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Abstract

Hierarchical text classification (HTC) is the
task of assigning labels to a text within a struc-
tured space organized as a hierarchy. Recent
works treat HTC as a conventional multilabel
classification problem, therefore evaluating it
as such. We instead propose to evaluate models
based on specifically designed hierarchical met-
rics and we demonstrate the intricacy of metric
choice and prediction inference method. We
introduce a new and challenging HTC dataset
and we evaluate fairly recent sophisticated mod-
els, comparing them with a range of simple but
strong baselines. Finally, we show that those
baselines are very often competitive with the
latest HTC models. Our works shows the im-
portance of carefully considering the evaluation
methodology when proposing new methods for
HTC.

1 Introduction

Text classification is a long-studied problem that
may involve various types of label sets. In par-
ticular, Hierarchical Text Classification (HTC) in-
volves labels that exhibit a hierarchical structure
with parent-child relationships. The structure that
emerges from these relationships is either a tree
(Kowsari et al., 2018; Lewis et al., 2004; Lyubinets
etal., 2018; Aly et al., 2019; Sandhaus, 2008) or a
Directed Acyclic Graph (DAG) (Bertinetto et al.,
2020). Each input example then comes with a set of
labels that form one or more paths in the hierarchy.
A first crucial challenge in HTC lies in accurately
evaluating model performance. This requires met-
rics which are sensitive to the severity of prediction
errors, penalizing mistakes with larger distances
within the hierarchy tree. While pioneering efforts
have been made by Kiritchenko et al. (2006), Silla
and Freitas (2011), and Kosmopoulos et al. (2014),
evaluation in the context of hierarchical classifica-
tion remains an ongoing research area.
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Figure 1: Extract of the taxonomy of our new dataset
Hierarchical WikiVitals. Each colored path in the tree
is the set of labels of the input text of the same color.

There is a substantial body of literature ad-
dressing HTC. The most recent methods produce
text representations which are hierarchy-aware, as
they integrate information about the label hierar-
chy (Song et al., 2023; Zhou et al., 2020; Deng
et al., 2021; Wang et al., 2022b,a; Jiang et al., 2022;
Chen et al., 2021; Zhu et al., 2023). However, we
believe that evaluation with these models have been
insufficiently investigated. In this work, we plan to
shed light on inference strategies — the way of pro-
ducing predictions, given a probability distribution
over the nodes of the hierarchy — which we consider
an under-addressed challenge. We provide new in-
sights, emphasising the intricacy of inference and
evaluation, which cannot be considered separately.
To complete this investigation, we introduce a new
English benchmark dataset, Hierarchical Wikivi-
tals (HWYV), which we intend to be significantly
more challenging than the usual HTC benchmarks



in English (see Figure 1 for an extract of the taxon-
omy). Finally, we experiment within our proposed
framework, verifying the performance of recent
models against simpler ones, which rely solely on
a text encoder (Devlin et al., 2019) and a loss func-
tion (Bertinetto et al., 2020; Vaswani et al., 2022;
Zhang et al., 2021) able to integrate local hierar-
chical information, such as the conditional softmax
and sigmoid. To summarize, our contributions are:

1. We propose to quantitatively evaluate HTC
methods based on specifically designed hierar-
chical metrics.

2. We prove that inference is often not tailored to
the metrics used, and we therefore propose an
adapted evaluation methodology.

3. We present a novel HTC dataset, Hierarchical
WikiVitals, equipped with a complex and chal-
lenging label hierarchy.

4. We provide a rationale for the adoption of the
conditional softmax and conditional sigmoid
as strong baselines for the task, establishing a
theoretical connection between them.

5. Our experiments reveal that simple models are
very often competitive with sophisticated ones
when properly evaluated.

Problem definition

Hierarchical Text classification (HTC) is a subtask
of text classification which consists in assigning
to an input text z € X a set of labels Y C ),
where the label space ) exhibits parent-child re-
lationships. We call hierarchy the directed graph
H = (V,E), where £ C V? is the set of edges,
which goes from a parent to its children. We re-
strain our study to the case where H is a tree. We
follow the notations of Valmadre (2022) and call
r € Y the unique root node and £ the set of leaf
nodes. For a node y € Y\{r} we denote 7(y) its
unique parent, C(y) C Y the set of its children and
A(y) the set of its ancestors (defined inclusively).
A label set Y of an input x cannot be arbitrary:
if y € Y then, due to the parent relations, we
necessarily observe that A(y) C Y. An even more
restrictive framework is the single-path leaf labels
setting, where (1) Y is a single path in the tree:
y1,y2 € Y = y1 € A(y2) orya € A(y1), and
(2) Y reaches a leaf: Y N L # (). As Valmadre
(2022), we study methods that map an input text x
to a conditional distribution P(-|z) over ), whose
estimation is denoted P(:|z).

2 Related Work

2.1 Hierarchical Text Classification

Hierarchical classification problems, including the
particular case of HTC, are typically dealt with
through either a local approach or a global one.
We refer to the original definition made by Silla
and Freitas (2011), according to which the differ-
ence between the two categories lies in the training
phase. Indeed, local methods imply training a col-
lection of specialized classifiers, e.g. one for each
node, for each parent node or even one for each
level; and during its training each classifier is un-
aware of the holistic structure of the hierarchy (Zan-
gari et al., 2023). While often computationally
costly, it has proven to be effective to capture cru-
cial local information. Along those lines, Banerjee
et al. (2019) propose to link the parameters of a par-
ent classifier and those of its children, following the
idea of transferring knowledge from parent nodes
to their descendants (Shimura et al., 2018; Huang
et al., 2019; Wehrmann et al., 2018). Besides their
cost, local approaches have the issue of potential
exposure bias, as decisions are taken without access
to information about the whole structure.
Conversely, global methods involve a unique
model that directly incorporates the whole hierar-
chical information in their predictions. There exist
very different types of global approaches, from
which we can draw two broad categories: losses
incorporating hierarchical penalties and hierarchy-
aware models.
Hierarchical penalties. The idea of these meth-
ods is generally to use a standard binary cross-
entropy (BCE), and add penalisation terms that
incorporate hierarchical information. Gopal and
Yang (2013) and Zhang et al. (2021) propose reg-
ularization based on hypernymy, either acting on
on the parameter space or the outputted probability
space, while Vaswani et al. (2022) introduce an en-
hanced BCE loss, named CHAMP, which penalises
false positives based on their distance to the ground
truth in the hierarchy tree.
Hierarchy-aware models. In order to include
the structural constraints of the hierarchy to the
prediction, Mao et al. (2019) propose a reinforce-
ment learning approach, and Aly et al. (2019) an
architecture based on capsule networks. But re-
cent works obtained state-of-the-art results by com-
bining a text encoder with a structure encoder ap-
plied to the label hierarchy: this idea was first pro-
posed by Zhou et al. (2020), using graph convo-



