Use Paradigm. This approach is suitable for commercial LLMs or LLM serving
platforms that support tool-use. These LLMs can directly generate a parsed next-step tool to execute
based on the provided tool set and the current state, reducing errors during the tool parsing phase.
However, this method heavily relies on the optimization of the third-party platform’s capabilities.

Transformed Tool-Use Paradigm. This approach does not rely on the LLM’s inherent tool-use capa-
bilities. Leveraging the superior code-generation abilities of modern LLMs, we transform the tool-use
paradigm into a structured XML code generation task, e.g., <function=function_name>
<parameter=parameter_l>value_1l</parameter> ... </function>. This
structured output is then parsed to extract critical information like tool arguments and others. It
improves the performance of commercial models with suboptimal tool-use capabilities and enables
the integration of open-source LLMs into the system, providing greater flexibility and customization.

3.3 SELF-MANAGING FILE SYSTEM

The file system in AutoAgent is a vector database that LLM agents can retrieve and understand. In our
design framework, users can upload text files in any format (e.g., . pdf, .doc, . txt) or compressed
archives and folders containing any text files. The system tools in the file system automatically
convert these files into a consistent text format and store them in a user-defined collection within
the vector database (using the save_raw_docs_to_vector_db tool). This enables agents to
self-manage their database memory and perform efficient and accurate retrieval and generation using
tools like query_db and answer_query. The detailed definitions of the tools are presented in
Tab 4.

Under review as a conference paper at ICLR 2026

3.4 SELF-PLAY AGENT CUSTOMIZATION

To allow users to customize tools and agents for specific scenarios or build their own multi-agent sys-
tems and workflows, it is designed as a code-driven, controllable self-programming agent framework.
By implementing constraints, error-handling mechanisms, and customized workflows, it enables
controlled code generation, facilitating the creation of tools, agents, and workflows. The AutoAgent
supports two distinct modes: agent creation without workflow and agent creation with workflow.

3.4.1 AGENT CREATION WITHOUT WORKFLOW

Building effective multi-agent systems often requires domain-specific expertise, such as in-depth
knowledge of financial regulations or healthcare protocols. However, this level of specialized know-
how may not always be available to users. For example, in the financial services, constructing
a multi-agent system to automate complex investment portfolio management would necessitate
expertise in areas like asset allocation, risk modeling, and regulatory compliance.

To address this challenge, our AutoAgent provides a powerful workflow-based mode allowing users to
generate sophisticated agent systems with minimal domain expertise. In this mode, the user provides
high-level descriptions of the desired agent(s), such as the agent’s name and a brief sentence-level
description for the expected agent functionalities. AutoAgent then uses this input to automatically
generate the appropriate agent(s) and the necessary workflow(s) to orchestrate their collaborative
efforts. This is all done based on the current state of the framework, including the available tools,
agents, and workflows. The key steps in this workflow-based agent generation approach are:

eAnalyze Requirements and Existing Components. The process begins by carefully analyzing the
user’s requirements in the context of the existing tools and agents already available in the system.
This in-depth analysis is performed using the specialized profiling agent, which helps thoroughly
assess the current capabilities and resources that can be leveraged to fulfill the user’s needs.

eAnalyze Tools and Structure Agents. Based on the comprehensive analysis performed, the system
then carefully determines the need for creating new tools, meticulously evaluates whether existing
tools can be effectively utilized, and subsequently structures the seamless collaboration between
multiple agents as appropriate. This ensures the optimal and comprehensive use of available resources,
ultimately leading to the efficient agent system design.

eGenerate Detailed XML Agent Specifications. This step is designed to generate structured XML
code that accurately represents the detailed agent creation requirements. This comprehensive XML
representation captures the necessary information, including the agent’s functionality, dependencies,
and interactions, to enable the seamless and efficient subsequent process of agent generation.

Optimized Tool Creation with Third-Party APIs. The Tool Editor Agent can seamlessly integrate
various third-party APIs, such as LangChain, RapidAPI, and Hugging Face, to create powerful tools.
It expertly utilizes advanced retrieval techniques to search for and surface relevant API documentation,
including comprehensive details like names, descriptions, and invocation methods. The robust system
currently supports an extensive collection of 145 APIs from 8 diverse categories in RapidAPI,
LangChain (), and a wide range of models from 9 categories in Hugging Face. Future
plans include seamlessly integrating more cutting-edge platforms like Composio ().

The agent also generates tool code based on its knowledge, automatically checking for syntax errors.
It designs test cases, runs the tool, and verifies functionality. If the tool fails, the agent automatically
debugs the code until successful. This targeted approach allows a more customized and adaptable
tool set, rather than a bloated, integrated system.

Agent Creation and Execution. When the user’s requirements involve multiple agents focused on
different tasks, the Agent Editor Agent automatically identifies this need and performs the necessary
multi-step agent creation operations. After all agents are successfully created, the system invokes the
create_orchestrator_agent tool to generate an orchestrator agent that connects the required
agents. This orchestrator adheres to the Orchestrator-Workers MAS design pattern, with a system
prompt that includes task descriptions, sub-task decomposition rules, and other scenario-specific
details. Detailed algorithms and system prompts are provided in Appendix Sec A.6.1.

3.4.2 AGENT CREATION WITH WORKFLOW

When users have specific requirements for a MAS’s workflow and domain knowledge, AutoAgent
allows a tailored approach. In this mode, users provide descriptions of the desired agent(s) and
specify the tasks they want the created agent(s) or workflows to accomplish. AutoAgent then uses this

Under review as a conference paper at ICLR 2026

information about the target tasks to generate not just the individual agent(s), but also the necessary
workflow(s) to coordinate their collaborative efforts in achieving the specified objectives.

Traditional graph-based methods often require strict adherence to graph theory principles

(); (); (); (), a task challenging for LLMs when
generating workflows. To overcome these challenges, AutoAgent adopts an event-driven approach
where we model each agent’s task-solving as an event. By leveraging event listening and triggering
mechanisms, AutoAgent enables seamless collaboration between agents, offering greater flexibility
and adaptability compared to rigid graph structures.

Constructing New Workflows. The process of creating a new workflow is itself a multi-agent
workflow. The Workflow Form Agent analyzes the requirements and existing tools/agents to determine
if new agents need to be created, which agents should form the workflow, and what the listening and
triggering logic between events should be. It then generates structured XML code.

During the parsing phase, a robust error detection mechanism verifies whether the generated workflow
form complies with system constraints (e.g., constraints on the on_start event). If the constraints
are not satisfied, detailed error messages are sent back to the Workflow Form Agent as feedback for
regeneration. If the constraints are satisfied, the workflow form is passed to the Workflow Editor
Agent, which creates new agents (if needed), constructs the new workflow, and executes it on the
task. Detailed algorithms and system prompts are shown in Appendix Sec A.6.2.

4 EVALUATION

4.1 EVALUATION FOR A GENERALIST AGENT SYSTEM
Dataset and Evaluation Protocols.

The GAIA benchmark () evaluates General Al Assistants through 466 test and
165 validation questions across 3 difficulty levels, assessing Reasoning, Multi-Modality Handling,
Web Browsing, and Tool-Use Proficiency. We evaluated AutoAgent on GAIA’s validation set using
success rate as the metric, measuring task completion performance on human-like challenges.

Baseline Methods. The baselines Table 1: Performance comparison between the baseline
we selected are divided into two cate- models and our AutoAgent on the GAIA benchmark.
gories: Open-Source: FRIDAY The results we report are those published on the GAIA.
(2024), Magentic-1 (2024), Agent Name Avg. | LI L2 L3
Multi-Agent Experiment v0.1 (powered TapeAgent v0.1 33.94 | 47.17 3488 3.85
by AutoGen) (2024), Hugging- FRIDAY 3455 | 4528 34.88 11.54
Face Agents (), Lang- Magentic-1 36.97 | 5472 3372 11.54
fun Agent Cooele (W00); Closed-Source:) et Bxpv0.1 | 030 | 3472 3837 1134
ulti-Agent Exp v0.
(Tap e‘igengrﬁlient%’mgziifgeg 4 the AgentIM v1.1 40.00 | 50.94 4070 1538
hZOGP,Te Agent’ (’) These di- Trase Agent 40.00 | 47.17 40.70 23.08
.) HuggingFace Agents | 44.24 | 58.49 43.02 19.23
verse baselines represent the current state- Magentic-1 (01) 46.06 | 56.60 4651 23.08
of-the-art in open-source and proprietary omne 46.06 | 6038 44.19 23.08
multi-agent systems, providing a compre- Trase Agent v0.2 4727 | 5849 4651 26.92
hensive landscape for evaluating the per- Barcelona v0.1 50.30 | 62.26 50.00 26.92
formance and capabilities of our proposed Langfun Agent v2.0 | 54.55 | 60.38 59.30 26.92
AutoAgent framework. h20GPTe Agent v1.6.8 | 63.64 | 67.92 67.44 4231
AutoAgent 55.15 | 71.70 53.49 26.92

Implementation Details. To address tasks
in the GAIA benchmark, we utilize a combination of the System Utilities of the Model and the
Tool Editor Agent from the Agentic-SDK. The basic agents first attempt to complete the task while
collecting relevant information and reflections. If successful, the result is directly returned. If not, the
Tool Editor Agent creates new tools to continue the task. During validation, Claude-Sonnet-3.5 is
used by default.

Evaluation Results and Analysis. The results in Table 1 reveal the following key observations:

e Obs.1. Overall Superiority of AutoAgent: Our method significantly outperforms all open-
source agent systems and achieves performance close to the latest agent system, h2oGPTe Agent
v1.6.8 (submitted on December 16, 2024), securing a stable position in the top 2 rankings. Notably,

'TapeAgent, AgentIM, Omne, and Barcelona are anonymous.

Under review as a conference paper at ICLR 2026

our approach demonstrates superior performance on Level 1 tasks compared to all state-of-the-art
baselines, becoming the first method to achieve over 70% accuracy rate. This success is attributed to
the well-designed System Utilities and the stable interaction of basic agents with the environment,
enabling efficient solutions to everyday simple tasks.

e Obs.2. Effectiveness of Key Components: Specifically, our framework demonstrates significantly
superior performance compared to Magentic-1 (), a recent representative open-
source MAS, and FRIDAY, a classic self-improved framework. While Magentic-1 leverages the
powerful reasoning capabilities of ol-preview to design complex Orchestrator Agent (also the Coder
Agent), our framework emphasizes the stability of interactions between sub-agents and their respective
environments, as well as the precision of tool definitions. Under these conditions, the Orchestrator
Agent achieves better results with simple prompts and handoff tools.

4.2 EVALUATION OF AUTOAGENT ON THE RETRIEVAL-AUGMENTED GENERATION TASK
Benchmark Dataset and Evaluation Protocols. To test the basic functionalities of the AutoAgent,
we use the RAG task as the testing benchmark. MultiHop-RAG () is a dataset
designed to evaluate RAG capabilities, requiring the RAG methods to gather information from
multiple sources and generate responses, which aligns with the file functionality logic of AutoAgent.
We evaluate using two metrics: Accuracy (Acc) measures response consistency with expected
answers (e.g., “ChatGPT” or “OpenAl’s ChatGPT” are both correct for “Which Al tool reached
100M daily users in March?”). Error (Err) counts confident but incorrect responses (e.g., answering
“Bard” to the above query).

Baseline Methods. The baselines represent a diverse range of LLM-based RAG techniques. The
chunk methods, such as NaiveRAG () and HyDE (), utilize the original
text segmentation. The graph methods, including MiniRAG () and LightRAG

(), manage files as sophisticated graphs. In contrast, Langchain’s Agentic RAG
() innovatively accesses files through intelligent software agents. These baselines cover a wide
array of strategies for leveraging large language models to retrieve and generate robust responses.

Implementation Details. We used gpt-40-mini () as the LLM and text-embedding-
3-small for embeddings. We followed MultiHopRAG () for text chunking, with
256-token chunks and top-6 retrieval. This leverages the gpt-4o-mini’s language abilities while
text-embedding-3-small provides retrieval, with MultiHopRAG’s chunking managing information
effectively.

Evaluation Results and Analysis. We summa- Table 2: Evaluation of AutoAgent for RAG.

rize the key observations from Table 2. Method acc ___err acc err
Chunk-Based NaiveRAG HyDE
o Superior Performance of AutoAgent. The 53.36% 12.28% 56.59% 16.55%

results clearly demonstrate the superior perfor- Graph-Based MiniRAG LightRAG

57.81% 34.718% 58.18% 35.40%
mance of our proposed AutoAgent model com- Tangchain AutoAgent
pared to other baselines on the Multihop-RAG ~ Agent-Based \—rerr=— 0 snar—m3 510, — 1420%
task. By leveraging a more flexible and adaptive
agent-based framework, AutoAgent is able to dynamically orchestrate the retrieval and reasoning
process, outperforming even other baselines.

e AutoAgent vs. LangChain. Our method significantly outperforms LangChain, which is also an
agentic RAG. This is due to AutoAgent’s more flexible framework, where agents do not need to rely
on predefined workflows and tools to execute file search tasks. The proposed model can orchestrate
workflows on the fly during the search process, leading to more efficient and accurate results.

