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ABSTRACT

We provide a framework for solving inverse problems with diffusion models learned
from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework
to enable training directly from measurements corrupted in the Fourier domain.
Subsequently, we train diffusion models for MRI with access only to Fourier sub-
sampled multi-coil measurements at acceleration factors R= 2, 4, 6, 8. Secondly,
we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction al-
gorithm that leverages generative models pre-trained on one type of corruption
(e.g. image inpainting) to perform posterior sampling on measurements from a
different forward process (e.g. image blurring). For MRI reconstruction in high
acceleration regimes, we observe that A-DPS models trained on subsampled data
are better suited to solving inverse problems than models trained on fully sampled
data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ,
and AFHQ) and show that A-DPS can sometimes outperform models trained on
clean data for several image restoration tasks in both speed and performance.

Figure 1: Ambient Diffusion Posterior Sampling (Ambient DPS). During training, we only have access to
linearly corrupted data from a forward operator Atrain. We use the Ambient Diffusion framework to learn a
generative model, Gambient, for the uncorrupted distribution, p(x0). At inference time, we sample from the
posterior distribution p(x0|yAinf ), for measurements yinf coming from a different forward operator, Ainf .

1 INTRODUCTION

For some applications, it is expensive or impossible to acquire fully observed or uncorrupted data (Col-
laboration et al., 2019; Gao et al., 2023; Yaman et al., 2020) but possible to acquire partially observed
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Figure 2: Prior samples from diffusion models trained on MRI scans. Columns 1 − 4: Diffusion models
trained on subsampled MRI scans at acceleration factors R = 2, 4, 6, 8, using the Ambient Diffusion framework
extended for Fourier subsampled training. Columns 5−8: EDM models trained with L1-wavelet reconstructions
of subsampled scans at R = 2, 4, 6, 8. Column 9: NCSNV2 trained with fully sampled scans. Column 10: EDM
trained with fully sampled scans. We observe that Ambient Diffusion models consistently produce high-quality
and realistic MRI scans even in high acceleration regimes.

samples. Further, in some cases, it may be desirable to train generative models with noisy or corrupted
data since that reduces memorization of the training set (Daras et al., 2023b; Carlini et al., 2023;
Somepalli et al., 2022). Prior works have shown how to train Generative Adversarial Networks
(GANs) (Bora et al., 2018; Cole et al., 2021), flow models (Kelkar et al., 2023) and restoration
models (Lehtinen et al., 2018; Krull et al., 2019; Yaman et al., 2020; Millard & Chiew, 2023) with
corrupted training data. More recently, there has been a shift towards training diffusion generative
models given corrupted data (Daras et al., 2024; 2023a;b; Aali et al., 2023; Kawar et al., 2023; Cui
et al., 2022; Kim & Ye, 2021). What remains unexplored is how to use generative models trained on
a certain type of corruption (e.g. inpainted data) to solve inverse problems that arise from a different
forward process (e.g. blurring).

We propose the first framework to solve inverse problems with Ambient Diffusion models (Daras
et al., 2023b). These models are trained using only access to linear measurements and they estimate
the ambient score, i.e. how to best reconstruct given an input with a corrupted linear forward operator
corrupted noisy input. We show how to use these models for solving linear inverse problems outside
their training distribution. Our experiments on datasets of natural images and multi-coil MRI show
something surprising: Ambient Models can outperform (in the high corruption regime) models
trained on clean data while being substantially faster. Our algorithm extends Diffusion Posterior
Sampling (Chung et al., 2023) to Ambient Diffusion models. Our contributions:

• We propose Ambient Diffusion Posterior Sampling (Ambient DPS), an algorithm that uses
diffusion models trained on linearly corrupted data as priors for solving inverse problems
with arbitrary linear measurement models.

• We extend the Ambient Diffusion training framework to train models using Fourier subsam-
pled measurements. Then, we train Ambient Diffusion models on subsampled multi-coil
MRI scans at various retrospective acceleration factors (R=2, 4, 6, 8); we observe that mod-
els trained on subsampled data are better priors for solving inverse problems in the high
acceleration regime.

• We use pre-trained Ambient Diffusion models to solve inverse problems (compressed
sensing, super-resolution) on natural image datasets (CelebA, FFHQ, AFHQ) and show that
they can even outperform models trained on clean data in the high corruption regime.
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Figure 3: Posterior sampling reconstructions for MRI scans using models trained on Fourier subsampled data at
various acceleration factors (Ambient DPS, columns 2− 5) and a model trained on clean data (FS-DPS (Chung
et al., 2023), column 6). Rows 1 and 3 show reconstructions at R = 4 and R = 8, respectively, while rows 2
and 4 display the difference to the ground truth on a 10× scale. At high inference acceleration (R=8), Ambient
DPS, outperforms FS-DPS, despite that the underlying models were trained solely on corrupted data.