lution networks as hierarchy encoder. Based on
this seminal work, Jiang et al. (2022) separately
incorporate local and global hierarchy information,
and Wang et al. (2022a) propose a contrastive learn-
ing approach, while Zhu et al. (2023) implement a
method to encode hierarchy with the guidance of
structural entropy, following many previous works
on the idea (Chen et al., 2020; Zhang et al., 2022;
Deng et al., 2021; Chen et al., 2021; Wang et al.,
2021). We should note that these models are usu-
ally trained with a BCE loss (or one of its penalized
version (Zhang et al., 2021)).

2.2 Hierarchical prediction

Making a prediction in HTC involves two seem-
ingly irreconcilable difficulties: prediction coher-
ence and error propagation. Typically, one has to
decide between making independent predictions,
which may lead to coherence issues (e.g., predict-
ing a child without predicting its parent), or em-
ploying a top-down inference approach, which may
cause error propagation issues (Yang and Cardie,
2013; Song et al., 2012). This trade-off is arbi-
trated by the choice of the modelisation: a global
BCE-based loss may produce incoherent predic-
tions while local structure-aware losses (Redmon
and Farhadi, 2017; Bertinetto et al., 2020) can lead
to exposure bias. Recent hierarchy-aware models
predominantly operate within the former frame-
work, training and evaluating the model as a simple
multi-label classifier, at the price of ignoring poten-
tially badly structured predictions.

In this work, we propose to revisit this trade-off
by improving our evaluation framework. We will
experiment with recent hierarchy-aware models, hi-
erarchical penalties, but also, top-down loss-based
approaches.

2.3 Hierarchical classification evaluation

In the context of HTC, inference is mostly per-
formed through thresholding to 0.5 the estimated
probability distribution over nodes, and computing
the F1-score (micro and macro), which amounts
to multi-label evaluation. However, a lot of efforts
have already been dedicated to proposing metrics
within a hierarchical context: hierarchical metrics.
The underlying idea is simple: take into account the
severity of an error based on the known hierarchy:
predicting a Bulldog instead of a Terrier should be
less penalized than predicting a Unicorn instead
of a Terrier. This has been extensively studied in
Kosmopoulos et al. (2014). The first intuitive way

to deal with this, is to compute a shortest-path (SP).
Roughly, it corresponds to computing the number
of edges between a predicted node and the ground
truth one. Depending on assumptions we make,
it may be ill-defined, especially when there are
multi-path labels (Kosmopoulos et al., 2014). But
in a simple single-path leaf label setting, it yields
an interpretable metric. Efforts were also made to
adapt metrics used in a standard multi-label clas-
sification problem to a hierarchical context. This
motivated the Hierachical Recall, Precision and
Fl1-scores (Kiritchenko et al., 2006; Kosmopou-
los et al., 2014) which imply predicting the full
path: Bulldog, Dogs, Animals and Unicorn, Ani-
mals rather than Bulldog and Unicorn. Looking
at which part of the path is well predicted then
allows to take into account the severity of errors.
In a standard multi-label framework these metrics
are often computed at different operating points,
thus yielding a trade-off curve. To our knowledge
only Valmadre (2022) proposed such an evaluation
methodology in a hierarchical context. In this work,
we choose to use the shortest path and hierarchi-
cal F1-score for evaluation. In order for SP to be
properly defined, we choose as main setting for our
experiments the single-path leaf labels framework,
which we will then extend to multi-path labels.

3 Evaluation metrics

3.1 Hierarchical metrics

We begin by detailing the two hierarchical met-
rics we will work with in our experiments. For-
mally, suppose that, given P(-|z), we obtain Y the
predicted set of labels, which we confront to the
ground truth Y. A prediction is called coherent if
zeY = Alz)CY.

Shortest Path. We define the shortest path met-
ric (Garnot and Landrieu, 2021) SP(Y, f/) as the
length of shortest path in 7! between the most spe-
cific element of Y denoted y°P® and the most spe-
cific element of Y denoted °P°2, which we would
like to minimize. Little consideration was given
to this metric in the literature, although it provides
very intuitive and interpretable results.

Hierarchical F1-score. Introduced by Kir-
itchenko et al. (2000), it consists in augmenting

'In which we undirected the edges
“Metric definition implicitly supposes Y is a single path



Y with all its ancestors as follows :

YaE = U A() (1)
yey

And to compute the hierarchical precision, recall
and F1-score as follows :

o fpmeay] o fpeny
hWP(Y,Y)=1— 1 hR(Y,V)=1— !
‘yaug Y|
. 2.hP(Y,Y)-hR(Y.Y

hP(Y,Y) 4+ hR(Y,Y)

In the multi-label setting, there are several methods
of aggregation to compute a global F1-score.®. We
define here a per-instance hF1-score as per Kos-
mopoulos et al. (2014) which is then averaged over
all inputs (referred as samples setting). In its very
first introduction, it was defined in a micro fashion
by Kiritchenko et al. (2006) (see Appendix B.2 for
full definitions).

Proposition 1 In micro and samples settings, if
every prediction Y is coherent then hF1 and F1
are strictly equal.

