
Unit Ball Model for Embedding Hierarchical
Structures in the Complex Hyperbolic Space

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning the representation of data with hierarchical structures in the hyperbolic1

space attracts increasing attention in recent years. Due to the constant negative2

curvature, the hyperbolic space resembles tree metrics and captures the tree-like3

properties naturally, which enables the hyperbolic embeddings to improve over4

traditional Euclidean models. However, many real-world hierarchically structured5

data such as taxonomies and multitree networks have varying local structures and6

they are not trees, thus they do not ubiquitously match the constant curvature7

property of the hyperbolic space. To address this limitation of hyperbolic embed-8

dings, we explore the complex hyperbolic space, which has the variable negative9

curvature, for representation learning. Specifically, we propose to learn the em-10

beddings of hierarchically structured data in the unit ball model of the complex11

hyperbolic space. The unit ball model based embeddings have a more powerful12

representation capacity to capture a variety of hierarchical structures. Through13

experiments on synthetic and real-world data, we show that our approach improves14

over the hyperbolic embedding models significantly.15

1 Introduction16

Representation learning of data with hierarchical structures is an important machine learning task with17

many applications, such as taxonomy induction (Fu et al., 2014) and hypernymy detection (Shwartz18

et al., 2016). In recent years, the hyperbolic embeddings (Nickel and Kiela, 2017, 2018) have been19

proposed to improve the traditional Euclidean embedding models (Nickel et al., 2011; Bordes et al.,20

2013). The constant negative curvature of the hyperbolic space produces several manifestations,21

where the most desirable property for representation learning is that the hyperbolic space can be22

regarded as a continuous approximation to trees (Krioukov et al., 2010). The hyperbolic space is23

capable of embedding any finite tree while preserving the distances approximately (Gromov, 1987).24

As a result of the tree-like properties, the hyperbolic space is more suitable to embed hierarchically25

structured data than Euclidean space.26

However, the real-world hierarchically structured data are usually not trees since they can have27

varying local structures while being tree-like globally. For example, although the taxonomies such as28

WordNet (Miller, 1995) and YAGO (Suchanek et al., 2007) have underlying hierarchical structures,29

they contain many 1-n (1 child links to multiple parents) cases and multitree structures (Griggs et al.,30

2012), which are much more complicated than trees. Thus, the general hierarchically structured data31

cannot ubiquitously match the constant negative curvature property of the hyperbolic space.32

To address the challenge, in this paper, we present a new approach to learning the embeddings of33

hierarchically structured data. Specifically, we embed the data with hierarchical structures into the34

unit ball model of the complex hyperbolic space. The unit ball model is a projective geometry based35

model to identify the complex hyperbolic space. One of the main differences between the complex36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

and the real hyperbolic space is that the curvature is no longer constant in the complex hyperbolic37

space. Instead, it has the variable negative curvature. In practice, the variable negative curvature38

makes the unit ball model based embeddings more flexible in handling varying structures while the39

tree-like properties retain the superiority in hierarchies.40

For empirical evaluation, we first compare our approach with the hyperbolic embedding methods on41

tree structures to show that the complex hyperbolic space maintains the tree-like properties. Then we42

evaluate our approach and the baselines on various hierarchically structured data, including synthetic43

graphs and real-world taxonomies. The experimental results demonstrate the advantages of our44

approach. To summarize, our work has the following main contributions:45

1. We present a novel embedding approach, which takes advantage of the variable negative46

curvature of the complex hyperbolic space, to handle data with complicated and various47

hierarchical structures. To the best of our knowledge, our work is the first to propose48

complex hyperbolic embeddings.49

2. We introduce the embedding algorithm in the unit ball model of the complex hyperbolic50

space. We formulate the learning and Riemannian optimization in the unit ball model.51

3. We evaluate our approach with experiments on an extensive range of synthetic and real-world52

data and show the remarkable improvements of our approach.53

2 Related work54

Hyperbolic embeddings. Hyperbolic embedding methods have become the leading approach for55

representation learning of hierarchical structures. (Nickel and Kiela, 2017) learned the representations56

of hierarchical graphs in the Poncaré ball model of the hyperbolic space and obtained high-quality57

embeddings for taxonomies. (Ganea et al., 2018a) introduced the hyperbolic entailment cones58

to formally define the partial ordering relation. (Nickel and Kiela, 2018) proposed to learn the59

embeddings in the hyperboloid model (also known as the Lorentz model) of the hyperbolic space to60

avoid the numerical instabilities of the Poncaré ball model. These methods learned the hyperbolic61

embeddings by Riemannian optimization (Bonnabel, 2013), which was further improved by the62

Riemannian adaptive optimization (Bécigneul and Ganea, 2019). Additionally, (Yu and Sa, 2019)63

used an integer-based tiling to solve the numerical instabilities in the hyperbolic embeddings.64

Another branch of study (Sala et al., 2018; Sonthalia and Gilbert, 2020) learned the hyperbolic65

embeddings through combinatorial construction. Instead of optimizing the soft-ranking loss by66