2 METHOD

2.1 BACKGROUND AND NOTATION

Diffusion Posterior Sampling (DPS). Diffusion models are typically trained to reconstruct a
clean image x0 ∼ p0(x0) from a noisy observation xt = x0 + σtη, η ∼ N (0, I). Despite the
simplicity of the training objective, diffusion models can approximately sample from p(x) by running
a discretized version of the Stochastic Differential Equation (Song et al., 2020; Anderson, 1982):

dx = −2σ̇t(E[x0|xt]− xt)dt+ g(t)dw, (2.1)

where w is the standard Wiener process and E[x0|xt] is estimated by the network. Given measure-
ment yinf = Ainfx0, one can sample from the posterior p(x0|yinf) by running the process:

dx = −2σ̇tσt

E[x0|xt]− xt

σt
+∇ log p(yinf |xt)︸ ︷︷ ︸

likelihood term

 dt+ g(t)dw. (2.2)

For most forward operators it is intractable to write the likelihood in closed form. Hence, several
approximations have been proposed to use diffusion models for inverse problems (Chung et al., 2023;
Kawar et al.; Jalal et al., 2021; Song et al., 2021; Chung et al., 2022; Feng et al., 2023; Graikos
et al., 2022). One of the simplest and most effective approximations is Diffusion Posterior Sampling
(DPS) (Chung et al., 2023). DPS estimates x0 using xt and uses the conditional likelihood p(yinf |x̂0)
instead of the intractable term, i.e. DPS approximates p(yinf |xt) with p(yinf |x0 = E[x0|xt]), where
γt is a tunable guidance parameter. The update rule becomes:

dx = −2σ̇tσt

(
E[x0|xt]− xt

σt
+ γt∇xt log p(yinf |x0 = E[x0|xt])

)
dt+ g(t)dw, (2.3)

Ambient Diffusion. In some settings we do not have a large training set of clean data but we have
access to a large set of lossy measurements that we would like to leverage to train a diffusion model
for the clean distribution.
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Figure 4: Posterior sampling reconstructions for FFHQ, showing: (1) Corrupted Input: Examples from
FFHQ dataset corrupted using Resolution Downscaling (4×) and Gaussian Noise (σ = 0.05), (2) FS-DPS:
Reconstruction using Diffusion Posterior Sampling (DPS), with a diffusion model trained with clean fully-
sampled data (p = 0.0), (3) A-DPS: Reconstruction using Ambient-DPS, with a diffusion model trained on
randomly inpainted data with erasure probability (p = 0.6), (4) Ground Truth: Original uncorrupted examples
from FFHQ dataset. We observe that Ambient DPS, provides better reconstructions (qualitatively) even though
the underlying models were trained on corrupted data (p = 0.6).

The authors of Daras et al. (2023b) consider the setting of having access to linearly corrupted data
{y0 = Atrainx0, Atrain}, where the distribution of Atrain, denoted as p(Atrain), is assumed to be
known. The ultimate goal is to learn the best restoration model given a linearly corrupted noisy input
yt,train = Atrain(x0 + σtη), at all noise levels t. The authors of Daras et al. (2023b) form further
corrupted iterates ỹt,train = Ãtrain(x0 + σtη) using a matrix Ãtrain (that is a perturbation of the
given matrix Atrain) and train with the following objective:

J(θ) = Ex0,xt,Atrain,Ãtrain

[∣∣∣∣∣∣Atrainhθ(ỹ0,train, Ãtrain)− yt,train

∣∣∣∣∣∣] , (2.4)

that provably learns E[x0|Ãtrain, ỹt,train] as long as the matrix E[AT
trainAtrain|Ãtrain] is full-rank. In

certain cases, it is possible to introduce minimal additional corruption and satisfy this condition. For
example, if Atrain is a random inpainting matrix (i.e. Aij ∼ Be(1− p)), then Ãtrain can be formed
by taking Atrain and erasing additional pixels with any non-zero probability δ > 0.

Multi-coil Magnetic Resonance Imaging. MRI is a prototypical use case for a framework that can
learn generative models from linearly corrupted data, as in many cases it is not feasible to collect a
large training set of fully sampled data (Tibrewala et al., 2023; Desai et al., 2022; Tariq et al.). In
settings such as 3D+time dynamic contrast-enhanced MRI (Zhang et al., 2015) it is impossible to
collect fully sampled data due to the time-varying dynamics of the contrast agent (Zhang et al.).

In the multi-coil MRI setting, the acquisition involves collecting measurements of an image directly
in the spatial frequency, known as k-space, from a set of spatially localized coils. Mathematically,
there are Nc coils, each of which gives measurements:

zx,i = PFSix+wi, i ∈ [Nc], (2.5)

where x is the (complex-valued) image of interest, Si represents the coil-sensitivity profile of the ith

coil, F is the Fourier transform, P represents the Fourier subsampling operator and wi is complex-
valued Gaussian i.i.d noise. We assume the noiseless case and we point the reader to Daras et al.
(2023a); Aali et al. (2023); Kawar et al. (2023) for approaches that handle the noisy case.