Proof is detailed in Appendix B.2. It was therefore
relevant to employ the micro F1-score as it is done
in recent literature: when predictions are coherent,
it is indeed a hierarchical metric.

3.2 Inference methodology

In this section, we argue against the practice of
using a BCE-based loss and a threshold set to 0.5
to produce predictions. While this corresponds to
minimizing the Hamming loss in case of label in-
dependence (Dembczyriski et al., 2012), to the best
of our knowledge, there is no evidence of the opti-
mality of such a predictor in a hierarchical setting.

3.2.1 Risk Minimization

Risk minimization is a long-time studied
topic (Vapnik, 1999), addressing the problem of
finding an optimal predictor f* while optimizing a
metric L. Re-writing this minimization yields the
Bayes-Optimal predictor:

f*(x) = argmin E[L(Y,Y)|X =2] (2
Y

When Equation (2) has a closed-formed solution,
this gives a predictor which optimizes metric L.

3See for example the Scikit-learn documentation

Figure 2: Example of a conditional distribution esti-
mation over a simple hierarchy and corresponding pre-
dicted nodes (in blue) for different thresholds (0.3 on
the left, 0.5 on the right).

In particular, machine learning methods often pro-
duce an estimation of P(-|x) for a given x. If the
solution of Equation (2) yields a necessary and suf-
ficient condition on P(+|z), this condition induces
a statistically grounded inference methodology for
optimizing the metric of interest. This shows how
intricated the choice of inference methodology and
of evaluation metric are. This statement has largely
been neglected in recent HTC models, and we show
in what follows that a 0.5 thresholding inference
coupled with a F1-score metric can be sub-optimal.

3.2.2 On the optimality of hierarchical
metrics

On Figure 2, we depict an example hierarchy as
well as a coherent and exhaustive probability dis-
tribution P(-|x) for a given . Thresholding to 0.5
would lead to predict {1}, while we could consider
prediction {1,5}. A simple computation, detailed
in Appendix B.1, gives:

E[SP(Y, {1})|X = 2] = 1.25
E[SP(Y, {1,5})|X = 2] = 1.55
E[LFL(Y, {1})|X = 2] = 0.5
E[LFL(Y, {1,5})|X = 2] = 0.55

This simple example shows that in a single path
leaf label setting it is strictly better to predict {1}
instead of {1,5} when aiming at minimizing SP
and conversely predicting {1,5} instead of {1}
when aiming at maximizing hF1-score. Besides
the fact that optimal thresholding depends on the
choice of the metric, we can show that the optimal
threshold for the hF1-score depends on x (we de-
tail the proof in Appendix B.1.2). This motivates
the idea of using a per-instance hF1-score as de-
fined in Section 3.1, rather than its micro version.
Moreover, as the optimal threshold is unknown, we
propose to evaluate hierarchical classifiers at dif-


https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

ferent operating points, as proposed in Valmadre
(2022). Combined with our Proposition 1, these ob-
servations motivate the re-evaluation of the current
state-of-the-art models in the setting we propose in
the next section.

3.2.3 Hierarchical F1-score evaluation
methodology

We introduce an evaluation methodology that re-
lies on different operating points. Broadly, this
methodology involves, for a given input x, sys-
tematically exploring a range of thresholds 7. At
each threshold, we calculate hPrecision and hRe-
call, subsequently constructing a Precision-Recall
curve. More formally, let z be an input text, Y its
ground truth label set, P(-|x), the estimated condi-
tional distribution, and 7 € [0, 1], we denote :

T ={y € Y,P(ylx) > 7}

Then the Hierarchical Precision-Recall curve is
defined as the set of couples

{(hR(Y,?T),hP(Y,\?T)) , T elo, 1]}

Curve computation. In practice, there is no need
to compute values of precision and recall for all
thresholds, but only for the set {P(y\a:) y €YV}

as 7 — hR(Y,Y7) and 7 — hP(Y,Y7) are piece-
wise constant.

Area under the curve (AUC). After computing the
hierarchical precision-recall curve, the area under
this curve gives an overall performance of the es-
timated conditional distribution across thresholds
for a given z. This is performed for each sample.
AUC of all samples are then averaged across all
input texts.

Now that our evaluation framework has been layed
out, we will introduce our baselines, before pre-
senting our experimental setup.

4 Simple top-down loss-based baselines

4.1 Conditional softmax cross-entropy

As outlined in Section 1, we focus on methods that,
given an input text x, produce an estimated condi-
tional distribution P(-|x) on V. We propose here to
associate a modern text encoder to the conditional
softmax (Redmon and Farhadi, 2017) as a strong
baseline which inherently incorporates the hierar-
chy structure by producing a hierarchy-coherent
probability distribution and coupling it with a cross-
entropy loss. We detail in this section the modeling

and training associated with it. Let us consider an
input text « with its corresponding label set Y'; a
text encoder is first used to produce a embedded
representation h, € R? of z.

Conditional softmax. The conditional softmax
first maps h, to s, € RV through a standard lin-
ear mapping:

where W € RYI*d and b € RIYI. Then, a softmax
is applied to each brotherhood as follows:

exp s%]

Pylz, m(y)) = @)
> expst
z€C(m(y))
Cross-entropy. The contribution to the loss of
the pair (x,Y) is given by a standard leaf nodes

cross-entropy, which writes:
lesoni(7,Y) = —log P(y°|x)
== logP(ylz,7(y)) (5)

yey

where we denote y°P° the unique leaf node of Y.
Outputted conditional distribution. The proba-
bility of y € ) is computed by a standard condi-
tionality decomposition :

P(y|z) = H P(z|z, 7(2)

z€A(y)

Motivations. Contrarily to BCE-based methods,
this modelisation directly incorporates the hierar-
chy structure of labels, by definition. Besides, the
outputted probability distribution is coherent and
exhaustive, which fits our single-path leaf labels
setting. It is more powerful than a leaf nodes soft-
max, as it decomposes the leaf probability estima-
tion into several sub-problems. It is also compu-
tationally cheap, with a linear cost with respect to
the number of nodes of H.