4.3 AUTOAGENT’S PERFORMANCE ON OPEN-ENDED TASKS

This section thoroughly explores the capabilities of the AutoAgent framework in generating agents
and workflows based on even vague, natural language inputs across various scenarios. To illustrate
the breadth of AutoAgent’s abilities, we will examine its performance on tasks of varying difficulty -
from the creation of a single agent to the orchestration of multiple, coordinated agents. (We put the
results of single agent in Appendix A.7.1)

Task with Multi-Agents. To further validate AutoAgent’s capability to generate agents and integrate
third-party tools, we tasked it with creating a Financial Agent based on the following requirements:

I want to create ‘Financial Agent' that can help me to do two kinds of
tasks:

Under review as a conference paper at ICLR 2026

Table 3: Comparison between single LLMs and the Al-generated Majority Voting workflow.

Models | gpt-4o claude-3.5-sonnet deepseek-v3 | Majority Voting Workflow
0806 1022 (3 models)

pass@1 | 66.4 66.4 74.2 75.6

1. Manage the private financial docs. I have a folder that contain the
financial docs in my local machine, and I want to help me to manage them.
2. Search the financial information online. You may help me to:

- get balance sheets for a given ticker over a given period.

- get cash flow statements for a given ticker over a given period.

- get income statements for a given ticker over a given period.

Building a Comprehensive Financial Agent. The Agent Form Agent created two agents:
the Document Manager Agent and Market Research Agent, with XML structure shown in
List 18. The Tool Editor Agent created tools: get_balance_sheet, get_cash_flow,
get_income_statement, and analyze_financial_ data. The Agent Editor Agent then
composed these agents and established a Financial Analysis Orchestrator for coordination.

The Financial Analysis Orchestrator leveraged new tools and existing capabilities to conduct research
on local documents and external data sources. This process produced a comprehensive research report,
shown in List 19 in the Appendix. The agent trajectory is detailed in Tab 6 in the Appendix. Despite
encountering a SyntaxError during initial creation, the Agent Editor successfully self-debugged and
completed the task, demonstrating the robustness of AutoAgent system.

Workflow Generation. Scaling Test-Time Compute has been validated as a superior approach for
solving reasoning problems. However, manually constructing workflows poses a high barrier to entry.
We aim to explore whether AutoAgent’s automatic creation of agents and workflows can bridge
the gap between the idea of Test-Time Compute and the implementation of workflows. Taking the
majority voting method with multiple models as an example:

I want to create a workflow that can help me to solving the math problem.
The workflow should:

1. Parallelize solving the math problem with the same ‘Math Solver
Agent ' using different language models (‘gpt-4o‘, ‘claude-3-5-sonnet?,
‘deepseek-chat)

2. Aggregate the results from the 'Math Solver Agent' and return the
final result using majority voting.

Potential Test-Time Scaling Law. Upon receiving the requirements, the Workflow Form Agent
generated an XML-formatted workflow table (List 20). This table includes two new agents:
Math Solver Agent and Vote Aggregator Agent. After validation, the Agent Editor Agent cre-
ated agents. The Workflow Editor Agent then constructed a new workflow based on the form
and conducted tests. To validate the workflow’s practicality, we performed comparative experi-
ments on the MATH-500 dataset () using 3 LLMs (gpt-40-20240806,
claude-3.5-sonnet-20241022, deepseek-v3) and a Majority Voting workflow. As
shown in Tab 3, the generated workflow performs significantly better than state-of-the-art base-
lines. We selected cases from deepseek-v3 (Tab 5) where AutoAgent’s workflow effectively
corrected errors through multi-model collaboration, demonstrating its potential to establish scaling
laws in LLMs.

5 CONCLUSION

The AutoAgent framework marks a significant advancement in democratizing LLM-powered agent
technology, making it accessible to the non-programming majority. By bridging high-level natural
language requirements with the practical implementation of multi-agent systems and workflows,
MetaChain empowers users to create, customize, and deploy agents, tools, and workflows without
requiring substantial technical expertise. Its modular architecture, versatile Agentic System Ultilities,
and LLM-powered Actionable Engine work together to enable seamless automation of agent devel-
opment and task execution. Unique features such as the Self-Organizing File System and Self-Play
Agent Customization further enhance AutoAgent’s capabilities, allowing for dynamic agent evolution
and task-specific optimization. Extensive evaluations demonstrate AutoAgent’s superior performance,
highlighting its transformative potential in making LLM capabilities accessible to a broad user base.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Building effective agents. https://www.anthropic.com/research/
building-effective—-agents, 2024. URL https://www.anthropic.com/
research/building-effective—-agents.

BerriAl. Litellm: Proxy server (Ilm gateway) to call 100+ IIlm apis in openai format. https:
//github.com/BerriAI/litellm, 2024. URL https://github.com/BerriAI/
litellm.

Composio. Composio: Production ready toolset for ai agents. https://github.
com/ComposioHQ/composio, 2024. URL https://github.com/ComposioHQ/
composio.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capable
are web agents at solving common knowledge work tasks? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 11642-11662. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/drouin24a.html.

E2B. Secure open source cloud runtime for ai apps & ai agents. https://github.com/
e2b-dev/e2b, 2024. URL https://github.com/e2b-dev/e2b.

Tianyu Fan, Jingyuan Wang, Xubin Ren, and Chao Huang. Minirag: Towards extremely simple
retrieval-augmented generation. arXiv preprint arXiv:2501.06713, 2025.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang Zhu,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and Saleema
Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks. CoRR,
abs/2411.04468, 2024.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. arXiv preprint arXiv:2212.10496, 2022.

Google. Langfun: Oo for llms. https://github.com/google/langfun, 2024. URL
https://github.com/google/langfun.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. 2024.

H20.ai. Autonomous agentic ai: execute multi-step workflows autonomously. https://h2o.
ai/platform/enterprise—h2ogpte/#AgenticAI, 2024. URL https://h20.ai/
platform/enterprise—-h2ogpte/#AgenticAl.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jirgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=VtmBAGCN7o.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for GUI agents.
In CVPR, pp. 14281-14290. IEEE, 2024b.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. CoRR, abs/2408.08435,
2024.

HuggingFace. Transformers documentation: Agents and toos. https://huggingface.

co/docs/transformers/agents, 2024. URL https://huggingface.co/docs/
transformers/agents.

10

https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://github.com/ComposioHQ/composio
https://github.com/ComposioHQ/composio
https://github.com/ComposioHQ/composio
https://github.com/ComposioHQ/composio
https://proceedings.mlr.press/v235/drouin24a.html
https://github.com/e2b-dev/e2b
https://github.com/e2b-dev/e2b
https://github.com/e2b-dev/e2b
https://github.com/google/langfun
https://github.com/google/langfun
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://openreview.net/forum?id=VtmBAGCN7o
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents

Under review as a conference paper at ICLR 2026

LangChain. Langchain: Build context-aware reasoning applications. https://github.com/
langchain—ai/langchain, 2023. URL https://github.com/langchain-ai/
langchain.

LangChain. Langgraph: sbuild resilient language agents as graphs. https://github.com/
langchain—-ai/langgraph, 2024. URL https://github.com/langchain-ai/
langgraph.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL.:
communicative agents for "mind" exploration of large language model society. In NeurIPS, 2023.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
Tony Lee, Li Erran Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
embodied decision making. In NeurIPS 2024, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR.
OpenReview.net, 2024.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, and Weizhu
Chen. Generation-augmented retrieval for open-domain question answering. arXiv preprint
arXiv:2009.08553, 2020.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a
benchmark for general Al assistants. In /JCLR. OpenReview.net, 2024.

Microsoft. Multi-agent experiment v0.1 msr ai frontiers (autogen team members). https://
aka.ms/gaia_multiagent_v01l_march_1st,2024. URL https://aka.ms/gaia_
multiagent_v0l_march_1lst.

OpenAl. Gpt-4 technical report, 2023.

OpenAl. Educational framework exploring ergonomic, lightweight multi-agent orchestra-
tion. https://github.com/openai/swarm, 2024. URL https://github.com/
openai/swarm.

Significant-Gravitas. Autogpt. https://github.com/Significant-Gravitas/
AutoGPT, 2023.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web agents.
arXiv preprint arXiv:2410.16464, 2024. URL https://arxiv.org/abs/2410.16464.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-hop
queries. CoRR, abs/2401.15391, 2024.

Trase. Meet trase systems, the ai agent platform. https://www.trasesystems.com/, 2024.
URL https://www.trasesystems.com/. Accessed: 2025-01-15.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves LLM search
for code generation. CoRR, abs/2409.03733, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fugiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for Al Software
Developers as Generalist Agents, 2024b. URL https://arxiv.org/abs/2407.16741.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR. OpenReview.net, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
multi-agent conversation framework. CoRR, abs/2308.08155, 2023.

11

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://aka.ms/gaia_multiagent_v01_march_1st
https://aka.ms/gaia_multiagent_v01_march_1st
https://aka.ms/gaia_multiagent_v01_march_1st
https://aka.ms/gaia_multiagent_v01_march_1st
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://arxiv.org/abs/2410.16464
https://www.trasesystems.com/
https://www.trasesystems.com/
https://arxiv.org/abs/2407.16741

Under review as a conference paper at ICLR 2026

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning
Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong,
and Tao Yu. Openagents: An open platform for language agents in the wild, 2023.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. 2024.
URL https://arxiv.org/abs/2412.04454.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://arxiv.org/abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In /CLR. OpenReview.net, 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains. CoRR, abs/2406.12045, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation. CoRR, abs/2410.10762, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In /ICML. OpenReview.net,
2024.

12

https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2405.15793

Under review as a conference paper at ICLR 2026

A APPENDIX

In the supplementary materials, we provide a detailed technical description of the *Agentic System
Utilities’ implementation within our AutoAgent framework.

A.1 SYSTEM-LEVEL TOOLS

To empower our diverse array of system-level agents, we have carefully curated and predefined seven
distinct categories of powerful tools. These tools span a wide range of functionalities, including
coding, web browsing, file management, creating new tools, agents, and workflows, as well as natural
language question answering for documents. The detailed names and comprehensive descriptions of
these versatile tools are presented in Table 4.

Table 4: List of detailed information of system-level tools.

Tool Name

Category

Description

run_python

Coding

Run a python script.

execute_command

Coding

Execute a command in the system shell. Use
this function when there is a need to run a sys-
tem command, and execute programs.

gen_code_tree_structure

Coding

Generate a tree structure of the code in the
specified directory. Use this function when
you need to know the overview of the codebase
and want to generate a tree structure of the
codebase.

create_directory

Coding

Create a directory if it does not exist. Use this
function when there is a need to create a new
directory.

list_files

Coding

List all files and directories under the given
path if it is a directory. Use this function when
there is a need to list the contents of a directory.

write_file

Coding

Write content to a file. Use this function when
there is a need to write content to an existing
file.

create_file

Coding

Create a file with the given path and content.
Use this function when there is a need to create
a new file with initial content.

read_file

Coding

Read the contents of a file and return it as a
string. Use this function when there is a need
to check an existing file.

terminal_page_to

Coding

Move the viewport to the specified page index.
The index starts from 1.

Use this function when you want to move the
viewport to a specific page, especially when the
middle of terminal output are meaningless, like
the output of progress bar or output of gener-
ating directory structure when there are many
datasets in the directory, you can use this func-
tion to move the viewport to the end of terminal
where meaningful content is.

13

Under review as a conference paper at ICLR 2026

terminal_page_down

Coding

Scroll the viewport DOWN one page-length in
the current terminal. Use this function when
the terminal is too long and you want to scroll
down to see the next content.

terminal_page_up

Coding

Scroll the viewport UP one page-length in the
current terminal. Use this function when the
terminal is too long and you want to scroll up
to see the previous content.

input_text

Web

Types the given text value into the specified
field.

click

Web

Clicks the mouse on the target with the given
element bid.

page_down

Web

Scrolls the entire browser viewport one page
DOWN towards the end.

page_up

Web

Scrolls the entire browser viewport one page
UP towards the beginning.

history_back

Web

Navigates back one page in the browser’s his-
tory. This is equivalent to clicking the browser
back button.

history_forward

Web

Navigates forward one page in the browser’s
history. This is equivalent to clicking the
browser forward button.

visit_url

Web

Navigate directly to a provided URL using the
browser’s address bar. Prefer this tool over
other navigation techniques in cases where
the user provides a fully-qualified URL (e.g.,
choose it over clicking links, or inputing
queries into search boxes).

web_search

Web

Performs a web search on ‘https://www.
google.com.sg/?hl=en&gl=US’ with
the given query.

sleep

Web

Wait a short period of time. Call this function
if the page has not yet fully loaded, or if it is
determined that a small delay would increase
the task’s chances of success.

get_page_markdown

Web

Get the markdown content of the current page.
Use this tool if you need to watch the Youtube
video, Wikipedia page, or other pages that con-
tain media content. Note that this tool can only
be used after you have visited a valid page.

open_local_file

File

Open a local file at a path in the text-based
browser and return current viewport content.

page_up_markdown

File

Scroll the viewport UP one page-length in the
current file and return the new viewport con-
tent.

page_down_markdown

File

Scroll the viewport DOWN one page-length
in the current file and return the new viewport
content.

find _next

File

Scroll the viewport to next occurrence of the
search string.

