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Abstract

Efficiently aggregating trained neural networks from local clients into a global
model on a server is a widely researched topic in federated learning. Recently, mo-
tivated by diminishing privacy concerns, mitigating potential attacks, and reducing
communication overhead, one-shot federated learning (i.e., limiting client-server
communication into a single round) has gained popularity among researchers.
However, the one-shot aggregation performances are sensitively affected by the
non-identical training data distribution, which exhibits high statistical heterogeneity
in some real-world scenarios. To address this issue, we propose a novel one-shot ag-
gregation method with layer-wise posterior aggregation, named FedLPA. FedLPA
aggregates local models to obtain a more accurate global model without requiring
extra auxiliary datasets or exposing any private label information, e.g., label distri-
butions. To effectively capture the statistics maintained in the biased local datasets
in the practical non-IID scenario, we efficiently infer the posteriors of each layer
in each local model using layer-wise Laplace approximation and aggregate them
to train the global parameters. Extensive experimental results demonstrate that
FedLPA significantly improves learning performance over state-of-the-art methods
across several metrics.

1 Introduction

Data privacy issues in Deep Learning [1, 2, 3, 4, 5, 6, 7] have grown to be a major global concern [8].
To safeguard data privacy, the conventional federated learning algorithm will use the aggregation
methods and follow the data management rules of different institutions, which implies that the
distribution of data exhibits variations among clients [8]. In the domain of machine learning,
federated learning (FL) [9, 10, 11] has emerged as a prominent paradigm. The fundamental tenet
of federated learning revolves around sharing machine learning models derived from decentralized
data repositories, as opposed to divulging user raw data. This approach effectively preserves the
confidentiality of individual data.

The standard federated learning framework, FedAvg [9, 12], applies local model training. These
local models are then aggregated into a global model through parameter averaging. Existing FL
algorithms, however, require many communication rounds to effectively train a global model, leading
to substantial communication overhead, increased privacy concerns, and higher demand for fault
tolerance throughout the rounds. One-shot FL, which reduces client-server communication into a
single round as explored by prior work [13, 14, 15], is a promising yet challenging scheme to address
these issues. One-shot FL proves particularly practical in scenarios where iterative communication is
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not feasible. Moreover, a reduction in communication rounds translates to fewer opportunities for
any potential eavesdropping attacks.

While one-shot FL shows promises, existing approaches often grapple with challenges such as
inadequate handling of high statistical heterogeneity information [16, 17] or non-independent and
non-identically distributed (non-IID) data [18, 19]. Moreover, some prior methods rely on an auxiliary
public dataset to achieve satisfactory performance in one-shot FL [13, 14], or even on pre-trained
large models [20], which may not be practical [21] in some sensitive scenarios. Additionally, some
approaches, such as those [22, 19, 23, 15]), might expose private label information to both local and
global models, e.g., the client label distribution, potentially violating General Data Protection Regu-
lation (GDPR) rules. Furthermore, some prior methods [14, 18, 24] require substantial computing
resources for dataset distillation, model distillation, or even training a generator capable of generating
synthetic data for second-stage training on the server side, making them less practical.

Besides, the performance of one-shot FL often falls short when dealing with non-IID data. Non-IID
data biases global updates, reducing the accuracy of the global model and slowing down convergence.
In extreme non-IID cases, clients may be required to address distinct classes solely on their side. Sev-
eral approaches to federated learning are proposed in multi-round settings to tackle this heterogeneity
among clients. In the work [25], it allows each client to use a personalized model instead of a shared
global model. With the personalized approach, a multi-round framework benefits from joint training
while allowing each client to keep its unique model. However, one-shot aggregation on a local model
is far from being resolved to address the concern of non-i.i.d data distributions.

In this paper, we introduce a novel one-shot aggregation approach to address these issues, named
FedLPA (Federated Learning with Layer-wise Posterior Aggregation). FedLPA infers the posteriors
of each layer in each local model using the empirical Fisher information matrix obtained by layer-wise
Laplace Approximation. Laplace Approximations are widely used to compute the empirical Fisher
information matrix for neural networks, conveying the data statistics in non-i.i.d settings. However,
computing empirical Fisher information matrices of multiple local clients and aggregating their Fisher
information matrices remains an ongoing challenge [17]. To mitigate it, FedLPA aggregates the
posteriors of local models using the accurately computed block-diagonal empirical Fisher information
matrices to measure the parameter space. This matrix captures essential parameter correlations and
distinguishes itself from prior methods by being non-diagonal and non-low-rank, thereby conveying
the statistics of biased local datasets. After that, the global model parameters are aggregated without
any need for server-side knowledge distillation [26].

Our extensive experiments verify the efficiency and effectiveness of FedLPA, highlighting that
FedLPA markedly enhances the test accuracy when compared to existing one-shot FL baseline
approaches across various datasets. Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose an effective one-shot federated
learning approach that trains global models using block-diagonal empirical Fisher infor-
mation matrices. Our approach is data-free without any need for any auxiliary dataset
and label information and significantly improves system performance, including negligible
communication cost and moderate computing overhead.

• We are the first to train global model parameters via constructing a multi-variate linear
objective function and optimizing its quadratic form, which allows us to formulate and solve
the problem in a convex form efficiently, which has a linear convergence rate, ensuring good
performance.

• We conduct extensive experiments to illustrate the effectiveness of FedLPA. Our approach
consistently outperforms the baselines, showcasing substantial improvement across various
settings and datasets. Even in some extreme scenarios where label skew is severe, e.g.,
each client has only one class, we achieve satisfactory results while other existing one-shot
federated learning algorithms struggle.

2 Background and related works

2.1 Federated learning on non-iid data

Previous work FedAvg [9] first introduced the concept of FL and presented the algorithm, which

2



achieved competitive performance on i.i.d data, in comparison to several centralized techniques.
However, it was observed in previous works [27, 28] that the convergence rate and ultimate accuracy
of FedAvg on non-IID data distributions were significantly reduced, compared to the results observed
with homogeneous data distributions.

Several methods have been developed to enhance performance in federated learning against non-IID
data distributions. The SCAFFOLD method [29] leveraged control variates to reduce objective
inconsistency in local updates. It estimated the drift of directions in local optimization and global
optimization and incorporated this drift into local training to align the local optimization direction
with the global optimization. FedNova [30] addressed objective inconsistency while maintaining
rapid error convergence through a normalized averaging method. It scaled and normalized the local
updates of each client based on the number of local optimization steps. FedProx [31] enhanced
the local training process by introducing a global prior in the form of an L2 regularization term
within the local objective function. Researchers introduced PFNM [32, 33], a Bayesian probabilistic
framework specifically tailored for multilayer perceptrons. PFNM employed a Beta-Bernoulli process
(BBP) [34] to aggregate local models, quantifying the degree of alignment between global and
local parameters. The framework [17] proposed utilized a multivariate Gaussian product method
to construct a global posterior by aggregating local posteriors estimated using an online Laplace
approximation. FedPA [16] also applied the Gaussian product method but employed stochastic
gradient Markov chain Monte Carlo for approximate inference of local posteriors. DAFL (Data-
Free Learning) [35] introduced an innovative framework based on generative adversarial networks.
ADI [36] utilized an image synthesis method that leveraged the image distribution to train deep neural
networks without real data. The pFedHN method [37] incorporated HyperNetworks [38] to address
federated learning applications.

However, all of these methods encountered challenges in the one-shot federated learning setting, as
they required aggregating the model by multiple rounds and might be inaccurate due to the omission
of critical information, such as posterior joint probabilities between different parameters.

2.2 One-shot federated learning

One-shot Federated Learning (FL) is an emerging and promising research direction characterized by
its minimal communication cost. In the first study on one-shot FL [13], the approach involved the
aggregation of local models, forming an ensemble to construct the final global model. Subsequently,
knowledge distillation using public data was applied in the following step. FedKT [14] brought
forward the concept of consistent voting to fortify the ensemble. Recent research endeavors [19, 24]
proposed data-free knowledge distillation schemes tailored for one-shot FL. These methods adopted
the basic ensemble distillation framework as FedDF [26]. XorMixFL [22] introduced the use of
exclusive OR operation (XOR) for encoding and decoding samples in data sharing. It is important to
note that XorMixFL assumed the possession of labeled samples from a global class by all clients
and the server, which might not align with practical real-world scenarios. A noteworthy innovation
of DENSE [24] was its utilization of a generator to create synthetic datasets on the server side,
circumventing the need for a public dataset in the distillation process. Co-Boosting [39] improves the
ensemble when doing the distillation to improve the performance. FedOV [15] delved into addressing
comprehensive label skew cases. FEDCVAE [23] confronted this challenge by transmitting all label
distributions from clients to servers. These schemes [22, 14, 19, 24, 23, 15] exposed some client-side
private information, leading to additional communication overhead and potential privacy leakage,
e.g., FEDCVAE [23] needed all the client label distribution to be transmitted to the server side and
FedOV [15] needed the clients to know the labels which were unknown. Instead, MA-Echo [40]
adopted a unique approach by emphasizing the addition of norms among layer-wide parameters
during the aggregation of local models. The project [41] focused on the theoretic analysis of the error
in its approximation method. However, their method grappled with limited experiments and lacked
detailed explanations of the approach. FedDISC [20], on the other hand, relied on the pre-trained
model CLIP from OpenAI, where their reliance might not always align with practicality or suitability
for diverse scenarios.

While some of these techniques are orthogonal to FedLPA and can be integrated with it, it is worth
noting that none of the previously mentioned algorithms possess the capability to train global model
parameters using empirical Fisher information matrices on extensive experiment settings. Some
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of them [13, 14] may require additional information, and may potentially entail the risk of label
distribution leakages.

3 Methodology

3.1 Objective formulation

Generally, federated learning is defined as an optimization problem [31, 29, 30, 42] for maximizing a
global objective function F(θ) which is a mixture of local objective functions Fk(θ,Dk):

F(θ) =
K∑

k=1

Fk(θ,Dk) (1)

where θ = [vec(W1), . . . , vec(Wl), . . . , vec(WL)] is the parameter vector of global model and
Wl is the weight and bias of layer l for a L-layers neural network; Dk is the local dataset k-th client.
Fk(θ,Dk) is the expectation of the local objective function, which is proportional to the logarithm of
likelihood log p(Dk|θ).
Previous works [16, 17] give a common formula of the global posterior which consists of local
posteriors p(θ|Dk) under variational inference formulation.

p(θ|D) ∝
K∏

k=1

p(Dk|θ) ∝
K∏

k=1

p(θ|Dk) (2)

max
θ

F(θ) =
K∑

k=1

|Dk|
|D|
· Es∈Dk

[log p(s|θ)] ≡ max
θ

K∏
k=1

p(θ|Dk) (3)

As we know, the objective function is the expectation of the likelihood, and the sum of the logarithms
is equal to the logarithms of the product as Eq. 3. Therefore, globally variational inference using Eq.
2 is equivalent to optimization for Eq. 1. Correspondingly, we have:

max
θ

Fk(θ,Dk) ≡ max
θ

p(θ|Dk) (4)

Following the same training pattern of federated learning, each client infers the local posterior
p(θ|Dk) by using the local dataset Dk. As a result, the server obtains the global posterior p(θ|D) by
aggregating local posteriors using Eq. 2.

However, both the global and local posterior are usually intractable because modern neural networks
are usually non-linear and have a large number of parameters. Therefore, it is necessary to design an
efficient and accurate aggregation method for one-shot federated learning.

3.2 Approximating posteriors

Although the posterior is usually intractable, the posterior can be approximated as a Gaussian
distribution by performing a Taylor expansion on the logarithm of the posterior [43]:

log p(θ|D) ≈ log p (θ∗|D)− 1

2
(θ − θ∗)

⊤
H̄ (θ − θ∗) (5)

where θ∗ is the optimal parameter vector, H̄ = Es∈D[H] is the average Hessian of the negative
log posterior over a dataset D. It is reasonable to approximate global and local posteriors as multi-
variates Gaussian distributions with expectations µ̄ = θ∗ and µk = θ∗

k; co-variances Σ̄ = H̄−1 and
Σk = H̄−1

k [44].

p(θ|D) ≡ θ ∼ N (µ̄, Σ̄), p(θ|Dk) ≡ θ ∼ N (µk,Σk) (6)

As a result, if given local expectation µk and local co-variance Σk, the global posterior is determined
by Eq. 2 as below:

µ̄ = Σ̄

K∑
k

Σ−1
k µk, Σ̄

−1 =

K∑
k

Σ−1
k (7)
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Modern algorithms [45, 46] allow the local training process to obtain an optimal, regarded as the
expectation µk in the above equations. However, H̄k is intractable to compute due to a large number
of parameters in modern neural networks. An efficient method is to approximate H̄k using the
empirical Fisher information matrix [47].

3.3 Inferring the local layer-wise posteriors with the block-diagonal empirical Fisher
information matrices

A empirical Fisher F̃ is defined as below:

F̃ =
∑
s∈D

[
∇ log p(s|θ)∇ log p(s|θ)⊤

]
(8)

where p(s|θ) is the likelihood on data point s. It is an approximate of the Fisher information matrix,
the empirical Fisher information matrix is equivalent to the expectation of the Hessian of the negative
log posterior if assuming p(s|θ) is identical for each s ∈ D.