Limitations. This approach involves a top-down
testing phase which exposes it to data imbalance
and error-propagation issues. It is also limited to
the single-path leaf labels setting. In practice, sev-
eral real-world datasets consistently used in recent
literature to evaluate HTC models (Lewis et al.,
2004; Aly et al., 2019) are multi-path. Also, hi-
erarchies can be non-exhaustive, which may lead
to label sets whose most specific classes are not
necessarily leaf nodes. The conditional softmax is
not designed for any of those cases: that is why we
propose to introduce a conditional sigmoid baseline
in Section 4.3.



4.2 Logit adjusted conditional softmax

Zhou et al. (2020) suggest that integrating the prior
probability distribution is relevant to the HTC task,
which is confirmed by their experimental results.
Their approach involves initializing (or fixing) the
weights of the structure encoder using this pre-
computed prior distribution. We believe that the
easiest way to integrate the same information into
our baseline is to use a dedicated loss: we turn to
the logit-adjusted softmax (Menon et al., 2021),
an approach proposed to deal with class imbal-
ance, and adapt it to the conditional softmax. Equa-
tion (4) becomes:

oS+ log v(y|n(y))

P(y|z, 7(y)) =
(y| (y)) Z esf]_m—logu(Z\ﬂ(Z))

2eC(n(y))

where v(y|m(y)) is an estimation of P(y|n(y))*
and 7 a hyperparameter. Equation (5) remains un-
changed. More details on the adaptation of the
logit-adjusted softmax to our case are given in Ap-
pendix B.4.2.

4.3 Conditional sigmoid binary cross-entropy

Introduced by Brust and Denzler (2020), the condi-
tional sigmoid follows a similar intuition to condi-
tional softmax. Sigmoids are applied to each ele-
ment of s,, modeling the conditional probability of
the node given its parent. Hence, the contribution
to the loss of a pair (z,Y) is given by:

lesigl@,Y) = =3 (log(P(=]z, 7(2)))

zeY

DY

ueC(m(2))\{z}

While this formula was not motivated by theoreti-
cal arguments in Brust and Denzler (2020), we can
prove that gradients computed for this loss and the
conditional softmax cross-entropy loss are equiva-
lent:

log (1 - ﬁ’(u\x,w(z))))

8lcs0ft($, Y) - 8ZCSig(a:, Y)
ow N ow
while this loss also allows to deal with both multi-
path and non-exhaustive datasets. Details on gradi-
ent computation can be found in Appendix B.4.

5 Experimental settings
In this section, we introduce our datasets, models,
and evaluation metrics.

“In practice, we estimate it by computing an empirical
probability on train set for each label. It is not trainable.

5.1 Datasets

We will verify the performance of our baselines ver-
sus recent state-of-the-art models on hierarchical
metrics on three widely used datasets in the HTC
literature, which is mainly applied to English data:
Web-of-Science (WOS) (Kowsari et al., 2018),
RCV1-V2 (Lewis et al., 2004) and BGC (Aly et al.,
2019). We also contribute to HTC benchmark-
ing by releasing Hierarchical-Wikivitals (HWV),
which we believe provides a harder challenge, as
the number of nodes and the depth of the hierar-
chy are significantly higher than for the previously
cited datasets. It is also characterized by a very
imbalanced label distribution. We show in Figure 1
three observations from our new dataset, illustrat-
ing that leaf nodes depth can vary, ranging from 2
to 6. Table 1 shows additional data statistics. De-
tails regarding the building process of HWV are
provided in Appendix A.

Dataset Train/Val/Test d #nodes #nodes per level
v spy SO IO
WOS (SPL) 30’097’(3)/977’518 2 141 7-134
RCV1 (MP) 273;;’11?‘296/5' 4 103 4-55-43-1
BGC (MP) 58’711;;19‘:785 146 7-46-77-16

Table 1: Key statistics of the selected datasets. SPL in-
dicates that the dataset enters the single path leaf labels
setting, and MP that it is multi-path; d represents the
maximum depth of the label hierarchy.

5.2 Models

We propose to compare very different HTC models,
ranging from most simple baselines to the most
recent, state-of-the-art approaches. For fair com-
parison between them, we use a pre-trained BERT?
model (Devlin et al., 2019) as text encoder, adopt-
ing the standard [CLS] representation as h, for
every model. We list below all the different models
evaluated. BERT + BCE is the simplest baseline,
treating the problem as a multi-label task, with-
out using any information from the hierarchical
structure of the labels. BERT + Leaf Softmax out-
puts a distribution over leaves, and hence is only
fitted for single-path leaf label settings. BERT +
CHAMP implements the penalisation of false pos-
itives based on their shortest-path distance to the
ground label set in the tree (Vaswani et al., 2022).
BERT + Conditional {Softmax, logit-adjusted

Shttps://huggingface.co/bert-base-uncased
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Softmax, Sigmoid} are our strong baselines, de-
tailed in Section 4.1. Hitin (Zhu et al., 2023),
HBGL (Jiang et al., 2022), HGCLR (Wang et al.,
2022a) are among the most recent state-of-the-art
models, proposing respectively to separately en-
code the label hierarchy in an efficient manner, to
incorporate both global and local information when
encoding the label hierarchy, by considering sub-
graphs, and to use contrastive learning and exploit-
ing the label hierarchy to create plausible corrupted
examples. All tested methods output a conditional
distribution P(-|z) for every input text x, except
HBGLE.

5.3 Evaluation

As shown in Section 3.2.2, given P(-|z), the opti-
mal inference process depends on the chosen met-
ric. In sections below we detail evaluation metrics
depending on the setting, and the associated infer-
ence methodology.

5.3.1 Single Path datasets

Accuracy can be computed either on leaf labels, or
per-level, and then averaged over levels. In both
cases, we perform inference following the Bayes
optimal predictor:
§j = argmax P(y|z)
yeA

where A is the subset of nodes considered. (for
leaf accuracy, A = L£). For the hFl-score, we
compute an AUC metric following Section 3.2.3.
For the shortest-path, we follow a result from Ra-
maswamy et al. (2015), performing 0.5 threshold-
ing’ and computing the length of the shortest path
between the most specific node predicted and the
most specific ground truth label®.

