ADVERSARIAL TRAINING DESCENDS WITHOUT DESCENT: FINDING ACTUAL DESCENT DIRECTIONS BASED ON DANSKIN’S THEOREM.

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial Training using a strong first-order adversary (PGD) is the gold standard for training Deep Neural Networks that are robust to adversarial examples. We show that, contrary to the general understanding of the method, the gradient at an optimal adversarial example may increase, rather than decrease, the adversarially robust loss. This holds independently of the learning rate. More precisely, we provide a counterexample to a corollary of Danskin’s Theorem presented in the seminal paper of Madry et al. (2018) which states that a solution of the inner maximization problem can yield a descent direction for the adversarially robust loss. Based on a correct interpretation of Danskin’s Theorem, we propose Danskin’s Descent Direction (DDD) and we verify experimentally that it provides better directions than those obtained by a PGD adversary. Using the CIFAR10 dataset we further provide a real world example showing that our method achieves a steeper increase in robustness levels in the early stages of training, and is more stable than the PGD baseline.

1 I NTRODUCTION

Adversarial Training (AT) (Goodfellow et al., 2015; Madry et al., 2018) has become the de-facto algorithm used to train Neural Networks that are robust to adversarial examples. Variations of AT together with data augmentation yield the best-performing models in public benchmarks (Croce et al., 2020). Despite lacking optimality guarantees for the inner-maximization problem, the simplicity and performance of AT are enough reasons to embrace its heuristic nature.

From an optimization perspective, the consensus is that AT is a sound algorithm: based on Danskin’s Theorem, Madry et al. (2018, Corollary C.2) posit that by finding a maximizer of the inner non-concave maximization problem, i.e., an optimal adversarial example, one can obtain a descent direction for the adversarially robust loss. What if this is not true? are we potentially overlooking issues in its algorithmic framework?

As mentioned in Dong et al. (2020, Section 2.3), Corollary C.2 in Madry et al. (2018) can be considered the theoretical optimization foundation of the non-convex non-concave min-max optimization algorithms that we now collectively refer to as Adversarial Training. It justifies the two-stage structure of the training loop: first we find one approximately optimal adversarial example and then we update the model using the gradient (with respect to the model parameters) at the perturbed input.

The only drawbacks of a first-order adversary seem to be its computational complexity and its approximate suboptimal solver nature. Ignoring the computational complexity issue, suppose we have access to a theoretical oracle that provides a single solution of the inner-maximization problem. In such idealized setting, can we safely assume AT is decreasing the adversarially robust loss on the data sample? According to the aforementioned theoretical results, it would appear so.

In this work, we scrutinize the optimization paradigm on which Adversarial Training (AT) has been founded, and we posit that finding multiple solutions of the inner-maximization problem is necessary to find good descent directions of the adversarially robust loss. In doing so, we hope to improve our understanding of the non-convex/non-concave min-max optimization problem that underlies the Adversarial Training methodology, and potentially improving its performance.
Figure 1: (a) and (b): comparison of our method (DDD) and the single-adversarial-example method (PGD) on a synthetic min-max problem. Using a single example may increase the robust loss. DDD computes 10 examples and can avoid this. (c): similar improvement over PGD training shown on CIFAR10, where DDD with 10 examples speeds up convergence. More details in Section 5

Our contributions: We present two counterexamples to Madry et al. (2018, Corollary C.2), the motivation behind AT. They show that using the gradient (with respect to the parameters of the model) evaluated at a single solution of the inner-maximization problem, can increase the robust loss, i.e., it can harm the robustness of the model. In particular, in counterexample 2 many descent directions exist, but they cannot be found if we only compute a single solution of the inner-maximization problem. In Section 2 we explain that the flaw in the proof is due to a misunderstanding of the directional derivative notion that is used in the original work of Danskin (1966).

Based on our findings, we propose Danskin’s Descent Direction (DDD, Algorithm 1). It aims to overcome the problems of the single adversarial example paradigm of AT by exploiting multiple adversarial examples, obtaining better update directions for the network. For a data-label pair, DDD finds the steepest descent direction for the robust loss, assuming that (i) there exists a finite number of solutions of the inner-maximization problem and (ii) they can be found with first-order methods.

In Section 5 we verify experimentally that: (i) it is unrealistic to assume a unique solution of the inner-maximization problem, hence making a case for our method DDD, (ii) our method can achieve more stable descent dynamics than the vanilla AT method in synthetic scenarios and (iii) on the CIFAR10 dataset DDD is more stable and achieves higher robustness levels in the early stages of training, compared with a PGD adversary of equivalent complexity. This is observed in a setting where the conditions of Danskin’s Theorem hold, i.e., using differentiable activation functions.

Remark. The fact that Madry et al. (2018, Corollary C.2) is false, might be well-known in the optimization field. In the convex setting it corresponds to the common knowledge that a negative subgradient of a non-smooth convex function might not be a descent direction c.f., Boyd (2014, Section 2.1). However, we believe this is not well-known in the AT community given that (i) its practical implications i.e., methods deriving steeper descent updates using multiple adversarial examples, have not been previously introduced, and (ii) the results in Madry et al. (2018) have been central in the development of AT. Hence, our contribution can be understood as raising awareness about the issue, and demonstrating its practical implications for AT.