Therefore, the local co-variance Σk can be approximated by the empirical Fisher F̃k [48, 49].

Σ−1
k ≈ F̃k + λI (9)

The works [50, 51, 17] ignore co-relations between different parameters and only consider the
self-relations of parameters as computing all co-relations is impossible. Thus, their methods are
inaccurate. Detailed discussions and the novelty compared to previous works are in Appendix B.

In order to capture co-relations between different parameters efficiently, previous works [46, 43]
estimate a block empirical Fisher information matrix F instead of assuming parameters are inde-
pendent and approximating the co-variance by the diagonal of the empirical Fisher. As pointed out,
co-relations inner a layer are much more significant than others [46, 52, 53], while computing the
co-relations between different layers brings slight improvement but much more computation [54, 43].
Therefore, assuming parameters are layer-independent is a good trade-off. As a result, the approxi-
mated layer-wise empirical Fisher is block-diagonal. For layer l on client k, its empirical Fisher Fkl

is one of the diagonal blocks in the whole empirical Fisher for the local model and is factored into
two small matrices as below,

Σ−1
kl
≈ Fkl

= Akl
⊗Bkl

(10)

where⊗ is the Kronecker product; Akl
= E

[
âkl−1

â⊤kl−1

]
+πl

√
λI and Bkl

= E
[
b̂kl

b̂⊤
kl

]
+ 1

πl

√
λI

are two expectation factor matrices over the data samples; âkl
is the activations and b̂kl

is the
gradient of the pre-activations of layer l on client k, λ is the hyperparameter and πl is a factor
minimizing approximation error in Fkl

[46, 49, 55]. Akl
and Bkl

are symmetric positive definite
matrices [45, 46].

We use θkl
to denote the parameter vector of layer l and Mkl

= vec−1(µkl
) is the vectorized optimal

weight matrix of layer l on client k. Thus, the resulting local layer-wise posterior approximation is
θkl
∼ N (µkl

,F−1
kl

).

3.4 Estimating the global expectation

Given the local posteriors, the global expectation could be aggregated by Eq. 7. With Eq. 10, the l-th
layer’s global expectation µ̄l consists of Kronecker products:

µ̄l = Σ̄l

K∑
k

Σ−1
kl

µkl
= Σ̄l

K∑
k

(Akl
⊗Bkl

)µkl

= Σ̄l

K∑
k

vec(Bkl
Mkl

Akl
) = Σ̄l

K∑
k

zkl
= Σ̄lz̄l

(11)

where z̄l =
∑K

k zkl
and zkl

= vec(Bkl
Mkl

Akl
) is a immediate notations for simplification. For

the global expectation, we have µ̄ = Σ̄ · z̄. The corresponding global co-variance is an inverse of the
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sum of Kronecker products:

Σ̄l = (

K∑
k

Akl
⊗Bkl

)−1 (12)

As shown in Eq. 11, obtaining the global expectation µ̄l requires calculating the inverse of Σ̄−1
l as

Eq. 12, which is unacceptable and the details are in Appendix C. Thus, we propose our method to
directly train the parameters of the global model on the server side.

3.5 Train the parameters of the global model

We use E [A] denotes
∑K

k (Ak), E [B] denotes
∑K

k (Bk), E [A⊗B] denotes
∑K

k (Ak ⊗ Bk).
Previous works [46, 49] approximate the expectation of Kronecker products by a Kronecker product of
expectations E [A⊗B] ≈ E [A]⊗E [B] with an assumption of Akl

and Bkl
are independent, which

is called Expectation Approximation (EA). However, it may lead to a biased global expectation. The
details are discussed in Appendix D. Instead, we could construct a linear objective after aggregating
the approximation of local posteriors via using block-diagonal empirical Fisher information matrices.
We denotes M̄ as the matrix formula of µ̄ = vec(M̄), and the optimal solution of f(µ̄) is µ̄∗ =
vec(M̄∗). We construct f(µ̄) as a multi-variates linear objective function. When µ̄ = µ̄∗ is optimal
solution, f(µ̄) = o, where o is a vector with all zero. Note that

f(µ̄) = Σ̄−1µ̄− z̄ =

K∑
k

vec(BkM̄Ak)− z̄

= vec(E
[
BM̄A

]
)− z̄

(13)

To obtain the optimal solution, we minimize the following problem to obtain an approximate solution
M̄∗ of M̄:

M̄∗ = min
M̄

1

2

∥∥∥∥∥
K∑
k

vec(BkM̄Ak)− z̄

∥∥∥∥∥
2

2

(14)

The above equation is a quadratic objective, and it can be solved by modern optimization tools
efficiently and conveniently. Since the main objective of the above problem is both convex and
Lipschitz smooth w.r.t vec(M̄), we can use the gradient descent method to solve it with a linear
convergence rate. Here, we use automatic differentiation to calculate the gradient w.r.t. M̄.

Algorithm 1 FedLPA Global Aggregation

1: Input: clients K, layers L
2: Initialize global weight W̄l of layer l =

1, ..., L
3: clients executes:
4: Initialize local model
5: for k = 1, ..., K do
6: {Mkl

,Akl
,Bkl

|l = 1, ..., L} ← local
training

7: end for

8: Server executes:
9: for l = 1, ..., L do

10: Āl ←
∑K

k Akl

11: B̄l ←
∑K

k Bkl

12: Z̄l ←
∑K

k Bkl
Mkl

Akl

13: M̄l ← Train the parameter of the global
model

14: W̄l ← M̄l

15: end for

3.6 Overall FedLPA algorithm and discussions

In summary, the proposed algorithm FedLPA follows the same paradigm as the standard one-shot
federated learning framework. In FedLPA, the clients locally train their models to get Mk and
calculate the local co-variance over its training dataset using the layer-wise Laplace approximation to
compute Ak,Bk. Subsequently, each client transmits their local Ak,Bk,Mk to the server. Following
Algorithm 1, the server aggregates these contributions to obtain the global expectation, as described
in Eq. 7, then trains the global model parameters, as outlined in Eq. 14. Thus, the transmitted data
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between the clients and the server is solely Ak,Bk,Mk without any extra auxiliary dataset and label
information.

Note that FedLPA can be directly adopted in most common scenarios. For the special case that the
neural model has enormous single-layer weight parameters, how to extend our proposed FedLPA is
discussed in Appendix E.

3.7 t-SNE observation and discussions

To quickly demonstrate the effectiveness of FedLPA, we show the t-SNE visualization of our FedLPA
global model on the MNIST dataset as an example with a biased training data setting among 10 local
clients. The experiment details, t-SNE visualizations of the local models and the global models of
other algorithms and discussions are in Appendix G.1. As shown in Figure 1, FedLPA generates the
global model which can clearly distinguish these classes, meanwhile, the classes are separate.

3.8 Privacy Discussions

Figure 1: t-SNE visualization for our
FedLPA global model.

FedLPA is intuitively compatible with existing privacy-
preserving techniques, such as differential privacy (DP)
[56, 57], secure multiparty computation (SMC) [58, 59],
and homomorphic encryption (HE) [60, 61, 62]. In Ap-
pendix F.1, we propose a naive DP-FedLPA with two dif-
ferent mechanisms to show the compatibility with differ-
ential privacy. Meanwhile, we mention that our proposed
FedLPA has the same privacy-preserving level as the con-
ventional federated learning algorithms (i.e, FedAvg, Fed-
Prox, FedNova and Dense). Compared with FedAvg, we
have conducted a detailed analysis from a privacy attack
perspective to show that our proposed FedLAP exhibits
a security level consistent with FedAvg against several
types of privacy attacks, where the details are shown in
Appendix F.3. Note that the main focus of FedLPA is
to improve the learning performance on the one-shot FL
settings, thus, we leave the integration with other privacy-
preserving techniques beyond DP as an open problem.

4 Experiments

4.1 Experiments settings

Datasets. We conduct experiments on MNIST [63], Fashion-MNIST [64], CIFAR-10 [65], and
SVHN [66] datasets. In most of the previous works and the most popular benchmark, the majority
of their experiments use these datasets and these models. We choose these datasets and models to
do the majority of our experiments following these established methods and benchmarks to fairly
compare our method with the baselines. We use the data partitioning methods for non-IID settings of
the benchmark 1 to simulate different label skews. Specifically, we try two different kinds of partition:
1) #C = k: each client only has data from k classes. We first assign k random class IDs for each client.
Next, we randomly and equally divide samples of each class to their assigned clients; 2) pk - Dir(β):
for each class, we sample from Dirichlet distribution pk and distribute pk,j portion of class k samples
to client j. In this case, smaller β denotes worse skews.

Here’s a brief overview of these datasets. MNIST Dataset: The MNIST dataset comprises binary
images of handwritten digits. It consists of 60,000 28x28 training images and 10,000 testing images.
FMNIST Dataset: Similar to MNIST, the FMNIST dataset also contains 60,000 28x28 training
images and 10,000 testing images. SVHN Dataset: The SVHN dataset includes 73,257 32x32 color
training images and 10,000 testing images. CIFAR-10 Dataset: CIFAR-10 consists of 60,000 32x32
color images distributed across ten classes, with each class containing 6,000 images. The input
dimensions for MNIST, FMNIST, SVHN, and CIFAR-10 are 784, 784, 3,072, and 3,072, respectively.

1https://github.com/Xtra-Computing/NIID-Bench
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Table 1: Comparison with various FL algorithms in one round.

Dataset Partition FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

FMNIST

β=0.01 21.20±0.67 10.13±0.00 15.97±0.12 18.17±0.15 13.37±0.19 15.23±0.14
β=0.05 54.27±0.38 18.67±0.41 18.67±0.41 18.67±0.41 22.03±0.14 47.77±0.20
β=0.1 55.33±0.06 30.47±0.59 31.40±0.25 30.93±0.58 31.00±0.52 52.93±0.67
β=0.3 68.20±0.04 49.40±0.26 46.00±0.02 45.17±0.05 44.30±0.08 64.27±0.08
β=0.5 73.33±0.06 57.03±0.28 56.03±0.28 59.10±0.63 58.10±0.47 72.87±0.13
β=1.0 76.03±0.05 63.63±0.33 66.10±0.02 62.13±0.43 63.10±0.29 72.97±0.01
#C=1 13.20±0.02 10.37±0.00 10.40±0.00 10.37±0.00 13.03±0.18 10.00±0.00
#C=2 46.13±0.15 21.00±0.10 23.53±0.22 23.20±0.08 19.97±0.10 38.90±0.45
#C=3 57.90±0.06 27.47±0.02 27.37±0.36 29.20±0.03 23.93±0.33 53.40±0.07

CIFAR-10

β=0.01 16.17±0.00 11.57±0.02 11.47±0.01 11.53±0.05 10.47±0.00 12.30±0.03
β=0.05 18.37±0.00 10.30±0.00 10.73±0.01 10.23±0.00 10.97±0.02 17.87±0.31
β=0.1 19.97±0.02 12.30±0.04 10.87±0.01 12.83±0.06 11.97±0.04 19.93±0.07
β=0.3 26.60±0.01 11.77±0.02 10.93±0.01 10.53±0.00 10.97±0.00 25.57±0.84
β=0.5 24.20±0.02 11.07±0.00 11.77±0.02 10.97±0.00 11.33±0.00 20.17±0.73
β=1.0 29.33±0.00 12.00±0.00 13.00±0.00 13.23±0.00 13.63±0.01 28.23±0.34
#C=1 10.70±0.01 10.50±0.00 10.27±0.00 10.23±0.00 10.37±0.01 10.00±0.00
#C=2 16.40±0.00 10.07±0.00 12.03±0.08 10.07±0.00 10.03±0.00 14.13±0.22
#C=3 18.97±0.01 11.30±0.01 11.00±0.01 11.53±0.01 10.77±0.00 14.77±0.11

MNIST

β=0.01 39.17±1.16 13.53±0.20 8.87±0.01 9.37±0.00 9.33±0.00 15.80±0.24
β=0.05 70.07±0.05 31.60±0.71 41.07±0.46 38.57±0.28 32.23±0.18 57.83±1.55
β=0.1 77.43±0.14 48.07±0.28 47.73±0.22 48.63±0.15 47.40±0.00 70.33±0.02
β=0.3 85.77±0.02 67.6±0.40 67.07±0.15 66.17±0.21 63.40±0.41 84.50±0.01
β=0.5 88.73±0.07 79.27±0.08 78.57±0.29 77.37±0.07 79.60±0.24 86.33±0.36
β=1.0 93.37±0.08 84.93±0.18 85.33±0.15 85.10±0.13 86.50±0.16 91.43±0.02
#C=1 11.43±0.01 10.27±0.02 10.10±0.01 10.10±0.01 10.13±0.01 9.93±0.00
#C=2 69.63±0.29 20.90±0.49 25.23±1.08 16.47±0.23 14.30±0.34 52.73±0.46
#C=3 77.13±0.24 29.53±1.65 31.83±2.45 33.13±2.60 29.00±2.05 58.90±0.31

SVHN

β=0.01 19.20±0.00 13.73±0.14 9.83±0.00 12.13±0.04 11.43±0.12 17.33±0.28
β=0.05 22.93±0.38 14.90±0.43 15.77±0.14 16.60±0.23 15.90±0.12 21.47±0.20
β=0.1 39.77±0.69 25.97±0.13 25.70±0.08 22.17±0.02 24.50±0.06 19.43±0.45
β=0.3 52.23±0.26 34.40±0.28 34.03±0.06 33.93±0.26 34.70±0.20 47.13+7.14
β=0.5 54.27±0.02 38.53±0.07 40.07±0.13 38.53±0.15 36.93±0.09 53.70±0.07
β=1.0 67.80±0.01 55.60±0.08 54.03±0.14 55.97±0.04 55.23±0.12 54.40+9.43
#C=1 19.60±0.00 10.43±0.00 13.73±0.18 13.77±0.17 18.27±0.03 7.70±0.03
#C=2 47.03±4.63 12.90±0.27 24.47±0.08 20.17±0.04 17.47±0.13 37.67±0.76
#C=3 48.00±0.22 20.87±0.12 28.37±0.09 27.60±0.03 24.93±0.10 47.43±0.40

Training Details. By default, we follow FedAvg [12] and other existing studies [67, 68, 15] to
use a simple CNN with 5 layers in our experiments. The experiments with more complex neural
network structures are in Appendix G.8. We set the batch size to 64, the learning rate to 0.001, and
the λ = 0.001 for FedLPA. By default, we set 10 clients and run 200 local epochs for each client. For
the various settings of the number of clients and local epochs, we refer to Section 4.3 and Section 4.5.
For results with error bars, we run three experiments with 5 different random seeds. Note that all
methods were evaluated under fair comparison settings. Due to the page limit, representative results
are represented in the main paper. Refer to Appendix G for more experimental details and additional
results.