Riemannian SGD to preserve the hierarchical relationships as in (Nickel and Kiela, 2017, 2018),67

the construction-based methods minimize the reconstruction distortion and focus on the graph68

reconstruction task. Remarkably, TreeRep (Sonthalia and Gilbert, 2020) can exactly recover the69

original tree structure when the given graph is a tree. However, both the optimization-based and70

construction-based hyperbolic embeddings suffer from the limitation in hierarchical graphs with71

varying local structures. To tackle the challenge, (Gu et al., 2019) extended the construction-based72

method by jointly learning the curvature and the embeddings of data in a product manifold. Although73

it can provide a better representation than a single space with constant curvature, it is impractical to74

search for the best manifold combination among enormous combinations for each new structure.75

Note that our complex hyperbolic embedding model is different from the hyperbolic embedding76

methods (Nickel and Kiela, 2017, 2018) or the product manifold embeddings (Gu et al., 2019) since77

the geometrical spaces are typically of different characteristics. The n-dimensional (n-d) complex78

hyperbolic space is not simply the 2n-d hyperbolic space or the product of two n-d hyperbolic spaces.79

Section 3 will show that their geometries differ markedly.80

Motivated by the promising results of previous works, extensions to the multi-relational graph81

hyperbolic embeddings (Balazevic et al., 2019; Chami et al., 2020; Sun et al., 2020) and hyperbolic82

neural networks (Ganea et al., 2018b; Gülçehre et al., 2019; Liu et al., 2019; Chami et al., 2019; Dai83

et al., 2021; Shimizu et al., 2021) were explored. Notably, (Chami et al., 2019, 2020) leverages84

the trainable curvature to compensate for the disparity between the actual data structures and the85

constant-curvature hyperbolic space, where each layer in the graph neural network or each relation86

in the multi-relational graph has its own curvature parameterization. Since we only focus on the87

single-relation graph embeddings and taxonomy embeddings in this work, we do not evaluate the88

multi-relational knowledge graph embedding models or the neural networks in our tasks.89

2

Complex embeddings. The traditional knowledge graph embeddings were learned in the real90

Euclidean space (Nickel et al., 2011; Bordes et al., 2013; Yang et al., 2015) and were used for91

knowledge graph inference and reasoning. In recent years, several works suggested utilizing the92

complex Euclidean space for inferring more relation patterns, such as ComplEx (Trouillon et al.,93

2016) and RotatE (Sun et al., 2019). The computation operations and transformations in the complex94

space have been demonstrated to be effective in the knowledge graph embeddings. The success of95

the complex embeddings reveals the potential of the complex space and inspires us to explore the96

complex hyperbolic space.97

3 Preliminaries98

3.1 Curvature99

Before introducing the hyperbolic geometry and the complex hyperbolic geometry, we need to give100

the definition of curvature, which describes the curve of Riemannian manifolds and controls the rate101

of geodesic deviation. In this paper, curvature refers to the sectional curvature.102

Definition 1 (Curvature). Given a Riemannian manifold and two linearly independent tangent vectors103

at the same point, u and v, the (sectional) curvature is defined as104

K(u,v) =
〈R(u,v)v,u〉

〈u,u〉〈v,v〉 − 〈u,v〉2
,

where R is the Riemann curvature tensor, defined by the convention R(u,v)w = ∇u∇vw −105

∇v∇uw −∇[u,v]w.106

3.2 Hyperbolic geometry107

Hyperbolic space1 is a homogeneous space with constant negative curvature. Here constant means108

constant both at all points and in all pairs of directions. In the hyperbolic space HnR(K) of dimension109

n and curvature K < 0, the volume of a ball grows exponentially with its radius ρ:110

vol(BHn
R (K)(ρ)) ∼ e

√
−K(n−1)ρ. (1)

Contrastively, in the Euclidean space En, the curvature is 0 and the volume of a ball grows polynomi-111

ally with its radius:112

vol(BEn(ρ)) =
π

n
2

Γ(n2)
ρn ∼ ρn. (2)

The exponential volume growth rate enables the hyperbolic space to have powerful representation113

capability for tree structures since the number of nodes grows exponentially with the depth in a tree,114

while the Euclidean space is too flat and narrow to embed trees.115

3.3 Complex hyperbolic geometry116

Complex hyperbolic space is a homogeneous geometry of variable negative curvature. Its ambient117

Hermitian vector space Cn,1 is the complex Euclidean space Cn+1 endowed with a Hermitian form118

〈〈z,w〉〉, where z,w ∈ Cn+1. Then the Hermitian space Cn,1 can be divided into three subsets:119

V− = {z ∈ Cn,1|〈〈z, z〉〉 < 0}, V0 = {z ∈ Cn,1 −{0}|〈〈z, z〉〉 = 0}, and V+ = {z ∈ Cn,1|〈〈z, z〉〉 >120

0}. Let P be a projection map P : Cn,1 − {zn+1 = 0} → Cn, i.e.,121

P :

[
z1
. . .
zn+1

]
7→

[
z1/zn+1

. . .
zn/zn+1

]
,where zn+1 6= 0. (3)

Then the complex hyperbolic space HnC and its boundary ∂HnC are defined using the projectivization:122

HnC = PV−, ∂HnC = PV0. (4)

The curvature of the complex hyperbolic space is summarized by (Goldman, 1999) as follows:123

1In this paper, we use hyperbolic space to refer to real hyperbolic space and hyperbolic embeddings to refer
to real hyperbolic embeddings for avoiding wordiness.