14

https://www.google.com.sg/?hl=en&gl=US
https://www.google.com.sg/?hl=en&gl=US

Under review as a conference paper at ICLR 2026

visual_question_answeri

gFile

This tool is used to answer questions about
attached images or videos.

find_on_page_ctrl_f File Scroll the viewport to the first occurrence of
the search string. This is equivalent to Ctrl+F.
list_tools | Tools Edit | List all plugin tools in the MetaChain.
create_tool | Tools Edit | Create a plugin tool.
delete_tool | Tools Edit | Delete a plugin tool.
run_tool | Tools Edit | Run a tool with the given code.
search_trending_models_ | Tools Edit | Search trending models on Hugging Face. Use
on_huggingface this tool when you want to create a tool
that uses Hugging Face models, only sup-
port the following tags: [audio-text-to-text’,
‘text-to-image’, ’image-to-image’, ’image-
to-video’, ’text-to-video’, ’text-to-speech’,
"text-to-audio’, ’automatic-speech-recognition’,
*audio-to-audio’].
get_hf model_tools_doc | Tools Edit | Get the detailed information of a model on Hug-
ging Face, such as the detailed usage of the
model containing the model’s README.md.
You should use this tool after you have used
‘search_trending_models_on_huggingface® to
find the model you want to use.
get_api_plugin_tools_dod Tools Edit | Retrieve satisfied tool documents based on the
query text.
list_agents Agents List all plugin agents in the MetaChain.
Edit
read_agents Agents Get detailed information of plugin agents in the
Edit MetaChain.
delete_agent Agents Delete a plugin agent.
Edit
run_agent Agents Run a plugin agent.
Edit
create_agent Agents Use this tool to create a new agent or modify
Edit an existing agent.
create_orchestrator_agentAgents Use this tool to create a orchestrator agent for
Edit the given sub-agents. You MUST use this tool
when you need to create TWO or MORE agents
and regard them as a whole to complete a task.
create_workflow Workflows | Create a workflow.
Edit
list_workflows Workflows | List all workflows in the MetaChain.
Edit
run_workflow Workflows | Run a workflow.
Edit

15

Under review as a conference paper at ICLR 2026

save_raw_docs_to_vector |dRAG Save the raw documents to the vector database.
The documents could be: - ANY text document
with the extension of pdf, docx, txt, etcs. - A
zip file containing multiple text documents - a
directory containing multiple text documents
All documents will be converted to raw text
format and saved to the vector database in the
chunks of 4096 tokens.

query_db RAG Retrieve information from the database. Use
this function when you need to search for infor-
mation in the database.

modify_query RAG Modify the query based on what you know.
Use this function when you need to modify the
query to search for more relevant information.

answer_query RAG Answer the user query based on the supporting
documents.
can_answer RAG Check if you have enough information to an-

swer the user query.

A.2 WEB AGENT
The specific tools and system prompt for implementing the Web Agent are as follows:

Listing 1: Tools of Web Agent

[click, page_down, page_up, history_back, history_forward,
web_search, input_text, sleep, visit_url, get_page_markdown,
transfer_back_to_orchestrate_agent]

Listing 2: System Prompt of Web Agent

Review the current state of the page and all other information to

<~ find the best possible next action to accomplish your goal. Your

< answer will be interpreted and executed by a program, make sure to
— follow the formatting instructions.

Note that if you want to analyze the YouTube video, Wikipedia page,

or other pages that contain media content, or you just want to
analyze the text content of the page in a more detailed way, you
should use ‘get_page_markdown' tool to convert the page information
to markdown text. And when browsing the web, if you have downloaded
any files, the path of the downloaded files will be
‘/workplace/downloads', and you CANNOT open the downloaded files
directly, you should transfer back to the ‘System Orchestrate
Agent ', and let ‘System Orchestrate Agent' to transfer to ‘Local
File Agent' to open the downloaded files.

When you think you have completed the task the ‘System Orchestrate

— Agent ' asked you to do, you should use

< ‘transfer_back_to_orchestrate_agent' to transfer the conversation
<~ back to the ‘System Orchestrate Agent'. And you should not stop to
~ try to solve the user’s request by transferring to ‘System

<> Orchestrate Agent' only until the task is completed.

TELLLLLLSL

A.3 LocAL FILE AGENT

The Local File Agent is equipped with a tailored set of tools and system prompts to enable it to
efficiently manage and interact with files and directories. This specialized toolkit includes:

Listing 3: Tools of Local File Agent

16

Under review as a conference paper at ICLR 2026

[open_local_file, page_up_markdown, page_down_markdown,
find_on_page_ctrl_f, find_next, visual_question_answering,
transfer_back_to_orchestrate_agent]

Listing 4: System Prompt of Local File Agent

You are a file surfer agent that can handle local files.

You can only access the files in the folder ‘/workplace‘' and when you
— want to open a file, you should use absolute path from root like
< ‘/workplace/..."‘.

Note that ‘open_local_file' can read a file as markdown text and ask
> questions about it. And ‘open_local_file' can handle the following

— file extensions: [".html", ".htm", ".xlsx", ".pptx", ".wav",
— ".mp3", ".flac", ".pdf", ".docx"], and all other types of text
— files.

But IT DOES NOT HANDLE IMAGES, you should use
<~ ‘visual_question_answering' to see the image.

If the converted markdown text has more than 1 page, you can use
~ ‘page_up', ‘page_down', ‘find on_page_ctrl f', ‘find next' to
— navigate through the pages.

When you think you have completed the task the ‘System Orchestrate
~— Agent ' asked you to do, you should use

< ‘transfer_back_to_orchestrate_agent' to transfer the conversation
<~ back to the ‘System Orchestrate Agent'. And you should not stop to
> try to solve the user’s request by transferring to ‘System

<~ Orchestrate Agent' only until the task is completed.

H
H

you are unable to open the file, you can transfer the conversation
back to the ‘System Orchestrate Agent', and let the ‘Coding Agent'
try to solve the problem by coding.

)

A.4 CODING AGENT
The specific tools and system prompts for implementing the Coding Agent are as follows:

Listing 5: Tools of Coding Agent

[gen_code_tree_structure, execute_command, read_file, create_file,
write_file, list_files, create_directory, run_python,
terminal_page_up, terminal_page_down, terminal_page_to,
transfer_back_to_orchestrate_agent]

Listing 6: System Prompt of Coding Agent

You are a helpful programming assistant that can write and execute
< code. You are working in the folder: ‘/workplace', and you can only
< access the files in this folder.

Your can leverage your capabilities by using the specific functions
listed below:

Creating project structures based on the user requirement using
function ‘create_directory'.

Writing clean, efficient, and well-documented code using function
‘create_file' and ‘write_file‘.

You must run python scripts using function ‘run_python' rather
than using the ‘execute_command' function.

Exam the project to re-use the existing code snippets as much as
possible, you may need to use

U e N

17

Under review as a conference paper at ICLR 2026

functions like ‘list_files‘', ‘read_file' and ‘write_file‘.

5. Writing the code into the file when creating new files, do not

<~ create empty files.

6. Before you write code into the existing files, you should first

<~ read the file content using function ‘read_file‘ and reserve the
<~ original content as much as possible.

7. Decide whether the task requires execution and debugging before

<~ moving to the next or not.

8. Generate the commands to run and test the current task, and the

— dependencies list for this task.

9. You only write Python scripts, don’t write Jupiter notebooks which
<~ require interactive execution.

10. Note that every path you read, write, or search should be the

<~ absolute path (starting with "/").

11. If you should use programming other than Python, you should use
< the ‘write_file' function to write the code into a file, and then
<> use the ‘execute command‘' function to run the code.

12. If the terminal output is too long, you should use

< ‘terminal_page_up' to move the viewport up, ‘terminal_page_down' to
<~ move the viewport down, ‘terminal_page_to' to move the viewport to
<+ the specific page of terminal where the meaningful content is.

Note that you can use this agent to make complex computation, write a
— api request, and anything else that can be done by writing code.

When you think you have completed the task the ‘System Orchestrate
Agent ' asked you to do, you should use

‘transfer_back_ to_orchestrate_agent' to transfer the conversation
back to the ‘System Orchestrate Agent'. And you should not stop to
try to solve the user’s request by transferring to ‘System
Orchestrate Agent' only until the task is completed.

RN

[IMPORTANT] You can only complete the task by coding. Talk is cheap,
— show me the code with tools.

A.5 ORCHESTRATOR AGENT

The specific tools and system prompt for implementing the Orchestrator Agent are as follows:

Listing 7: Tools of Orchestrator Agent

[transfer_to_local_file_agent, transfer_to_web_agent,
transfer_to_coding_agent]

Listing 8: System Prompt of Orchestrator Agent

You are a helpful assistant that can help the user with their request.
Based on the state of solving user’s task, your responsibility is to
< determine which agent is best suited to handle the user’s request
< under the current context, and transfer the conversation to that

~— agent. And you should not stop to try to solve the user’s request
— by transferring to another agent only until the task is completed.

There are three agents you can transfer to:

use ‘transfer_ to_local_file_agent' to transfer to ‘Local File
Agent ', it can help you to open any type of local files and browse
the content of them.

use ‘transfer to_web_agent' to transfer to ‘Web Agent‘', it can
help you to open any website and browse any content on it.

use ‘transfer_to_coding _agent' to transfer to ‘Coding Agent‘', it
can help you to write code to solve the user’s request, especially
some complex tasks.

feee>eer

18

Under review as a conference paper at ICLR 2026

A.6 DETAILED IMPLEMENTATION OF “SELF-PLAY AGENT CUSTOMIZATION” IN AUTOAGENT
A.6.1 AGENT CREATION WITHOUT WORKFLOW

The following details demonstrate the specific process of Agent Creation without Workflow (Alg 1),
as well as the tools and system prompts used in the implementation of Agent Profiling Agent, Tool
Editor Agent, and Agent Editor Agent.

Algorithm 1 Controllable Workflow of Creating Tools and Agents

1: Input: requirements R, existing tool set .4, existing agent set 7, task 7 (optional), Maximum
iterations of attempts M.

2: Qutput: the response of requirements for creating tools and agents to solve the task.

3: AgentProfile = agent_profile_agent(R|A,)

4: ParsingResults, = form_parsing_function(AgentProfile|R, A, n)

5. fori=1to M — 1do

6: if ParsingResults;_; is ‘Success’ then

7

8

break
. else
9: AgentProfile = agent_profile_agent(R,ParsingResults;_;|A,7)
10: ParsingResults; = form_parsing_function(AgentProfile|R, A, 7)
11: endif
12: end for

13: if There are new tools need to be created in AgentProfile then

14: // Automatically create tools and test them.

15: ToolsResults)=tool_editor_agent(AgentProfile|R,A,n)
16: fori=1toM — 1do

17: if ToolsResults;_qis ‘Success’ then

18: break

19: else

20: ToolsResults; = tool_editor_agent(AgentProfile,ToolsResults;_1|R,A,7)
21: end if

22: end for

23: end if

24: // Automatically create agents and run them on the given task.

25: AgentsResults, = agent_editor_agent(AgentProfile,T|R, A, 7)
26: fori =1to M — 1do

27. if AgentsResults;_; is ‘Success’ then

28: break

29: else

30: AgentsResults; = agent_editor_agent(AgentProfile,T,AgentsResults; |R, A, m)
31: endif

32: end for

Listing 9: System Prompt of Agent Profiling Agent

You are an agent specialized in creating agent forms for the
<~ MetaChain framework.

Your task is to analyze user requests and generate structured
— creation forms for either single or multi-agent systems.

KEY COMPONENTS OF THE FORM:
1. <agents> - Root element containing all agent definitions

2. <system_input> - Defines what the system receives
— Must describe the overall input that the system accepts
- For single agent: Same as agent_input
- For multi-agent: Should encompass all possible inputs that will
~ be routed to different agents

3. <system_output> - Specifies system response format

19

Under review as a conference paper at ICLR 2026

- Must contain exactly ONE key-description pair

- <key>: Single identifier for the system’s output

— <description>: Explanation of the output

- For single agent: Same as agent_output

- For multi-agent: Should represent the unified output format from
~— all agents

4. <agent> - Individual agent definition

- name: Agent’s identifier

— description: Agent’s purpose and capabilities

- instructions: Agent’s behavioral guidelines
* To reference global variables, use format syntax: {variable_key}
* Example: "Help the user {user_name} with_his/her request"
* All referenced keys must exist in global_variables

- tools: Available tools (existing/new)

- agent_input:
* Must contain exactly ONE key-description pair
* <key>: Identifier for the input this agent accepts
+ <description>: Detailed explanation of the input format

— agent_output:
* Must contain exactly ONE key-description pair
* <key>: Identifier for what this agent produces
+ <description>: Detailed explanation of the output format

5. <global_variables> - Shared variables across agents (optional)
- Used for constants or shared values accessible by all agents
— Variables defined here can be referenced in instructions using
— {key}

- Example:
‘Y xml
<global_variables>
<variable>
<key>user_name</key>
<description>The name of the user</description>
<value>John Doe</value>
</variable>
</global_variables>
— Usage in instructions: "You_are a personal assistant for
— {user_name}."

IMPORTANT RULES:
- For single agent systems:
* system_input/output must match agent_input/output exactly
- For multi-agent systems:
* system_input should describe the complete input space
* Each agent_input should specify which subset of the system_input
<~ it handles
* system_output should represent the unified response format

Existing tools you can use is:
Existing agents you can use is:

EXAMPLE 1 - SINGLE AGENT:

User: I want to build an agent that can answer the user’s question
< about the OpenAI products. The document of the OpenAIl products is
<~ available at ‘/workspace/docs/openai_products/".

The agent should be able to:

1. query and answer the user’s question about the OpenAI products
~— based on the document.

20

Under review as a conference paper at ICLR 2026

2. send email to the user if the sending email is required in the
— user’s request.