5.3.2 Multi Path datasets

In this setting, we replace accuracy by the Ham-
ming loss, defined as:

N 1 N
HM(Y,Y) = =) 1(Yi # 1)
|'A| €A
where A is the set of nodes of a given level of
‘H. For the metric, Bayes optimal inference is per-

formed by thresholding to 0.5 (Dembczynski et al.,

8This prevents us to compute the hF1-AUC metric for the
HBGL model.

"While Ramaswamy et al. (2015) show this to be optimal
in a noticeably different setting we can adapt this result to our
framework.

8For BCE, where thresholding to 0.5 can lead to several
paths, we sum the length of the shortest paths between all most
specific predictions and most specific ground truth labels.

F1-score

Method Micro Macro

BCE 88.87 (0.15) | 45.56 (0.58)
CHAMP 87.14 (0.15) | 50.90 (0.24)
HGCLR 84.92 (0.37) | 44.89 (1.38)
HITIN 87.49 (0.08) | 51.73 (0.42)
Leaf softmax 84.79 (0.57) | 51.49 (0.52)
Cond Soft 87.20 (0.45) | 53.80 (0.65)
Cond Soft (LA) | 87.39 (0.21) | 54.40 (0.58)

Table 2: Fl1-score (and 95% confidence interval) on
HWYV test set with 0.5 thresholding prediction method-
ology for different implemented methods. The best
result is highlighted in bold. The HBGL model was
too large to fit in the memory of a 40GB GPU for this
dataset.

2012). Then, for hF1-score, the methodology used
for single path can be extended to multi-path with-
out any changes.

5.4 Training details

We use the bert-base-uncased model from the
transformers library (Wolf et al., 2020) as text en-
coder (110M parameters). Our implementation is
based on Hitin.® Each of our baselines is trained
for 20 epochs on a V100 GPU of 32GB with a
batch size of 16. We used an AdamW optimizer
with initial learning rate of 2 - 1075 and with a
warmup period of 10% of the training steps. For
HBGL'?, Hitin and HGCLR'!, we relied on of-
ficial implementations and guidelines to conduct
experiments. For datasets not used in the original
papers, we performed an hyperparameter optimiza-
tion via grid-search. Our results are averaged over
four training runs with different seeds.

6 Results and Analysis

We start our investigation by evaluating models on
our newly proposed dataset, HW'V, following re-
cent literature: using 0.5 thresholding and showing
micro and macro Fl-score in Table 2. However,
the HBGL architecture could not be run on HWYV,
requiring memory above the capacity of our GPUs.
We additionally present in Appendix 5 these met-
rics for the other datasets. We can first note the re-
markable efficiency of the conditional softmax on
the macro-F1, especially our logit-adjusted version.
Surprisingly, with a deeper, more complex hierar-
chy, the latest models fail to obtain the best results.

9https: //github.com/Rooooyy/HiTIN
Yhttps://github.com/kongds/HBGL
"https://github.com/wzh9969/contrastive-htc
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WOS HWV
Accuracy (in %) T Accuracy (in %) T

Method Avg. Levels Leaves SPd hEL AUCT Avg. Levels Leaves SPd hEL AUCT
BCE 86.46 (0.10) | 81.34 (0.13) | 0.541 (0.003) | 89.09 (0.11) | 85.51 (0.20) | 68.25 (0.36) | 1.233 (0.028) | 88.97 (0.14)
CHAMP 86.44 (0.12) | 81.29 (0.12) | 0.540 (0.007) | 88.66 (0.09) | 87.37 (0.17) | 71.56 (0.30) | 1.127 (0.003) | 89.64 (0.20)
HBGL 86.67 (0.12) | 81.95(0.13) | 0.530 (0.006) X - - - -

HGCLR 86.04 (0.29) | 81.02 (0.35) | 0.563 (0.014) | 89.18 (0.21) | 84.58 (0.64) | 67.12 (1.50) | 1.211 (0.021) | 88.35 (0.35)
HITIN 86.63 (0.09) | 81.62 (0.08) | 0.572 (0.006) | 88.21 (0.06) | 88.28 (0.07) | 73.63 (0.22) | 1.229 (0.032) | 90.72 (0.16)
Leaf softmax 85.81 (0.35) | 80.73 (0.51) | 0.562 (0.008) | 88.62 (0.08) | 86.54 (0.49) | 71.10(0.72) | 1.126 (0.043) | 88.55 (0.47)
Cond Soft 86.04 (0.21) | 80.77 (0.24) | 0.546 (0.012) | 88.76 (0.08) | 88.51 (0.34) | 73.64 (0.40) | 0.953 (0.034) | 90.79 (0.27)
Cond Soft + LA | 85.99 (0.37) | 80.62 (0.46) | 0.541 (0.005) | 88.90 (0.10) | 88.53 (0.25) | 73.75 (0.25) | 0.936 (0.016) | 90.91 (0.11)

Table 3: Performance evaluation metrics (and 95% confidence interval) on the test sets of the WOS and HWV
datasets for the implemented models. The best result for each metric is highlighted in bold. The HBGL model was
too large to fit in the memory of a 40GB GPU on the HWV dataset.

RCV1 BGC

Method Hamming Loss Avg. (in %) | | hF1 AUC {1 | Hamming Loss Avg. (in %) | | hF1 AUC 1
BCE 0.74 (0.01) 93.59 (0.20) 1.05 (0.03) 90.22 (0.70)
CHAMP 0.78 (0.04) 93.05 (0.34) 1.03 (0.04) 90.15 (0.22)
HBGL 0.71 (0.01) 1.06 (0.01) X

HGCLR 0.77 (0.02) 93.09 (0.18) 1.05 (0.03) 89.65 (0.20)
HITIN 0.78 (0.03) 92.92 (0.20) 1.03 (0.02) 89.98 (0.14)
Cond Sigmoid 0.78 (0.07) 92.87 (0.69) 1.04 (0.02) 90.07 (0.40)

Table 4: Performance evaluation on the test sets of the RCV1 and BGC Datasets for the implemented models. The
best result for each metrics are emphasized in bold. Hamming loss is displayed in %. A 95% confidence interval is

also displayed.