3

Theorem 1. The curvature is not constant in HnC. It is pinched between −1 (in the directions of124

complex projective lines) and −1/4 (in the directions of totally real planes).125

We leave the full proof in Appendix A. The non-constant curvature, which we expect to be favorable126

for embedding various hierarchical structures, is one of the main differences between HnC and the real127

hyperbolic space HnR.128

The complex hyperbolic space also has the tree-like exponential volume growth property. The volume129

of a ball with radius ρ in HnC is given by130

vol(BHn
C
(ρ)) =

8nσ2n−1
2n

sinh2n(ρ/2) ∼ 8nσ2n−1
2n

enρ, (5)

where σ2n−1 = 2πn/n! is the Euclidean volume of the unit sphere S2n−1 ∈ Cn.131

From the properties of the complex hyperbolic geometry, we expect that the complex hyperbolic132

space can naturally handle data with diverse local structures in virtue of the variable curvature as133

presented in Theorem 1 while preserving the tree-like properties as shown in Eq. (5).134

4 Unit ball embeddings135

We propose to embed the hierarchically structured data into the unit ball model of the complex136

hyperbolic space. In this section, We introduce our approach in detail.137

4.1 The unit ball model138

The unit ball model is one model used to identify the complex hyperbolic space, which can be derived139

via the projective geometry (Goldman, 1999). We now provide the derivation sketch.140

Take the Hermitian form of Cn,1 in Section 3.3 to be a standard Hermitian form:141

〈〈z,w〉〉 = z1w1 + · · ·+ znwn − zn+1wn+1, (6)

where w is the conjugate of w. Take zn+1 = 1 in the projection map P in Eq. (3), then from Eq. (4),142

we can derive the formula of the unit ball model:143

BnC = {(z1, · · · , zn, 1)||z1|2 + · · ·+ |zn|2 < 1}, (7)

where | · | is the Euclidean norm.144

The metric on BnC is Bergman metric, which takes the formula below in 2-d case:145

ds2 =
−4

〈〈z, z〉〉2
det

[
〈〈z, z〉〉 〈〈dz, z〉〉
〈〈z, dz〉〉 〈〈dz, dz〉〉

]
. (8)

The distance function on BnC is given by146

dBn
C

(z,w) = arcosh(2
〈〈z,w〉〉〈〈w, z〉〉
〈〈z, z〉〉〈〈w,w〉〉

− 1), (9)

where the Hermitian form 〈〈z,w〉〉 is defined in Eq. (6).147

4.2 Embeddings in the unit ball model148

Given the hierarchical data containing a set of nodes X = {xp}mp=1 and a set of edges E =149

{(xp, xq)|xp, xq ∈ X}, we aim to learn the embeddings of the nodes Z = {zp}mp=1, where zp ∈ BnC.150

The objective of the embeddings is to recover the structures of input data, including the distances151

between the nodes as well as the partial order in the hierarchies. Here we adopt the soft ranking152

loss used in the Poincaré ball embeddings (Nickel and Kiela, 2017) and the hyperboloid embed-153

dings (Nickel and Kiela, 2018), which aims at preserving the hierarchical relationships among nodes:154

155

L =
∑

(xp,xq)∈E

log
e
−dBn

C
(zp,zq)∑

xk∈N (xp)
e
−dBn

C
(zp,zk)

, (10)

4

Algorithm 1 RSGD of the unit ball embeddings.

Input: initialization z(0), number of iterations T , learning rates {η(t)}Tt=1.
for t = 1 to T do

Compute
∂dBn

C
∂x and

∂dBn
C

∂y by Eqs. (14) and (15).
Compute ∇EL(z) and∇RL(z) by Eq. (13).
Update z(t) by Eq. (17).

end for

where N (xp) = {xk : (xp, xk) /∈ ET } ∪ {xp} is the set of negative examples for xp together with156

xp. dBn
C

is the distance function in the unit ball model given in Eq. (9). The minimization of L makes157

the connected nodes closer in the embedding space than those with no observed edges.158

Note that instead of manually setting the curvature of the learning space or training the curvature159

as extra parameters, we learn the embeddings directly in the complex hyperbolic space, where the160

curvature is variable. The learned embeddings are located in different submanifolds of the unit ball161

model, whose curvatures are different.162

4.3 Riemannian optimization in the unit ball model163

We learn the embeddings Z = {zp}mp=1 through solving the optimization problem with constraint:164

Z← arg min
Z
L s.t.∀zp ∈ Z, zp ∈ BnC. (11)

For the optimization problems in Riemannian manifolds, (Bonnabel, 2013) presented the Riemannian165

stochastic gradient descent (RSGD) algorithm, which we employ to optimize Eq. (11). To update an166

embedding z ∈ BnC,2 we need to obtain its Riemannian gradient ∇R. Specifically, denote TzBnC as167

the tangent space of z, then the embedding is updated at the t-th iteration by168

z(t) ← z(t−1) − η(t)∇RL(z), (12)

where η(t) is the learning rate at the t-th iteration and∇RL(z) ∈ TzBnC is the Riemannian gradient169

of L(z). Then the Riemannian gradient ∇R can be derived from rescaling the Euclidean gradient170