2 A COUNTEREXAMPLE TO MADRY ET AL. (2018, COROLLARY C.2)

Preliminaries. Let \(\theta \in \mathbb{R}^d \) be the parameters of a model, \((x, y) \sim \mathcal{D} \) a data-label distribution, \(\delta \) a perturbation in a compact set \(\mathcal{S} \) and \(L \) a loss function. The optimization objective of AT is:

\[
\min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) := \mathbb{E}_{(x, y) \sim \mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \right]
\]

In this setting \(\rho(\theta) \) is referred to as the adversarial loss or robust loss. In order to optimize Eq. (1) via iterative first-order methods, we need access to an stochastic gradient of the adversarial loss \(\rho \) or at least, the weaker notion of stochastic descent direction i.e., a direction along which the function

\[
\phi(\theta) := \max_{\delta \in \mathcal{S}} \left\{ g(\theta, \delta) := \frac{1}{k} \sum_{i=1}^{k} L(\theta, x_i + \delta, y_i) \right\}
\]

where \((x_i, y_i) \sim \mathcal{D} \).
decreases in value. To obtain a descent direction for partial maximization functions like ϕ we normally resort to Danskin’s Theorem. We first recall its original formulation:

Theorem 1 (Danskin 1966). Let S be a compact topological space, and let $g : \mathbb{R}^d \times S \to \mathbb{R}$ be a continuous function such that $g(\cdot, \delta)$ is differentiable for all $\delta \in S$ and $\nabla_\delta g(\theta, \delta)$ is continuous on $\mathbb{R}^d \times S$. Let

$$\phi(\theta) := \max_{\delta \in S} g(\theta, \delta), \quad S^*(\theta) := \arg \max_{\delta \in S} g(\theta, \delta)$$

(3)

Let $\gamma \in \mathbb{R}^d$ with $\|\gamma\|_2 = 1$ be an arbitrary unit vector. The directional derivative $D_\gamma \phi(\theta)$ of ϕ in the direction γ at the point θ exists, and is given by the formula

$$D_\gamma \phi(\theta) = \max_{\delta \in S^*(\theta)} \langle \gamma, \nabla_\delta g(\theta, \delta) \rangle$$

(4)

Corollary 1 is an equivalent rephrasing of Madry et al. (2018 Corollary C.2.), and is derived as a consequence of **Theorem 1**. Unfortunately, counterexample 1 shows that it is false:

Corollary 1. Let $\delta^* \in S^*(x)$. If $-\nabla_\delta g(\theta, \delta^*) \neq 0$, then it is a descent direction for ϕ at θ.

Remark. For ease of exposition, we have adapted the previous statements from the original sources, without altering the fundamental results. In particular, in Danskin (1966) the problem studied is of the form $\max_\theta \min_\delta g(\theta, \delta)$ whereas adversarial training follows the structure $\min_\theta \max_\delta g(\theta, \delta)$. **Theorem 1** is precisely the analogous result in the min-max setting.

Remark. $\gamma \neq 0$ is called a descent direction of ϕ at x if and only if $D_\gamma \phi(x) < 0$, i.e., if the directional derivative is strictly negative.

Counterexample 1. Let $S := [-1, 1]$ and $g(\theta, \delta) = \theta \delta$. The conditions of Danskin’s theorem clearly hold in this case, and

$$\phi(\theta) := \max_{\delta \in [-1, 1]} \theta \delta = |\theta|.$$

(5)

Note that at $\theta = 0$, we have $S^*(0) = [-1, 1]$. Choosing $\delta = 1 \in S^*(0)$ we have that $g(\theta, 1) = \theta$ and so $-\nabla_\delta g(0, 1) = -1 \neq 0$. Hence, Corollary 1 would imply that -1 is a descent direction for $\phi(\theta) = |\theta|$. However, $\theta = 0$ is a global minimizer of the absolute value function, which means that there exists no descent direction. This is a contradiction.

To cast more clarity on why Corollary 1 is false, we explain what is the mistake in the proof provided in Madry et al. (2018). The main issue is the definition of the directional derivative, a basic concept in multivariable calculus, but one that can be defined in slightly different ways in the literature.

Definition 1. Let $\phi : \mathbb{R}^d \to \mathbb{R}$. For a nonzero vector $\gamma \in \mathbb{R}^d$, the one-sided directional derivative of ϕ in the direction γ at the point θ is defined as the one-sided limit:

$$D_\gamma \phi(\theta) := \lim_{t \to 0^+} \frac{\phi(\theta + t\gamma) - \phi(\theta)}{t\|\gamma\|_2}$$

(6)

The two-sided directional derivative is defined as the two-sided limit:

$$\hat{D}_\gamma \phi(\theta) := \lim_{t \to 0} \frac{\phi(\theta + t\gamma) - \phi(\theta)}{t\|\gamma\|_2}$$

(7)

Unfortunately, it is not always clear which one of the two notions is meant when the term directional derivative is used. Indeed, as our notation suggests, the one-sided definition [Eq. (6)] is the one used in the statement of Danskin’s Theorem (Danskin 1966).