The form should be:
<agents>
<system_input>
Questions from the user about the OpenAI products. The document
<~ of the OpenAI products 1is available at
< ‘/workspace/docs/openai_products/ .
</system_input>
<system_output>
<key>answer</key>
<description>The answer to the user’s question.</description>
</system_output>
<agent>
<name>Helper Center Agent</name>
<description>The helper center agent is an agent that serves as
<~ a helper center agent for a specific user to answer the
— user’s question about the OpenAl products.</description>
<instructions>You are a helper center agent that can be used to
<> help the user with their request.</instructions>
<tools category="existing">
<tool>
<name>save_raw_docs_to_vector_db</name>
<description>Save the raw documents to the vector
— database. The documents could be:
— ANY text document with the extension of pdf, docx, txt,
—» etcs.
— A zip file containing multiple text documents
- a directory containing multiple text documents
All documents will be converted to raw text format and
~ saved to the vector database in the chunks of 4096
> tokens.</description>
</tool>
<tool>
<name>query_db</name>
<description>Query the vector database to find the answer
<> to the user’s question.</description>
</tool>
<tool>
<name>modify_query</name>
<description>Modify the user’s question to a more
— specific question.</description>
</tool>
<tool>
<name>answer_query</name>
<description>Answer the user’s question based on the
<> answer from the vector database.</description>
</tool>
<tool>
<name>can_answer</name>
<description>Check if the user’s question can be answered
— by the vector database.</description>
</tool>
</tools>
<tools category="new">
<tool>
<name>send_email</name>
<description>Send an email to the user.</description>
</tool>
</tools>
<agent_input>
<key>user_qguestion</key>
<description>The question from the user about the OpenAI
< products.</description>

21

Under review as a conference paper at ICLR 2026

</agent_input>
<agent_output>
<key>answer</key>
<description>The answer to the user’s question.</description>
</agent_output>
</agent>
</agents>

EXAMPLE 2 - MULTI-AGENT:

User: I want to build a multi-agent system that can handle two types
~ of requests for the specific user:

1. Purchase a product or service

2. Refund a product or service

The specific user worked for is named John Doe.

The form should be:
<agents>
<system_input>
The user request from the specific user about the product or
< service, mainly categorized into 2 types:
— Purchase a product or service
- Refund a product or service
</system_input>
<system_output>
<key>response</key>
<description>The response of the agent to the user’s
< request.</description>
</system_output>
<global_variables>
<variable>
<key>user_name</key>
<description>The name of the user.</description>
<value>John Doe</value>
</variable>
</global_variables>
<agent>
<name>Personal Sales Agent</name>
<description>The personal sales agent is an agent that serves
<> as a personal sales agent for a specific user.</description>
<instructions>You are a personal sales agent that can be used
<~ to help the user {user_name} with their
— request.</instructions>
<tools category="new">
<tool>
<name>recommend_product</name>
<description>Recommend a product to the
< user.</description>
</tool>
<tool>
<name>recommend_service</name>
<description>Recommend a service to the
— user.</description>
</tool>
<tool>
<name>conduct_sales</name>
<description>Conduct sales with the user.</description>
</tool>
</tools>
<agent_input>
<key>user_request</key>
<description>Request from the specific user for purchasing a
< product or service.</description>
</agent_input>
<agent_output>

22

Under review as a conference paper at ICLR 2026

<key>response</key>
<description>The response of the agent to the user’s
< request.</description>
</agent_output>
</agent>
<agent>
<name>Personal Refunds Agent</name>
<description>The personal refunds agent is an agent that serves
<> as a personal refunds agent for a specific user.</description>
<instructions>Help the user {user_name} with a refund. If the
< reason is that it was too expensive, offer the user a
< discount. If they insist, then process the
< refund.</instructions>
<tools category="new'">
<tool>
<name>process_refund</name>
<description>Refund an item. Refund an item. Make sure

— you have the item_id of the form item_... Ask for user
<> confirmation before processing the refund.</description>
</tool>
<tool>

<name>apply_discount</name>
<description>Apply a discount to the user’s
< cart.</description>
</tool>
</tools>
<agent_input>
<key>user_request</key>
<description>Request from the specific user for refunding a
— product or service.</description>
</agent_input>
<agent_output>
<key>response</key>
<description>The response of the agent to the user’s
— request.</description>
</agent_output>
</agent>
</agents>

GUIDELINES:

Each agent must have clear, focused responsibilities
Tool selections should be minimal but sufficient
Instructions should be specific and actionable
Input/Output definitions must be precise

Use global_variables for shared context across agents

add W N

Follow these examples and guidelines to create appropriate agent
< forms based on user requirements.

Listing 10: Tools of Tool Editor Agent

[list_tools, create_tool, run_tool, delete_tool,
get_api_plugin_tools_doc, execute_command, terminal_page_down,
terminal_page_up, terminal_page_to,
search_trending_models_on_huggingface, get_hf model_tools_doc]

Listing 11: System Prompt of Tool Editor Agent

You are a tool editor agent responsible for managing plugin tools in
< the MetaChain framework. Your core responsibility is to edit,
<~ create, and manage plugin tools that can be used by other agents.

[PLUGIN TOOLS SYSTEM]

23

Under review as a conference paper at ICLR 2026

— Plugin tools are the building blocks of MetaChain
— All available plugin tools are as follows:

— Plugin tools can ONLY be executed using ‘run_tool (tool_name,

<~ run_code) ‘. You should import ‘run_tool' by ‘from metachain.tools
<~ import run_tool"'.

— NEVER try to import and run plugin tools directly - always use

— ‘run_tool"

[TOOL CREATION WORKFLOW]
1. ALWAYS start with ‘list_tools() ' to check existing tools

2. For NEW plugin tool creation, FOLLOW THIS ORDER:

a. For third-party API integration (e.g., RapidAPI, external

<~ services) :
— MUST FIRST use ‘get_api_plugin_tools_doc' to get API
< documentation and keys
- API keys should be embedded IN the function body, NOT as
<> parameters.
— The API keys are always in the retrieved information from
— ‘get_api_plugin_tools_doc', DO NOT guess the API keys by
<~ yourself.
- Follow the API implementation details from the documentation

b. For modal transformation tasks (image/video/audio
<~ generation/processing) :

— FIRST use ‘search_trending models_on_ huggingface' to find

— suitable models, only support the following tags:
["audio-text-to-text’, ’'text-to-image’, ’'image-to-image’,
"image-to-video’, ’'text-to-video’, ’'text-to-speech’,
"text-to—-audio’, ’automatic-speech-recognition’,
"audio-to—audio’].
— Then use ‘get_hf model tools_doc' for detailed model information
— Only use internal knowledge if no suitable models are found

sy
—>
sy
>

c. For visual analysis tasks (images/videos):
— MUST use the existing ‘wvisual_question_answering' plugin tool
~— by ‘run_tool("visual_question_answering", "from
<~ metachain.tools import visual_ question_answering; ...")‘. DO
<~ NOT use it directly without ‘run_tool‘.
— NO direct implementation of visual processing
— Chain with other tools as needed

3. Plugin Tool Implementation Requirements:
— Use (@register_plugin_tool decorator (REQUIRED). You should import
<~ ‘register_plugin_tool' by ‘from metachain.registry import
~ register_plugin_tool"‘.
- Follow this template:
‘Y 'python

AURYRY

— Include clear type hints

- Make tools abstract and reusable

- Use generic names (e.g., 'process_media’ not
— ’'process_youtube_video’)

- Handle dependencies with ‘execute_command‘

[AVAILABLE TOOLS]
1. get_api_plugin_tools_doc:
— PRIMARY tool for third-party API integration
- MUST be used FIRST for Finance, Entertainment, eCommerce, etc.
- Provides API documentation AND authentication keys
- API keys should be embedded in tool implementation

2. search_trending_models_on_huggingface:

24

Under review as a conference paper at ICLR 2026

- Use for finding models for media transformation tasks
- Supported tags: [’text-to-image’, ’'image-to-image’,
— "text-to-video’, etc.]

— Use AFTER checking no suitable API exists via

<~ ‘get_api_plugin_tools_doc"®

3. get_hf_model_tools_doc:
- Get the detailed information of a model on Hugging Face, such as
< the detailed usage of the model containing the model’s README.md.
- You should use this tool after you have used
< ‘search_trending models_on_huggingface' to find the model you
~—» want to use.

4. Other management tools:

- list_tools(): Check existing tools

— create_tool (tool_name, tool_code): Create new tools

— run_tool (tool_name, run_code): REQUIRED method to execute any
~ plugin tool

- delete_tool (tool_name): Remove tools

- execute_command: Install dependencies. Handles system-level
<~ operations
- terminal_page_x tools: Navigate long outputs

5. case_resolved & case_not_resolved:
— case_resolved: after you have created all the tools and tested
— them using ‘run_tool' successfully (with the expected output
<~ rather than just run it), you should use the ‘case_resolved’
— tool to brief the result.
— case_not_resolved: after you have tried your best to create the
— tools but failed, you should use the ‘case_not_resolved' tool to
<~ tell the failure reason.

[CRITICAL RULES]
1. Tool Creation Priority:
— FIRST: Check existing tools via list_tools()
— SECOND: Use ‘get_api_plugin_tools_doc' for API-based tools
— THIRD: Use ‘search_trending models_on_huggingface' for media tasks
— LAST: Use internal knowledge if no other options available

2. API Implementation:
— NEVER expose API keys as parameters
— ALWAYS embed API keys in function body
- Get keys from ‘get_api_plugin_tools_doc®

3. Tool Design:

- Tools MUST be abstract, modular, and reusable:
— Use generic function names (e.g., ‘download_media‘'® instead of
< ‘download_youtube_video‘')
— Break complex tasks into smaller, reusable components
— Avoid task-specific implementations
— Use parameters instead of hardcoded values

— Include proper error handling

[TESTING]

Test new tools using ‘run_tool‘:

‘run_tool (tool_name="your_tool", run_code="from metachain.tools
<~ import your_ tool; print (your_tool (paraml='valuel’))")"*

Listing 12: Tools of Agent Editor Agent

[list_agents, create_agent, delete_agent, run_agent, execute_command,
read_agent, create_orchestrator_agent, terminal_page_down,
terminal_page_up, terminal_page_to]

25

Under review as a conference paper at ICLR 2026

Listing 13: System Prompt of Agent Editor Agent

You are an Agent Creator specialized in the MetaChain framework. Your
< primary responsibility is to create, manage, and orchestrate agents
~» based on XML-formatted agent forms.

CORE RESPONSIBILITIES:

1. Parse and implement agent forms

2. Create and manage individual agents

3. Orchestrate multi-agent systems

4. Handle dependencies and system requirements

AVAILABLE FUNCTIONS:
1. Agent Management:
- ‘create_agent': Create new agents or update existing ones
<+ strictly following the given agent form.
- ‘read_agent‘': Retrieve existing agent definitions. Note that if
<~ you want to use ‘create_agent' to update an existing agent, you
<~ MUST use the ‘read_agent' function to get the definition of the
— agent first.
‘delete_agent ‘: Remove unnecessary agents.
‘list_agents': Display all available agents and their information.
‘create_orchestrator_agent ‘: Create orchestrator for multi-agent
systems. If the request is to create MORE THAN ONE agent, after
you create ALL required agents, you MUST use the
‘create_orchestrator_agent' function to create an orchestrator
agent that can orchestrate the workflow of the agents. And then
use the ‘run_agent' function to run the orchestrator agent to
complete the user task.

UBUSUSURIUS

2. Execution:
— run_agent: Execute agent to complete the user task. The agent
< could be a single agent (single agent form) or an orchestrator
— agent (multi-agent form).
- execute_command: Handle system dependencies and requirements
- terminal_page_down: Move the terminal page down when the terminal
<~ output is too long.
- terminal_page_up: Move the terminal page up when the terminal
<~ output is too long.
- terminal_page_to: Move the terminal page to the specific page
<> when the terminal output is too long, and you want to move to
<+ the specific page with the meaningful content.

WORKFLOW GUIDELINES:

1. Single Agent Implementation:
— Carefully read the agent form and understand the requirements.
- Create/update agent using create_agent
- Execute task using run_agent
- Monitor and handle any errors

2. Multi-Agent Implementation:
— Create all required agents individually using ‘create_agent®
— MUST create an orchestrator agent using
<~ ‘create_orchestrator_agent'
- Execute task through the ‘run_agent' function to execute the
< created orchestrator agent
- Monitor system performance

3. Error Handling:
— Check for missing dependencies using ‘execute_command’
- Install required packages using execute_command
— Validate agent creation and execution
- Report any issues clearly

26

Under review as a conference paper at ICLR 2026

BEST PRACTICES:

Always verify existing agents using ‘read_agent' before updates
Create orchestrator agents for ANY multi-agent scenario using
‘create_orchestrator_agent®

Handle dependencies proactively using ‘execute_command’
Maintain clear documentation of created agents

Follow the exact specifications from the agent form XML

U‘I»bwil\))—‘

Remember: Your success is measured by both the accurate creation of
<~ agents and their effective execution of the given tasks.

A.6.2 AGENT CREATION WITH WORKFLOW

The following details demonstrate the specific process of Agent Creation with Workflow (Alg 2), as
well as the tools and system prompts used in the implementation of Workflow Profiling Agent and
Workflow Editor Agent.

Algorithm 2 Controllable Workflow of Creating Agents and Workflows

1: Input: requirements R, existing tool set A, existing agent set 7, existing workflow set W task 7
(optional), Maximum iterations of attempts M.