For the discrete approximation of the continuous signal as an image x ∈ Cn, the composition of
P,F , Si can be written as a matrix Ai ∈ Cm×n, where the number of measurements, m, depends
on the subsampling operator P . It is common to denote with R the ratio n

m , which is known as the
acceleration factor. At inference time (i.e., for a new patient), we typically want to acquire data with
a high acceleration factor because this reduces scan time and patient discomfort.

Due to the time required to collect k-space measurements, it is often not possible to acquire fully
sampled k-space. Hence, training cannot rely on a fully sampled image to guide reconstruction
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quality as is done in the fully supervised setting (Aggarwal et al., 2019; Hammernik et al., 2018).
If two independent measurements are available for the same underlying signal, restoration models
can be trained without having access to uncorrupted data (Lehtinen et al., 2018; Gan et al., 2023).
If only one measurement is available (as in our setting), some end-to-end techniques use a loss
on the measurement domain by partitioning the training measurements for each sample into (1)
measurements for reconstruction, and (2) measurements for applying the loss function (Yaman et al.,
2020). Other approaches leverage structure in the MRI acquisition to learn from limited-resolution
data (Wang et al., 2023). More recently, works have begun leveraging signal set properties such
as group invariance to assist in learning from subsampled measurements for a variety of inverse
problems (Tachella et al., 2022b; Scanvic et al., 2023; Chen et al., 2022a; Tachella et al., 2022a).
The idea of additional corruption (as we do in our work), is more related to the Noisier2Noise
framework (Moran et al., 2020) which has been initially developed for denoising. Millard & Chiew
(2023) extended this idea to the MRI setting to learn models for MRI restoration without access to
clean data. All these approaches learn a restoration model without access to reference data. However,
as they are inherently end-to-end methods, their performance on out-of-distribution tasks (e.g., due to
different acquisition trajectories) is known to degrade (Jalal et al., 2021; Zach et al., 2022).

2.2 AMBIENT DIFFUSION FOR MRI

The MRI acquisition process results in linearly corrupted measurements and thus it should be possible
to use the Ambient Diffusion framework to learn from corrupted observations. Yet, we identified
three important changes that differ from the setting studied by Daras et al. (2023b): i) the inpainting
happens in the Fourier Domain, ii) the inpainting has structure, i.e. whole vertical lines in the spatial
Fourier are either observed or not observed (instead of masking random pixels) and, iii) the image is
measured from an array of spatially varying receive coils. In what follows, we show how to account
for these factors and apply the Ambient Diffusion framework to MRI data.

First, as in Ambient Diffusion, we will corrupt further the given measurements, but in our case, the
additional corruption will happen in the Fourier space. We create further corrupted measurements for
each coil by decreasing the Fourier subsampling ratio, i.e. we create iterates:

z̃x,i = P̃FSix. (2.6)
This is possible to do because we can just subsample the available data zx,i. To further corrupt the
given measurements, we keep the inpainting structure that there is in the measurements, i.e. we delete
(at random) 2-D lines in Fourier space (instead of pixel masking as in Daras et al. (2023b)). Due to
the multiplicity of coils, we combine their measurements to form a crude estimator of x by taking
the adjoint of Ãtrain: ỹtrain =

∑
i S

H
i F−1(z̃x,i). Notice that for a discrete signal x ∈ Cn, all these

operations are linear and hence ỹ can be written as:

ỹtrain =

(∑
i

SH
i F−1P̃FSi

)
︸ ︷︷ ︸

Ãtrain

x. (2.7)

As in Ambient Diffusion, we will train the network to predict the corresponding signal before the
additional corruption, i.e. our target will be:

ytrain =

(∑
i

SH
i F−1PFSi

)
︸ ︷︷ ︸

Atrain

x. (2.8)

We are now ready to state our main Theorem.
Theorem 2.1 ((Informal)). Let yt,train, ỹt,train represent the noisy versions of ytrain, ỹtrain respec-
tively, i.e.: {

yt,train = Atrain (x+ σtη)

ỹt,train = Ãtrain (x+ σtη)
. (2.9)

Then, the minimizer of the objective:

J(θ) = Ey0,train,ỹt,train,Atrain,P̃

[∣∣∣∣∣∣Atrainhθ(ỹt,train, P̃ )− y0,train

∣∣∣∣∣∣2] , (2.10)

is: hθ(ỹt,train, P̃ ) = E[x0|ỹt,train, P̃ ].
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Proof overview. The formal proof of this Theorem is given in the Appendix. We provide a sketch of
the proof here. The techniques are based on Theorem 4.2 of Ambient Diffusion (Daras et al., 2023b).
In Theorem 4.2, the condition that needs to be satisfied is that E[AT

trainAtrain|Ãtrain] is full-rank.
Our objective is slightly different because the network doesn’t see the whole forward operator Ãtrain,
but only part of it, i.e. the matrix P̃ . By following the steps of the Ambient Diffusion proof, we arrive
at the necessary condition for our case, which is to prove that E[Atrain|P̃ ] is full-rank.