In contrast, the proof of Corollary 1 provided in Madry et al. (2018) only works for the two-sided definition [Eq. (7)] it starts by noting that for a solution δ of the inner-maximization problem, the directional derivative in the direction $\gamma = \nabla_\delta g(\theta, \delta)$ is positive, as implied by Danskin’s Theorem:

$$D_\gamma \phi(\theta) = \max_{\delta \in S^*(\theta)} \langle \gamma, \nabla_\delta g(\theta, \delta) \rangle \geq \langle \nabla_\delta g(\theta, \delta), \nabla_\delta g(\theta, \delta) \rangle = \|\nabla_\delta g(\theta, \delta)\|^2 > 0$$

(8)

assuming that $\nabla_\delta g(\theta, \delta)$ is non-zero. This means that moving in the direction of γ increases the value of the function. However, we cannot guarantee that the function will decrease if we move in the opposite direction, that is, it is not necessarily true that $D_{-\gamma} \phi(\theta) < 0$.
The property $D_\gamma \phi(\theta) > 0 \Rightarrow D_{-\gamma} \phi(\theta) < 0$ does not hold for the one-sided directional derivative Eq. (6) which is the one used in Danskin’s Theorem. Rather, it only holds for the two-sided definition, incorrectly assumed by Madry et al. [2018]. We summarize this in the following remark:

Remark. The two-sided directional derivative definition Eq. (7) implies $-D_\gamma \phi(\theta) = \hat{D}_{-\gamma} \phi(\theta)$ provided that D_γ exists. However this is not true for the one-sided directional derivative Eq. (6), as the example $\phi(\theta) = |\theta|$ at $\theta = 0$ shows (both directional derivatives are positive).

3 A Counterexample at a Point That is Not Locally Optimal

The question remains whether a slightly modified version of Corollary 1 holds true: it might be the case that by adding some mild assumption, we exclude all possible counterexamples. In the particular case of counterexample 1, $\theta = 0$ is a local optimum of the function $\phi(\theta) = |\theta|$. At such points, descent directions do not exist.

However, in the trajectory of an iterative optimization algorithm we are mostly concerned with non-locally-optimal points. Hence, we explore whether adding the assumption that θ is not locally optimal can make Corollary 1 true. Unfortunately, we will show that this is not the case.

To this end we construct a family of counterexamples to Corollary 1 with the following properties: (i) there exists a descent direction at a point θ (that is, θ is not locally optimal) and (ii), it does not coincide with $-\nabla g(\theta, \delta)$, for any optimal $\delta \in S^*(\theta)$. Moreover, all the directions $-\nabla g(\theta, \delta)$ are in fact ascent directions i.e., they lead to an increase in the function $\phi(\theta)$.

Counterexample 2. Let $S := [0, 1]$ and let $u, v \in \mathbb{R}^2$ be unit vectors such that $-1 < \langle u, v \rangle < 0$. That is, u and v form an obtuse angle. Let

$$g(\theta, \delta) = \delta(\theta, u) + (1 - \delta)(\theta, v) + \delta(\delta - 1)$$

Clearly, the function satisfies all conditions of Corollary 1. At $\theta = 0$, we have that $S^*(\theta) = \arg \max_{\delta \in [0, 1]} \delta(\delta - 1) = \{0, 1\}$. At $\delta = 0$ we have $\nabla g(\theta, 0) = \nabla_\theta(\theta, v) = v$ and at $\delta = 1$ we have $\nabla g(\theta, 1) = \nabla_\theta(\theta, u) = u$. We compute the value of the directional derivatives in the negative direction of such vectors. According to Danskin’s Theorem we have

$$D_{-v} \phi(0) = \max_{\delta \in [0, 1]} \langle -v, \nabla g(\theta, \delta) \rangle = \max(\langle -v, v \rangle, \langle -v, u \rangle) \geq -\langle v, u \rangle > 0$$

where $-\langle v, u \rangle > 0$ holds by construction. Analogously, $D_{-u} \phi(0) > 0$. This means that all such directions are ascent directions. However, for the direction $\gamma = -(u + v)$ we have

$$D_\gamma \phi(\theta) \propto \max_{\delta \in [0, 1]} \langle -(u + v), \nabla g(\theta, \delta) \rangle$$

$$= \max(\langle -u - v, u \rangle, \langle -u - v, v \rangle) = -1 - \langle u, v \rangle < 0$$

where the last inequality also follows by construction. Hence, $-(u + v)$ is a descent direction.

As counterexample 2 shows, Adversarial Training has the following problem: even if we are able to compute one solution of the inner-maximization problem $\delta \in S$ it can be the case that moving in the direction $-\nabla g(\theta, \delta)$ increases the robust training loss i.e., the classifier becomes less, rather than more, robust. This can happen at any stage, independently of the local optimality of θ.