We hence emit the hypothesis that while global
hierarchy-aware models were proven useful on sim-
pler datasets, they fail to capture that complexity on
HWYV. We then turn to hierarchical metrics to better
investigate. Table 3 shows evaluation on the two
single path leaf-label datasets: WOS and HWV.
On WOS, simpler baselines reach remarkable re-
sults. Despite the marginal superiority of HBGL,
it is noteworthy that the BERT+BCE model, not
using label hierarchy information, is in the top per-
formances across all metrics. This shows the low
complexity of the dataset’s label hierarchy. On
HWYV there are notable disparities: while HGCLR
demonstrated low performance, and Hitin achieved
average results, the conditional softmax, and the
logit-adjusted version here again reach great re-
sults, and significantly outperforms other methods
across nearly all metrics. We present the quantita-
tive results for the multi path datasets in Table 4.
Here, our observations align closely with what we
noticed on WOS: a straightforward BCE loss con-
sistently yields great results across datasets and
metrics. As the HWYV dataset is characterized by
a deep hierarchy and a very imbalanced label dis-
tribution, we believe those results allow us to draw
several lessons. First, that the latest state-of-the-art
hierarchy-aware HTC models are in fact less able
to integrate that complex hierarchical information

into their prediction than a simple model trained
with conditional softmax cross-entropy. Second,
that it is necessary to employ appropriate data, met-
rics, with the right methodology, to properly eval-
uate a model’s capacity to encode label hierarchy
information.

7 Conclusion

In this paper, we come back upon recent progress
in Hierarchical Text Classification, and propose to
investigate closely this task’s evaluation. In order
to do so, we begin by showing the theoretical lim-
itations of the inference and metrics that are com-
monly used in the recent literature. We instead pro-
pose to use existing hierarchical metrics, and asso-
ciated inference methods, better suited for the task.
Then, we propose a new and challenging dataset,
Hierarchical Wiki Vitals; our experiments show that
recent sophisticated hierarchy-aware models have
trouble integrating hierarchy information, whereas
simple models are very competitive. We finally
propose a strong baseline, termed logit-adjusted
conditional softmax cross-entropy, able to both in-
tegrate hierarchy information and deal with class
imbalance on our dataset. In the future, we plan to
investigate the mechanism of inference for hierar-
chical metrics, and will aim at making direct con-
tribution to improving models on the HTC tasks.



Limitations

Our work emphasizes fairness and transparency,
acknowledging potential limitations within the cur-
rent framework. However, several key limitations
remain. Firstly, our core results on metrics and
inference are restricted to a specific framework we
call single-path leaf label. Moving beyond this
framework significantly increases the complexity
of both evaluation and inference methodologies.
Notably, in multi-path scenarios, the Shortest-path
metric becomes ill-defined, necessitating consid-
eration of often intractable label interdependen-
cies. Secondly, we demonstrate that the commonly
used 0.5 threshold is not optimal for F1-score cal-
culation. Although we address this by consider-
ing all possible thresholds for a fair evaluation,
each individual instance likely has a unique opti-
mal threshold, which would need further research.
Finally, our new incremental loss function, termed
logit-adjusted conditional softmax cross-entropy
is only fitted to single-path leaf label framework.
Morever, its definition includes the computation
of several cascade conditional probabilities. This
means that inaccuracies in probability estimations
at higher levels can disproportionately amplify er-
rors at lower levels, potentially compromising over-
all model performance.
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A Hierarchical-Wikivitals

We scraped categories of the Wikipedia 10k most-
read articles'” from a Wikipedia dump of June
2021. Each category link leads to a page with fur-
ther subcategories, culminating in actual Wikipedia
articles. This creates a hierarchy based on cate-
gories. For each article, we retain only its abstract
as textual content and assign it all the category la-
bels encountered while navigating the hierarchy to
reach it. If inside a category we observe an actual
article A and also a subgategory B, all articles in-
side B will be labeled the same way as A. We do
that to create a leaf-label dataset. Due to inherent
ambiguities in the Wikipedia category structure, the
initial hierarchy formed a Directed Acyclic Graph
(DAG). To enter our framework, we transformed
it into a tree by differentiating categories accessed
through multiple paths. This involved adding the
ancestor category’s name to the label for disam-
biguation. The resulting tree exhibits significant
depth (up to 6 levels) and imbalance (leaf nodes
span depths 2-6) with highly skewed label distribu-
tions (some leaf nodes have only one instance).The
dataset underwent preprocessing akin to Zhou et al.
(2020) to conform to standard formats and was sub-
sequently divided into train/validation/test splits. It
is available within the "data" folder of the attached
repository’s supplementary materials.

B Proofs

B.1 About optimal inference hierarchical
metrics

B.1.1 About 0.5 thresholding

Figure 3: Example of a conditional distribution esti-
mation over a simple hierarchy and corresponding pre-
dicted nodes (in blue) for different thresholds(e.g. 0.3
for left case, 0.5 for right case).

Shortest Path For the left case of Figure 3 we list
all possible events and compute SP for each one.

Zhttps://en.wikipedia.org/wiki/Wikipedia:
Vital_articles/Level/4
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. SP({1,3},{1,5}) =2

. SP({1,4},{1,5}) =2

. SP({1,5},{1,5}) =0

. SP({2},{1,5}) =3
Then,

E[SP(Y, {1,5})|X = o]
=02-2402-24+0.25-3
=1.55

For the right case of Figure 3 we list all possible
events and compute SP for each one.