We start the argument by noting that E[P |P̃ ] is full-rank. Intuitively, this is because there is a
non-zero probability of observing any Fourier coefficient and hence any deleted Fourier co-efficient
could be due to the extra corruption introduced by P̃ . Since F is an invertible matrix, then also
E[F−1PF|P̃ ] is full-rank. Finally, we use the properties of the sensitivity masks to show that
E
[∑

i S
H
i F−1PFSi|P̃

]
is also full-rank and this completes the proof.

2.3 AMBIENT DIFFUSION POSTERIOR SAMPLING

DPS requires access to E[x0|xt] to approximately sample from p(x0|yinf). Since Ambient Diffusion
models can only work with corrupted inputs, we propose the following update rule instead:

dx = −2σ̇tσt

E[x0|ỹt,train, Ãtrain]− xt

σt︸ ︷︷ ︸
Ambient Score

+γt∇xt
log p(yinf |x0 = E[x0|ỹt,train, Ãtrain])

dt+ g(t)dw,

(2.11)

for a fixed Ãtrain ∼ p(Ãtrain)
1. Comparing this to the DPS update rule (E.q. 2.3), all the E[x0|xt]

terms have been replaced with their ambient counterparts, i.e. with E[x0|ỹt,train, Ãtrain]. The latter
is approximated by a neural network that is trained with Ambient Diffusion.

We term our approximate sampling algorithm for solving inverse problems with diffusion models
learned from corrupted data Ambient DPS (A-DPS). We remark that similar to DPS, the proposed
algorithm is an approximation to sampling from the true posterior distribution. Similarly to Theorem
1 of the DPS paper, for a given measurement yinf at noise level σy and a given matrix Ainf , one can
upper-bound the Jensen gap of A-DPS as follows:

J ≤ n√
2πσ2

y

exp(−1/2σ2
y)||Ainf ||

∫
x0

||x0 − x̂0||p(x0|xt)dx0, (2.12)

where x̂0 = E[x0|Ãtrainxt, Ãtrain], for a fixed Ãtrain sampled from p(Ãtrain). We omit the proof of
this proposition since it follows the exact same steps as the proof of Theorem 1 in the DPS paper.

2.4 AMBIENT DIFFUSION FOR IN-DOMAIN RECONSTRUCTIONS.

Ambient DPS can be used to solve any inverse problem for which the forward operator is known,
using a diffusion model trained on linearly corrupted data of some form. It is important to underline
though that if the inverse problem that we want to solve at inference time has the same forward
operator as the one that was used for the training measurements, then we can use the Ambient
Diffusion as a supervised restoration model. This is because Ambient Diffusion models are trained
to estimate E[x0|ỹtrain, Ãtrain], and hence if Ainf comes from the same distribution as Atrain, then,
the one-step prediction of the model, Ambient One Step (A-OS), is the Mean Squared Error (MSE)
minimizer. Similarly, if we are interested in unconditional generation, we can simply run Ambient
DPS without the likelihood term.

1The Ambient MRI models take as input P̃ instead of Ã, as in Equation 2.10.
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Table 1: Unconditional and Conditional Sampling FID for models trained on MRI data at different
acceleration factors.

Training Data Training Method Unconditional FID ↓

R = 1
EDM 10.41

NCSNV2 13.20

R = 2
L1-EDM 18.55

Ambient Diffusion 30.34

R = 4
L1-EDM 27.64

Ambient Diffusion 32.31

R = 6
L1-EDM 51.43

Ambient Diffusion 31.50

R = 8
L1-EDM 102.98

Ambient Diffusion 48.15

Training Data Inference Data Reconstruction Method Conditional FID ↓

R = 1 R = 8 FS-DPS 4.16

R = 2

R = 8 A-DPS (our method)

0.71
R = 4 0.87
R = 6 1.29
R = 8 2.00

3 EXPERIMENTS

3.1 AMBIENT MRI DIFFUSION MODELS

In this section, we extend Ambient Diffusion to the multi-coil Fourier subsampled MRI setting (as
detailed in Section 2.2) and we train our own MRI models from scratch. We give details about our
dataset preparation in Section B in the Appendix.

Sampling masks. We retrospectively subsample the k-space training data by applying randomly
subsampled masks that correspond to acceleration factors R ∈ {2, 4, 6, 8}. The sampling masks
include fully sampled vertical (readout) lines corresponding to the observed Fourier coefficients
(phase encodes). We always sample the central 20 lines for autocalibration. To form further corrupted
measurements, we randomly remove additional lines such that we create measurements at acceleration
factor R + 1. For example, we take data at R = 2, we create further corrupted measurements at
R = 3 and we train the model to predict the clean image by measuring its error with the available
data at R = 2 given its prediction for the R = 3 corrupted input.