For a non-locally-optimal $\theta \in \mathbb{R}^d$, the construction of the counterexamples relies on the following observation: if for any gradient computed at one inner-max solution, there exist another gradient (at a different inner-max solution) forming an obtuse angle, then no single inner-max solution yields a descent direction. Consequently, it suffices to ensure that for any gradient that can be found by solving the inner problem, there exists another one that has a negative inner product with it. Precisely, our counterexample 2 is carefully crafted so that this property holds.

We conclude that the updates of Adversarial Training might have an effect that is contrary to its goal of increasing the robustness of a model. In order to address this problem, we now turn to improving the Adversarial Training approach by leveraging Danskin’s Theorem (Theorem 1) in a correct way.
4 Danskin’s Descent Direction

Danskin’s Theorem implies that the directional derivative depends on all the solutions of the inner-max problem $S^*(\theta)$ c.f., Eq. (4). One possible issue in Adversarial Training is relying on a single solution, as it does not necessarily lead to a descent direction c.f. [counterexample 2]. To fix this, we design an algorithm that uses multiple adversarial perturbations per data sample.

In theory, we can obtain the steepest descent direction for the robust loss on a batch $\{(x_i, y_i) : i = 1, \ldots, k\}$ by solving the following min-max problem:

$$\gamma^* \in \arg \min_{\gamma: \|\gamma\|_2 = 1} \max_{\delta \in S^*(\theta)} \langle \gamma, \nabla g(\theta, \delta) \rangle,$$

$$g(\theta, \delta) := \frac{1}{k} \sum_{i=1}^{k} L(\theta, x_i + \delta, y_i)$$ \hspace{1cm} (12)

Unfortunately, the set $S^*(\theta)$ could be infinite and thus remains out of reach for computationally tractable methods. In conclusion, a compromise has to be made in order to devise an efficient algorithm. We will assume that the set of optimal adversarial perturbations is finite and given as:

$$S^*(\theta) := \arg \max_{\delta \in S} g(\theta, \delta) = \{\delta^{(1)}, \ldots, \delta^{(m)}\}, \quad m \geq 1, m \in \mathbb{Z}$$ \hspace{1cm} (13)

Under such assumption, it is possible to compute the steepest descent direction in Eq. (12) efficiently.

Theorem 2. Suppose that $S^*(\theta) = \{\delta^{(1)}, \ldots, \delta^{(m)}\}$. Denote by $\nabla g(\theta, S^*(\theta))$ the matrix with columns $\nabla g(\theta, \delta^{(i)})$ for $i = 1, \ldots, m$. As long as θ is not a local minimizer of the robust loss $\phi(\theta) = \max_{\delta \in S} g(\theta, \delta)$, then the steepest descent direction of ϕ at θ can be computed as:

$$\gamma^* := \frac{-\nabla g(\theta, S^*(\theta)) \alpha^*}{\|\nabla g(\theta, S^*(\theta)) \alpha^*\|_2}, \quad \alpha^* \in \arg \min_{\alpha \in \Delta^m} \|\nabla g(\theta, S^*(\theta)) \alpha\|_2^2$$ \hspace{1cm} (14)

where Δ^m is the m-dimensional simplex i.e., $\alpha \geq 0, \sum_{i=1}^{m} \alpha_i = 1$.

We present the proof of Theorem 2 in [Appendix C]. This result motivates Danskin’s Descent Direction (Algorithm 1). The assumptions in Theorem 2 that the set of maximizers for the robust loss is finite is hard to verify in practice. Nevertheless, in Section 5 we verify that assuming a single solution is not realistic. Hence, assuming a finite (possibly large) number of solutions is the least restrictive assumption we can make, while keeping the problem computationally tractable.

Exact access to these solutions is also out of reach. Rather, we assume there exists a heuristic oracle algorithms providing a finite set of approximately optimal adversarial perturbations (Line 3 in Algorithm 1), which is an assumption that is anyways present in Adversarial Training.

Examples of such heuristic oracle algorithms are the so-called Fast Gradient Sign Method (FGSM) or Iterative FGSM (Kurakin et al., 2017) (referred to as PGD in Madry et al., 2018). The complexity of an iteration in Algorithm 1 depends heavily on this choice. In Section 5 we will explore different choices and how it affects the performance of the method.

Using the set of adversarial perturbations $S^*(\theta)$ provided by the oracle, in Line 7 of Algorithm 1 we obtain the value of α^* as specified in Eq. (14). Note that the optimization problem defining α^* can be solved to arbitrary accuracy efficiently: It corresponds to the minimization of a smooth convex objective subject to the convex constraint $\alpha \in \Delta^m$.