∇E with the inverse of the metric tensor ds2 and applying the chain rule of differential functions:171

∇RL(z) =
1

ds2
∇EL(z) =

1

ds2
∂L(z)

∂dBn
C

(z,w)
∇EdBn

C
(z,w), (13)

where ds2 is in Eq. (8) and ∂L(z)
∂dBn

C
(z,w) is trivial to compute from Eq. (10).172

In practical training, we implement and compute the complex hyperbolic embedding as its real part173

and imaginary part, i.e., z = x + iy, where i represents the imaginary unit, i.e., i2 = −1. In order to174

get the gradient of the distance function ∇EdBn
C

(z,w) in Eq. (13), we get the partial derivative with175

regard to the real part and the imaginary part, i.e.,∇EdBn
C

(z,w) =
∂dBn

C
(z,w)

∂x + i
∂dBn

C
(z,w)

∂y .176

The partial derivatives of the unit ball model distance take the following formulas:177

∂dBn
C

∂x
=

4√
p2 − 1

(Re(〈〈z,w〉〉w)

〈〈z, z〉〉〈〈w,w〉〉
− 〈〈z,w〉〉〈〈w, z〉〉x
〈〈z, z〉〉2〈〈w,w〉〉

)
, (14)

∂dBn
C

∂y
=

4√
p2 − 1

(Im(〈〈z,w〉〉w)

〈〈z, z〉〉〈〈w,w〉〉
− 〈〈z,w〉〉〈〈w, z〉〉y
〈〈z, z〉〉2〈〈w,w〉〉

)
, (15)

where p = cosh(dBn
C

(z,w)), Re(·) and Im(·) denote the real and the imaginary part respectively.178

The full derivation of Eqs. (14) and (15) is given in Appendix B.179

Since the embedding z should be constrained within the unit ball model, we apply the same projection180

strategy as (Nickel and Kiela, 2017) via a small constant ε:181

proj(z) =

{
z/(|z| − ε) if |z| ≥ 1,
z otherwise.

(16)

2Here we omit the subscript of zp for concision.

5

Table 1: The real-world datasets statistics.

ICD10 YAGO3-wikiObjects WordNet-noun

Nodes 19,155 17,375 82,115
Edges 78,357 153,643 743,086
Depth 6 16 20
Training edges 70,521 138,277 668,776
Valid/Test edges 3,918 7,683 37,155
δ-hyperbolicity 0.0 1.0 0.5

To sum up, the update of z at the t-th iteration is182

z(t) ← proj
(
z(t−1) − η(t)∇RL(z)

)
= proj

(
z(t−1) − η(t) 1

ds2
∇EL(z)

)
. (17)

The RSGD steps of the unit ball embeddings are presented in Algorithm 1.183

5 Experiments184

In this section, we evaluate the performances of our approach on tree structures and various hier-185

archical structures, including synthetic graphs and real-world taxonomies. We focus on the graph186

reconstruction and link prediction tasks. For more experiments, please refer to Appendix D.187

5.1 Experimental settings188

5.1.1 Data189

We use synthetic and real-world data that exhibit underlying hierarchical structures to evaluate our190

approach. The details are as follows.191

Synthetic. We generate various balanced trees and compressed graphs using NetworkX package (Hag-192

berg et al., 2008).3 For balanced trees, we generate the balanced tree with degree r and depth h. For193

compressed graphs, we generate k random trees on m nodes and then aggregate their edges to form194

a graph. Some examples of the synthetic data are given in Appendix D.1.195

ICD10. The 10-th revision of International Statistical Classification of Diseases and Related Health196

Problems (ICD10)4 (Brämer, 1988) is a medical classification list provided by the World Health197

Organization. The classification list forms a tree structure. We construct its full transitive closure as198

the ICD10 dataset.199

YAGO3-wikiObjects. YAGO35 (Mahdisoltani et al., 2015) is a huge semantic knowledge base. It200

provides a taxonomy derived from Wikipedia and WordNet. We extract the Wikipedia concepts and201

entities that are descendants of 〈wikicat Objects〉 as well as the hypernymy edges among them. We202

compute the transitive closure of the sampled taxonomy to construct the YAGO3-wikiObjects dataset.203

WordNet-noun. WordNet6 (Miller, 1995) is a large lexical database. The hypernymy relation among204

all nouns forms a noun hierarchy. We use its full transitive closure as the WordNet-noun dataset.205

For each real-world dataset, we randomly split the edges into train-validation-test sets with the ratio206

90%:5%:5%. We make sure that any node in the validation and test sets must occur in the training set207

since otherwise, it cannot be predicted. But the edges in the validation and test sets do not occur in the208

training set since they are disjoint. We provide the statistics of the real-world datasets in Table 1. The209

Gromov’s δ-hyperbolicity (Gromov, 1987) measures the tree-likeness of graphs (refer to Appendix C210

for definition). The lower δ corresponds to the more tree-like graph and trees have 0 δ-hyperbolicity.211