Comparison Models. We train one model for each acceleration factor R ∈ {1, 2, 4, 6, 8}. The
R = 1 model is trained on clean data (no extra corruption) based on the EDM approach (Karras et al.,
2022). The R > 1 models are trained with our modified Ambient Diffusion framework. While we
focus on EDM for fully sampled training, we also train an NCSNV2 model for R = 1 following the
approach in Jalal et al. (2021). As baselines, we also train EDM models after L1-Wavelet compressed
sensing reconstruction (L1-EDM) of the training set at each acceleration factor (Lustig et al., 2007).

Unconditional generation evaluation. We evaluate the unconditional generation performance of
each model and show prior samples for Ambient Diffusion and EDM models at R = 1 in Figure
2. Similar to the results in Daras et al. (2023b), we observe that the Ambient Diffusion samples
are qualitatively similar to EDM models at low acceleration, and become slightly blurry at higher
accelerations. Notably, the samples generated by Ambient Diffusion at R = 8 have no residual
aliasing artifacts, in contrast to the samples generated from L1-Wavelet reconstructions.

To quantify unconditional sample quality, we follow the approach in Bendel et al. (2022) and calculate
FID scores from 100 samples using a pre-trained VGG network. Table 1, shows FID scores for the
diffusion models. While there is an increase in FID for the Ambient models, we see that those trained
at higher acceleration factors outperform L1-EDM models trained on L1-Wavelet reconstructions.

7
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Table 2: Accelerated MRI reconstruction performance evaluation using Normalized Root Mean
Squared Error (NRMSE ↓), Structural Similarity Index Measure (SSIM ↑), and Peak Signal-to-Noise
Ratio (PSNR ↑) averaged across 100 test samples.

3.2 ACCELERATED MRI RECONSTRUCTION

We now evaluate the accelerated reconstruction performance of Ambient Diffusion models trained on
subsampled MRI data. Our method, A-DPS was implemented by following Eq. 2.11 for 500 steps
with likelihood weighting γt =

1
∥y−AE[x0|yt,train,Atrain]∥2

. We consider the following baselines:

• Fully-Sampled Diffusion Posterior Sampling (FS-DPS). For models trained on clean
data, we can use the Diffusion Posterior Sampling (DPS) (Chung et al., 2023) algorithm.
Specifically, we implemented the DPS algorithm with a Diffusion model trained with fully
sampled ground truth images (FS-DPS). Inference was run using the update rule of Eq. 2.3,
for a total of 500 steps and with γt =

1
∥y−AE[x0|xt]∥2

.
• Fully-Sampled Annealed Langevin Dynamics (FS-ALD). A popular method for solving

inverse problems via score-based priors is ALD (Jalal et al., 2021). We train a score-based
model using the same fully sampled 10, 000 samples as above and run inference for 1, 300
steps. This method acts as another fully sampled comparison to our technique.

• L1-Wavelet Compressed Sensing (L1-CS). We use the same L1-Wavelet reconstruction
described previously as a standalone non-deep learning comparison.

• Model Based Deep Learning Supervised (MoDL-Sup). We use a supervised end-to-end
model using the MoDL architecture in a supervised fashion (Aggarwal et al., 2019) for each
acceleration factor. For inference, we pass the undersampled data through the trained MoDL
network. Further details of this baseline are mentioned in Section C in the appendix.

• Ambient Annealed Langevin Dynamics (A-ALD). We utilize our Ambient Diffusion MRI
models with the inverse problem solver ALD (Jalal et al., 2021) for 1, 300 steps.

• Ambient One Step (A-OS). Our method also admits a one-step solution. This is outlined in
section 2.4 by noting that we train our model to estimate E[x0|ỹtrain, Ãtrain]. Thus we can
use our models in a one-step fashion. The performance of the one-step prediction should
only be expected to be good in-distribution, i.e. when the model is evaluated at the same
acceleration factor as the one during training.

• L1-Diffusion Posterior Sampling (L1-DPS). We utilize the diffusion models trained on
the L1-Wavelet reconstructions of data from measurement sets at R = 2, 4, 6, 8. For
reconstruction, we use DPS for a total of 500 steps with γt =

1
∥y−AE[x0|xt]∥2

.
• Self-Supervised learning via Data Under-sampling (SSDU). We train SSDU (Yaman

et al., 2020) models using the end-to-end restoration network by splitting the available

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

500 1000 1500 2000 2500 3000 3500 4000
Number of measurements

0.0

0.1

0.2

0.3

0.4

0.5

LP
IP

S

Compressed sensing LPIPS results on AFHQ
p=0.0
p=0.2
p=0.4
p=0.6
p=0.8

(a) LPIPS per Number of Measurements.