First-order methods like Projected Gradient Descent (PGD) are well suited for such task. We use the accelerated PGD algorithm proposed in (Parikh et al., 2014, section 4.3) and pair it with the efficient simplex projection algorithm given in (Duchi et al., 2008). As the problem is smooth, a fixed step-size choice guarantees convergence. We set it as the inverse of the spectral norm of $\nabla g(\theta, S^*(\theta))^{-\top} \nabla g(\theta, S^*(\theta))$ and run the algorithm for a fixed number of iterations. This allows us to obtain an approximation of α^* which determines the steepest descent direction γ^*, that we then use to update the parameters of the model.

5 Experiments

5.1 Existence of Multiple Optimal Adversarial Solutions

This section provides evidence that the set of optimal adversarial examples for a given sample is not a singleton. The hypothesis is tested by using a ResNet-18 pretrained on CIFAR10 and computing
multiple randomly initialized PGD-7 attacks for each image with \(\varepsilon = \frac{8}{255} \). We compute all pairwise \(\ell_2 \)-distances between attacks for a given image and plot a joint histogram for 10 examples in Figure 2. There is a clear separation away from zero for all pairwise distances indicating that the attacks are indeed distinct in the input space.

Additionally, we plot a histogram over the adversarial losses for each image. An example is provided in Figure 2 which is corroborated by similar results for other images (see Figure 6§B). We find that the adversarial losses all concentrate with low variance far away from the clean loss. This confirms that all perturbations are in fact both strong and distinct.

Algorithm 1 Danskin’s Descent Direction (DDD)

1: **Input:** Batch size \(k \geq 1 \), number of adversarial examples \(m \), initial iterate \(\theta_0 \in \mathbb{R}^d \), number of iterations \(T \geq 1 \), step-sizes \(\{\beta_t\}_{t=1}^T \).
2: for \(t = 0 \) to \(T - 1 \) do
3: Draw \((x_1, y_1), \ldots, (x_k, y_k)\) from data distribution \(D \)
4: \(g(\theta, \delta) \leftarrow \frac{1}{k} \sum_{i=1}^{k} L(\theta, x_i + \delta_i, y_i) \)
5: \(\delta^{(1)}, \ldots, \delta^{(m)} \leftarrow \text{MAXIMIZE}_{\delta \in S} g(\theta, \delta) \) \qquad \text{\(\triangleright \) Using a heuristic like PGD}
6: \(M \leftarrow [\nabla_{\theta} g(\theta, \delta^{(i)}) : i = 1, \ldots, m] \in \mathbb{R}^{d \times m} \)
7: \(\alpha^* \leftarrow \text{MINIMIZE}_{\alpha \in \Delta^m} \| M \alpha \|_2 \) \qquad \text{\(\triangleright \) To \(\epsilon \)-suboptimality}
8: \(\gamma^* \leftarrow \frac{\alpha^*}{\| M \alpha^* \|_2} \)
9: \(\theta_{t+1} \leftarrow \theta_t + \beta_t \gamma^* \)
10: end for
11: return \(\theta_T \)

Figure 2: Randomly initialized PGD attacks achieves similar increase in loss, while being distinct, thus ruling out uniqueness of an optimal perturbation. (left) All pairwise \(\ell_2 \)-distances between perturbations are bounded away from zero by a large margin, thus showing that PGD perturbations on the same sample are distinct. (right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.

5.2 Exploring the Optimization Landscape of DDD and Standard Adversarial Training

Having established that there exist multiple adversarial examples, we now show that the gradients computed can exhibit the behaviors discussed in Section 3. In a first synthetic example we borrow from [Orabona, 2019] Chapter 6, we consider the function \(g(\theta, \delta) = \delta (\theta_1^2 + (\theta_2 + 1)^2) + (1 - \delta) (\theta_1^2 + (\theta_2 - 1)^2) \) where \(\theta \in \mathbb{R}^2 \) and \(\delta \in [0, 1] \). As can be seen from Figure 1a and Figure 1b, following a gradient computed at a single example leads to a increase in the objective and an unstable optimization behavior despite the use of a decaying step-size.

In a second synthetic example, we consider robust binary classification with a feed-forward neural network on a synthetic 2-dimensional dataset, trained with batch gradient descent. We observe that during training, after an initial phase where all gradients computed at different perturbations...
point roughly in the same direction, we begin to observe pairs of gradients with negative inner-products (see Figure 3 (left)). That means that following one of those gradients would lead to an increase of the robust loss, as shown by the different optimization behavior (see Figure 3 (center)). Therefore, the benefits DDD kick in later in training, once the loss has stabilized and the inner-solver starts outputting gradients with negative inner products. Indeed, we see that in the middle of training (iteration 250), DDD finds a descent direction of the (linearized) robust objective, whereas all individual gradients lead to an increase.

Figure 3: Count of negative inner products pairs among the 10 gradients computed per iteration(left), corresponding robust loss behavior along optimization (center). At iteration 250, comparison of the direction obtained by DDD and individual gradients.(right).