5.1.2 Tasks212

We evaluate the following two tasks:213

3https://networkx.org/documentation/stable/reference/generators.html
4https://www.who.int/standards/classifications/classification-of-diseases
5https://yago-knowledge.org/
6https://wordnet.princeton.edu/

6

https://networkx.org/documentation/stable/reference/generators.html
https://www.who.int/standards/classifications/classification-of-diseases
https://yago-knowledge.org/
https://wordnet.princeton.edu/

Graph reconstruction. We train the embeddings of the full data and then reconstruct it from the214

embeddings. The task evaluates representation capacity.215

Link prediction. We train the embeddings on the training set and predict the edges in the test set.216

The task evaluates generalization performance.217

5.1.3 Baselines218

We compare our approach UnitBall to the following methods: the sate-of-the-art combinatorial219

construction-based hyperbolic embedding method TreeRep (Sonthalia and Gilbert, 2020), the220

optimization-based hyperbolic embeddings in the Poincaré ball model (Nickel and Kiela, 2017) and221

the Hyperboloid model (Nickel and Kiela, 2018), the simple Euclidean embedding model using the222

same loss function with (Nickel and Kiela, 2017, 2018). Recall that we use the same loss function223

with Poincaré and Hyperboloid but learn in the unit ball model. Therefore, the comparisons among224

UnitBall, Poincaré, Hyperboloid, and Euclidean reveal the representation capacities of different225

geometrical models in different spaces.226

For the baselines, we use their public codes to train the embeddings. For all methods, the hyperparam-227

eters are tuned on each validation set for link prediction task and on balanced tree-(15,3) for graph228

reconstruction task. The hardware information is given in Appendix D.2 and the hyperparameters229

are listed in Appendix D.3. In all experiments, we report the mean results over 5 running executions.230

The code of our approach will be publicly available after the publishing of the paper.231

5.1.4 Evaluation232

We use the mean average precision (MAP), mean reciprocal rank (MRR), and Hits@N as our233

evaluation metrics, which are widely used for evaluating ranking and link prediction. The details of234

prediction steps and the evaluation metrics are given in Appendix D.4.235

The n-d complex hyperbolic embeddings have around double parameters of the n-d real embeddings236

since the n-d complex hyperbolic vectors have n-d real part and n-d imaginary part. For a fair237

comparison, in each experimental setting, we compare our n-d complex hyperbolic embeddings of238

UnitBall against the 2n-d embeddings of the baselines. The results will also demonstrate that the n-d239

complex hyperbolic space is not simply the 2n-d hyperbolic space, they have different capacities.240

5.2 Graph reconstruction241

5.2.1 Results on balanced trees242

To compare the representation capacities of UnitBall and the hyperbolic embedding models for the243

tree structures, we first evaluate the graph reconstruction task on the synthetic balanced trees. A244

balanced tree-(r, h) has degree r and depth h, so it has r0+ · · ·+rd nodes and r0+ · · ·+rd−1 edges.245

The δ-hyperbolicity of any balanced tree is 0. We embed the balanced trees into 20-d hyperbolic246

space for the baselines and 10-d complex hyperbolic space for UnitBall.247

Figure 1 presents the MAP and Hits@3 scores with varying r and h. We see that when the tree248

is in small scale, e.g., (r, h) = (15, 3), (10, 2), (10, 3), all methods have very good performances,249

demonstrating the expected powerful capacities of hyperbolic geometry and complex hyperbolic250

geometry on tree structures. However, when the breadth or the depth increases, the performances of251

Poincaré and Hyperboloid drop rapidly, suggesting that the optimization-based embeddings in H20
R252

are not effective enough for reconstructing trees of such scales.253

In comparison, UnitBall and TreeRep achieve stable performances for larger trees. TreeRep learns254

a tree structure from the data as an intermediate step and then embeds the learned trees into the255

hyperbolic space using Sarkar’s construction (Sarkar, 2011). When the input data is a tree, TreeRep256

exactly recovers the original tree structure. Figure 1 shows that UnitBall achieves comparable or even257

better performances than TreeRep on the balanced trees. The results demonstrate that UnitBall does258

not compromise on trees. It produces high-quality embeddings for tree structures.259

5.2.2 Results on compressed graphs260

To illustrate the benefits of UnitBall on varying hierarchical structures, we now evaluate on the261

synthetic compressed graphs. The compressed graphs have local tree structures while being more262

7

r=15
r=20

r=25
MAP (on h=3)

0

20

40

60

80

100

M
AP

 (%
)

r=15
r=20

r=25
Hits@3 (on h=3)

0

20

40

60

80

100

Hi
ts

@
3

(%
)

h=2 h=3 h=4
MAP (on r=10)

0

20

40

60

80

100

M
AP

 (%
)

h=2 h=3 h=4
Hits@3 (on r=10)

0

20

40

60

80

100

Hi
ts

@
3

(%
)

TreeRep Poincare Hyperboloid UnitBallTreeRep Poincare Hyperboloid UnitBall

Figure 1: Evaluation of graph reconstruction on synthetic balanced trees in 20-d embedding spaces
(10-d complex hyperbolic space for UnitBall). r represents the degree while h represents the depth.