Baselines. To ensure fair comparisons, we neglect the comparison with methods that require to
download auxiliary models or datasets, such as FedBE [69], FedKT [14] and FedGen [21], or even
pretrained large model, like FedDISC [20]. FedOV [15] and FEDCAVE [23] entail sharing more
client-side label information or transmitting client label information to the server, which could
jeopardize label privacy and are beyond the scope of this study. XorMixFL [22] may not be practical,
as we mentioned before. FedFisher [41] is not publicly available. FedDF [26], DAFL [35] and
ADI [36] are compared with the state-of-the-art data-free method DENSE [24]. Co-Boosting [39]
requires too many computational resources2. In conclusion, we include one-shot FL algorithms as
baselines including FedAvg [12], FedProx [31], FedNova [30], SCAFFOLD [29] and DENSE [24].
All the methods are fairly compared, and our implementation is available and the experiment details
can be viewed in Appendix G.11.

4.2 An overall comparison

We compare the accuracy between FedLPA and the other baselines as shown in Table 1, the data in
the green shadow shows the best results. FedLPA can achieve the best performance in all the dataset
and partition settings. In extreme cases such as β = {0.01, 0.05}, #C = 1, #C = 2, FedLPA exhibits a
significant performance advantage over the baseline algorithms. This demonstrates our framework’s
ability to effectively aggregate valuable information from local clients for global weight training.

2The experiments with more models, FedOV and Co-Boosting, are in Appendix G.5.
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Table 2: Experimental results of varying number of clients on FMNIST dataset.

# of Clients Partition FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

20 Clients

β=0.01 33.57±0.38 10.00±0.00 13.13±0.24 13.23±0.21 13.93±0.08 10.30±0.00
β=0.05 47.30±0.74 21.30±0.08 20.53±0.56 21.20±0.64 19.40±0.46 46.13±0.36
β=0.1 57.37±0.05 31.50±0.29 29.23±0.60 32.43±0.99 28.80±1.26 57.20±0.12
β=0.3 71.30±0.03 53.87±0.33 50.63±0.10 52.83±0.08 52.13±0.40 71.17±0.04
β=0.5 74.07±0.00 62.83±0.03 58.60±0.08 60.17±0.03 59.47±0.06 74.10±0.04
β=1.0 76.07±0.01 68.63±0.08 69.13±0.12 68.33±0.08 69.33±0.10 75.47±0.04
#C=1 21.50±0.30 10.00±0.00 10.00±0.00 10.00±0.00 10.33±0.00 10.00±0.00
#C=2 59.17±0.45 19.23±0.23 19.47±0.49 18.53±0.46 13.53±0.26 33.07±0.27
#C=3 66.37±0.01 27.30±0.20 28.07±0.35 25.93±0.27 24.63±0.26 52.23±0.79

50 Clients

β = 0.01 15.91±0.01 10.00±0.00 10.00±0.00 10.00±0.00 10.27±0.00 10.00±0.00
β=0.05 28.43±0.80 15.50±0.43 17.77±0.25 17.37±0.24 18.10±0.01 25.03±0.47
β=0.1 57.03±0.00 34.33±0.04 30.17±0.03 28.90±0.05 31.00±0.27 55.83±0.49
β=0.3 66.70±0.23 46.70±0.12 43.97±0.02 45.40±0.12 45.07±0.11 59.23±1.90
β=0.5 71.13±0.00 57.93±0.40 52.93±0.22 53.67±0.26 53.80±0.20 69.57±0.02
β=1.0 71.07±0.04 60.00±0.20 57.67±0.22 56.30±0.45 56.90±0.41 70.33±0.03
#C=1 15.93±0.02 10.00±0.00 10.00±0.00 10.00±0.00 10.27±0.00 10.00±0.00
#C=2 49.60±0.37 18.03±0.11 17.20±0.00 20.50±0.26 15.70±0.03 44.57±0.92
#C=3 65.50±0.05 38.03±0.99 40.53±1.41 40.97±1.51 38.93±1.34 56.10±0.38

In summary, the state-of-the-art DENSE could be comparable with FedLPA when the skew level is
small. However, with the increment of skewness, FedLPA shows significantly superior results.

4.3 Scalability

We assess the scalability of FedLPA by varying the number of clients. In this section, we show results
on FMNIST in Table 2. From the table, we can observe that FedLPA still almost always achieves the
best accuracy when increasing the number of clients. Notably, there is a slight exception highlighted
in red, where DENSE outperforms us when we have 20 clients and β = 0.5, this may be attributed to
the dataset being less biased and the DENSE only getting a marginal 0.03% higher test accuracy. Our
method is generally much more robust in all kinds of settings.

Table 3: Experiments with different proportions of data samples.
Data sample proportion Accuracy(β=0.1) Accuracy(β=0.3) Accuracy(β=0.5)

100% 55.33±0.06 68.20±0.04 73.33±0.06
80% 53.88±1.14 65.47±0.02 73.17±0.05
60% 53.15±0.82 64.80±0.71 72.40±0.29
40% 53.20±0.21 64.10±0.40 70.02±0.17
20% 45.71±0.13 62.15±0.03 68.54±2.02

4.4 Experiments with different proportions of data samples

We have added the experiments with our method on the same experiment setting with 10 clients. We
conducted experiments on FMNIST datasets with β=0.1, 0.3 and 0.5. The performance changes w.r.t
the number of data samples are shown in Table 3. We could see that our method FedLPA could yield
satisfactory results even with only 20% data samples under multiple settings.

4.5 Ablation study

The hyper-parameter of our approach is λ, which controls variances of a priori normal distribution
and guarantees Ak and Bk are positive semi-definite. In this part, we show results on FMNIST. All
other Laplace Approximations are sensitive to the hyper-parameter λ based on their experimental
results, Table 4 shows that our approach is relatively robust. Based on our numerical results, we set
λ = 0.001 by default for our method FedLPA.

We also conduct the experiments when the local epochs are 10,20,50,100. More experiments are
available in Appendix G.2, which shows that our methods outperform all the baselines in all kinds of
scenarios without requiring extensive tuning.

4.6 Communication and computation overhead

We conduct experiments on CIFAR-10 on a single 2080Ti GPU to estimate the overall communication
and computation overhead. We set the number of clients is 10. Table 5 shows the numerical results on
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Table 4: Experimental results of different
hyper-parameter λ on FMNIST dataset.

value of λ 0.01 0.001 0.0001
β=0.01 18.63±0.78 21.20±0.67 22.50±1.84
β=0.05 54.33±0.54 54.27±0.38 53.30±0.01
β=0.1 56.83±0.19 55.33±0.06 54.60±0.15
β=0.3 66.83±0.02 68.20±0.04 67.53±0.03
β=0.5 73.20±0.03 73.33±0.06 72.17±0.04
β=1.0 76.53±0.02 76.03±0.05 73.47±0.19
#C=1 12.73±0.01 13.20±0.02 14.17±0.02
#C=2 45.20±0.21 46.13±0.15 44.80±0.03
#C=3 58.97±0.07 57.90±0.06 55.60±0.06

Table 5: Communication and computation
overhead evaluation.

Overall
Computation (mins)

Overall
Communication (MB)

FedLPA 65 4.98
FedNova 50 2.47

SCAFFOLD 50 4.94
FedAvg 50 2.47
FedProx 75 2.47
DENSE 400 2.47

FedLPA and baselines. Details of the overhead evaluation are referred to Appendix G.6 and G.7. Our
observations reveal that FedLPA is slightly slower than FedNova, SCAFFOLD, FedAvg, and FedProx,
while much faster than DENSE. FedLPA also has significantly improved the one-shot learning
performance of the above four approaches. Similarly, FedLPA performs moderately incremental
communication overhead while outperforming other baseline approaches on learning performance, as
one-shot FL introduces heavy computation overhead while communication overhead is usually small.
It is noteworthy that FedLPA strikes a favorable balance between computation and communication
overhead, making it the most promising approach for one-shot FL.

4.7 Extension to multiple rounds

Figure 2: Extension to multiple rounds on
MNIST dataset.

We conduct experiments on MNIST with 10 clients
and data partitioning pk - Dir(β = 0.5). The results
are shown in Figure 2. As DENSE could not support
multiple rounds, we compare our methods with Fe-
dAvg, FedNova, SCAFFOLD, and FedProx. FedLPA
achieves the highest accuracy in the first round, denot-
ing the strongest learning capabilities in a one-shot
setting. With the increment in the number of rounds,
the performances of FedLPA increase slower than the
other baseline approaches. This figure shows that the
joint approach (ours (one round) then FedAvg) that
utilizes FedLPA in the first round and then adopts
other baseline methods may be most promising to
save communication and computation resources in
the multiple-round federated learning scenario.

4.8 Supplementary experiments

Experiments for privacy concerns, experiments on
different local epoch numbers, experiments in extreme settings (the number of clients=5, β = 0.001),
experiments with more methods, experiments with more complex network structures, experiments
with more complex datasets, ablation experiments analyzing the number of approximation iterations
of FedLPA can be found in Appendix.

5 Conclusions

In this work, we design a novel one-shot FL algorithm FedLPA to better model the global parameters
in effective one-shot federated learning. We propose a method that could aggregate the local clients
in a layer-wise manner with their posterior approximation via block-diagonal empirical Fisher
information matrices, which could effectively capture the accurate statistics of a locally biased dataset.
Overall, FedLPA stands out as the most practical and efficient framework that conducts data-free
one-shot FL, particularly well-suited for high data heterogeneity in various settings, considering it
significantly outperforms other baselines with extensive experiments. Our FedLPA is available in
https://github.com/lebronlambert/FedLPA_NeurIPS2024.
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A The FedLPA algorithm

The proposed algorithm follows the same paradigm as the standard one-shot federated learning
framework. Each client follows the local training procedure as shown in the paper. The global
aggregation is illustrated in Algorithm 1.

With the Algorithms, let us assume the dimensionality list of each layer in a fully connected neural
network is ([s0, s1, s2, ..., sl,..., sL]), which means the size of the weight Wkl

of layer l is sl−1xsl.
Consequently, the size of Akl

for this layer would be sl−1xsl−1, and the size of Bkl
would be slxsl.

The size of Fkl
is (sl−1xsl)x(sl−1xsl).

Then, we give a concrete example to show the dimensions of different matrices using a fully-
connected neural network model with architecture 784-256-64-10 as in Appendix G. Then, the
Mk1

is 784x256+256, Mk2
is 256x64+64, Mk3

is 64x10+10. The Ak1
is 785x785, Ak2

is 257x257, Ak3
is 65x65. The Bk1

is 256x256, Bk2
is 64x64, Bk3

is 10x10. Then the
Fk1

is (785x785)x(256x256), Fk2
is (257x257)x(64x64), Fk3

is (65x65)x(10x10). The Fk is
(785x785+257x257+65x65)x(256x256+64x64+10x10).

However, in fact, we do not need to combine the Akl
, Bkl

, Fkl
into Ak, Bk, Fk. In this paper, we

utilize the diagonal block property to compute each block in our method.

B Comparison with the previous methods

To the best of our knowledge, we are the first to consider the posterior inference problem in the
one-shot scenario. Note that the approach [16] requires a lengthy burn-in period before conducting
posterior inference, for instance, 400 rounds, and it updates global model parameters by modifying
the covariance-aggregated local models. It means that the algorithm [16] necessarily requires
multiple iterations and cannot be used in a one-shot scenario. In contrast, our method FedLPA only
requires immediate variational inference after training the local model, ensuring higher flexibility and
efficiency in the one-shot scenario.