5.3 Accuracy/Robustness comparison of DDD vs Adversarial Training

We compare the robust test and training error of Adversarial Training vs our proposed method DDD, on the CIFAR10 benchmark. As baseline we use ℓ_∞-PGD with $\epsilon = 8/255$, $\alpha = 2/255$, $n_{inner} = 7$. We train a ResNet18 with SGD, using the settings from Pang et al. (2021), Table 1 except for some modifications noted below. This means SGD with hyperparameters $\text{lr}= 0.1$, $\text{momentum}=0.0$ (not the default 0.9, we explain why below), $\text{batch_size}= 128$ and $\text{weight_decay}= 5e - 4$. We run for 200 epochs, no warmup, decreasing lr by a factor of 0.1 at 50% and 75% of the epochs.

Satisfying theoretical assumptions: Real world architectures are often not covered by theory while simple toy examples are often far removed from practice. To demonstrate the real world impact of our results, we therefore study a setting where the conditions of Danskin’s Theorem hold, but which also uses standard building blocks used by practitioners, specifically replacing ReLU with CELU (Barron, 2017), replacing BatchNorm (BN) (Ioffe & Szegedy, 2015) with GroupNorm (GN) (Wu & He, 2018) and removing momentum. This ensures differentiability, removes intra-batch dependencies and ensures each update depends only on the descent direction found at that step respectively. We present more detailed justification in Appendix B.2 due to space constraints and additionally show an ablation study on the effect of our modifications in (Fig. 4b)\footnote{It is worth noting that the early stopping robust accuracy we achieve in ablations approximately matches that reported in Engstrom et al. (2019) on resnet50}.

Our main results can be seen in Fig. 4a. The robust accuracy of the DDD-trained model increases much more rapidly in the early stages, it increases more after the first drop in the learning rate, and is more stable when compared to the baseline. \footnote{Figure 4b also gives evidence that our method has (generally positive or neutral) effects in all settings. Using ReLU instead of CELU re-introduces the characteristic bump in robust accuracy that has led to early stopping becoming standard practice in robust training. It also diminishes the benefit of DDD, but DDD remains on par with PGD in terms of training speed and decays slightly less towards the end of the training. Adding momentum does not help either method in terms of training speed and makes them behave almost identically. Finally, BN seems to significantly ease the optimisation for both methods, raising overall performance and amplifying the bump on both methods. Here, PGD actually reaches a higher maximum robust accuracy and rises faster initially, but then converges to a lower value. This implies that some benefits of DDD remain even outside the setting covered by the theory.}

Although these are promising results indicating that DDD can give real world benefits in terms of iterations and reduce the need for early stopping, it is worth asking whether once could get the same
Figure 4: (left) Evolution of the robust accuracy on the CIFAR10 validation set, using a standard PGD adversary for evaluation and DDD/PGD during training. (right) an ablation testing the effect of adding the elements not covered by theory (BN,ReLU,momentum) back into our setting.

One might even say there is no need to solve the inner product and a simpler method to select the best adversary would suffice. In Fig. 5a we address these concerns by comparing the results of the following variants attempting to match the computational complexity: PGD-70 runs a single PGD adversary for 10x the number of steps, PGD-70-1/t runs a single PGD adversary for 10x the number of steps, using a 1/t learning rate decay after leaving the “standard” PGD regime (i.e. after 8 adversary steps) to converge closer to an optimal adversarial example, PGD-max-10 runs ten parallel, independent PGD adversaries for each image and select the adversarial example that induces the largest loss. Finally, PGD-min-10 runs ten parallel, independent PGD adversaries for each image, then computes the gradients and selects the one with the lowest norm. This is an approximation of DDD that avoids solving Line 7 in Algorithm 1.

Additionally, in Fig. 5b we create a DDD variant based on the FAST adversary (Wong et al., 2020) (using $\epsilon = 8/255$, $\alpha = 10/255$), while retaining PGD for the evaluation attack and compare against vanilla FAST in our setting (so without BN, momentum and using CELU) as well as a FAST-max-10 variant analogous to PGD-max-10.

Figure 5: (a) Ablations comparing PGD-variants matching the number of adversarial gradients/steps used for DDD. (b) Ablation over single-step adversaries (FAST/DDD-FAST).
As we can see in Fig. 5a, every step of the pipeline of DDD seems to be necessary, with none of the PGD variants achieving the fast initial rise in robustness. PGD-70 − 1 2 and PGD-min-10 reach a higher final robust accuracy, which we attribute to the higher quality adversarial example and informed selection respectively. This is also corroborated in Fig. 5b. Using a single step adversary is sufficient to speed up convergence in the early stages of training, but does not reach the same final robust accuracy.

PGD and DDD seem to behave similarly in the later stages of training. Hence, we would suggest a slightly computationally cheaper DDD variant which uses single ascent steps (FAST) in the beginning of training and switches to PGD variants in the later stages. In any case, the bulk of the overhead lies in the subroutine in Line 7 of Algorithm 1. A faster approximate solution could also speed up the method significantly. Such incremental improvements are left for future work.

6 RELATED WORK

Wang et al. (2019) derive suboptimality bounds for the robust training problem, under a locally strong concavity assumption on the inner-maximization problem. However, such results do not extend to Neural Networks, as the inner-maximization problem is not strongly concave, in general. In contrast, we do not make unrealistic assumptions like strong concavity, and we deal with the existence multiple solutions of the inner-maximization problem.