« SP({1,3},{1}) =1
« SP({1,4},{1}) =1
- SP({1,5},{1}) =1
* SP({2},{1}) =2
Then,

E[SP(Y, {1}|X = ]
=(0.2+0.2+0.35) - 1+ 0.25 - 2
=1.25

E[bF1(Y, {1})|X = 2] < E[hF1(Y, {1,5})|X = 2]

What we conclude from this simple computation
is that it is strictly better to predict node 1 than 5
when aiming at maximizing SP.

hF1-score For the left case of Figure 3 we list all
possible events and compute hF1 for each one.

 hF1({1,3},{1,5}) =1
« hF1({1,4},{1,5}) =1
« hF1({1,5},{1,5}) =1
* hF1({2},{1}) =0

Then,
ELF1(Y, {1})|X = z]
1 1
:0.2-§+0.2-§ +0.35-1=0.55

For the right case of Figure 3 we list all possible
events and compute hF1 for each one.

« WF1({1,3}, {1}) =
C WFL({1,4},{1}) =

Wi wiNy


https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/4
https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/4

* hF1({1,5},{1}) = 2
« hF1({2},{1}) =0
Then,

EhF1(Y, {1})|X = 2] =
2

2 2
02--402--4035--=0.5
3+ 3+ 3

EMF1(Y, {1})|X = z] < EhF1(Y, {1,5})|X =

What we conclude from this simple computation
is that it is strictly better to predict node 5 when
aiming at maximizing hF1. We also can conclude
that optimal threshold is lower than 0.35.

B.1.2 Dependance on x of the optimal
threshold

z]

Figure 4: Example of a conditional distribution esti-
mation over a simple hierarchy and corresponding pre-
dicted nodes (in blue) for different thresholds(e.g. 0.3
for left case, 0.5 for right case).

For the left case of Figure 4 we list all possible
events and compute hF1 for each one.

« hF1({1,3},{1,3,5}) =
« hF1({1,4},{1,3,5}) =

Gl U Ol

(
« hF1({1,5},{1,3,5}) =
* hF1({2},{1}) =0
Then,
EhF1(Y,{1,3,5})|X = 1]

=0.55 4+00 2+035 4—072
=0. 5 0= . £ =0

For the right case of Figure 4 we list all possible
events and compute hF1 for each one.

« hF1({1,3},{1,3}) =1
« hF1({1,4},{1,3}) =
* hF1({1,5},{1,3}) =

NI—= D=
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« WF1({2},{1}) = 0
Then,

E[MFL(Y,{1,3})|X = 2] =
1

=0.725
2

1
0.55-1—1—0.0-5—1-0.35-

What we conclude from this simple computation
is that it is strictly better to predict node {1,3}
than {1, 3, 5} when aiming at maximizing hF1. We
also can conclude that optimal threshold is strictly
higher 0.35 while we proved for the example of
Figure 3 that the optimal threshold was below 0.35.
Both examples shows that the optimal thresholds
for each distribution are different and depend on .
This naturally leads us to use a samples hF1-score,
since it makes no sense to compute a F1-score in a
micro fashion for a given threshold for every x.

B.2 [Equivalence between multilabel and
hierarchical metrics

Let us consider ((Y;, Yi))ie[l, w1 of pairs of targets

labels and predicted labels where

Vi, Y;,Y; € {0,1}*

L is number of different categories. Let i € [1, V]
and j € [1, L], we denote Y; the j-th element of
Y; We define a certain number of metrics below.
B.2.1 Multi-label F1-score

We define

* The true positives of example 7 is the set
TP ={je[LL], (Y} =)n¥ =1)}

* The true negatives of example ¢ is the set
TN;={j € [LL], (] =0)n (¥ =0)}

* The false positives of example i is the set
FP={je[,L], (] =0)n (¥ =1)}

* The false negatives of example 7 is the set
FN;={jeLL], (Y} =1)n(¥’ =0)}

Micro F1-score

N
. |T P
Precisionpjcro = ~ =1
‘Zl |TP;| + |FP
1=
N
S 7P|
Recallmicro = — =1
> | TH[+ [FN|
i=1



2 - Precisionmicro - Recallmicro

F1 — scoremicro =
Precisionmicro + Recallinicro

Samples F1-score

Precision; = TR
' |TR| + |FP]
|TF;|
Recall; = ——~**
" TPR| + |FN]

2 - Precision; - Recall;

F{ — score; —
Precision; + Recall;

N
1
F1 — scoresamples = N g F{ — score;
i=1

B.2.2 Hierarchical F1-score

Micro hF1-score

N .
Z Yviaug ny;
hPrecisioniere = -t
~ aug
S
=
N .,
Z Y;dug A Y,Z
hRecallicro = ot

hF{ — scoremicro

2 - hPrecisionmijcro - hRecallmicro

hPrecisionicro + hRecallpmicro
Samples hF1-score

aug

Y, "nNY;
hPrecision; =
};,iaug
Y/Z' aug ny;
hRecall; = ———
1 Y]

2 - hPrecision; - hRecall;
hPrecision; + hRecall;

hF; — score;

N
hF; — scoresamples = N E hF; — score;
i=1

Proposition 2 In micro and samples settings, if
every prediction Y is coherent then hF1 and F1
are strictly equal
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We recall that we consider here predictions that are
coherent meaning y € Y = A(y) C Y. In that
case Yiaug =Y. In the multi-label framework the
micro-precision writes :

TRl
|TPi| + |FPz|
=|vinY;|
Y 1yey)
yey;

TS ey 1y ¢v)

yeY;

Precision; =

=1

I

YinY;

Y;

= hPrecision;

Similarly,
TP
[ TR| + |FN;|
i
d lyev)
yey;

TS 1yev) i g vy

yey; —1

Recall; =

=Yi]

Y;nY;
Vil

= hRecall;

And naturally,

2 - hPrecision; - hRecall;

hPrecision; + hRecall;
2 - Precision; - Recall;

hF1 — score;

Precision; + Recall;

F1 — score;

This computation was performed for samples
but holds for the micro framework. This proves
Proposition 1
B.3 Hierarchical logit adjustement
Our motivation is twofold :

* Incorporate prior hierarchy knowledge in our
loss



¢ Deal with label imbalance.