Besides, in the algorithm [16], obtaining statistical information to compute local covariances is of
low rank. In reality, it fails to acquire the posterior of the aggregated model and cannot perform
variational inference on the aggregated model. However, our method yields full-rank covariances,
and after employing an expectation approximation method for variational inference on the aggregated
model, we can achieve a usable global posterior.

In both the domain of natural gradient optimization [48, 70, 16] and modeling output uncertainty in
variational inference [71], using the Fisher approximation of the Hessian does not involve the issue
of inverting covariance. However, in the context of federated learning, when performing variational
inference on the aggregated model, the necessity of inverting covariance becomes unavoidable. To
address this problem, we propose a novel algorithm that constructs a quadratic objective function.
During aggregation, this algorithm directly trains the aggregated model using local covariances and
expectations, thereby circumventing the need for inversion operations.

Note that the previous methods [51, 17] adopt the same core approach that utilizes the online Laplace
approximation to obtain diagonal Fisher for model aggregation, in which they conduct experiments
on different datasets and published on different venues. We mainly analyze our approach with
the comparison of DiagonalFisher [17]. DiagonalFisher assumes independence among parameters,
neglecting inter-parameter correlations, resulting in inaccurate posterior approximations. However,
strong correlations exist among parameters within each layer, such as matching patterns in convo-
lutional kernels within convolutional networks. This is a crucial factor that cannot be overlooked;
otherwise, aggregation of the posterior would result in lower posterior regions, as compared to our
method. In complex environments, employing diagonal Fisher for aggregation would prove to be
entirely ineffective, whereas our method effectively leverages inter-parameter correlations at each
layer, rendering it more robust. To demonstrate, we present results comparing aggregation using
diagonal Fisher and our method. We have added experiments using the settings of our paper and an
MLP model (784-256-64-10) on the FMNIST dataset with five random seeds for one-shot FL, the
client number is 10, and the β=0.01. The results are in Table 6.

In the table, “Initial" denotes whether the client models were initialized using the same parameter
values or independently.
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Table 6: Experiments with DiagonalFisher using MLP.
Initial FedAvg FedProx SCAFFOLD DiagonalFisher FedLPA
Same 42.35±0.16 24.80±0.10 42.10±0.15 56.34±0.34 76.63±0.04

Different 10.00±0.00 24.12±0.02 10.16±0.70 10.51±0.11 73.73±0.07

When “Initial" is set to “Same", all client models are trained on their respective datasets using
identical parameter values for initialization. Consequently, there exists a strong correlation among the
local models. Additionally, in this scenario, model aggregation is equivalent to aggregating updates
of local models. Although DiagonalFisher performs reasonably well under this condition, our method
demonstrates superior performance, exhibiting a 20.29% increase in global test accuracy.

When “Initial" is set to "Different", the models on different clients start training with distinct parameter
values. Due to the high heterogeneity of local datasets, there is minimal correlation among local
models. In this extreme scenario, DiagonalFisher completely fails, while our method maintains an
accuracy of 73.73%, showcasing remarkable robustness.

It is essential to consider the indispensability of parameter correlations, which is why we com-
pute correlations among parameters within layers to ensure the robustness and accuracy of model
aggregation.

Now, we discuss some related works which directly utilize K-FAC to approximate the Fisher matrix
and make a comparison with our proposed approach FedLPA. The works [48, 70, 71] have provided
us with significant inspiration. However, methods like K-FAC do not require computing the inverse
of covariance. Nevertheless, in the context of federated learning, the necessity of inverting covariance
becomes unavoidable during variational inference on the aggregated model.

Methods like K-FAC assume direct independence among data samples to utilize expectation approx-
imation. They obtain the inverse of Fisher from individual samples and then directly compute the
expectation, thereby avoiding inverse operations. However, the expectation approximation inevitably
leads to biased results during model aggregation. Detailed analysis can be found in Appendix D.

To address this issue, we propose a novel algorithm that constructs a quadratic objective function.
During aggregation, this algorithm directly trains the aggregated model using local covariances and
expectations, eliminating the need for inversion operations. This aims to minimize aggregation biases
as much as possible.

Here, we provide a comparative analysis of different methods.

FedAvg and FedProx minimize the Kullback-Leibler (KL) divergence between the local and global
posteriors: µ̄, Σ̄−1 = minµ̄,Σ̄−1 KL

(
(
∑K

k p(θ|Dk))|p(θ|D)
)

. SCAFFOLD computes the bias
term, and FedNova computes the correction term. None of these four methods consider the corre-
lations between parameters. DENSE and FedOV, on the other hand, employ distillation methods,
attempting to extract the distribution of non-iid data among clients through distillation. However, this
itself leads to information loss due to dimensionality reduction and introduces additional variance of
data.

Although the work [72] also uses the distributed Bayesian inference, however, it focuses on the
dataset feature and could not be applied to train the global model parameters.

In conclusion, the reason our approach performs better in this scenario stems from our improved
approximation of the global posterior. This approach signifies our novelty in addressing these
challenges.

B.1 The efficiency of FedLPA

Although the number of uploaded bits increased per round of FedLPA, it resulted in a significant
improvement in the final outcome. Additionally, the increase in transmitted bits enhanced the
robustness of the aggregation method. Moreover, as indicated in Table 5 of the paper, we observe
only a marginal increase in the amount of communication required.

A fully-connected neural network model with architecture 784-256-64-10, has 784 · 256 + 256 +
256 · 64+64+64 · 10+10 = 217930 floating point numbers, which is 6973760 bits or around 0.831
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Table 7: Experiments with DiagonalFisher considering efficiency.
“Initial" Method FedLPA (Global Test Acc / MB) DiagonalFisher (Global Test Acc / MB)

“Same" 76.63/(2.272*10) = 3.37 56.34/(1.662*10) = 3.39
“Different" 73.73/(2.272*10) = 3.25 10.51/(1.662*10) = 0.63

MB. For one communication from a client to the server, our approach needs to upload additional
Ak and Bk, which have 785 · 785 + 256 · 256 + 257 · 257 + 64 · 64 + 65 · 65 + 10 · 10 = 756231
floating point numbers. Note, Ak and Bk are symmetric matrices, so we only need to upload the
upper triangular part of Ak and Bk, which is around 756231/2 = 378115.5 floating point numbers
and 1.442 MB. Therefore, our approach costs 2.272 MB for the directed communication, which is
only 1.367 times than DiagonalFisher while DiagonalFisher costs 0.831*2 = 1.662 MB. We show
the following Table 7 based on the previous experiment results. When “Initial" is set to “Same", the
efficiency of every bit is almost the same. When “Initial" is set to “Different", the efficiency of every
bit for our method is much higher than the DiagonalFisher.

C Detailed discussion for the time complexity of Eq. 12

A fully-connected neural network model with architecture 784-256-64-10 as an example is shown
in Appendix K. We use this example to further explain this question. The size of Ak1 is 785x785
and the size of Bk1 are both 256x256. Then, we need to compute the inverse of the matrix
(785x785)x(256x256), which is huge. The time complexity of calculating the inverse of a ma-
trix is O(n3) (n is the dimension of the matrix), which is very slow. The accuracy of calculating it is
decided by the condition number of the huge matrix [73, 74, 75, 76]. That’s why calculating Eq. 12
is unacceptable, considering the time complexity, the size of the huge matrix and the accuracy.

Further, for example, in the machine learning field, to accelerate the training of the neural network,
they use the Newton method. However, using this method, they need to compute the inverse of the
Hessian matrix, which is also huge and unacceptable. That is why they introduce the KFAC [46, 49],
KFRA [55] and KFLR [55] methods to avoid computing the inverse of the huge Hessian matrix.

In this paper, we avoid computing the inverse of the huge matrix via our method, and the time
complexity is linear.

D Expectation approximation (EA)

Previous works [46, 49] approximate the expectation of Kronecker products by a Kronecker product
of expectations E [A⊗B] ≈ E [A] ⊗ E [B] with an assumption of Akl

and Bkl
are independent,

which is called Expectation Approximation (EA).

It is a simple and effective method to approximate the expectation of Kronecker products. As a result,
the global co-variance Σ̄ is approximated by:

Σ̄l ≈ (

K∑
k

Akl
)−1 ⊗ (

K∑
k

Bkl
)−1 = Ā−1

l ⊗ B̄−1
l (15)

where Āl =
∑K

k Akl
and B̄l =

∑K
k Bkl

. Denoting Z̄l as matrix formula of z̄l = vec(Z̄l), then µ̄l

can be computed efficiently as below:

µ̄l = Σ̄l · z̄l ≈ (Ā−1
l ⊗ B̄−1

l )z̄l = vec(B̄−1
l Z̄lĀ

−1
l ) (16)

However, Eq. 16 leads to a biased global expectation. The EA needs the independence assumption,
but Akl

and Bkl
are weakly related in back-propagation. Besides, even if they are independent, Eq.

16 still suffers from approximation error because the clients’ number K is finite and always a small
number but statistical independence can only be demonstrated when the sampling number is large
enough. Eq. 17 shows the approximation error directly:

(A1 +A2)⊗ (B1 +B2) = A1 ⊗B1 +A2 ⊗B2

+A1 ⊗B2 +A2 ⊗B1

̸= A1 ⊗B1 +A2 ⊗B2

(17)
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E Extend FedLPA to the models with enormous single layer weight
parameters

This implies a Fisher matrix with a large dimension and it significantly increases communication costs.
In such cases, the most intuitive approach is to explore the possibility of dimensionality reduction
for its Fisher matrix. A promising approach to enhance the efficiency of our method may employ
some low-rank factorization techniques [77]. As described [44], the main idea involves perform-
ing an eigendecomposition on the Kronecker factors [78], while preserving only the eigenvectors
corresponding to the top k largest eigenvalues. As a result, this approach drastically reduces space
complexity, enabling communication costs to be compared favorably with diagonal Fisher matrices.

F Privacay discussion of FedLPA

In the FedLPA, Ak is computed via the activations while Bk is computed via the linear pre-activations
of the layer. We note that Ak, Bk, and Mk do not carry any label information, thus the transmission
of Ak, Bk, and Mk will not leak any label privacy. As a comparison, FedCAVE, which transmits
client label information to the server, requires training in label distribution to do the distillation.
Several papers [79, 80] have notified that label privacy, e.g., the concern of label distribution leakage
and raw label leakage, is sensitive in federated learning. We believe that it has also been a concern in
the one-shot FL scenario.

Besides, our t-SNE illustration in Fig 1 shows the classification capability on the global model,
which can separate the classes. However, our figures of the t-SNE illustrations on local models
in Appendix G.1 show that for the data belonging to the same class, their t-SNE illustrations are
erratically distributed on different local nodes. For instance, for node 2, its training data only has 3
classes while most of the training data locates in class 5. However, it is hard for the server to infer that
label distribution since the t-SNE illustration both on node 2 and other nodes also seems irregular.

Ak, Bk, and Mk are a function of data that may contain privacy-sensitive information of the local
training data. However, in this case, our privacy-preserving level is similar to FedAvg, which means
that FedLPA has the same privacy-preserving level as the conventional federated learning algorithms
(i.e, FedAvg, FedProx, FedNova, and Dense), which are all vulnerable to some privacy attacks (e.g,
membership inference [81] or reconstruction attacks [82]). Our approach FedLPA provides more
information than FedAvg, However, the additional information we provide is the mean of each sample
in each dimension, the mean of squares of each sample in each dimension, and the mean of square
gradients. These solely marginally enrich the attack capability of several reconstruction attacks.

FedLPA is intuitively compatible with existing privacy-preserving techniques, such as differential
privacy (DP) [56, 57], secure multiparty computation (SMC) [58, 59], and homomorphic encryption
(HE) [60, 61, 62]. In Appendix F.1, we propose a naive DP-FedLPA with two different mechanisms
to show the compatibility with differential privacy. In Appendix F.2, using iDLG attack [82], we
show that our proposed FedLPA has the same privacy-preserving level as the conventional federated
learning algorithms (i.e, FedAvg, FedProx, FedNova and Dense). Compared with FedAvg, we have
conducted a detailed analysis from a privacy attack perspective to show that our proposed FedLAP
exhibits a security level consistent with FedAvg against several types of privacy attacks, where the
details are shown in Appendix F.3. Note that the main focus of FedLPA is to improve the learning
performance on the one-shot FL settings, thus, we leave the integration with other privacy-preserving
techniques beyond DP as an open problem.