In Nouiehed et al. (2019), it is shown that if the inner-maximization problem is unconstrained and satisfies the PL-condition, it is differentiable, and the gradient can be computed after obtaining a single solution of the problem. However, in the robust learning problem the adversary is usually constrained to a compact set, and the PL condition does not hold generically. This renders such assumptions hard to justify in the AT setting.

Tramer & Boneh (2019); Maini et al. (2020) study robustness to multiple perturbation types, which might appear similar to our approach, but is not. Such works strike to train models that are simultaneously robust against ℓ_∞- and ℓ_2-bounded perturbations, for example. In contrast, we focus on a single perturbation type, and we study how to use multiple adversarial examples of the same sample to improve the update directions of the network parameters.

Finally, we back our claim that the falseness of Madry et al. (2018, Corollary C.2.) is not well-known in the literature on Adversarial Training. For example, such result is included in the textbook (Vorobeychik et al., 2018, Proposition 8.1). It has also been either reproduced or mentioned in conference papers like Liu et al. (2020, Section 2), Viallard et al. (2021, Appendix B), Wei & Ma (2020, Section 5) and possibly many others. This supports our claim that raising awareness about the mistake in the proof is an important contribution.

7 CONCLUSION

In this paper we presented a formal proof, counter examples and evidence about the real world impact of the fact that a foundational corollary of the Adversarial Training literature is in fact false. Raising awareness about an incorrect claim that has been present in the Adversarial Training literature may provide opportunities to develop improved variants of the method. Indeed, we see some improvements in an implementable algorithm that align with our theoretical arguments: DDD exploits multiple approximate solutions of the inner-maximization problem, yields better updates for the parameters of the network and improves the optimization dynamics. However, it is important to also remember the limitations and opportunities for future work: our algorithm requires multiple forward backward passes followed by an expensive additional inner problem. Reducing the number of forward backward passes as well as the cost of the 2nd inner problem would be the highest priority to make exploiting our results truly practical.

All the while, non-smooth activations and the use of Batch Normalization or momentum still falls outside the scope of existing theory but might achieve better performance in benchmarks. To date, this requires using precise hyperparameters and tricks like early-stopping, that have only been found to work a-posteriori through extensive trial and error. Since we observe lower decay even in the non-smooth BatchNorm setting, future work extending the analysis to cover this case might help alleviate this cost.
REFERENCES

A More on Counterexamples

Here we give more details on the construction of the counterexamples. First observe that for a given point θ_0, and a direction γ, if there exists a $\delta_0 \in S^*(\theta_0)$ such that $\langle \gamma, \nabla g(\theta_0, \delta) \rangle > 0$, then γ is not a descent direction since $D_\gamma \phi(\theta_0) \geq 0$.

In order to ensure that no descent directions can be recovered by solving the inner-maximization, it suffices to guarantee that for any $\delta \in S^*(\theta_0)$, there exists $\delta' \in S^*(\theta_0)$ such that $\langle \nabla g(\theta_0, \delta), \nabla g(\theta_0, \delta') \rangle < 0$. This way, neither $-\nabla g(\theta_0, \delta)$ nor $-\nabla g(\theta_0, \delta')$ would be descent directions.

It easy to generate instances verifying the above using linear functions. More formally, by taking any family of vectors $V = \{v_1, \ldots, v_n\}$ such that for any $i \in \{1, \ldots, n\}$ there exists $j \in \{1, \ldots, n\}$ such that $\langle v_i, v_j \rangle < 0$, we can construct the objective $g(\theta, \delta) = \sum \delta_i v_i^\top (\theta - \theta_0) - H(\delta)$, where δ is in the n-dimensional Simplex and H is the Shannon entropy. Solving the inner-maximization would yield any one of the vectors $\{v_1, \ldots, v_n\}$, and by construction, none of them are descent directions.

B Experiments

B.1 Multiple attacks

Figure 6: The losses of multiple perturbations on 9 different example all concentrate around a value much larger than the clean loss. See Section 5.1 for experimental details.

B.2 Justifying our modifications

For Danskin’s Theorem [Theorem 1] to hold, we require the function to be differentiable. To satisfy differentiability, we replace ReLU with CELU [Barron, 2017], which has been found to have comparable performance and sometimes outperform ReLU [Dubey et al., 2022].
To operate on individual images and remove the batch-wise correlations across samples we replace BatchNorm (BN) [Ioffe & Szegedy, 2015] with GroupNorm (GN) [Wu & He, 2018].

Finally, to make each update depend only on the current state, we set \(\text{momentum} = 0.0\). Since momentum is standard practice in the CV community and works like Yan et al. (2018) argue that it can improve generalisation, we rely on our ablation to show that removing it is safe.