In imbalanced standard classification one typically
get rid of standard accuracy metric that can be very
high even if witnessing poor results on underrepre-
sented classes. We then want to maximize macro-
accuracy. It corresponds to looking for a minimizer
of the per-class error rates which writes :

BER(f

Z Pay

<y # arguax >>
ye[ ]

This can be seen as using a balanced class proba-
bility function P (y|z) oc $P(z[y).

In our case of hierarchical cla551ﬁcat10n, one typi-
cally could want to minimize leaves-balanced error
which would lead to minimize

(y ¢ argmaxfy/(a:)>
yeL

Let us consider f* € argmin BER(f) the
f:X—RIZI
Bayes-optimal scorer for this problem.

2013; Collell

BER(f

prly

|E|y€£

Then following (Menon et al.,
et al., 2017) we have,

argmax f, (z) = argmax PYl(ylz)  (6)
yeL yeL
But,
1 P(ylz)P(x)
pbal ylx) = =P(x|y = —
W) = 2Pl = 5
ayes formula
Then, (6) becomes :
P(y|z)P(x)
argmax fy (z) = argmax;— - —— "~
ver ()= vere L] P(y)
P(y|z)
= argmax @)
yeL P(y)

Now suppose, as in the conditional softmax
framework, that, for a given y € ), we have
P(y|z,n(y)) oc exp s (z) for an unknown opti-

mal scorer s* : X — Rl
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Then, (7) becomes :

=exp(s;(z)

T —
P(z|z, 7(2)))
P(z|m(2))

argmaxf, (r) = argmax

yeL yeL 2€A(y)

= argmax exp
yeL

> si(w) —logP(z|n(2))

2€A(y)

53 (z) —logP(z|m(2)) (8)

As in Menon et al. (2021) this suggests training
a model to estimate directly PP? whose logits are
implicitly modified as per (8) which would yield
the following loss :

lcsoLa(, y) Z log P(z|z, 7(2))
z€A(y)
Where
Byl 7(y)) s+ log v(y|n(y))
T, T = -
Y 4 Z esgg]—&-'rlogl/(zhr(z))
z€C(m(y))

where v(y|m(y)) is a estimation of P(y|m(y)) and
7 an hyperparameter (which would be optimally
1).

B.4 Link between Conditional Softmax and
conditional sigmoid

B.4.1 Conditional softmax gradient
computation

We compute the gradient of the loss with respect to
the final weight matrix to understand how param-
eters of the last layer are updated with the condi-
tional framework. Let first express the loss in terms
of the weights of the last layer.

zEA(y)
exp WZ h + b .
Ly=— ) log (Wizjhe T[])
ety 2iec(n(z)) XP(Wj ha + bj)
— ¥ (W[f]h +by, ]+10g< > exp(W]Thz+bj)>)
2CA(y) JEC(m(2))

Then, we consider the set weights Z,
{C(m(2)), z € A(y)}. It correspond to the weights
involved in the expression of L.

Letk € [0,|Y] — 1],



WOS HWV RCV1 BGC
Method ] F1-score ] F1-score i F1-score ] F1-score
Micro Macro Micro Macro Micro Macro Micro Macro

BCE 87.02 (0.05) 81.19 (0.12) 88.87 (0.15) 45.56 (0.58) 86.65 (0.30) 66.47 (1.49) 80.12 (0.70) 60.40 (3.49)
CHAMP 87.01 (0.13) 81.23 (0.18) 87.14 (0.15) 50.90 (0.24) 85.76 (0.58) 61.63 (3.46) 80.11 (0.78) 60.98 (4.51)
HBGL 87.22 (0.10) 81.86 (0.19) - - 87.01 (0.37) 69.52 (1.04) 79.77 (0.13) 64.80 (0.24)
HGCLR 86.63 (0.28) 80.04 (0.45) 84.92 (0.37) 44.89 (1.38) 86.12 (0.26) 67.49 (0.61) 80.16 (0.29) 63.58 (0.40)
HITIN 87.05 (0.10) 81.49 (0.07) 87.49 (0.08) 51.73 (0.42) 85.72 (0.52) 60.00 (4.46) 80.08 (0.51) 59.90 (3.18)
Leaf softmax 85.91 (0.25) 80.02 (0.29) 84.79 (0.57) 51.49 (0.52) - - - -
Cond Soft 86.27 (0.17) 80.26 (0.34) 87.20 (0.45) 53.80 (0.65) - - - -
Cond Soft (LA) 86.35 (0.12) 80.11 (0.26) 87.39 (0.21) 54.40 (0.58) - - - -
Cond Sigmoid - - - - 85.97 (0.88) 65.32 (0.87) 79.59 (1.00) 61.01 (2.35)

Table 5: Fl-score on the Test Set of all Datasets for Different Implemented Methods and for 0.5 thresholding
methodology. Significant and Superior Metric is Emphasized in Bold. A 95% confidence interval is also displayed.

» If k ¢ Z, then » If k € Z, then
oL oL A
D =0 5. =~ (Lecaw) — Pl w(k)) ) b
e If k € Z, then Which is exactly the same updates formulas as

for the Conditional Softmax. This justifies why
we consider such a loss when implementing the
conditional sigmoid framework.

hy

oL,
owy, - _lkeA(y) a

exp(w%hz + b)
(et expw e +5)

-~

P(k|z,m(k))
= — (Lkea) — P(klz, w(k))hs

+

B.4.2 Link with Conditional Sigmoid

In Section 4.3, we introduced the conditional sig-
moid, we propose here to provide some justification
of the loss employed. (masking BCE introduced in
(Bertinetto et al., 2020))
We recall the definition:
1

P(yle. 7(y) = ———
14 exp—sz

Where
se=WThy +b (W e RPP b e RVN

And then the contribution to the loss of the input
text/label z,y is given by Cross-Entropy loss as
follows :

== > <10g(P(Z|5077T(Z)))+ > log(l—ﬁ’(uzvﬂ(Z)))>

z€A(y) u€l(m(2))\{=}

Considering an identical approach as in Sec-
tion B.4.1 we show that :

« If k ¢ 7, then

0L,

=0
8wk
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