F.1 Experiments with differential privacy

We first list the definitions and techniques for differential privacy [83]. (ϵ-DP) For ϵ > 0, a randomized
function f provides ϵ-differential privacy if, for any datasets D,D′ that have only one single record
different, for any possible output O,

Pr[f(D) ∈ O] ≤ eϵ · Pr[f(D′) ∈ O] (18)

Suppose f is a function and D,D′ have only one record different. The sensitivity of f is defined as

∆f = max
D,D′

∥f(D)− f(D′)∥1 (19)
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Table 8: Experiments with Differential Privacy using two mechanisms.
ϵ Partitions FedAvg DP-FedLPA (mechanism 1) DP-FedLPA (mechanism 2)

8
β=0.1 31.90±0.58 50.01±0.07 57.15±1.23
β=0.3 44.37±0.05 68.30±0.41 66.21±0.14
β=0.5 57.92±0.63 71.17±0.27 73.50±0.06

5
β=0.1 28.17±0.16 48.51±0.07 55.87± 0.88
β=0.3 43.91±0.05 67.34±0.92 66.02±0.71
β=0.5 57.14±0.63 70.89±0.80 73.44±0.20

3
β=0.1 27.85±0.79 48.39±0.07 54.31±0.44
β=0.3 42.80±0.05 65.08±0.45 65.22±0.46
β=0.5 54.80±0.63 70.28±1.30 72.19±0.62

Table 9: Experiments with Differential Privacy for Round Numbers.
β ϵ 8 5 3
0.1 11 11 12
0.3 11 9 8
0.5 8 8 7

Here one record different means a database has one more record than another. We utilize the Laplace
mechanism [84] to achieve the ϵ−DP.

Laplace Mechanism: For function f : D → Rd, function:

F (D) = f(D) + Lap(0,∆f/ϵ) (20)

provides ϵ-DP, where Lap(0,∆f/ϵ) is sampled from Laplace distribution.

Following the differential privacy (DP) mechanisms [56, 85, 57, 86] to protect privacy, we conduct
the two mechanisms of DP-FedLPA: (1) adding Laplace random noise to the training data samples,
(2) adding Laplace random noise to the parameters to be transmitted. DP is a rigorous and popular
privacy metric, which guarantees that the output does not change with a high probability even though
an input data record changes. Specifically, since the sensitivity of the data sample distribution after the
normalization is 1, we add Laplacian noises with λ = 1

ϵ . We set ϵ = {3, 5, 8} that provides modest
privacy guarantees since normally ϵ ∈ (1, 10) is viewed as a suitable choice. We have added the
experiments using the same experiment setting in the paper with five random seeds and 10 clients on
the FMNIST dataset. Results are shown in Table 8. DP-FedLPA under both mechanisms outperforms
FedAvg, which shows that it is compatible with combining our proposed FedLPA with DP to enhance
privacy protection levels. Note that the smaller ϵ is, the larger noises we add. We find that when the ϵ
gets smaller, the performance drops simultaneously, while the privacy protection level is increased.

Besides, we have added the experiments using the same experiment setting to show the round results
of how many rounds DP-FedAvg needs to achieve the same test performance with the first mechanism.
The results in Table 9 show that DP-FedAvg needs about 10 rounds of communication to achieve the
same test performance, compared to our one-round FedLPA. Combined with our previous results
in Table 5 and Table 8, our FedLPA could save the communication and computation overhead and
combine with the DP method to mitigate the potential privacy leakage. Based on the above settings,
DP-FedAvg needs at least 3x communication overhead and 5x computation overhead. While DP-
FedAvg needs multiple rounds to get similar accuracy, DP-FedAvg maybe vulnerable to more privacy
attack methods due to the multiple queries, such as curvature-based privacy attacks.

F.2 Experiments with iDLG attack

We also add experiments with iDLG attack [82] following the link
(https://github.com/PatrickZH/Improved-Deep-Leakage-from-Gradients/blob/master/iDLG.py).
We did the experiments with the setting of the paper [82]: in each single experiment, the client is
trained with one random picked image in FMNIST, then we use the iDLG attack to recover the image
based on the model from FedAvg and FedLPA. We randomly selected 500 training examples to
collect 500 MSEs between the recovered and the original image. The larger the MSE is, the better
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Table 10: iDLG attack results of FedLPA and FedAvg.
Percentile 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0
FedLPA 0.60 1.00 1.10 1.39 2.75 50.71 40736.88 >=1e9
FedAvg 0.09 0.16 0.71 1.56 26.24 950.89 54307.91 >=1e9

the privacy-preserving level for the method. Due to the rebuttal limitation, we cannot show the figure
for the cumulative distribution function considering the MSE of the iDLG attack. We provide the
results in Table 10 to show MSE considering the percentile for these 500 experiments.

Based on the Table, we could see that from 12.5 to 50.0 percentile, regarding the privacy-preserving
aspect, FedLPA behaves better than FedAvg on these samples. However, from 50.0 to 87.5 percentile,
FedAvg behaves better than FedLPA on such samples. Thus, no clear evidence exists of which one
performs better when referring to the privacy level. Considering the overall 500 data samples, we
roughly concluded that FedLPA and FedAvg share a similar privacy level.

F.3 Concrete examples of privacy attack

For privacy attacks, we start by assuming the simplest scenario where each client has only one sample,
and the model comprises a single layer, such as a multi-layer perceptron.

Let y = W∗x, (x is n+1 dimensional, with the last dimension being a unit value 1), g = Df(y)/Dx
(where f is the loss function). In this case, A = xxT ,B = ggT .

In this single-sample scenario, an attacker can directly obtain x from the last column of A. With
x and W, the attacker can acquire the model’s output. Furthermore, utilizing the Loss and g, it’s
possible to get the label information.

FedAvg would also be vulnerable to a reconstruction attack in this scenario, allowing the attacker to
obtain sample and label information.

When each client has two samples (x1x2 ∈ Dataset), then: A = 1/2∗x1∗xT
1 +1/2∗x2∗xT

2 ,B =
1/2∗g1 ∗gT

1 +1/2∗g2 ∗gT
2 . The last column c of A equals 1/2x1+1/2x2. The diagonal elements

d of A equal 1/2x2
1+1/2x2

2. In the case of these two samples, an attacker can utilize the information
from A and B to get the two samples x1 and x2. Using the same methodology, they can also obtain
g1 and g2 . Consequently, the attacker can reverse-engineer the labels as well.

FedAvg could also potentially succumb to a reconstruction attack in this scenario, providing the
attacker with sample and label information, although the obtained information might be more
ambiguous.

When each client has three or more samples (x ∈ Dataset), A = Ex∈Dataset(x ∗ xT ),B =
Ex∈Dataset(g ∗ gT ). In this situation, the last column c of A, c = Ex∈Dataset(x) represents the
average of the sample dataset, depicting the projection of the data distribution in the sample space on
various coordinate axes. Furthermore, the diagonal elements of A(Ex∈Dataset(x ∗ xT )) offer the
attacker statistical information about this local dataset.

Generally, solely using the statistical information of these datasets cannot reconstruct the entire dataset.
Similarly, it’s not possible to obtain gradients for the output of each sample, thereby preventing the
reconstruction of individual sample labels. The results obtained by using c and W to gather statistical
label information are unreliable.

Additionally, for structures such as CNNs and RNNs/LSTMs, the difficulty of attacks increases due to
weight sharing. For CNNs, since convolutional kernels only accept local samples as input, information
in A encompasses statistical information from all localities of the samples. For RNNs/LSTMs,
information in A includes statistics of each word vector in a sentence. These network structures make
it possible for attackers to fail even in single-sample scenarios. For MLPs, the information contained
in the intermediate layer A is almost equivalent to the information encoded in the parameters of
the BN (Batch Normalization) layer. The mean output of the Batch Normalization (BN) layer is
equivalent to the last column of A, whereas the variances differ between the BN layer and A’s
diagonal but both contain statistical information related to squared values.
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It’s worth noting that the parameters acquired by the BN layer using the sliding-window average
method are also frequently used during the computation of A and B, as mentioned in the paper [54].

FedAvg provides model parameter values, the average of gradients, and BN layer parameters.
Compared to FedAvg, the additional information we offer is actually limited to: the mean of each
sample in each dimension, the mean of squares of each sample in each dimension, and the mean of
square gradients. Utilizing this information, attacking becomes highly challenging when the number
of samples exceeds three. Although we don’t rule out the possibility of successful methods in practice
due to the data’s own correlations, the limitations are significant based on our analysis, and our
security level is quite close to that of FedAvg.

We discuss two common attacks here. Inferring class representatives:

i) Model inversion attacks [87] exploit the confidence information provided by machine learning
applications or services. Our method does not provide confidence information, nor does it compute
the information required for it. Therefore, our method’s defense level against these attacks aligns
with FedAvg’s defense level.

ii) Attacks using GANs to construct class representatives [88] utilize the client-uploaded model as
a discriminator and its output as labels to train a generator to generate similar data. The additional
statistical information we provide might be used to constrain the distribution of inputs for GANs,
specifically their mean values. Since the statistical information of the dataset may contain some
common features among samples, it might potentially aid in speeding up the convergence of training
GANs but may not significantly enhance the accuracy of generated data after GAN optimization.
It’s worth noting that if the BN layer parameters uploaded by FedAvg could be used to constrain the
statistical information of GANs’ inputs, they would be equivalent to the information provided by our
method.

Additionally, these attack methods against FedAvg only yield favorable results when class members
are similar, meaning the dataset has clear common features that allow the constructed representatives
to resemble the training data. When class members are dissimilar, these shared features tend to be
confounded, rendering the constraints imposed by the sample mean ineffective, hence not enhancing
the effectiveness of GANs attacks.

In summary, our method exhibits a security level consistent with FedAvg against these types of
attacks. Even in cases where the BN layer is not required, our method’s security is similar to that of
FedAvg.

Membership inference attacks against aggregate statistics [87, 88] and Membership inference attacks
against ML models [89, 90, 91, 92, 93, 94] aim to infer whether a sample belongs to the training
dataset using appropriate prior distributions and statistical data. These attack methods impose specific
requirements on the dataset. In such attack scenarios, whether the sample mean information our
method can provide is exploitable by the attacker depends on whether this information can reveal the
inherent distribution correlations within the dataset. However, for high-dimensional complex data,
sample mean information often falls short in achieving this.

The inference attack towards client model is a complex topic. Other inference attack methods and
defense mechanisms against them fall outside this paper’s scope. It is an interesting topic to explore
more robust measures to prevent such breaches in future works.

Therefore, in the case of these attacks we mentioned, our method exhibits the same level of security
as FedAvg (since FedAvg requires uploading statistically equivalent information within the BN layer).
For scenarios without a BN layer, whether our method reduces security depends on the characteristics
of the dataset itself. Real-world data is often high-dimensional and complex, making successful
attacks challenging.

G Additional experiments

G.1 t-SNE visualization

We conduct experiments using MNIST dataset with a β value of 0.05, training 10 local clients over
200 local epochs with random seed 0. In this biased local dataset setting, local clients could only
distinguish a subset of the classes, as illustrated in Figure 3.
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(a) local client #1 (b) local client #2 (c) local client #3 (d) local client #4 (e) local client #5

(f) local client #6 (g) local client #7 (h) local client #8 (i) local client #9 (j) local client #10

Figure 3: t-SNE visualizations of 10 local clients.

(a) FedAvg (b) FedNova (c) SCAFFOLD (d) FedProx (e) DENSE

Figure 4: t-SNE visualizations of the baseline approaches on the global model.

Based on seed 0, we partition the training data for the 10 local clients with the following form (label:#
of the data) as:

local client #1: {4: 2, 5: 12, 6: 2847, 9: 16}
local client #2: {1: 20, 4: 189, 5: 5349}
local client #3: {0: 669, 1: 476, 2: 67, 6: 15, 7: 6068}
local client #4: {0: 266, 1: 375, 3: 3956, 7: 196, 9: 5932}
local client #5: {0: 4, 1: 418, 2: 5862}
local client #6: {1: 2, 2: 25, 4: 5195, 5: 24, 6: 80, 8: 28}
local client #7: {1: 5034, 2: 3, 4: 22, 5: 6, 6: 2669}
local client #8: {0: 4914}
local client #9: {4: 433, 5: 29, 6: 307, 8: 5373}
local client #10: {0: 70, 1: 417, 2: 1, 3: 2175, 4: 1, 5: 1, 7: 1, 8: 450, 9: 1}

It is worth noting that local client #2 has the training data mostly with label number 5, and as the
corresponding t-SNE visualization shows in Figure 3b, the local train model could mainly cluster the
data with label 5 (marked as purple). As data for label 1 (marked as orange) is different from other
data with all other labels, some local clients may be able to cluster the data with label 1 with good
results. Other local clients, such as local client #3, #4, #6, #7, #9, #10, show the similar results like
local client #2.

Figure 4 displays the t-SNE visualization for the global models of FedAvg, FedNova, SCAFFOLD,
FedProx, and DENSE using the training data, with the figure legends identical to those in Figure 1.
It’s evident from Figure 1 that FedLPA outperforms the baselines in classifying the ten classes.
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FedLPA’s superiority is not only demonstrated by its ability to cluster the ten classes but also by the
distinct separation between classes, as observed in Figure 1, compared to the baselines.