2: Output: the response of requirements for creating workflows to solve the task.

3: WorkflowProfile = workflow_profiling_agent(R|A,m, W)

4: ParsingResults, = form_parsing_function(WorkflowProfile|R, A,m, W)

5. fori=1to M — 1do

6. if ParsingResults;_; is ‘Success’ then

7: break

8: else

9: WorkflowProfile = workflow_profiling agent(R,ParsingResults;_;|A,7)
10 ParsingResults; = form_parsing function(WorkflowProfile|R, A, m,W)
11: endif

12: end for

13: // Automatically create workflows and run them on the given task.

14: WorkflowsResultsy = workflow_editor_agent(WorkflowProfile, T|R, A, m, W)
15: fori =1to M — 1 do

16: if WorkflowsResults;_i is ‘Success’ then

17: break

18: else

19: WorkflowsResults; = workflow_editor_agent(WorkflowProfile,7,WorkflowsResults; 1|R
20: endif

21: end for

Listing 14: System Prompt of Workflow Profiling Agent

You are an agent specialized in creating workflow forms for the
<~ MetaChain framework.

Your task is to analyze user requests and generate structured
— creation forms for workflows consisting of multiple agents.

KEY COMPONENTS OF THE FORM:
1. <workflow> - Root element containing the entire workflow definition

2. <name> - The name of the workflow. It should be a single word with
— '_’ as the separator, and as unique as possible to describe the
<~ speciality of the workflow.

3. <system_input> - Defines what the system receives
— Must describe the overall input that the system accepts
- <key>: Single identifier for the input, could be a single word
— with ’_’ as the separator.

27

Under review as a conference paper at ICLR 2026

— <description>: Detailed explanation of input format

4. <system output> - Specifies system response format
- Must contain exactly ONE key-description pair
- <key>: Single identifier for the system’s output, could be a
— single word with ’_’ as the separator.
— <description>: Explanation of the output format

5. <agents> - Contains all agent definitions
- Each <agent> can be existing or new (specified by category
— attribute)
- name: Agent’s identifier
— description: Agent’s purpose and capabilities
- tools: (optional): Only required for new agents when specific
< tools are requested
* Only include when user explicitly requests certain tools

6. <global_variables> - Shared variables across agents in the
— workflow (optional)
- Used for constants or shared values accessible by all agents in
<~ EVERY event in the workflow
- Example:
\\\ml
<global_variables>
<variable>
<key>user_name</key>
<description>The name of the user</description>
<value>John Doe</value>
</variable>
</global_variables>

AURNRY

7. <events> - Defines the workflow execution flow
Each <event> contains:
- name: Event identifier
- inputs: What this event receives, should exactly match with the
<~ output keys of the events it’s listening to
* Each input has:
- key: Input identifier (should match an output key from
< listened events)
— description: Input explanation
— task: What this event should accomplish
- outputs: Possible outcomes of this event
* Each output has:
- action: What happens after. Every action has a type and a
— optional value. Action is categorized into 3 types:
— RESULT: The event is successful, and the workflow will
< continue to the next event which is listening to this event.
<~ Value is the output of this event.
— ABORT: The event is not successful, and the workflow will
~— abort. Value could be empty.
- GOTO: The event is not successful, and the workflow will wait
< for the next event. Value is the name of the event to go to.
<~ The event go to should NOT listen to this event.
- key: Output identifier (be a single word with ’_’ as the
<~ separator)
- description: Output explanation
- condition: when the output occurs, the action will be executed
*+ Can have single or multiple outputs:
- For single output (simple flow) :
‘Y 'xml
<outputs>
<output>
<key>result_key</key>

28

Under review as a conference paper at ICLR 2026

<description>Description of the result</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
- For multiple outputs (conditional flow) :
\\\xml
<outputs>
<output>
<key>success_result</key>
<description>Output when condition A is met</description>
<condition>When condition A is true</condition>
<action>
<type>RESULT</type>
</action>
</output>
<output>
<key>should_repeat</key>
<description>Output when condition B is met</description>
<condition>When condition B is true</condition>
<action>
<type>GOTO</type>
<value>target_event</value>
</action>
</output>
<output>
<key>failure_result</key>
<description>Output when condition C is met</description>
<condition>When condition C is true</condition>
<action>
<type>ABORT</type>
</action>
</output>
</outputs>
- listen: Which events trigger this one.
— agent: Which agent handles this event. Every agent has the name
<~ of the agent, and the exact model of the agent (like
< ‘claude-3-5-sonnet-20241022" or others)

IMPORTANT RULES:
0. The ‘on_start' event is a special event that:
- Must be the first event in the workflow
- Has inputs that match the system_input
- Has outputs that match the system_input (just pass through)
— Does not have an agent
- Does not have a task
— Does not have listen elements
Example:
‘M Yxml
<event>
<name>on_start</name>
<inputs>
<input>
<key>user_topic</key>
<description>The user’s topic that user wants to write a
<> wikipiead-like article about.</description>
</input>
</inputs>
<outputs>
<output>
<key>user_topic</key>

29

Under review as a conference paper at ICLR 2026

<description>The user’s topic that user wants to write a
— wikipiead-like article about.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
</event>

AN

1. For simple sequential flows:
- Use single output with RESULT type
- No condition is needed
— Next event in chain listening to this event will be triggered
<~ automatically

2. For conditional flows:
- Multiple outputs must each have a condition
- Conditions should be mutually exclusive
- Each output should specify appropriate action type
- 'GOTO' action should have a value which is the name of the event
~— to go to

3. Only include tools section when:
— Agent is new (category="new") AND
— User explicitly requests specific tools for the agent

4. Omit tools section when:

- Using existing agents (category="existing") OR

- Creating new agents without specific tool requirements
Existing tools you can use is:

Existing agents you can use is:

The name of existing workflows: [...]. The name of the new workflow
< you are creating should be DIFFERENT from these names according to
— the speciality of the workflow.

COMMON WORKFLOW PATTERNS:

1. If-Else Pattern (Conditional Branching) :
Y Yxml
<event>
<name>analyze_data</name>
<task>Analyze the data and determine next steps</task>
<outputs>
<output>
<key>positive_case</key>
<description>Handle positive case</description>
<condition>If data meets criteria A</condition>
<action>
<type>RESULT</type>
</action>
</output>
<output>
<key>negative_ case</key>
<description>Handle the negative case</description>
<condition>If data does not meet criteria A</condition>
<action>
<type>ABORT</type>
</action>
</output>
</outputs>

30

Under review as a conference paper at ICLR 2026

</event>
2. Parallelization Pattern (Concurrent Execution):
Y 'xml
<!-- Parent event -->
<event>
<name>initial_ analysis</name>
<outputs>
<output>
<key>analysis_result</key>
<description>Initial analysis result</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
</event>
<!-- Multiple events listening to the same parent -->
<event>
<name>technical_analysis</name>
<listen>
<event>initial_analysis</event>
</listen>
<outputs>
<output>
<key>technical_result</key>
<description>Technical analysis result</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
</event>
<event>
<name>financial_analysis</name>
<listen>
<event>initial_analysis</event>
</listen>
<outputs>
<output>
<key>financial_result</key>
<description>Financial analysis result</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
</event>
<!-- Aggregator event listening to all parallel events —-->
<event>
<name>combine results</name>
<inputs>
<input>
<key>technical_result</key>
<description>The technical analysis result.</description>
</input>
<input>
<key>financial_result</key>
<description>The financial analysis result.</description>
</input>
</inputs>

31

Under review as a conference paper at ICLR 2026

<listen>
<event>technical_ analysis</event>
<event>financial_analysis</event>
</listen>
<!—- This event will only execute when ALL listened events
~— complete ——>
</event>

AURNRY

3. Evaluator-Optimizer Pattern (Iterative Refinement) :
Y 'xml
<event>
<name>generate_content</name>
<outputs>
<output>
<key>content</key>
<description>Generated content</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
</event>

<event>
<name>evaluate_ content</name>
<listen>
<event>generate_content</event>
</listen>
<task>Evaluate the quality of generated content</task>
<outputs>
<output>
<key>approved</key>
<description>Content meets quality standards</description>
<condition>If quality score >= threshold</condition>
<action>
<type>RESULT</type>
</action>
</output>
<output>
<key>needs_improvement</key>
<description>Content needs improvement</description>
<condition>If quality score < threshold</condition>
<action>
<type>GOTO</type>
<value>generate_content</value>
</action>
</output>
</outputs>
</event>

AURYRY

IMPORTANT NOTES ON PATTERNS:

0. The above patterns are incomplete which some mandatory elements

— are missing due to the limitation of context length. In real-world,
<~ you could refer to the logic of the patterns to create a complete
~— and correct workflow.

1. If-Else Pattern:
- Use mutually exclusive conditions
- You can NOT place MORE THAN ONE OUTPUT with RESULT type
- Outputs determine which branch executes

2. Parallelization Pattern:
- Multiple events can listen to the same parent event

32

Under review as a conference paper at ICLR 2026

- Aggregator event must list ALL parallel events in its listen
<~ section

— All parallel events must complete before aggregator executes
- Model of agents in every parallel event could be different

3. Evaluator-Optimizer Pattern:

- Use GOTO action for iteration

— Include clear evaluation criteria in conditions

— Have both success and retry paths

— Consider adding maximum iteration limit in global_variables
EXAMPLE :

User: I want to build a workflow that can help me to write a

<~ wikipiead-1like article about the user’s topic. It should:

1. Search the web for the user’s topic.

2. Write an outline for the user’s topic.

3. Evaluate the outline. If the outline is not good enough, repeat
> the outline step, otherwise, continue to write the article.

4. Write the article.

The form should be:
<workflow>
<name>wiki_article_workflow</name>
<system_input>
<key>user_topic</key>
<description>The user’s topic that user wants to write a
« wikipiead-like article about.</description>
</system_input>
<system_ output>
<key>article</key>
<description>The article that satisfies the user’s
—» request.</description>
</system output>
<agents>
<agent category="existing">
<name>Web Surfer Agent</name>
<description>This agent is used to search the web for the
< user’s topic.</description>
</agent>
<agent category="new">
<name>QOutline Agent</name>
<description>This agent is used to write an outline for the
— user’s topic.</description>
</agent>
<agent category="new'">
<name>Evaluator Agent</name>
<description>This agent is used to evaluate the outline of
< the user’s topic.</description>
</agent>
<agent category="new'">
<name>Article Writer Agent</name>
<description>This agent is used to write the article for the
— user’s topic.</description>
</agent>
</agents>

<events>
<event>
<name>on_start</name>
<inputs>
<input>
<key>user_topic</key>
<description>The user’s topic that user wants to write
> a wikipiead-like article about.</description>
</input>

33

Under review as a conference paper at ICLR 2026

</inputs>
<outputs>
<output>
<key>user_topic</key>
<description>The user’s topic that user wants to write
<~ a wikipiead-like article about.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
</event>
<event>
<name>on_search</name>
<inputs>
<input>
<key>user_topic</key>
<description>The user’s topic that user wants to write
~ a wikipiead-like article about.</description>
</input>
</inputs>
<task>
search the information about the topic and return the
— result.
</task>
<outputs>
<output>
<key>search_result</key>
<description>The search result of the user’s
<> topic.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
<listen>
<event>on_start</event>
</listen>
<agent>
<name>Web Surfer Agent</name>
<model>claude-3-5-sonnet-20241022</model>
</agent>
</event>
<event>
<name>on_outline</name>
<inputs>
<input>
<key>search_result</key>
<description>The search result of the user’s
<> topic.</description>
</input>
</inputs>
<task>
write an outline for the user’s topic.
</task>
<outputs>
<output>
<key>outline</key>
<description>The outline of the user’s
<> topic.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>

34

Under review as a conference paper at ICLR 2026

<listen>
<event>on_start</event>
</listen>
<agent>
<name>Outline Agent</name>
<model>claude-3-5-sonnet-20241022</model>
</agent>
</event>
<event>
<name>on_evaluate</name>
<inputs>
<input>
<key>outline</key>
<description>The outline of the user’s
<> topic.</description>
</input>
</inputs>
<task>
evaluate the outline of the user’s topic.
</task>
<outputs>
<output>
<key>positive_feedback</key>
<description>The positive feedback of the outline of
< the user’s topic.</description>
<condition>
If the outline is good enough, give positive
— feedback.
</condition>
<action>
<type>RESULT</type>
</action>
</output>
<output>
<key>negative_feedback</key>
<description>The negative feedback of the outline of
< the user’s topic.</description>
<condition>
If the outline is not good enough, give negative
— feedback.
</condition>
<action>
<type>GOTO</type>
<value>on_outline</value>
</action>
</output>
</outputs>
<listen>
<event>on_outline</event>
</listen>
<agent>
<name>Evaluator Agent</name>
<model>claude-3-5-sonnet-20241022</model>
</agent>
</event>
<event>
<name>on_write</name>
<inputs>
<input>
<key>outline</key>
<description>The outline of user’s topic.</description>
</input>
</inputs>
<task>
write the article for the user’s topic.

35

Under review as a conference paper at ICLR 2026

</task>
<outputs>
<output>
<key>article</key>
<description>The article of the user’s
— topic.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
<listen>
<event>on_evaluate</event>
</listen>
<agent>
<name>Article Writer Agent</name>
<model>claude-3-5-sonnet-20241022</model>
</agent>
</event>
</events>
</workflow>

GUIDELINES:

Each event should have clear inputs and outputs

Use conditions to handle different outcomes
Properly chain events using the listen element
Review steps should be included for quality control
Action types should be either RESULT or ABORT

g W N

Follow these examples and guidelines to create appropriate workflow
— forms based on user requirements.