100 200 300 400 500 600 700 800 900
1000

m (on k=5)

0

10

20

30

40

50

M
AP

 (%
)

100 200 300 400 500 600 700 800 900
1000

m (on k=5)

10

20

30

40

50

60

70

80

Hi
ts

@
3

(%
)

1 2 3 4 5 6 7 8 9 10
k (on m=500)

0

10

20

30

40

50

60

70

80

M
AP

 (%
)

1 2 3 4 5 6 7 8 9 10
k (on m=500)

20

30

40

50

60

70

80

90

Hi
ts

@
3

(%
)

TreeRep Poincare Hyperboloid UnitBallTreeRep Poincare Hyperboloid UnitBall

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

m(k = 5) 100 200 300 400 500 600 700 800 900 1000

Edges 478 982 1474 1,965 2,468 2,976 3,476 3,983 4,468 4,970

δ-hyperbolicity 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5

k(m = 500) 1 2 3 4 5 6 7 8 9 10

Edges 499 998 1,496 1,985 2,468 2,966 3,452 3,939 4,426 4,890

δ-hyperbolicity 0.0 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

m(k = 5) 100 200 300 400 500 600 700 800 900 1000

Edges 478 982 1474 1,965 2,468 2,976 3,476 3,983 4,468 4,970

δ-hyperbolicity 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5

k(m = 500) 1 2 3 4 5 6 7 8 9 10

Edges 499 998 1,496 1,985 2,468 2,966 3,452 3,939 4,426 4,890

δ-hyperbolicity 0.0 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 2: Evaluation of graph reconstruction on synthetic compressed graphs in 20-d embedding
spaces (10-d complex hyperbolic space for UnitBall). m represents the number of nodes in the graph
while k represents the number of random trees aggregated to the graph (k controls the denseness and
noise level of the graph). The statistics of the compressed graphs are provided in the tables.

complicated than trees. Each compressed graph-(m, k) consists of m nodes and is aggregated from k263

random trees on the m nodes. The bigger k corresponds to the denser and noisier graph.264

Figure 2 depicts the reconstruction results as a function of varying m and k. The results on the265

compressed graphs are not as good as on balanced trees, especially with the increase ofm and k, which266

represents the increase of graph scale and denseness respectively. Notably, UnitBall outperforms267

all other methods on the challenging data, showing that UnitBall handles the noisy locally tree-like268

structures better. TreeRep has comparable results with other methods when (m, k) = (500, 1) since269

when k = 1, the graph is exactly a tree, i.e., δ = 0. However, when k > 1 and δ > 0, TreeRep cannot270

achieve promising results, because when the data metrics deviate from tree metrics, it does not help271

much to learn a tree structure from the data as an intermediate step.272

5.3 Link prediction273

5.3.1 Overall results274

In this section, we evaluate the performances on the link prediction task for the real-world taxonomies.275

Table 2 presents the results in 32-d embedding spaces for baselines and 16-d complex hyperbolic space276

for UnitBall. Predicting missing links requires stronger generalization capacity than reconstructing277

graphs, and UnitBall still has the best performances on all three datasets. Besides, we see that278

Euclidean shows shortages on these hierarchically-structured data, which is consistent with the results279

in previous works (Nickel and Kiela, 2017, 2018). Similar to the results on the graph reconstruction280

task, Poincaré and Hyperboloid have very close performances, while Hyperboloid has slightly better281

results. They have significant improvements over Euclidean, but they still fall behind UnitBall, which282

8

Table 2: Evaluation of taxonomy link prediction in 32-d embedding spaces (16-d complex hyperbolic
space for UnitBall). The best results are shown in boldface. The second best results are underlined.

ICD10 YAGO3-wikiObjects WordNet-noun
MAP MRR Hits@3 MAP MRR Hits@3 MAP MRR Hits@3

Euclidean 3.75 3.72 2.39 4.85 4.45 2.78 5.59 5.36 3.16
TreeRep 4.96 7.92 8.49 20.19 21.85 27.19 9.30 9.98 11.90
Poincaré 35.24 34.45 52.71 30.06 28.47 41.61 25.46 23.99 27.80
Hyperboloid 34.80 34.01 52.88 30.80 29.21 43.17 25.65 24.15 27.50
UnitBall 47.88 46.96 70.28 33.33 31.85 47.41 27.29 25.93 32.95

Table 3: Evaluation of taxonomy link prediction in different embedding dimensions (the embedding
dimension for UnitBall is half of other models). The best results are shown in boldface. The second
best results are underlined.