G.2 Experiments on different local epoch numbers

Table 11: Comparison with various FL algorithms in one round with 10 local epochs settings.
Dataset Partition FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

FMNIST

β=0.01 24.47±1.02 11.43±0.04 13.37±0.11 11.83±0.03 12.30±0.10 10.00±0.00
β=0.05 30.77±0.94 15.67±0.28 20.07±0.46 19.93±0.30 20.07±0.37 23.60±0.14
β=0.1 42.83±0.33 25.10±1.32 21.03±1.08 22.57±1.08 22.20±1.17 34.83±0.16
β=0.3 61.43±0.17 40.90±0.05 40.70±0.09 38.20±0.10 37.50±0.03 43.17±0.05
β=0.5 67.63±0.36 52.43±0.60 51.77±0.46 54.67±0.73 54.33±0.64 54.30±0.07
β=1.0 71.90±0.09 51.03±0.62 52.30±0.53 51.50±0.62 50.90±0.57 52.30±0.15
#C=1 13.03±0.04 10.90±0.02 11.27±0.03 10.90±0.02 11.43±0.04 10.00±0.00
#C=2 28.93±0.74 16.93±0.19 22.07±0.01 23.83±0.20 23.33±0.03 22.60±0.88
#C=3 37.73±0.09 22.20±0.23 26.60±0.03 23.67±0.27 22.80±0.40 23.03±0.86

CIFAR-10

β=0.01 15.80±0.00 10.07±0.00 12.13±0.09 11.90±0.07 11.93±0.07 10.00±0.00
β=0.05 20.23±0.01 10.90±0.02 10.00±0.00 10.00±0.00 10.00±0.00 13.33±0.04
β=0.1 20.20±0.07 10.27±0.00 10.93±0.02 10.37±0.00 10.27±0.00 14.77±0.09
β=0.3 25.60±0.01 18.13±0.33 14.97±0.05 14.77±0.05 15.67±0.03 20.33±0.06
β=0.5 25.60±0.08 14.87±0.05 16.77±0.01 15.73±0.01 13.93±0.08 23.20±0.16
β=1.0 28.93±0.01 15.63±0.03 19.10±0.14 15.30±0.05 15.43±0.05 22.30±0.46
#C=1 11.00±0.01 10.30±0.00 10.23±0.00 10.30±0.00 10.33±0.00 10.00±0.00
#C=2 20.40±0.03 11.37±0.04 11.67±0.06 11.00±0.02 11.80±0.06 10.40±0.00
#C=3 22.30±0.03 12.23±0.04 14.37±0.13 14.10±0.14 14.00±0.12 18.50±0.14

MNIST

β=0.01 32.20±0.50 9.53±0.00 9.37±0.00 9.00±0.01 9.40±0.00 9.53±0.00
β=0.05 60.60±0.07 20.80±0.13 35.17±0.66 35.10±0.87 34.13±0.91 50.37±1.57
β=0.1 78.07±0.09 45.07±0.37 43.23±0.10 43.83±0.13 44.27±0.21 65.53±0.85
β=0.3 85.60±0.17 64.40±0.24 64.03±0.11 64.17±0.09 64.07±0.11 75.53±0.22
β=0.5 91.77±0.00 79.43±0.13 77.37±0.22 78.17±0.25 77.90±0.30 87.93±0.17
β=1.0 94.70±0.00 85.00±0.10 85.10±0.06 84.40±0.08 84.63±0.08 89.30±0.03
#C=1 11.87±0.00 10.43±0.02 10.13±0.01 10.13±0.01 10.13±0.01 9.93±0.00
#C=2 47.93±0.89 13.20±0.09 16.47±0.21 12.97±0.16 12.23±0.07 32.57±0.26
#C=3 65.97±0.98 26.70±2.24 31.67±2.60 31.63±3.03 31.20±3.24 53.80±0.09

SVHN

β=0.01 17.00±0.03 13.93±0.16 16.57±0.15 16.27±0.22 13.30±0.20 13.97±0.17
β=0.05 20.23±0.05 15.40±0.11 15.53±0.12 15.53±0.12 15.53±0.12 17.90±1.01
β=0.1 32.57±0.53 15.17±0.18 18.37±0.03 18.37±0.03 18.33±0.03 24.20±0.28
β=0.3 35.47±0.54 18.23±0.29 20.77±0.02 21.63±0.03 21.17±0.01 29.23±0.03
β=0.5 41.17±0.01 26.07±0.13 27.40±0.00 26.27±0.00 27.80±0.00 36.80±0.13
β=1.0 44.33±0.01 30.77±0.01 32.27±0.01 30.43±0.03 31.97±0.00 29.47±2.86
#C=1 19.60±0.00 10.10±0.03 16.60±0.11 16.77±0.13 15.53±0.12 8.90±0.02
#C=2 31.20±0.01 11.80±0.33 15.77±0.29 15.67±0.31 15.60±0.32 14.00±0.24
#C=3 34.43±0.40 8.93±0.01 22.03±0.05 18.03±0.12 17.50±0.17 23.57±0.90

Table 12: Comparison with various FL algorithms in one round with 20 local epochs settings.
Dataset Partition FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

FMNIST

β=0.01 24.17±1.13 11.90±0.07 15.33±0.15 13.40±0.09 10.57±0.00 12.67±0.14
β=0.05 36.97±0.78 18.83±0.55 19.93±0.11 19.37±0.14 19.70±0.17 33.13±0.47
β=0.1 41.83±0.02 28.13±1.34 23.00±0.41 24.63±0.75 24.10±1.29 36.40±0.02
β=0.3 60.83±0.38 42.50±0.12 42.83±0.01 40.47±0.22 40.63±0.11 40.67±0.04
β=0.5 67.80±0.25 53.17±0.25 55.23±0.67 53.27±0.34 54.20±0.52 64.60±0.45
β=1.0 75.47±0.03 55.47±0.57 54.53±0.52 53.57±0.46 54.73±0.41 70.97±0.02
#C=1 14.07±0.02 10.43±0.00 11.03±0.02 10.43±0.00 11.13±0.03 10.00±0.00
#C=2 29.67±0.37 16.83±0.21 22.67±0.27 23.27±0.24 25.43±0.17 24.77±0.14
#C=3 34.37±0.79 24.93±0.02 26.17±0.01 27.70±0.02 27.70±0.03 29.43±0.22

CIFAR-10

β=0.01 15.13±0.01 10.10±0.00 12.50±0.11 11.90±0.07 11.83±0.07 10.50±0.00
β=0.05 23.37±0.01 11.33±0.04 10.20±0.00 10.00±0.00 10.77±0.01 14.67±0.02
β=0.1 25.07±0.00 11.60±0.05 12.33±0.10 12.67±0.14 13.23±0.21 18.50±0.06
β=0.3 26.00±0.02 16.63±0.13 13.10±0.01 13.87±0.01 14.43±0.02 24.97±1.13
β=0.5 30.60±0.00 14.20±0.02 13.30±0.04 13.13±0.03 14.23±0.04 27.60±0.06
β=1.0 26.77±0.10 17.60±0.01 17.50±0.05 18.13±0.04 18.20±0.01 26.07±0.18
#C=1 10.67±0.01 10.20±0.00 10.23±0.00 10.20±0.00 10.27±0.00 10.00±0.00
#C=2 22.00±0.00 12.03±0.08 10.23±0.00 11.10±0.02 11.40±0.04 15.33±0.14
#C=3 23.60±0.05 11.97±0.03 14.93±0.17 13.37±0.09 13.63±0.09 21.17±0.05

MNIST

β=0.01 32.43±0.86 11.00±0.06 9.30±0.00 9.37±0.00 10.33±0.02 12.40±0.19
β=0.05 68.73±0.45 26.73±0.24 37.77±0.68 37.70±0.84 36.57±0.75 62.03±0.54
β=0.1 71.77±0.20 48.57±0.60 45.67±0.22 46.63±0.23 45.83±0.23 66.93±0.25
β=0.3 90.83±0.01 68.17±0.33 66.90±0.03 66.60±0.15 66.03±0.21 85.37±0.11
β=0.5 89.43±0.09 80.90±0.14 76.63±0.13 79.57±0.22 79.47±0.27 86.07±0.22

1.0 96.17±0.01 86.60±0.13 85.90±0.14 86.03±0.14 86.57±0.15 88.40±0.00
#C=1 11.47±0.01 10.27±0.01 10.13±0.01 10.13±0.01 10.13±0.01 9.87±0.00
#C=2 53.37±0.61 17.47±0.48 20.70±0.58 14.77±0.14 13.47±0.02 43.33±0.10
#C=3 72.27±0.44 28.63±1.61 32.93±2.76 31.40±2.01 30.97±2.50 44.30±0.62

SVHN

β=0.01 19.03±0.00 14.83±0.13 9.33±0.02 9.30±0.02 9.30±0.02 18.23±0.03
β=0.05 26.27±0.19 13.37±0.04 15.53±0.12 15.53±0.12 15.57±0.12 24.63±0.41
β=0.1 28.8±0.70 17.47±0.05 19.33±0.00 19.30±0.01 19.70±0.06 26.63±0.42
β=0.3 45.03±0.17 27.83±0.04 26.53±0.05 26.90±0.00 27.57±0.01 38.27±4.74
β=0.5 48.00±0.21 30.80±0.19 32.20±0.33 30.07±0.21 30.97±0.14 43.33±0.08
β=1.0 62.23±0.05 49.07±0.25 47.83±0.32 48.03±0.25 48.53±0.10 60.03±0.55
#C=1 16.23±0.23 9.83±0.03 17.07±0.11 16.60±0.12 15.50±0.12 7.70±0.03
#C=2 27.87±0.49 11.83±0.32 20.57±0.02 19.17±0.01 16.00±0.27 18.53±0.57
#C=3 42.97±0.02 14.10±0.12 23.70±0.20 25.80±0.39 23.37±0.00 36.73±0.07
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Table 13: Comparison with various FL algorithms in one round with 50 local epochs settings.
Dataset Partition FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

FMNIST

β=0.01 19.33±0.43 10.13±0.00 15.87±0.16 18.53±0.35 12.97±0.15 10.70±0.01
β=0.05 32.70±0.40 19.47±0.53 24.10±0.02 23.93±0.11 22.63±0.20 31.33±1.34
β=0.1 40.00±0.01 30.40±1.05 27.37±0.23 25.83±0.35 25.50±0.72 39.93±1.10
β=0.3 62.80±0.41 43.67±0.01 42.50±0.09 41.50±0.10 42.23±0.11 57.80±0.04
β=0.5 68.27±0.00 55.97±0.23 55.27±0.38 53.95±0.27 55.00±0.26 63.50±0.11
β=1.0 73.47±0.27 61.20±0.09 60.67±0.19 60.77±0.12 61.40±0.15 66.03±0.06
#C=1 13.30±0.03 10.50±0.00 11.03±0.02 10.50±0.00 11.87±0.07 10.00±0.00
#C=2 27.60±0.02 16.37±0.08 23.00±0.12 18.37±0.38 18.60±0.32 29.33±0.44
#C=3 38.13±0.01 25.47±0.02 25.23±0.29 26.70±0.05 26.40±0.18 37.53±0.17

CIFAR-10

β=0.01 16.23±0.01 10.23±0.00 12.27±0.07 13.07±0.08 12.17±0.09 10.33±0.00
β=0.05 17.93±0.06 11.00±0.02 10.33±0.00 10.13±0.00 11.20±0.03 7.63±0.01
β=0.1 19.20±0.02 13.17±0.09 13.63±0.21 12.00±0.03 12.43±0.06 19.13±0.09
β=0.3 27.57±0.03 12.53±0.05 12.33±0.02 11.93±0.01 12.90±0.01 26.03±0.52
β=0.5 27.57±0.29 13.47±0.03 12.30±0.00 12.47±0.02 13.47±0.02 26.40±0.23
β=1.0 30.27±0.02 15.47±0.12 15.30±0.14 15.23±0.13 15.53±0.10 29.17±2.06
#C=1 10.90±0.00 10.30±0.00 10.30±0.00 10.30±0.00 10.33±0.00 10.00±0.00
#C=2 21.17±0.06 10.13±0.00 11.93±0.02 10.57±0.01 11.27±0.01 15.87±0.08
#C=3 23.80±0.01 12.00±0.06 12.07±0.02 12.97±0.04 11.90±0.02 21.53±0.29

MNIST

β=0.01 34.10±0.88 10.57±0.02 9.50±0.00 9.33±0.02 10.13±0.01 12.53±0.19
β=0.05 66.23±0.32 32.00±0.78 39.70±0.50 39.60±0.31 39.87±0.15 56.63±0.65
β=0.1 72.90±0.27 49.17±0.62 47.20±0.22 47.07±0.23 46.30±0.10 69.93±0.27
β=0.3 87.03±0.02 68.30±0.33 66.40±0.16 67.10±0.09 66.17±0.22 82.47±0.01
β=0.5 90.43±0.07 80.70±0.13 78.13±0.19 79.37±0.19 79.50±0.22 88.30±0.05
β=1.0 94.47±0.04 86.73±0.15 85.43±0.11 86.07±0.12 86.20±0.16 89.23±0.01
#C=1 11.37±0.01 10.17±0.01 10.13±0.01 10.13±0.01 10.10±0.01 9.80±0.00
#C=2 71.07±0.02 23.53±1.00 22.93±0.80 22.63±0.99 17.53±0.12 42.97±0.17
#C=3 76.17±0.38 29.60±1.80 33.50±2.91 32.77±2.27 23.40±3.38 57.30±0.12