500 1000 1500 2000 2500 3000 3500 4000
Number of measurements

0.000

0.005

0.010

0.015

0.020

M
SE

Compressed sensing MSE results on AFHQ
p=0.0
p=0.2
p=0.4
p=0.6
p=0.8

(b) MSE per Number of Measurements.

Figure 5: Compressed Sensing results, AFHQ: performance metric and standard deviation. As shown,
the model trained with clean data (p = 0.0) only outperforms the models trained with corrupted data
for more than 1000 measurements, in both LPIPS and MSE.
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Figure 6: Super-resolution results, AFHQ: Performance metric and standard deviation. The model
trained with clean data (p = 0.0) performs worse, except at downscaling factor 2.

measurements (Ω) of each sample yΩi into training sets (Θ) and loss sets (Λ) or measurements
yΘi and yΛi . Further SSDU training details are given in Section C.

• 1D-Partitioned SSDU. We train 1D-Partitioned SSDU (Millard & Chiew, 2023) which
stems from the SSDU framework and introduces partitioning of the sampling set to en-
sure each subset has a distribution similar to the original mask, substantially improving
SSDU’s restoration performance. The loss function, network architecture, and training
hyperparameters were set according to Millard & Chiew (2023).

Results Quantitative metrics for the listed methods are included in Table 2 under the NRMSE, SSIM
and PSNR metrics respectively. Furthermore, we report feature-based metrics including LPIPS and
DISTS in Table 3. We observe that at low acceleration levels (R = 2, 4) FS-DPS outperforms most
methods, including A-DPS. This is expected FS-DPS uses models trained on clean data. However, as
the validation acceleration increases to higher ratios R, A-DPS begins to outperform other models,
including those trained on fully sampled data.

To gain further insight into the findings, we visualize reconstructions for a subset of the methods
listed at various accelerations in Fig. 3. Here, we see that at lower accelerations (R = 4), just as the
metrics suggest, FS-DPS outperforms A-DPS. However, at higher acceleration (R = 8) we can see
that FS-DPS introduces significant artifacts into the reconstruction while our A-DPS reconstructions
maintain a high degree of visual fidelity. We also compute the distribution metrics (Conditional FID)
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between samples from the posterior and the ground-truth distribution. These FID scores for A-DPS
and FS-DPS methods are shown in Table 1. Similar to our findings from posterior reconstruction
metrics, we find that in the higher acceleration (R = 8) regime, A-DPS outperforms FS-DPS. We
also include graphical trends for NRMSE, SSIM, and PSNR for A-DPS, A-OS, FS-DPS, L1-DPS,
FS-ALD, L1-CS, MoDL-Sup, and SSDU in the Appendix (Figs 7, 8, 9, 10, 11).

3.3 AMBIENT DIFFUSION WITH PRE-TRAINED MODELS ON DATASETS OF NATURAL IMAGES

We use the models from the Ambient Diffusion (Daras et al., 2023b) that are trained on randomly
inpainted data with different erasure probabilities. Specifically, for AFHQ we use the Ambient
Models with erasure probability p ∈ {0.2, 0.4, 0.6, 0.8} and for Celeb-A we use the pre-trained
models with p ∈ {0.6, 0.8, 0.9}. We underline that all the Ambient Models have worse performance
for unconditional generation than those trained with clean data (i.e. the models trained with p = 0.0).
This work aims to explore the conditional generation performance of Ambient Models, where the
conditioning is in the measurements yinf , and compare it with models trained on uncorrupted data.
To ensure that Ambient Models do not have an unfair advantage, we test only on restoration tasks
that differ from those encountered in their training. Specifically, we use models trained on random
inpainting and we evaluate Gaussian Compressed Sensing (Baraniuk, 2007) and Super Resolution.

Results. In Figure 4 we show visual examples from our experiment on the noisy super-resolution
task for natural images using a model: (1) trained with fully-sampled data (FS-DPS), (2) trained
with randomly inpainted data at p = 0.6 (A-DPS). Figure 5 presents Gaussian Compressed Sensing
reconstruction results (i.e. reconstructing a signal from Gaussian random projections). We show MSE
and LPIPS performance metrics for the AFHQ dataset across varying number of measurements. The
results are given for models that are trained with inpainted images at different levels of corruption,
indicated by the erasure probability p. The model trained with clean data outperforms the models
trained with corrupted data when the number of measurements is high. However, as we reduce the
number of measurements, Ambient Models outperform the models trained with clean data in the very
low measurements regime. To the best of our knowledge, there is no known theoretical argument
that explains this performance cross-over, and understanding this further is an interesting research
direction. Similar results are presented in Figure 6 for the task of super-resolution at AFHQ. The
model trained on clean data (p = 0) slightly outperforms the Ambient Models in both LPIPS and
MSE for reconstructing a 2× downsampled image, as expected. Yet, as the resolution decreases,
there is again a cross-over in performance and models trained on corrupted data start to outperform
the models trained on uncorrupted data. We include results for LPIPS and MSE for Compressed
Sensing and Downsampling in FFHQ and Celeb-A in the Appendix (Figs 13, 14, 15, 16).