B.3 Further Details on Synthetic Experiments

The synthetic experiment in Fig. 1a is conducted with the following settings. The inner-maximization is approximated with 10 steps of projected gradient ascent in order to match the traditional AT setting. The outer iterations have a decaying \(n^{-\sqrt{k}}\) step-size schedule. We observe the same erratic behavior for PGD with a fixed outer stepsize, while DDD consistently remains well-behaved.

The synthetic experiment in Fig. 3 is conducted on a dataset of size 100 in dimension 2 where the coordinates are standard Gaussian. The neural network is a 2-layer network with ELU activation with a hidden layer of width 2. The inner solver is PGD with 10 steps with stepsize 0.1 and optimizes over the unit cube. The outer step-size is 0.01 and the weights are optimized with full batch gradient descent.

The linear approximation at iteration 250 of the robust loss consists of taking the 10 adversarial examples computed at iteration 250 and approximating it with

\[
\tilde{\phi}(\theta) = \max_{\delta_1, \ldots, \delta_{10}} \phi(\theta_{250}) + \langle \nabla_g \phi(\theta_{250}, \delta_i), \theta - \theta_{250} \rangle
\]

Interestingly we do not observe the same drastic improvement over PGD when observing the non-linearized loss at iteration 250.

C Proof of Theorem 2

The steepest descent direction is computed, following Eq. (4) as:

\[
\gamma^* \in \arg \min_{\gamma: \|\gamma\|_2 = 1} D_\gamma \phi(\theta) = \arg \min_{\gamma: \|\gamma\|_2 = 1} \max_{\delta \in S^*} \langle \gamma, \nabla g(\theta, \delta) \rangle
\]

Wherever \(\theta\) is not a local optimum, there exists a non-zero descent direction. In this case we can relax the constraint that \(\|\gamma\|_2 = 1\) to \(\|\gamma\|_2 \leq 1\) without changing the solutions or optimal value of (15), which is strictly negative:

\[
\min_{\gamma: \|\gamma\|_2 \leq 1} \max_{\delta \in S^*} \langle \gamma, \nabla g(\theta, \delta) \rangle = \min_{\gamma: \|\gamma\|_2 \leq 1} \max_{\delta \in S^*} \langle \gamma, \nabla g(\theta, \delta) \rangle < 0
\]

2 There are whole lines of work studying the effects of BN [Bjorck et al., 2018; Santurkar et al., 2018; Kohler et al., 2019] as well as removing it altogether [Brock et al., 2021]. It has also been found to interact with adversarial robustness in [Wang et al., 2022] and [Benz et al., 2021], the latter also finds GN to be a well performing alternative, justifying our choice.
We can now transform (15) into a bilinear convex-concave min-max problem, subject to convex and compact constraints:

$$\gamma^* \in \arg \min_{\gamma : \|\gamma\|_2 \leq 1} D_{\gamma} \phi(\theta) = \arg \min_{\|\gamma\|_2 \leq 1} \max_{\delta \in \mathcal{S}} \langle \gamma, \nabla_{\theta} g(\theta, \delta) \rangle$$

$$= \arg \min_{\|\gamma\|_2 \leq 1} \max_{i = 1, \ldots, m} \gamma^\top \nabla_{\theta} g(\theta, \delta_i)$$

$$= \arg \min_{\|\gamma\|_2 \leq 1} \max_{\alpha \in \Delta^m} \gamma^\top \nabla_{\theta} g(\theta, S^*(\theta)) \alpha$$

By Sion’s minimax Theorem [Sion (1958)], we can solve Eq. (17) by swapping the operator order:

$$\min_{\gamma : \|\gamma\|_2 \leq 1} \max_{\alpha \in \Delta^m} \gamma^\top \nabla_{\theta} g(\theta, S^*(\theta)) \alpha = \max_{\alpha \in \Delta^m} \min_{\gamma : \|\gamma\|_2 \leq 1} \gamma^\top \nabla_{\theta} g(\theta, S^*(\theta)) \alpha$$

$$= \max_{\alpha \in \Delta^m} -\|\nabla_{\theta} g(\theta, S^*(\theta)) \alpha\|_2$$

$$= -\min_{\alpha \in \Delta^m} \|\nabla_{\theta} g(\theta, S^*(\theta)) \alpha\|_2 < 0$$

Finally, by noting that squaring the objective function in the right-hand side of Eq. (18) does not change the set of solutions, we arrive at the formula for α^* in Eq. (14). Indeed for a solution α^* to this problem we have

$$\arg \min_{\gamma : \|\gamma\|_2 \leq 1} \max_{\alpha \in \Delta^m} \gamma^\top \nabla_{\theta} g(\theta, S^*(\theta)) \alpha = \arg \min_{\gamma : \|\gamma\|_2 \leq 1} \gamma^\top \nabla_{\theta} g(\theta, S^*(\theta)) \alpha^*$$

$$= -\frac{\nabla_{\theta} g(\theta, S^*(\theta)) \alpha^*}{\|\nabla_{\theta} g(\theta, S^*(\theta)) \alpha^*\|}$$

where the denominator is nonnegative as the optimal objective value is nonzero c.f. Eq. (18).