SVHN

β=0.01 19.60±0.00 13.93±0.16 13.57±0.19 9.50±0.03 9.27±0.02 19.10±0.52
β=0.05 22.97±0.01 14.87±0.12 15.83±0.13 15.67±0.12 14.67±0.14 19.97±0.54
β=0.1 45.83±1.70 22.40±0.21 22.97±0.12 22.47±0.01 24.30±0.04 41.47±4.63
β=0.3 36.30±2.02 33.90±0.15 33.87±0.20 33.50±0.13 34.43±0.21 29.90±0.56
β=0.5 51.77±0.01 39.70±0.19 39.93±0.13 38.03±0.14 38.33±0.12 50.10±1.71
β=1.0 57.97±0.10 56.70±0.15 54.03±0.28 55.33±0.23 55.80±0.15 47.80+8.91
#C=1 19.37±0.00 9.90±0.03 16.57±0.12 16.53±0.12 15.53±0.12 10.00±0.00
#C=2 36.93±0.02 12.53±0.25 20.30±0.07 20.70±0.12 15.57±0.22 40.77±2.21
#C=3 42.43±0.02 21.07±0.31 29.63±0.16 27.10±0.06 24.73±0.00 38.50±0.60

Table 14: Comparison with various FL algorithms in one round with 100 local epochs settings.
Dataset Partition FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

FMNIST

β=0.01 19.17±0.01 11.73±0.06 16.10±0.18 19.00±0.27 12.67±0.12 10.07±0.00
β=0.05 36.77±0.51 18.07±0.35 22.67±0.03 22.73±0.04 21.20±0.17 31.77±1.14
β=0.1 35.90±0.12 32.83±0.58 29.87±0.49 30.80±0.28 29.33±0.60 33.23±1.22
β=0.3 64.07±0.28 47.77±0.07 42.20±0.01 43.33±0.06 46.03±0.06 60.30±0.17
β=0.5 68.73±0.10 57.03±0.20 55.87±0.38 56.10±0.31 58.60±0.43 64.60±0.01
β=1.0 76.27±0.00 65.00±0.05 61.67±0.35 65.13±0.14 65.03±0.14 75.80±0.05
#C=1 13.37±0.04 10.87±0.02 10.47±0.00 10.87±0.02 13.23±0.21 10.00±0.00
#C=2 31.40±1.16 20.93±0.23 24.97±0.19 23.13±0.25 21.50±0.29 26.30±1.56
#C=3 49.73±0.24 26.97±0.00 25.57±0.27 26.17±0.22 25.50±0.12 46.87±0.10

CIFAR-10

β=0.01 16.93±0.01 10.33±0.00 10.97±0.02 9.57±0.41 11.10±0.02 11.23±0.01
β=0.05 19.07±0.01 12.33±0.11 12.50±0.12 10.33±0.00 12.60±0.13 18.63±0.11
β=0.1 20.80±0.08 12.53±0.05 10.33±0.00 10.67±0.00 11.87±0.03 24.30±0.05
β=0.3 28.33±0.00 11.63±0.02 11.03±0.01 11.07±0.00 11.70±0.01 28.23±0.36
β=0.5 29.37±0.01 12.07±0.01 12.13±0.01 11.80±0.01 13.17±0.01 28.90±0.49
β=1.0 30.57±0.00 14.53±0.09 13.93±0.01 13.97±0.10 15.93±0.11 29.37±1.73
#C=1 11.03±0.02 10.23±0.00 10.23±0.00 10.23±0.00 10.57±0.01 10.00±0.00
#C=2 16.70±0.13 10.00±0.00 12.90±0.03 11.00±0.01 11.97±0.03 13.67±0.03
#C=3 18.87±0.01 11.33±0.03 10.70±0.00 11.77±0.02 11.67±0.02 15.97±0.10

MNIST

β=0.01 34.10±0.66 13.60±0.32 9.33±0.00 9.30±0.00 9.30±0.00 16.63±0.33
β=0.05 72.47±0.07 32.30±0.66 41.37±0.37 38.57±0.35 40.70±0.49 55.30±1.88
β=0.1 78.53±0.20 48.20±0.39 47.87±0.26 47.57±0.19 46.93±0.04 76.47±0.20
β=0.3 85.83±0.04 68.77±0.28 67.43±0.11 67.13±0.12 65.67±0.36 84.23±0.08
β=0.5 89.03±0.12 80.53±0.19 79.13±0.23 79.00±0.28 79.50±0.30 88.30±0.31
β=1.0 94.13±0.03 86.53±0.09 85.87±0.09 85.63±0.08 86.17±0.14 92.57±0.02
#C=1 11.27±0.01 10.30±0.02 10.10±0.01 10.10±0.01 10.13±0.01 9.93±0.00
#C=2 71.07±0.35 21.00±0.61 22.47±0.89 18.83±0.55 14.50±0.12 45.47±0.14
#C=3 76.83±0.32 29.63±2.43 35.17±2.54 32.47±3.15 29.2±2.22 67.33±0.95

SVHN

β=0.01 19.50±0.00 13.90±0.16 9.37±0.02 12.57±0.22 11.60±0.09 19.10±0.13
β=0.05 32.90±0.05 13.50±0.03 16.03±0.15 15.90±0.18 16.83±0.10 25.80±1.64
β=0.1 36.63±0.27 22.37±0.62 24.17±0.20 24.83±0.07 25.93±0.09 26.97±0.23
β=0.3 56.40±0.01 35.43±0.10 34.40±0.05 35.17±0.10 34.40±0.07 55.67±1.85
β=0.5 55.63±0.16 39.07±0.03 40.33±0.05 37.47±0.01 37.07±0.12 55.53±0.62
β=1.0 65.57±0.01 55.87±0.27 55.30±0.26 54.80±0.19 54.17±0.34 62.50±0.12
#C=1 16.27±0.22 10.33±0.00 13.83±0.17 15.67±0.11 15.63±0.11 12.10±0.30
#C=2 41.87±0.01 14.80±0.12 22.53±0.07 20.77±0.06 13.87±0.86 41.43±1.77
#C=3 48.70±0.02 23.50±0.04 30.20±0.08 29.20±0.10 25.30±0.02 48.60±0.49

Here, we present experiments similar to those in Table 1 but with different numbers of epochs
(10, 20, 50, 100). The performance of our methods outperforms other approaches, as shown in
Table 11, Table 12, Table 13, and Table 14. Without tuning the number of local epochs, our method
consistently achieves high performance compared to other baselines. In almost all the settings, our
method can outperform the state-of-the-art baseline approach DENSE. We also note that DENSE
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consumes more computing resources, as shown in Table 5. Besides, it needs an extra data generation
stage and an extra model distillation stage. Our method could get better results and consume fewer
resources. What’s more, in Section 4.7, we also show that our method has the potential to extend to
multiple-round settings, while it is hard to extend the DENSE into multi-round settings.

G.3 Extreme setting, 5 clients

Table 15: Comparison with various FL algorithms in one round when client number is 5.
Dataset Partition FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

FMNIST

β=0.01 48.13±0.28 26.03±0.07 30.77±0.49 30.80±0.34 17.83±0.07 44.23±0.14
β=0.05 55.20±0.17 23.40±0.16 30.80±0.67 29.90±0.12 20.43±0.16 46.17±0.09
β=0.1 59.27±0.12 33.47±0.16 37.77±0.45 35.43±0.86 32.57±0.98 58.73±0.15
β=0.3 73.13±0.00 53.13±0.42 52.57±0.46 52.03±0.59 49.90±0.33 63.40±0.06
β=0.5 74.17±0.02 60.27±0.53 60.13±0.57 59.97±1.14 61.67±0.35 72.03±0.05
β=1.0 75.30±0.00 63.00±0.05 60.87±0.24 62.63±0.05 60.37±0.01 74.93±0.04

When the number of clients is set to 5, the experimental results for the FMNIST dataset are shown in
Table 15. These results demonstrate that our framework performs well even in extreme situations
when the number of clients is relatively small.

G.4 Extreme setting, β = 0.001

Table 16: Comparison with various FL algorithms in one round with different epoch numbers and
β = 0.001.

Dataset epochs number FedLPA FedNova SCAFFOLD FedAvg FedProx DENSE

FMNIST

10 14.57±0.04 10.60±0.01 10.53±0.01 10.60±0.01 13.10±0.01 10.00±0.01
20 15.33±0.04 10.13±0.00 10.23±0.00 10.13±0.00 12.87±0.16 10.00±0.00
50 13.77±0.02 10.57±0.01 10.17±0.00 10.57±0.01 12.30±0.11 10.00±0.00

100 15.83±0.03 10.17±0.00 10.73±0.01 10.17±0.00 13.23±0.21 10.00±0.00
200 14.53±0.00 10.07±0.00 10.10±0.00 10.07±0.00 12.50±0.12 10.00±0.00

CIFAR-10

10 11.50±0.00 10.27±0.00 10.17±0.00 10.27±0.00 10.33±0.00 10.00±0.00
20 10.57±0.01 10.27±0.00 10.13±0.00 10.27±0.00 10.30±0.00 10.00±0.00
50 10.77±0.01 10.23±0.00 10.33±0.00 10.23±0.00 10.33±0.00 10.00±0.00

100 10.90±0.01 10.20±0.00 10.30±0.00 10.23±0.00 10.57±0.01 10.00±0.00
200 10.87±0.02 10.27±0.00 10.23±0.00 10.27±0.00 10.37±0.01 10.00±0.00

MNIST

10 24.10±0.17 10.07±0.01 12.17±0.07 11.83±0.05 12.17±0.12 9.90±0.00
20 19.53±0.33 10.07±0.01 12.07±0.07 13.37±0.08 12.37±0.12 9.27±0.00
50 16.93±0.37 10.07±0.01 10.80±0.04 13.17±0.09 13.13±0.25 11.40±0.08

100 19.07±0.41 10.13±0.01 10.97±0.00 11.37±0.02 12.90±0.13 12.83±0.17
200 15.63±0.03 10.07±0.01 11.13±0.06 12.50±0.04 11.83±0.11 9.27±0.00

SVHN

10 17.50±0.02 15.90±0.00 15.53±0.12 15.53±0.12 15.53±0.12 17.13±0.03
20 20.10±0.21 15.90±0.00 15.53±0.12 15.53±0.12 14.00±0.11 17.13±0.03
50 20.07±0.71 16.30±0.00 15.50±0.12 15.13±0.16 14.03±0.07 15.17±0.16

100 19.70±0.00 15.90±0.00 15.10±0.16 15.53±0.12 13.77±0.10 18.47±0.05
200 19.13±0.00 13.90±0.11 14.90±0.19 15.13±0.16 13.27±0.06 15.23±0.16

Here, we demonstrate that even when β = 0.001 and with different dataset and local epoch number
settings, FedLPA has the potential to aggregate models effectively in extreme situations and produce
superior results. These results are presented in Table 16.

G.5 Experiments with FedOV and Co-Boosting

We compare with FedOV3, the state-of-the-art method which addresses label skews in one-shot
federated learning. We run the experiments with fair comparison (same model size) on MNIST
dataset with #C=2 partition setting. Table 17 shows that our method could be comparable with
FedOV in some scenarios even when FedOV transmits the unknown label information to the clients
and utilizes the knowledge distillation. As the epoch number of local clients equals to 50,100,200,
FedLPA outperforms FedOV.

We also compare with Co-Boosting4, the state-of-the-art distillation method. We run the experiments
with fair comparison (same model size) on the FMNIST dataset, and the rest of the settings are the

3https://github.com/Xtra-Computing/FedOV
4https://github.com/rong-dai/Co-Boosting
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Table 17: Comparison with FedOV on MNIST with #C=2.
epoch number 10 20 50 100 200

FedLPA 47.93±0.89 53.37±0.61 71.07±0.02 71.07±0.35 69.63±0.29
FedOV 71.0±0.25 70.27±0.39 69.23±0.31 65.83±0.23 64.50±0.38

Table 18: Comparison with Co-Boosting on FMNIST.
β 0.01 0.05 0.1 0.3 0.5

FedLPA 21.20±0.67 54.27±0.38 55.33±0.06 68.20±0.04 73.33±0.06
Co-Boosting 17.31±0.24 48.97±1.44 73.15±1.86 83.37±0.44 86.21±0.31

same as the default. The results in Table 18 show that when the β is smaller than 0.1, our method
outperforms Co-Boosting. Thus, with the increment of skewness, FedLPA shows significantly
superior results.

In conclusion, our method could be comparable with FedOV and Co-Boosting in some settings, even
when they consume more computational resources as shown in Appendix G.7.

G.6 Communication overhead evaluation

Table 5 shows the communication overhead evaluation of a simple CNN with 5 layers on CIFAR-10
dataset. The results are given based on the experiments. In this section, we will give a concrete
example to show the details.

The communication bits are the number of bits that are transmitted between a server and a client in a
directed communication. It reflects the communication efficiency of federated learning algorithms.
Better algorithms should have lower communication bits. The default floating point precision is 32
bits in Pytorch.