We compute MSE in other inverse problem settings for FFHQ: Box Inpainting, Additive Gaussian
Noise, and Super Resolution (with Gaussian Noise σ = 0.05). We find that trends in this experiment
are consistent with previous findings. The results across multiple downsampling factors and noise
levels in the Appendix (Figs 17, 18, 19). Finally, we examine how the number of sampling steps
affects the performance. The MSE results for Compressed Sensing with 4000 measurements on
AFHQ are shown in Figure 12. As shown, the higher the erasure probability p during training, the
better the Compressed Sensing performance of the model for low Number of Function Evaluations
(NFEs). Models trained with higher corruption are faster since they require fewer steps for similar
performance. For increased NFEs, the models trained on clean(er) data outperform. This result
is consistent across different datasets (AFHQ, FFHQ, CelebA), reconstruction tasks (Compressed
Sensing, Downsampling), and metrics (MSE, LPIPS) (Figs 20, 21, 22, 23, 24 in the Appendix).

4 CONCLUSION

We present Ambient Diffusion Posterior Sampling (A-DPS), a simple framework based on DPS for
solving inverse problems with Ambient Diffusion models. We show that Ambient Diffusion models
trained on corrupted data can be better suited for handling ill-posed inverse problems under severe
corruption. By being exposed to corrupted training data, A-DPS exhibits robust priors that generalize
better to high-acceleration regimes, unlike FS-DPS, which may overfit clean data and fail to adapt
effectively to severe undersampling. Our framework fully unlocks the potential of Ambient Diffusion
models that are critical in applications where access to full data is impossible or undesirable.
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A THEORETICAL RESULTS

A.1 THEORY PROOF

In this section, we provide the proof of Theorem 2.1 that was stated in the main paper. We begin by
giving the formal statement of the theorem.
Theorem A.1 (Formal Statement of Theorem 2.1). Let x ∈ Cn be an unknown signal from a
distribution that admits density p(x). Let {Si} be a random set of diagonal matrices ∈ Cn that
satisfies:

∑
i S

H
i Si = In×n. Assume sample access to linearly corrupted measurements of x given

by:

ytrain =

(∑
i

SH
i F−1PFSi

)
︸ ︷︷ ︸

Atrain

x, (A.1)

where F is the discrete Fourier matrix and P is a random inpainting matrix, i.e. a diagonal matrix
with either zeros or ones in the diagonal, such that Pr[Pii = 1] > 0, for all entries i of the diagonal.
Define:

ỹtrain =

(∑
i

SH
i F−1P̃FSi

)
︸ ︷︷ ︸

Ãtrain

x, (A.2)

where P̃ is a further corrupted version of P in the sense that with some non-zero probability p, a
diagonal element that was 1 in P becomes 0 in P̃ . Define also xt,yt,train, ỹt,train the noisy versions
of x,ytrain, ỹtrain respectively, as in:

xt = x+ σtη, yt,train = Atrain (x+ σtη) , ỹt,train = Ãtrain (x+ σtη) . (A.3)

Then, the minimizer of the objective:

J(θ) = Ey0,train,ỹt,train,Atrain,P̃

[∣∣∣∣∣∣Atrainhθ(ỹt,train, P̃ )− y0,train

∣∣∣∣∣∣2] , (A.4)

is: hθ(ỹt,train, P̃ ) = E[x0|ỹt,train, P̃ ].

Proof. We adapt the proof Theorem 4.1 in Ambient Diffusion (Daras et al., 2023b). To avoid notation
clutter, we will be omitting the subscript “train”, when necessary.

Let hθ∗(ỹt, P̃ ) = E[x0|ỹt, P̃ ] + f(ỹt, P̃ ) be the optimal solution. The value of the objective for the
optimal solution becomes:

J(θ∗) = Ey0,ỹt,A,P̃

[∣∣∣∣∣∣AE[x0|ỹt, P̃ ] +Af(ỹt, P̃ )− y0

∣∣∣∣∣∣2] (A.5)

= Ey0,ỹt,A,P̃

∣∣∣∣∣∣AE[x0|ỹt, P̃ ]− y0

∣∣∣∣∣∣2︸ ︷︷ ︸
irreducible error

+f(ỹt, P̃ )TATAf(ỹt, P̃ )− 2
(
E[x0|ỹt, P̃ ]− x0

)T
ATAf(ỹt, P̃ )

 .

(A.6)

We will now work with the last term.