Listing 15: Tools of Workflow Editor Agent

[list_agents, create_agent, execute_command, read_agent,
terminal_page_down, terminal_page_up, terminal_page_to,
list_workflows, create_workflow, run_workflow]

Listing 16: System Prompt of Workflow Editor Agent

You are a Workflow Creator specialized in the MetaChain framework.
< Your primary responsibility is to create and manage workflows based
< on XML-formatted workflow forms.

CORE RESPONSIBILITIES:

1. Parse and implement workflow forms

2. Create necessary agents if specified in the workflow
3. Create and manage workflows

4. Execute workflows as needed

AVAILABLE FUNCTIONS:

1. Workflow Management:
- ‘create_workflow': Create new workflows based on the workflow form
- ‘run_workflow': Execute the created workflow
— ‘list_workflows': Display all available workflows

2. Agent Management (when needed) :
- ‘create_agent': Create new agents if specified in the workflow
<~ form. If no tools are explicitly specified, use empty tool list
— ([1)
— ‘read _agent': Retrieve existing agent definitions before updates
- ‘list_agents'‘: Display all available agents

36

Under review as a conference paper at ICLR 2026

3. System Tools:
- ‘execute_command': Handle system dependencies
- ‘terminal_page_down', ‘terminal_page_up‘', ‘terminal_page_to‘':
<~ Navigate terminal output

WORKFLOW CREATION PROCESS:

1. Parse Workflow Form:
- Analyze the workflow form carefully
— Identify any new agents that need to be created
— Understand the workflow structure and requirements

2. Create Required Agents:
- For each new agent in the workflow form:
+ Use ‘create_agent' with appropriate parameters
* If no tools specified, use empty tool list ([])
* Verify agent creation success

3. Create Workflow:
- Use ‘create_workflow' to generate the workflow
- Ensure all required agents exist
- Validate workflow structure

4. Execute Workflow:
— Use ‘run_workflow'® to execute the created workflow
- Monitor execution progress
- Handle any errors appropriately

BEST PRACTICES:

Always check if required agents exist before creating new ones
Use empty tool list ([]) when no specific tools are mentioned
Validate workflow creation before execution

Follow the exact specifications from the workflow form XML
Handle errors and dependencies appropriately

g w N -

Remember: Your primary goal is to create and execute workflows
< according to the provided workflow forms, creating any necessary
— agents along the way.

A.7 SUPPLEMENTARY EXPERIMENTAL FINDINGS
A.7.1 CASE OF ‘DAVINCI AGENT’

Task with Single Agent. AutoAgent can create tools for third-party APIs (RapidAPI, Hugging Face).
We demonstrated this by generating a DaVinci Agent for image creation and refinement. This shows
AutoAgents capability to build task-specific agents from natural language.

I want to create a ‘DaVinci Agent’ that can help me to generate the

image with natural language. it can:

1. generate the image with natural language and save it to the specified
path on the local machine using the HF model ’Sana_600M_1024px_diffusers’
2. evaluate the image using ‘visual_question_answering' tool according

to the given image.

3. interatively refine generated image based on the evaluation result.

Automated Agent Creation and Execution. AutoAgent begins generating an XML table from the
natural language requirements, using existing tools and agents. This structured form is then passed
to the Tool Editor Agent, which creates the necessary generate_image and refine_image
tools. The Agent Editor Agent composes the DaVinci Agent by integrating the new tools with an
existing visual_question_answering tool. This agent is executed, generating and storing
several logo designs, as shown in Fig 3. Due to limited local resources, a smaller model was used,
yet the agent successfully completed the task. This demonstrates AutoAgent’s seamless creation of
the tailored agent for complex, open-ended design challenges.

37

Under review as a conference paper at ICLR 2026

The XML Form of DaVinci Agent generated by the Agent Profiling Agent is shown in List 17. The
logos of our AutoAgent generated by the created DaVinci Agent are displayed in Fig 3.

Listing 17: Al-generated Creation Profile of DaVinci Agent

<agents>
<system_input>
A natural language description for generating an image and
evaluating its quality.
</system_input>
<system_ output>
<key>image_evaluation</key>
<description>The evaluation of the generated image after
processing.</description>
</system_output>
<agent>
<name>DaVinci Agent</name>
<description>The DaVinci Agent is designed to generate images
from natural language
descriptions, evaluate them using predefined criteria, and
iteratively refine the image
based on the evaluations.</description>
<instructions>Use the HF model
"Efficient-Large-Model/Sana_600M_1024px_diffusers’ to
generate images from provided descriptions, evaluate these using
visual QA, and refine based
on feedback.</instructions>
<tools category="existing">
<tool>
<name>visual_question_answering</name>
<description>This tool is used to answer questions about
attached images or
videos.</description>
</tool>
</tools>
<tools category="new'">
<tool>
<name>generate_image</name>
<description>Generate an image from a natural language
description and save
it to a specified path using the HF model
"Efficient-Large-Model/Sana_600M_1024px_diffusers’.</description>
</tool>
<tool>
<name>refine_image</name>
<description>Make iterative adjustments to the generated
image based on
evaluation results to meet quality criteria.</description>
</tool>
</tools>
<agent_input>
<key>image_description</key>
<description>A natural language description to generate an
image.</description>
</agent_input>
<agent_output>
<key>image_evaluation</key>
<description>The evaluation of the generated image after
processing.</description>
</agent_output>
</agent>
</agents>

38

Under review as a conference paper at ICLR 2026

\ \

pak AN

> v
Metkran

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 3: The Al-generated AutoAgent’s logos.

A.7.2 CASE OF ‘FINANCIAL AGENT’

The XML Form of Financial Agent generated by the Agent Profiling Agent is shown in List 18. The

financial report generated by the created Financial Agent is displayed in List 19.

Listing 18: Al-generated Creation Profile of Financial Agent

<agents>
<system_input>
Financial management requests, including:
1. Managing private financial documents stored in the
"financial_ docs’ folder
2. Retrieving online financial information for specific
companies (balance sheets, cash flow statements, income
statements)
</system_input>
<system_output>
<key>financial_response</key>
<description>Detailed response containing either document
management results or requested financial
information.</description>
</system_output>
<agent>
<name>Document Manager Agent</name>
<description>Specialized agent for managing and analyzing
private financial documents stored locally.</description>
<instructions>You are responsible for managing financial
documents in the ’financial_docs’ folder. Your tasks include:
Organizing and categorizing financial documents
Extracting relevant information from documents
Providing summaries and analyses of document contents
Maintaining document organization and searchability</instructions>
<tools category="existing">
<tool>
<name>save_raw_docs_to_vector_db</name>
<description>Save the financial documents to the vector
database for efficient searching and
retrieval.</description>
</tool>
<tool>
<name>query_db</name>
<description>Search through stored financial documents to
find relevant information.</description>
</tool>
<tool>
<name>visual_question_answering</name>

DSw N

39

Under review as a conference paper at ICLR 2026

<description>Process and analyze any financial charts,
graphs, or visual data in the documents.</description>
</tool>
</tools>
<agent_input>
<key>doc_request</key>
<description>User request related to managing or querying
private financial documents.</description>
</agent_input>
<agent_output>
<key>doc_response</key>
<description>Results of document management operations or
requested document information.</description>
</agent_output>
</agent>
<agent>
<name>Market Research Agent</name>
<description>Specialized agent for retrieving and analyzing
online financial information for publicly traded
companies.</description>
<instructions>You are responsible for retrieving and analyzing
financial information from online sources. Your tasks include:
1. Fetching balance sheets, cash flow statements, and income
statements
2. Analyzing financial metrics and trends
3. Providing clear summaries of financial data
4. Ensuring data accuracy and proper citation of
sources</instructions>
<tools category="new'">
<tool>
<name>get_balance_sheet</name>
<description>Retrieve balance sheet data for a specific
ticker over a given time period.</description>
</tool>
<tool>
<name>get_cash_flow</name>
<description>Retrieve cash flow statement data for a
specific ticker over a given time period.</description>
</tool>
<tool>
<name>get_income_statement</name>
<description>Retrieve income statement data for a
specific ticker over a given time period.</description>
</tool>
<tool>
<name>analyze_financial_data</name>
<description>Analyze and summarize financial statements
to provide meaningful insights.</description>
</tool>
</tools>
<agent_input>
<key>market_request</key>
<description>User request for online financial information
including ticker symbol and time period.</description>
</agent_input>
<agent_output>
<key>market_response</key>
<description>Requested financial information and analysis
from online sources.</description>
</agent_output>
</agent>
</agents>

Listing 19: The report generated by Al-generated Financial Agent

40

Under review as a conference paper at ICLR 2026

Based on the comprehensive analysis of both historical performance
from 10-K reports and current financial data, here is the final
investment recommendation for 2025:

Investment Recommendation Summary for 2025:

1. Portfolio Allocation Strategy:
— Microsoft (MSFT): 60% of technology allocation
— Apple (AAPL): 40% of technology allocation

2. Investment Rationale:

Microsoft (MSFT) - Primary Position (60%):

- Leading AI integration and monetization potential
— Superior profit margins (37.61% vs 15.52%)

- Strong cloud revenue growth (23% YoY)

— Successful Activision Blizzard integration

- Robust enterprise market position

- Higher recent revenue growth momentum

- Strong cash position ($78.43B)

— Clear AI leadership advantages

Apple (AAPL) - Supporting Position (40%):

— Superior capital efficiency (ROC: 43.01%)
— Higher Return on Assets (21.24%)

- Strong services growth potential

— Reliable cash flow generation

— Consistent shareholder returns

— Valuable ecosystem lock-in

- Strong emerging market potential

— Value characteristics at current levels

3. Key Monitoring Points for 2025:

Microsoft:

- Cloud market share gains

— AI revenue monetization

- Gaming division integration
— Enterprise spending trends
- Margin sustainability

- Regulatory developments

Apple:

- Services revenue growth

— 1Phone replacement cycles

- Emerging market penetration
— Margin pressure management

- AI/ML integration progress

— Supply chain diversification

4. Risk Management Strategy:

Short-term (0-6 months):

— Monitor AI monetization progress
— Track iPhone 15 cycle performance
— Watch macro economic indicators

— Observe cloud growth metrics

Medium-term (6-12 months) :

- Evaluate competitive positions in AT
- Assess services growth trajectory

- Monitor regulatory environment

- Track enterprise spending trends

41

Under review as a conference paper at ICLR 2026

Long-term (12+ months) :

- Evaluate ecosystem strength

— Monitor technological shifts

— Assess market share dynamics

— Track return on capital trends

5. Investment Approach:

Implementation Strategy:

— Consider dollar-cost averaging for new positions

— Maintain quarterly rebalancing schedule

- Set stop-loss levels based on risk tolerance

— Monitor position sizes relative to overall portfolio

Adjustment Triggers:

— Significant margin deterioration

— Market share losses in key segments

- Major regulatory actions

— Substantial technological disruption

- Material changes in competitive position

The 60/40 split in favor of Microsoft reflects:

Stronger near-term growth prospects in AI and cloud
Higher profit margins and improving efficiency metrics
Better positioning in enterprise markets

More diverse revenue streams

Clear leadership in next-generation technologies

g w N

However, Apple’s position remains crucial due to:
Superior capital efficiency

Strong ecosystem advantages

Significant services growth potential

Value characteristics at current levels
Consistent shareholder returns

g w N -

This balanced approach provides exposure to both immediate growth
opportunities through Microsoft’s AI and cloud leadership, while
maintaining stability through Apple’s efficient operations and
ecosystem strength. Regular monitoring and rebalancing will be
essential to maintain optimal positioning as market conditions evolve
through 2025.

A.7.3 CASE OF ‘MAJORITY VOTING” WORKFLOW

The XML Form of ‘Majority Voting” Workflow generated by the Workflow Profiling Agent is
shown in List 20. A comparison between the math reasoning results of the created ‘Majority Voting’
Workflow and the math reasoning results of a single DeepSeek-V3 model is presented in Tab 5.