A fully-connected neural network model example: We use a fully-connected neural network model
with architecture 784-256-64-10 as an example to show the calculation, which has 784 · 256 + 256 +
256 · 64 + 64 + 64 · 10 + 10 = 217930 floating point numbers, which is 6973760 bits or around
0.831 MB.

For a single directed communication from a client to the server or vice versa, the cost for FedAvg,
FedProx, FedNova, and DENSE is 0.831 MB each. SCAFFOLD costs 1.662 MB for the same
communication, which is double the amount of the others.

For a single communication from a client to the server, our method requires additional upload of Ak

and Bk, which contain 785 ·785+256 ·256+257 ·257+64 ·64+65 ·65+10 ·10 = 756231 floating
point numbers in total. Note, as Ak and Bk are symmetric matrices, we only need to upload the upper
triangular part of them, reducing the total to roughly 756231/2 = 378115.5 floating point numbers
as about 1.442 MB. Therefore, our approach costs 2.272 MB for the one directed communication,
which is 2.734 times as FedAvg, FedProx, and DENSE, and 1.367 times as SCAFFOLD.

A CNN model example: We use another example using CNN to show the communication overhead.
For example, we have one model, the first layer is nn.Conv2d(1, 6, 5), means there are 3 input
channels, 6 output channels, and a 5x5 kernel size; the second layer is nn.Conv2d(6, 8, 5), means
there are 6 input channels, 8 output channels, and a 5x5 kernel size.

The parameter count for the first layer is 1x6x5x5+6=156. Note that A and B are both symmetric
matrices. Thus, the additional parameters for A and B for each kernel would be 5x5, and estimating
the covariance for biases without decomposition results in a size of 6x6. Therefore, the additional
parameters for this layer are 201 (Ak1= 6x((5x5-5)/2+5), Bk1=6x((5x5-5)/2+5)+(6x6-6)/2+6.

The parameter count for the second layer is 8x6x5x5+8=1208. Therefore, the additional parameters
for this layer are 1476 (Ak2

= 6x8x((5x5-5)/2+5),Bk2
=6x8x((5x5-5)/2+5)+(8x8-8)/2+8).

These two examples all follow the theory: the communicated parameters A, B and M are approxi-
mately 2x of the number of all parameters in the model θ.
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Table 19: Running time and computation overhead evaluation.
FedLPA FedNova/SCAFFOLD/FedAvg FedProx DENSE FedOV Co-Boosting
65mins 50mins 75mins 400mins 150mins 700mins

Table 20: Experiments with ResNet-18.
β FedLPA FedNova SCAFFOLD FedAvg FedProx Dense

0.1 23.62±0.51 12.16±0.23 10.07±0.04 13.87±0.26 12.04±0.16 21.45±0.60
0.3 27.43±0.04 11.75±0.09 10.08±0.32 10.01±0.07 12.97±0.17 27.10±0.25
0.5 31.70±0.14 13.81±0.31 12.75±0.11 10.61±0.21 11.45±0.23 29.04±0.30

The communication overhead will increase linearly using FedLPA when we change the client numbers
to 20 and 50.

However, as Figure 2 demonstrates, to achieve the same performance as FedLPA, FedAvg, FedNova,
SCAFFOLD, and FedProx require more communication rounds, resulting in a heavier data transfer
burden on the system.

G.7 Running time and computation overhead evaluation

The running times of different algorithms, using a simple CNN on the CIFAR-10 dataset, are
summarized in Table 19. In this experiment, there are 10 clients, each running 200 local epochs with
only one communication round. Our device is a single 2080Ti GPU. Compared to the state-of-the-art
methods FedOV, DENSE and Co-Boosting, our method is efficient and slightly slower than the
fastest algorithm. Notably, DENSE consumes almost 7 times the computational resources, as the
knowledge distillation method is computationally intensive and resource-demanding. Co-Boosting
even uses more time. It’s important to note that while our method is efficient, it also yields almost
always the best results. In our paper, we mainly adopt the most-cited non-IID FL benchmark
(https://github.com/Xtra-Computing/NIID-Bench) to get a fair comparison of FedLPA and other
baselines. The reason why the computation cost of FedProx is higher than FedAvg may be that the
FedProx adds a l2 regular term to make local updates around the global mode, which adds more
computing overhead. Besides, using the original codebase (https://github.com/litian96/FedProx)
from FedPorx also consumes more time than FedAvg and FedNova, under the above non-IID FL
benchmark.

Our methods guarantee that the computation result overhead will increase almost linearly using
FedLPA when we change the client numbers to 20 and 50.

G.8 Experiments with more complex neural network structure

We do the experiments with FedLPA on the same experiment setting in the paper using the more
complex network, ResNet-18 [95], with five random seeds on the CIFAR-10 dataset. We set the
parameters with β=0.1, 0.3 and 0.5 with 10 clients. The results are shown in Table 20. From the
results, we could see that using ResNet-18, our method still gets better performance compared to
other baselines.

We do the experiments with FedLPA on the same experiment setting in the paper using the more
complex network, VGG-9 [96], with five random seeds on the FMNIST dataset. We set the parameters
with β=0.1, 0.3 and 0.5 with 10 clients. The results are shown in Table 21. From the results, we could
see that using VGG-9, our method still performs better than other baselines.

Based on the results of ResNet-18 and VGG-9, Our method has the potential to be applied to more
complex models.

G.9 Experiments with more complex datasets

We do the experiments with FedLPA on the same experiment setting in the paper using ResNet-18
with five random seeds on the CIFAR-100 [65] dataset. The results are shown in Table 22. We can
see that even with the complicated dataset CIFAR-100, our method could also get satisfactory results
in the federated one-shot setting. Besides, we also have added the experiments on EMNST [97] using
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Table 21: Experiments with VGG-9.
β FedLPA FedNova SCAFFOLD FedAvg FedProx Dense

0.1 58.48±1.33 28.77±2.03 32.45±0.12 33.71±0.16 31.78±0.40 51.76±0.28
0.3 75.98±1.72 53.78±0.32 55.00±1.07 54.61±0.02 52.79±0.80 70.10±1.45
0.5 79.02±0.81 62.31±0.90 61.75±0.34 63.18±1.70 62.55±0.17 76.20±1.10

Table 22: Experiments with CIFAR-100 using FedLPA.
β FedAvg FedLPA

0.1 1.31±0.05 15.11±0.38
0.3 1.75±0.10 18.82±0.71
0.5 1.38±0.11 21.77±0.03

simple-CNN with 10 clients and five random seeds. We do the experiments on EMNIST-mnist and
EMNIST-letters. The results are shown in Table 23.

In addition to these, we conduct experiments with Tiny-ImangeNet [98] with ResNet-18 with 10
clients and five random seeds. The results are shown in Table 24.

G.10 Ablation experiments analyzing the number of approximation iterations of FedLPA

The proposed method is composed of multiple approximations: 1) empirical Fisher to approximate
the Hessian, 2) block-diagonal Fisher matrix instead of full, 3) approximating global model parameter
M̄ with optimization problem in Eq. 14.

1) Empirical Fisher to approximate the Hessian:

Although empirical Fisher has been successfully applied in many methods and yielded good results,
discussions concerning the approximation error of empirical Fisher are limited. Fortunately, previous
work [99] provides a detailed critical discussion of the empirical Fisher approximation.

i. Fisher to approximate the Hessian:

When the loss function represents an exponential family distribution, the Fisher is a well-justified
approximation of the Hessian, and its approximation error can be bounded in terms of residuals.
The accuracy of this approximation improves as the residuals diminish and is exact when the data is
perfectly fitted.

ii. Empirical Fisher to Fisher:

It’s noted that the Fisher and empirical Fisher coincide near minima of the loss function under two
conditions:

A. The model distribution closely approximates the data distribution.

B. A sufficiently large number of samples allows both the Fisher and empirical Fisher to converge to
their respective average values in the population.

In practical environments, especially condition 1, might not hold, causing bias between empirical
Fisher and Fisher. However, empirical Fisher still contains effective covariance information. In
second-order optimization methods, the covariance information in empirical Fisher can adapt to

Table 23: Experimental with EMNIST.
Dataset Partitions FedLPA FedAvg

EMNIT-mnist (10 classes)
β=0.1 74.23±3.10 57.63±2.30
β=0.3 86.55±0.24 62.32±1.77
β=0.5 91.75±0.26 82.71±0.96

EMNIT-letters (37 classes)
β=0.1 26.34±0.71 16.22±0.38
β=0.3 31.75±0.03 25.51±0.44
β=0.5 33.78±0.14 26.34±0.07

30



Table 24: Experiments with Tiny-ImangeNet using ResNet-18.
β FedLPA Dense FedAvg

0.1 17.02±1.40 15.88±1.96 3.72±1.44
0.3 27.80±2.10 24.91 ±1.65 8.41±0.87
0.5 30.14±1.25 29.43±0.72 12.07 ±1.92

Table 25: Experiments for the approximation study.
Number of iterations Accuracy(β=0.1) Accuracy(β=0.3) Accuracy(β=0.5) Computation(s)

1000 52.81±0.71 60.31±0.23 72.11±0.57 3
5000 59.70±0.32 68.09±0.30 74.27±0.12 15

10000 55.33±0.06 68.20±0.04 73.33±0.06 30
20000 58.41±0.05 68.11±0.07 73.51±0.02 60

the gradient noise in stochastic optimization. Nevertheless, referencing the work [54], we can use
the model’s predictive distribution to obtain an unbiased estimate of the true Fisher at the same
computational cost as empirical Fisher.

(2) Block-diagonal Fisher matrix to approximate the full one: The work [100] provides a detailed
evaluation and testing of using block-diagonal Fisher to approximate the full one. Firstly, Chapter
6.3.1 “Interpretations of this approximation" in the paper [100] indicates that using a block-wise
Kronecker-factored Fisher closely approximates the full Fisher. Although there is a bias term, this
term approximates zero when there are sufficient samples. Furthermore, the paper examines the
approximation quality of block-diagonal Fisher compared with the true Fisher and suggests that
block-diagonal Fisher captures the main correlations, while the remaining correlations have a minimal
impact on the experimental results.

(3) Besides, we have added some experiments for more ablation studies with our method on the same
experiment setting in the paper with five random seeds with 10 clients. We conducted experiments
on FMNIST datasets with β=0.1, 0.3 and 0.5. The results are shown in Table 25. We show the
experiments analyzing the number of approximation iterations. With the experiment results, we could
know that 5000 iterations are enough to get the ideal results. By default, we use 10000 iterations.

We also show that the computation time for the approximation is linear with the number of approxi-
mation iterations in the last column of Table 25.

Additionally, it’s worth noting that concerning Laplace approximation, the analysis [101] suggests
that the error of Laplace approximation is inversely proportional to the input dimension n with
O(n−1). According to this conclusion, it can be inferred that in our method, for each layer of the
neural network, the error of Laplace approximation is inversely proportional to its width. When the
neural network is infinitely wide, the approximation error tends towards zero.

G.11 Artifact details

We have uploaded the codebase containing all the methods compared in our paper. Setting up the
environment is relatively straightforward with the provided readme file. If you refer to the scripts
folder, you will find all the bash scripts necessary to reproduce the tables and figures from our
experiments.

The experiments.sh script covers the experiments in Table 1, Table 11, Table 12, Table 13, and
Table 14. Running these experiments on a single 2080Ti GPU will take approximately 81 days.
Specifically, Table 1 itself will take about 35 days.

The experiments_client.sh script covers the experiments in Table 2, requiring approximately 40 days
on a single 2080Ti GPU.

The experiments_coor.sh script covers the experiments in Table 4, which can be completed in 2 days.

The experiments_dp.sh script covers the experiments in Table 8, requiring approximately 1 day on a
single 2080Ti GPU.
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The experiments_fedavg_with_attack.py and experiments_fedlpa_with_attack.py covers the experi-
ments in Table 10 requiring approximately 1 day on a single 2080Ti GPU.

The experiments_extreme_clients.sh script covers the experiments in Table 15 and requires approxi-
mately 4 days of GPU processing.

The experiments_extreme.sh script reproduces the experiments in Table 16 and takes about 10 days.

The experiments of Table 17 and Table 18 take about 8 days.

The experiments_emnist.sh script covers the experiments in Table 23 and takes about 1 day.

Running experiments_multiple_round.sh will yield the results as shown in Figure 2, and this process
takes about 1 day.

The experiments for Table 6 and Table 7 will take about 1 day. The experiments for Table 25 and
Table 3 will also take about 1 day.

To generate the t-SNE visualizations shown in Figure 1, Figure 3, and Figure 4, you can use the
experiments.py script with the “alg=tsne" option.

In total, reproducing all the experiment results in this paper will require about 185 days for GPU
processing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The paper discusses the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
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Justification: The paper provides the full set of assumptions and a complete (and correct)
proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: The paper fully discloses all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The paper specifies all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: The results are accompanied by error bars, confidence intervals, or statistical
significance tests, at least for the experiments that support the main claims of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: For each experiment, the paper provides sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: There is no societal impact of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

38

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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