YAGO3-wikiObjects
8-dimensional 32-dimensional 128-dimensional

MAP MRR Hits@3 MAP MRR Hits@3 MAP MRR Hits@3
Euclidean 1.02 0.92 0.57 4.85 4.45 2.78 16.67 15.76 15.97
TreeRep 16.91 17.48 27.53 20.19 21.85 27.19 21.18 23.44 32.84
Poincaré 29.70 28.13 41.64 30.06 28.47 41.61 29.93 28.35 41.53
Hyperboloid 30.87 29.28 43.50 30.80 29.21 43.17 30.68 29.07 42.86
UnitBall 31.40 29.98 44.25 33.33 31.85 47.41 32.76 31.28 46.25

demonstrates our claims that the non-constant negative curvature of the complex hyperbolic space283

addresses the varying hierarchical structures on real-world datasets.284

We notice that TreeRep does not perform well on the link prediction task. As mentioned in Section 2,285

the combinatorial construction-based embedding methods (Sala et al., 2018; Gu et al., 2019; Sonthalia286

and Gilbert, 2020) target on minimizing the reconstruction distortion of data and they can achieve287

very good results on the graph reconstruction task. But minimizing the reconstruction distortion may288

overfit the training set, thus resulting in the unpromising generalization performance for unobserved289

edges. Hence, they are more suitable to learn the representation of graph data without missing links.290

We also evaluate TreeRep on the real-world taxonomy reconstruction task in Appendix D.5.291

5.3.2 Exploring the embedding dimensions292

In this section, we explore the performances in different embedding dimensions. The results on293

YAGO3-wikiObjects are presented in Table 3. Results on other datasets are in Appendix D.6. We find294

that with the increase of the embedding dimension, Euclidean can have big improvements, but its295

performances in 128-d still cannot surpass other methods in 8-d. TreeRep also achieves better results296

with the increase of dimension, but overall its performances on the link prediction task are not very297

promising. By comparison, Poincaré, Hyperboloid, and UnitBall achieve great results steadily. 8-d298

is already enough for Poincaré and Hyperboloid to handle the link prediction task. We notice that299

UnitBall has small improvements from 4-d to 16-d, then converges to the stable performance. The300

results demonstrate that the Euclidean embeddings need to increase the dimension to better model301

the increasing complex hierarchies, while the complex hyperbolic space and the hyperbolic space302

have strong generalization competence for hierarchical structures.303

6 Conclusion304

In this paper, we present a novel approach for learning the embeddings of hierarchical structures in305

the unit ball model of the complex hyperbolic space. We characterize the geometrical properties of306

the complex hyperbolic space, including the variable negative curvature and the exponential growth307

of volume of geodesic balls, which are beneficial for data with various hierarchical structures. We308

exemplify the superiority of our approach over the graph reconstruction task and the link prediction309

task on both synthetic and real-world data, which cover the tree structures as well as the general310

hierarchical structures. The empirical results show that our approach outperforms the hyperbolic311

embedding methods in terms of representation capacity and generalization performance.312

9

References313

I. Balazevic, C. Allen, and T. M. Hospedales. Multi-relational poincaré graph embeddings. In314

NeurIPS, pages 4465–4475, 2019.315

G. Bécigneul and O. Ganea. Riemannian adaptive optimization methods. In ICLR (Poster). OpenRe-316

view.net, 2019.317

S. Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Trans. Autom. Control., 58318

(9):2217–2229, 2013.319

A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko. Translating embeddings for320

modeling multi-relational data. In NIPS, pages 2787–2795, 2013.321

G. R. Brämer. International statistical classification of diseases and related health problems. tenth322

revision. World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales,323

41(1):32–36, 1988.324

I. Chami, Z. Ying, C. Ré, and J. Leskovec. Hyperbolic graph convolutional neural networks. In325

NeurIPS, pages 4869–4880, 2019.326

I. Chami, A. Wolf, D. Juan, F. Sala, S. Ravi, and C. Ré. Low-dimensional hyperbolic knowledge327

graph embeddings. In ACL, pages 6901–6914. Association for Computational Linguistics, 2020.328

J. Dai, Y. Wu, Z. Gao, and Y. Jia. A hyperbolic-to-hyperbolic graph convolutional network. In CVPR,329

2021.330

R. Fu, J. Guo, B. Qin, W. Che, H. Wang, and T. Liu. Learning semantic hierarchies via word331

embeddings. In ACL (1), pages 1199–1209. The Association for Computer Linguistics, 2014.332

O. Ganea, G. Bécigneul, and T. Hofmann. Hyperbolic entailment cones for learning hierarchical333

embeddings. In ICML, volume 80 of Proceedings of Machine Learning Research, pages 1632–1641.334

PMLR, 2018a.335

O. Ganea, G. Bécigneul, and T. Hofmann. Hyperbolic neural networks. In NeurIPS, pages 5350–5360,336

2018b.337

W. M. Goldman. Complex hyperbolic geometry. Oxford University Press, 1999.338

J. R. Griggs, W. Li, and L. Lu. Diamond-free families. J. Comb. Theory, Ser. A, 119(2):310–322,339

2012.340

M. Gromov. Hyperbolic groups. In Essays in group theory, pages 75–263. Springer, 1987.341

A. Gu, F. Sala, B. Gunel, and C. Ré. Learning mixed-curvature representations in product spaces. In342

ICLR (Poster). OpenReview.net, 2019.343

Ç. Gülçehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu, K. M. Hermann, P. W. Battaglia,344

V. Bapst, D. Raposo, A. Santoro, and N. de Freitas. Hyperbolic attention networks. In ICLR345

(Poster). OpenReview.net, 2019.346

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function347

using networkx. In G. Varoquaux, T. Vaught, and J. Millman, editors, Proceedings of the 7th348

Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.349

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá. Hyperbolic geometry of350

complex networks. Phys. Rev. E, 82:036106, Sep 2010. doi: 10.1103/PhysRevE.82.036106. URL351

https://link.aps.org/doi/10.1103/PhysRevE.82.036106.352

Q. Liu, M. Nickel, and D. Kiela. Hyperbolic graph neural networks. In NeurIPS, pages 8228–8239,353

2019.354

F. Mahdisoltani, J. Biega, and F. M. Suchanek. YAGO3: A knowledge base from multilingual355

wikipedias. In CIDR. www.cidrdb.org, 2015.356

10

https://link.aps.org/doi/10.1103/PhysRevE.82.036106

G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, 1995.357

M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical representations. In NIPS,358

pages 6338–6347, 2017.359

M. Nickel and D. Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic geometry.360

In ICML, volume 80 of Proceedings of Machine Learning Research, pages 3776–3785. PMLR,361

2018.362

M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective learning on multi-relational363

data. In ICML, pages 809–816. Omnipress, 2011.364

F. Sala, C. D. Sa, A. Gu, and C. Ré. Representation tradeoffs for hyperbolic embeddings. In ICML,365

volume 80 of Proceedings of Machine Learning Research, pages 4457–4466. PMLR, 2018.366

R. Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In Graph Drawing,367

volume 7034 of Lecture Notes in Computer Science, pages 355–366. Springer, 2011.368

R. Shimizu, Y. Mukuta, and T. Harada. Hyperbolic neural networks++. In ICLR (Poster), 2021.369

V. Shwartz, Y. Goldberg, and I. Dagan. Improving hypernymy detection with an integrated path-based370

and distributional method. In ACL (1). The Association for Computer Linguistics, 2016.371

R. Sonthalia and A. C. Gilbert. Tree! I am no tree! I am a low dimensional hyperbolic embedding. In372

NeurIPS, 2020.373

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, pages374

697–706. ACM, 2007.375

Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in376

complex space. In ICLR (Poster). OpenReview.net, 2019.377

Z. Sun, M. Chen, W. Hu, C. Wang, J. Dai, and W. Zhang. Knowledge association with hyperbolic378

knowledge graph embeddings. In EMNLP (1), pages 5704–5716. Association for Computational379

Linguistics, 2020.380

T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embeddings for simple381

link prediction. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pages382

2071–2080. JMLR.org, 2016.383

B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for learning and384

inference in knowledge bases. In ICLR (Poster), 2015.385

T. Yu and C. D. Sa. Numerically accurate hyperbolic embeddings using tiling-based models. In386

NeurIPS, pages 2021–2031, 2019.387

Checklist388

1. For all authors...389

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s390

contributions and scope? [Yes]391

(b) Did you describe the limitations of your work? [Yes] The discussions on the limitations392

of our work are mainly presented in Experiments both in the paper and in Appendix.393

(c) Did you discuss any potential negative societal impacts of your work? [No]394

(d) Have you read the ethics review guidelines and ensured that your paper conforms to395

them? [Yes]396

2. If you are including theoretical results...397

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3398

and 4.399

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A and400

B.401

11

3. If you ran experiments...402

(a) Did you include the code, data, and instructions needed to reproduce the main exper-403

imental results (either in the supplemental material or as a URL)? [No] The code is404

proprietary for this moment. The code will be released after the the publishing of the405

paper.406

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they407

were chosen)? [Yes] See Section 5.1 and Appendix D.3.408

(c) Did you report error bars (e.g., with respect to the random seed after running experi-409

ments multiple times)? [No] We report the mean results over 5 running times.410

(d) Did you include the total amount of compute and the type of resources used (e.g., type411

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.2.412

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...413

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.1.1.414

The data are publicly available. We cite the corresponding references and give the415

public data links.416

(b) Did you mention the license of the assets? [No]417

(c) Did you include any new assets either in the supplemental material or as a URL? [No]418

We do not create new datasets. We sample a taxonomy from YAGO3 and will release it419

after the the publishing of the paper.420

(d) Did you discuss whether and how consent was obtained from people whose data you’re421

using/curating? [No]422

(e) Did you discuss whether the data you are using/curating contains personally identifiable423

information or offensive content? [No]424

5. If you used crowdsourcing or conducted research with human subjects...425

(a) Did you include the full text of instructions given to participants and screenshots, if426

applicable? [N/A]427

(b) Did you describe any potential participant risks, with links to Institutional Review428

Board (IRB) approvals, if applicable? [N/A]429

(c) Did you include the estimated hourly wage paid to participants and the total amount430

spent on participant compensation? [N/A]431

12

	Introduction
	Related work
	Preliminaries
	Curvature
	Hyperbolic geometry
	Complex hyperbolic geometry

	Unit ball embeddings
	The unit ball model
	Embeddings in the unit ball model
	Riemannian optimization in the unit ball model

	Experiments
	Experimental settings
	Data
	Tasks
	Baselines
	Evaluation

	Graph reconstruction
	Results on balanced trees
	Results on compressed graphs

	Link prediction
	Overall results
	Exploring the embedding dimensions

	Conclusion