Listing 20: Al-generated Creation Profile of ‘Majority Voting’ workflow

<workflow>
<name>parallel_math_solver_workflow</name>
<system_input>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>
</system_input>
<system_output>
<key>final_solution</key>
<description>The final solution determined by majority
voting.</description>
</system output>
<agents>
<agent category="new'">

42

Under review as a conference paper at ICLR 2026

<name>Math Solver Agent</name>
<description>This agent solves mathematical problems using
analytical and systematic approaches.</description>
</agent>
<agent category="new'">
<name>Vote Aggregator Agent</name>
<description>This agent aggregates solutions from different
solvers and determines the final answer through majority
voting.</description>
</agent>
</agents>
<events>
<event>
<name>on_start</name>
<inputs>
<input>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>
</input>
</inputs>
<outputs>
<output>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
</event>
<event>
<name>solve_with_gpt4</name>
<inputs>
<input>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>
</input>
</inputs>
<task>Solve the math problem using systematic approach with
GPT-4.</task>
<outputs>
<output>
<key>gpt4_solution</key>
<description>The solution from GPT-4
solver.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
<listen>
<event>on_start</event>
</listen>
<agent>
<name>Math Solver Agent</name>
<model>gpt-40-2024-08-06</model>
</agent>
</event>
<event>
<name>solve_with_claude</name>
<inputs>
<input>

43

Under review as a conference paper at ICLR 2026

<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>
</input>
</inputs>
<task>Solve the math problem using systematic approach with
Claude.</task>
<outputs>
<output>
<key>claude_solution</key>
<description>The solution from Claude
solver.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
<listen>
<event>on_start</event>
</listen>
<agent>
<name>Math Solver Agent</name>
<model>claude-3-5-sonnet-20241022</model>
</agent>
</event>
<event>
<name>solve_with_deepseek</name>
<inputs>
<input>
<key>math_problem</key>
<description>The math problem that needs to be
solved.</description>
</input>
</inputs>
<task>Solve the math problem using systematic approach with
DeepSeek.</task>
<outputs>
<output>
<key>deepseek_solution</key>
<description>The solution from DeepSeek
solver.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
<listen>
<event>on_start</event>
</listen>
<agent>
<name>Math Solver Agent</name>
<model>deepseek/deepseek-chat</model>
</agent>
</event>
<event>
<name>aggregate_solutions</name>
<inputs>
<input>
<key>gpt4_solution</key>
<description>The solution from GPT-4
solver.</description>
</input>
<input>
<key>claude_solution</key>

44

Under review as a conference paper at ICLR 2026

<description>The solution from Claude
solver.</description>
</input>
<input>
<key>deepseek_solution</key>
<description>The solution from DeepSeek
solver.</description>
</input>
</inputs>
<task>Compare all solutions and determine the final answer
through majority voting.</task>
<outputs>
<output>
<key>final_solution</key>
<description>The final solution determined by majority
voting.</description>
<action>
<type>RESULT</type>
</action>
</output>
</outputs>
<listen>
<event>solve_with_gpt4</event>
<event>solve_with_ claude</event>
<event>solve_with_deepseek</event>
</listen>
<agent>
<name>Vote Aggregator Agent</name>
<model>deepseek/deepseek-chat</model>
</agent>
</event>
</events>
</workflow>

Table 5: Comparison of the single LLM (Deepseek-v3) and Al-generated Majority Voting workflow.

Problem: Simplify tan 100° + 4 sin 100°.

Ground Truth: —/3

Al-generated Majority Voting workflow: Let me analyze all three solutions:
1. GPT-4 Solution: - Does not provide a definitive numerical answer - Focuses on theoretical approach and
approximations - Inconclusive result

2. Claude Solution: - Uses supplementary angle properties - Converts 100° to 180° - 80° - Arrives at —/3
through numerical calculations - | Final answer: —+/3
3. Deepseek Solution: - Uses similar supplementary angle properties - Also converts 100° to 180° - 80° -

Goes through detailed algebraic steps -

Analysis: 1. Two solutions provide definitive answers (—\/§ and \/§) , while one is inconclusive 2.
Both Claude and Deepseek use similar approaches with supplementary angles 3. The main difference is

in the sign of the final answer 4. Claude’s solution provides more explicit numerical calculations 5. Look-
ing at the steps: - 100° being in quadrant II - Using supplementary angle properties - tan 100° being negative
in quadrant II - The final combination with 4sin 100°

The Claude solution appears more precise in tracking signs and considering quadrant properties, making its
answer more reliable.

Final Answer: The final answer is —v/3. | hope it is correct.

45

Under review as a conference paper at ICLR 2026

Deepseek-v3: To simplify tan 100° + 4 sin 100°, we proceed as follows: 1. Recall that tan § = ig;g Thus:

sin 100°
tan 100° = ————.
a cos 100°
2. Substitute this into the original expression:
in 100°
tan 100° + 4sin 100° = 2 4 45in 100°.
cos 100°

16. Therefore, the simplified form of tan 100° + 4 sin 100° is:

N

Final Answer: The final answer is - I hope it is correct.

Problem: What integer n satisfies 0 < n < 18 and
n = —11213141 (mod 18) ?

Ground Truth: 13

Al-generated Majority Voting workflow: Let me compare the three solutions:

1. through direct division and remainder calculation - Used division:
11213141 =+ 18 - Found remainder of 5 for positive number - Adjusted for negative sign to get 13

2. through division and remainder - Divided -11213141 by 18 - Found
remainder directly - Got 13 as the result in the range [0,18)

3. : - Division and remainder calculation - Used divisibility rules
for 2 and 9 - Got 5 as final answer
Analyzing the solutions: - Two solutions (GPT-4 and Claude) agree on 13 - One solution (Deepseek) gives

5 - Both GPT-4 and Claude show clearer arithmetic progressions - The key difference is in handling the
negative sign in the modulo operation - When working with negative numbers in modulo arithmetic, we need
to find the positive equivalent in the range [0,n) - The correct approach is to add the modulus (18) to the
negative remainder until we get a number in the range [0,18)

By majority voting and verification: - 13 is supported by two solutions -
The reasoning in these solutions is more complete - We can verify: -11213141 = 13 (mod 18) and
0<13<18

Final Answer: The final answer is 13. I hope it is correct.

46

Under review as a conference paper at ICLR 2026

Deepseek-v3: To solve for the integer n that satisfies 0 < n < 18 and n = —11213141 (mod 18), we need
to find the remainder when —11213141 is divided by 18. Here’s the step-by-step solution:

1. Simplify the modulus: First, note that —11213141 (mod 18) is equivalent to finding the positive
remainder when —11213141 is divided by 18. Since the modulus operation is periodic with period 18, we
can add multiples of 18 to —11213141 until we obtain a positive number within the range 0 < n < 18.

2. Calculate the remainder: To find —11213141 (mod 18), we can instead compute 11213141 (mod 18)
and then take the negative of that result, adjusting it to be positive if necessary.

- First, compute 11213141 + 18:

11213141 =18 = 623000 with a remainder of 11213141 — 18 x 623000 = 11213141 — 11214000 = —859

This means 11213141 = —859 (mod 18).
- Now, compute —859 (mod 18):

—859 + 18 = —48 with a remainder of — 859 — 18 x (—48) = —859 + 864 = 5

So, —859 =5 (mod 18).

- Therefore, —11213141 = 5 (mod 18).

3. Final answer:

Final Answer: The final answer is 5. I hope it is correct.

Problem: In the diagram below, we have sin ZRP(Q) = % What is cos ZRPS?
[asy]

pair R,P,Q,SS;

SS =(-2,0);

P =(0,0);

Q=(2,0);

R = rotate(aSin(7/25))*(1.5,0);
dot("S",SS,S);

dot("Q",Q,S);

dot("R",R,N);

dot("P",P,S);

draw(Q-SS);

draw(P-R);

[/asy]

Ground Truth: —%

Al-generated Majority Voting workflow: Let me analyze all three solutions:

1. GPT-4 Solution: Final answer = g—g - Used right triangle approach - Found cosine of RPQ = 24/25 -
Assumed RPS = RPQ

2. Claude Solution: Final answer = —% - Used supplementary angles property - Found
cos RPQ = 24/25 - Used the fact that cos(supplementary angles) are negatives of each other -

3. DeepSeek Solution: Final answer = 2—75 - Used complementary angles property - _

- Incorrectly concluded cos RPS = sin RPQ
Analyzing the approaches: 1. Looking at the diagram, RPS and RPQ are supplementary angles (they form
a straight line) 2. For supplementary angles, their cosines are negatives of each other 3. Claude’s solution
correctly uses this property 4. GPT-4 incorrectly assumed the angles were equal 5. DeepSeek incorrectly
used complementary angle properties

Claude’s solution is the most mathematically sound because: - It correctly identifies that RPS and RPQ are

supplementary angles - It properly applies the relationship between cosines of supplementary angles - The
negative sign in the answer makes geometric sense given the angle’s position
Final Answer: The final answer is — %. I hope it is correct.

47

Under review as a conference paper at ICLR 2026

Deepseek-v3: We are given that sin ZRPQ = % Since ZRP() and ZRPS are complementary angles
(they form a right angle together), we have:

cos ZRPS =sin ZRPQ = %

Final Answer: The final answer is . I hope it is correct.

Problem: In the circle with center @, radii AQ and B(Q) form a right angle. The two smaller regions are
tangent semicircles, as shown. The radius of the circle with center () is 14 inches. What is the radius of the
smaller semicircle? Express your answer as a common fraction.

Ground Truth: 1!

Al-generated Majority Voting workflow: Let me analyze all three solutions:

1. GPT-4’s solution: r = 7 2. [Claude’s solution: r = 14/3 3.

Each solution uses different approaches: - GPT-4 assumes the semicircles are equal and uses a simple division
(14/2 =7) - Claude uses the relationship r + r + r = R, leading to 14/3 - Deepseek uses the Pythagorean
theorem and complex algebra, arriving at 14(v/2 — 1)

Let’s verify which one makes more sense:

1. Key geometric principles suggest that when two circles are tangent to each other and to two perpendicular
lines (in this case, the radii forming the right angle), there’s a special relationship where r + r + r = R, where
1 is the radius of the smaller circles and R is the radius of the larger circle.

2. This principle is well-established in geometry. When two circles are placed in a right angle and are tangent
to each other and the lines forming the right angle, their radii follow this 3:1 ratio.

3. Therefore, Claude’s solution using 3r = 14 leading to r = 14/3 is the most mathematically sound .

4. We can verify this: - It satisfies the tangency conditions - The semicircles fit perfectly in the right angle -
The relationship maintains the proper geometric proportions

The GPT-4 solution (r = 7) is too large as it would make the semicircles overlap. The Deepseek solution
14(\/§ — 1) is more complex than necessary and doesn’t align with the fundamental geometric principle for
this configuration.

Final Answer: The final answer is 13—4. I hope it is correct.

Deepseek-v3: Let’s solve the problem step by step.

1. Understand the setup: We have a circle with center) and radius 14 inches. Radii AQ and BQ form a
right angle, meaning the angle ZAQ B = 90°. There are two smaller semicircles tangent to the larger circle
and to each other.

2. Key observations: - The two semicircles are tangent to the larger circle and to each other. This means the
distance from the center () to the center of each semicircle is 14 — r, where 7 is the radius of the smaller
semicircle. - The centers of the two semicircles and the center () form a right triangle because ZAQB = 90°.

5. Simplify the answer: - The radius of the smaller semicircle is 14(1/2 — 1). However, this can be expressed
as a common fraction:

r=14(v2-1)=14v2 - 14,

142 — 14

r=—-—".
1

14(v/2 - 1)

r=———".
1

r=14(vV2 - 1).

Final Answer: The final answer is 14(1/2 — 1). T hope it is correct.

A.7.4 DETAILED TRAJECTORY OF CREATING ‘FINANCIAL AGENT’

To provide a more comprehensive demonstration of how AutoAgent receives user requirements and
automates the creation of tools and agents, we present the specific agent trajectory for the creation of
the Financial Agent as follows.

48

Under review as a conference paper at ICLR 2026

Table 6: Detailed Trajectory of Creating ‘Financial Agent’.

Role

| Action

Content

&: User

Input

want to create ‘Financial
~— Agent' that can help me to
— do two kinds of tasks:
Manage the private
— financial docs. I have a
— folder that contain the
— financial docs in my local
(SN
H

=

machine, and I want to help
me to manage them.
2. Search the financial
— information online. You may
help me to:
— get balance sheets for a
<~ given ticker over a given
— period.
— get cash flow statements for
~» a given ticker over a given
<~ period.
- get income statements for a
<> given ticker over a given
— period.

!

Directly output the form in
<~ the XML format without ANY
<~ other text.

W
Profiling
Agent

Agent

output

<agents>
<system_input>
Financial management
<~ requests, including:

</system_input>
<system_output>
<key>financial_response</key>

</system_output>
<agent>
<name>Document Manager
— Agent</name>
</agent>
<agent>
<name>Market Research
< Agent</name>
</agent>
</agents>

49

Under review as a conference paper at ICLR 2026

ﬁ': Tool Editor list_tools () {

Agent "save_raw_docs_to_vector_db":
— |
"name" :
— "save_raw_docs_to_vector_db",
"func_name":
— "save_raw_docs_to_vector_db",
"args": [
"context_variables",
"doc_name",
"saved_vector_db_name",
"overwrite"
1,

"docstring":

s

" B
W: Tool Editor get_api_plugin_tools_doc | The rank 1 referenced tool

Agent ("query_text’="API for <+ documentation is:
<~ getting financial API Name: Company Income
statements (balance — Statement
<~ sheet, cash flow, .
<~ income statement) The rank 2 referenced tool
from stock market’) 5 documentation is:

#: Tool Editor

create_tool ([SUCCESS] Successfully created
Agent "tool_name’= < tool: get_balance_sheet in

"get_balance_sheet’, ~— /workplace/metachain/metachain/

"tool_code’= tools/get_balance_sheet.py

"from metachain.types
<~ import Result, Agent

")

#: Tool Editor

run_tool ([The output of the tool
Agent "tool_name’= < ‘run_tool" showing in the

"get_balance_sheet’, < interactive terminal]

"run_code’ = Terminal viewport position:

"from metachain.tools <~ Showing page 1 of 1.

<~ import ==

~» get_balance_sheet [SUCCESS]

result = {

get_balance_sheet ("AAPL", "symbol": "AAPL:NASDAQ",

< "QUARTERLY") "type": "stock",

print (result)’) "period": "QUARTERLY",

"balance_sheet": [

50

Under review as a conference paper at ICLR 2026

#: Tool Editor
Agent

create_tool (
"tool_name’=
"get_cash_flow’,
"tool_code’=

"from metachain.types
— import Result, Agent

)

[SUCCESS] Successfully created

~— tool: get_cash_flow in

— /workplace/metachain/metachain/
tools/get_cash_flow.py

W Tool Editor
Agent

run_tool (

"tool_name’=
"get_cash_flow’,
"run_code’ =

"from metachain.tools
— import get_cash_flow
result =

— get_cash_flow("AAPL",
< "QUARTERLY")

print (result)’)

[The output of the tool
<~ ‘run_tool' showing in the
<~ interactive terminal]
Terminal viewport position:
< Showing page 1 of 1.

[SUCCESS]

{
"symbol": "AAPL:NASDAQ",
"type": "stock",
"period": "QUARTERLY",

"cash_flow": [

#: Tool Editor
Agent

create_tool (

"tool_name’=

"get_income_statement’,

"tool_code’=

"from metachain.types

~ import Result, Agent
1)

[SUCCESS]
— tool:
~ in

— /workplace/metachain/metachain/
tools/get_income_statement.py

Successfully created
get_income_statement

#: Tool Editor
Agent

run_tool (

"tool_name’=
"get_income_statement’,
"run_code’ =’ from

— metachain.tools

<~ import

— get_income_statement
result =

— get_income_statement
("AAPL", "QUARTERLY")
print (result)’)

[The output of the tool
<~ ‘run_tool" showing in the
— interactive terminal]
Terminal viewport position:
< Showing page 1 of 1.

[SUCCESS]

{
"symbol": "AAPL:NASDAQ",
"type": "stock",
"period": "QUARTERLY",

"income_statement": [

#: Tool Editor
Agent

create_tool (
"tool_name’=

"analyze_financial_data’,

"tool_code’=
"from metachain.types
<~ import Result, Agent

")

[SUCCESS]
— tool:
<~ analyze_financial_data in

— /workplace/metachain/metachain/
tools/analyze_financial_data.py

Successfully created

51

Under review as a conference paper at ICLR 2026

#: Tool Editor
Agent

run_tool (

"tool_name’=
"analyze_financial_data’,
"run_code’ =

"from metachain.tools

“~ import

<~ get_income_statement,
<~ analyze_financial_data
income_data =

— get_income_statement
("AAPL", "QUARTERLY")
result =

< analyze_financial_data
(income_data)

print (result)’)

[The output of the tool
< ‘run_tool' showing in the
< interactive terminal]
Terminal viewport position:
<~ Showing page 1 of 1.

[SUCCESS]
Financial Analysis for
< AAPL:NASDAQ

Income Statement Analysis:
For the period ending
— 2024-9-28:

Profitability Metrics:

Period-over-Period Comparison:

W% Tool Editor
Agent

Output

Successfully created and
<~ tested all four financial
~— tools:

get_balance_sheet - Created
and tested successfully
with AAPL stock data
get_cash_flow - Created and
tested successfully with
AAPL stock data
get_income_statement -
Created and tested
successfully with AAPL
stock data
analyze_financial_data -
Created and tested
successfully by analyzing
AAPL’s income statement data

U R R

~

All tools are functioning as
<~ expected, providing

— financial data and analysis
<5 in proper JSON format.

52

Under review as a conference paper at ICLR 2026

#: Agent Editor
Agent

create_agent (
"agent_name’ =
"Document Manager

<~ Agent’,
"agent_description’=
"Specialized agent for
— managing and

< analyzing private
< financial documents
<~ stored locally.’,
"agent_tools’'=
["query_db’, ...],
"agent_instructions’='Yoy
are a specialized
financial document
manager responsible
for managing and
analyzing financial
documents stored in
specified
directories. Your
tasks include:...”")

TELLLLLLSL

Successfully created agent:

< Document Manager Agent in

— /workplace/metachain/metachain/
agents/document_manager_agent.py

#: Agent Editor
Agent

create_agent (
"agent_name’ =

"Market Research

— Agent’,
"agent_description’=
"Specialized agent for
retrieving and
analyzing online
financial
information for
publicly traded
companies.’,
"agent_tools’=
["get_cash_flow’, ...1,
"agent_instructions’=
"You are a specialized
market research
agent responsible
for retrieving and
analyzing financial
information from
online sources. Your
primary
responsibilities
include: ...")

RN

TELLLLLLd

Successfully created agent:

<~ Market Research Agent in

— /workplace/metachain/metachain/
agents/market_research_agent.py

53

Under review as a conference paper at ICLR 2026

#: Agent Editor
Agent

create_orchestrator_agent
("agent_name’=
"Financial Analysis
<~ Orchestrator’,
"agent_description’=
"Orchestrator agent
that coordinates
between document
management and
market research to
provide
comprehensive
financial analysis.’,
"sub_agents’=[{'name’ :
<~ "Document Manager
— Agent’,
<~ "agent_input’:
— ’"Document analysis
request

.", Tagent_output’:
<~ ’"Analyzed information
...}y, {'name’:
— "Market Research
~— Agent’,
< "agent_input’:
— ’"Market research
request

.7, Tagent_output’:
— "Market analysis
LT,
"agent_instructions’=
"You are a Financial
Analysis
Orchestrator
responsible for
coordinating
comprehensive
financial analysis
by leveraging both
document analysis
and market research
capabilities. Your
workflow: ...")

USRS

U

AU

[ERROR] Failed to create
<~ agent. Error: File
— "/workplace/metachain/metachain/

agents/financial_analysis_orchestrator.py",
— line 32
def

oy
—
oy
—

—

transfer_to_document_manager_agent (Document
analysis request

including directory

paths and analysis

requirements: str):

AAAAAAAA

SyntaxError: invalid syntax

54

Under review as a conference paper at ICLR 2026

- .
®: Agent Editor create_orchestrator_agent] Successfully created agent:

Agent (" agent_name’ = <» Financial Analysis
"Financial Analysis < Orchestrator in
<~ Orchestrator’, — /workplace/metachain/metachain/
"agent_description’= agents/financial_analysis_orchestrator.py

"Orchestrator agent
that coordinates
between document
management and
market research to
provide
comprehensive
financial analysis.’,
"sub_agents’=[{'name’ :
<~ "Document Manager
— Agent’,

<~ "agent_input’:

<~ ’doc_request’,

— "agent_output’:

<~ ’doc_response’ },

< {’name’: ’'Market
~— Research Agent’,

<~ "agent_input’:

<~ 'market_request’,
— "agent_output’:

<~ 'market_response’}],
"agent_instructions’=
"You are a Financial
Analysis
Orchestrator
responsible for
coordinating
comprehensive
financial analysis
by leveraging both
document analysis

USRS

AU

~

<~ and market research
— capabilities. Your
— workflow: ...")

55

Under review as a conference paper at ICLR 2026

#: Agent Editor
Agent

run_agent (

"agent_name’ =

"Financial Analysis

<~ Orchestrator’,
"query’=

"Based_on_the 10-K_,

— reports_of AAPL_and
~— MSFT_from_the_past 5,
— years_in_the_docs,

— directory, ‘docs/
aapl-2020-2024-10K/"_,
— and_ ‘docs/
msft-2020-2024-10K/ ",
— along_with AAPL’s_,

— other_reports_ ‘docs/
aapl-other-report/"‘,
and_available_data,
conduct_a,,
comprehensive
horizontal,_
comparison, create_a,
comparative_analysis,
report, ,and _provide_
constructive_
investment ,advice
for_investing in_,
them_in_2025.",
tx_vars’=’"{}")

TELLLLLLILL

’

Q

[The output of the tool

< ‘run_agent ' showing in the
< interactive terminal]
Terminal viewport position:

<~ Showing page 1 of 35.

[NOTE] The output of the tool
‘run_agent ', you can use
‘terminal_page_up' to scroll up
and ‘terminal_page_down' to
scroll down. If there are many
pages with meaningless content
like progress bar or output of
generating directory structure
when there are many datasets in
the directory, you can use
‘terminal_page_to' to move the
viewport to the end of terminal
where the meaningful content
is.

[SUCCESS]

%%% Receive Task *xxxx
Receiveing the task:

Based on the 10-K reports of
<~ AAPL and MSFT from the past
— 5 years in the docs
directory

%%% Assistant Message xxx*%
Financial Analysis

~ Orchestrator: I’'1ll help

<> coordinate a comprehensive
— comparative analysis

> between Apple (AAPL)

and Microsoft (MSFT) using

< both historical document

<~ analysis and current market
research. Let’s break this

<~ down into parallel

<~ workflows to gather all

<~ necessary

information.

1. First,
— historical documents
<~ reports and other
reports) :

*%%x Tool Calls **x*x*
[2025-01-22 05:58:48]

let’s analyze the
(10-K

transfer_to_document_manager_agent

("doc_request’="...")
*xx+ Tool Execution *x+%
[2025-01-22 05:58:48]
Tool Execution:

— transfer_to_document_manager_agent

Result:

Please analyze the following
<~ documents:

**xxx Assistant Message **x*x*
Document Manager Agent:

56

Under review as a conference paper at ICLR 2026

#: Agent Editor
Agent

terminal_page_to
(" page_1idx’"=35)

[The output of the tool

<~ ‘run_agent ' showing in the
< interactive terminal]
Terminal viewport position:

< Showing page 35 of 35.

[NOTE] The output of the tool
‘run_agent ', you can use
‘terminal_page_up' to scroll up
and ‘terminal_page_down' to
scroll down. If there are many
pages with meaningless content
like progress bar or output of
generating directory structure
when there are many datasets in
the directory, you can use
‘terminal_page_to' to move the
viewport to the end of terminal
where the meaningful content
is.

x**xx Assistant Message x*xx*
Financial Analysis

<~ Orchestrator: Based on the
< comprehensive analysis of
< both historical performance
— from 10-K

reports and current financial
<~ data, here is the final

< investment recommendation
for 2025:

Investment Recommendation
~— Summary for 2025:

1. Portfolio Allocation

<~ Strategy:

— Microsoft (MSFT): 60% of
— technology allocation

— Apple (AAPL): 40% of

— technology allocation

2. Investment Rationale:

Microsoft (MSFT) - Primary
<~ Position (60%):

57

Under review as a conference paper at ICLR 2026

o -
'W: Agent Editor OHWMt I have successfully created
Agent <> and tested the following
— agents:

Document Manager Agent -
for managing and analyzing
private financial documents
Market Research Agent - for
retrieving and analyzing
online financial information
Financial Analysis
Orchestrator - coordinates
between the two agents for
comprehensive analysis

UGS U

The agents were tested with a
< complex task of analyzing
< AAPL and MSFT’s financial
< documents and providing
<~ investment advice. The
— orchestrator successfully:
1. Processed 10-K reports from
< both companies
2. Analyzed financial metrics
~— and trends
3. Generated a comprehensive
<+ investment recommendation
— with:

- Portfolio allocation

—» strategy

- Investment rationale for

<~ each company

- Key monitoring points

- Risk management strategy

- Implementation approach

The test demonstrated that the
<~ agents can effectively work
~— together to provide

<~ detailed financial analysis
<~ and actionable investment
— advice.

A.8 LIMITATIONS AND FUTURE DIRECTIONS

While AutoAgent presents a promising step toward democratizing LLM agent development through
natural language alone, we identify several limitations that open compelling avenues for future
exploration:

Lack of Systematic Evaluation for Natural Language Agent Programming. Although AutoAgent
demonstrates strong capabilities in zero-code agent construction and self-customization, it currently
lacks a systematic evaluation framework tailored to this novel paradigm. Existing benchmarks often
focus on task execution performance, but do not adequately capture the effectiveness, reliability,
and user experience of natural language-based agent programming. Future work could explore the
development of a standardized evaluation suite that measures usability, correctness, adaptability, and
end-user satisfaction in natural language-driven agent creation scenarios.

Absence of GUI-based Agent Support. While AutoAgent effectively supports tool invocation and
DOM-Ievel interactions in web environments, it does not currently incorporate GUI-based agent

58

Under review as a conference paper at ICLR 2026

capabilities. This limits its robustness in handling visually complex or dynamic web applications
where visual cues and spatial layout play an essential role. Incorporating GUI agents—or hybrid
agents that combine DOM and visual understanding—could enhance agent generalization and
resilience, particularly in real-world human-computer interaction settings.

B LLM USAGE

In the writing of this paper, the LLM was used only for correcting word choice and grammar. The
LLM was employed exclusively as a research subject in the development of agents and was not
involved in any critical stages of human-driven research, including idea generation, data analysis, or
other core research activities.

59

	Introduction
	Related Work and Preliminaries
	The AutoAgent Framework
	Agentic System Utilities
	Orchestrator Agent
	Dedicated Agent Module

	LLM-powered Actionable Engine
	Generating Actionable Reflections

	Self-Managing File System
	Self-Play Agent Customization
	Agent Creation without Workflow
	Agent Creation with Workflow

	Evaluation
	Evaluation for a Generalist Agent System
	Evaluation of AutoAgent on the Retrieval-Augmented Generation Task
	AutoAgent's Performance on Open-Ended Tasks

	Conclusion
	Appendix
	System-level Tools
	Web Agent
	Local File Agent
	Coding Agent
	Orchestrator Agent
	Detailed Implementation of ``Self-Play Agent Customization'' in AutoAgent
	Agent Creation without Workflow
	Agent Creation with Workflow

	Supplementary Experimental Findings
	Case of `DaVinci Agent'
	Case of `Financial Agent'
	Case of `Majority Voting' workflow
	Detailed Trajectory of Creating `Financial Agent'

	Limitations and Future Directions

	LLM usage