Ex0,ỹt,A,P̃

[(
E[x0|ỹt, P̃ ]− x0

)T
ATAf(ỹt, P̃ )

]
(A.7)

= Eỹt,A,P̃

[
Ex0|ỹt,A,P̃

[(
E[x0|ỹt, P̃ ]− x0

)T
ATAf(ỹt, P̃ )

]]
(A.8)

= Eỹt,A,P̃

[(
E[x0|ỹt, P̃ ]− E[x0|ỹt, A, P̃ ]

)T
ATAf(ỹt, P̃ )

]
(A.9)

= 0, (A.10)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

since E[x0|ỹt, P̃ ] = E[x0|ỹt, A, P̃ ], i.e. the value of x0 does not depend on Ã given P̃ and ỹt.

We will now work with the middle term. We have that:

Eỹt,A,P̃

[
f(ỹt, P̃ )TATAf(ỹt, P̃ )

]
(A.11)

= Eỹt,P̃

[
EA|ỹt,P̃

[
f(ỹt, P̃ )TATAf(ỹt, P̃ )

]]
(A.12)

= Eỹt,P̃

[
f(ỹt, P̃ )TE[ATA|P̃ ]f(ỹt, P̃ )

]
. (A.13)

From the last equation, it is evident that if E[ATA|P̃ ] is full-rank, and hence the minimizer is
E[x0|ỹt, P̃ ] as needed. Since our A matrix is square, it suffices to show that E[A|P̃ ] is full-rank.
By Corollary A.1. in Ambient Diffusion, we have that: E[P |P̃ ] is full-rank. We will now show
that F−1E[P |P̃ ]F is also full-rank. This can be easily proved with contradiction. Assume that
F−1E[P |P̃ ]F is not full-rank. Then, there exists a vector w ̸= 0 such that:

F−1E[P |P̃ ]Fw = 0 ⇐⇒ (A.14)

E[P |P̃ ] Fw︸︷︷︸
z ̸=0

= 0 ⇐⇒ (A.15)

E[P |P̃ ]z = 0, (A.16)

which is a contradiction, since z ̸= 0 and E[P |P̃ ] is full-rank.

So far, we have established that F−1E[P |P̃ ]F is full-rank. By linearity of expectation, we further
have that:

F−1E[P |P̃ ]F = E[F−1PF|P̃ ], (A.17)

and hence, the latter is also full-rank. Finally, since
∑

i S
H
i Si = I , for any full-rank matrix C, we

have that
∑

i S
H
i CSi is also full-rank. This is true for any given set Si and hence it is also true for

the expectation over the sets {Si}. Putting everything together, we have that:

E{Si},P

[∑
i

SH
i F−1E[P |P̃ ]FSi

∣∣∣P̃] = E[A|P̃ ], (A.18)

is full-rank and the proof is complete.

Note on alternative Ambient Diffusion designs. Our Ambient Diffusion MRI training approach
can be extended to use other linear operators to aggregate the measurements from different coils (e.g.
we could have used the pseudoinverse). Alternatively, we can also further condition on the sensitivity
maps, or directly feed all the coil measurements as input to the network without aggregation. We
opted for a simple and fast method (aggregation through the adjoint). However, these other approaches
can lead to improved performance because they fully leverage coil information.

B DATASET PREPARATION

We follow standard practices in the MRI literature. We download the FastMRI dataset, randomly
select 2,000 T2-Weighted scans, and pick 5 center slices from each scan, giving us us a dataset of
10,000 T2-weighted brain scans (k-space measurements). We pass each multi-channel k-space sample
through a noise pre-whitening filter to transform the noise into standard white Gaussian. Then, we
normalize each k-space sample by the absolute value of 99-th percentile of the root sum-of-squares
reconstruction of the autocalibration region (24x×24 pixels from the center). Given the fully sampled
k-space samples, we estimate sensitivity maps using the ESPIRiT calibration method (Uecker et al.,
2014). These measurements serve as a fully sampled reference dataset (i.e., R = 1).
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C DETAILS FOR BASELINES.

L1 Methods. We used the BART implementation (Uecker et al., 2016; Blumenthal et al., 2022)
and searched for the best regularization parameter over the training set. Specifically, we used a
regularization weighting of 0.001 with 100 iterations.

Self-Supervised learning via Data Under-sampling (SSDU) (Yaman et al., 2020) In a supervised
setting, end-to-end image restoration networks can be trained by passing measurements through
a network like MoDL (Aggarwal et al., 2019) or VarNet (Hammernik et al., 2018) and taking a
loss directly on the output of the network with the ground truth image. In the self-supervised
setting, however, this is not possible. SSDU, trains the end-to-end restoration network by splitting
the available measurement set (Ω) of each sample yΩi into training sets (Θ) and loss sets (Λ) or
measurements yΘi and yΛi respectively where Ω = Θ ∪ Λ. Where the reconstruction network is given
access to measurements in the training set to obtain an estimated image x̂Θ

i = hθ(y
Θ
i ) and the loss is

then defined over the loss measurements as

L(yΛ
i , x̂

Θ
i ) =

∥∥yΛ
i −AΛx̂

Θ
i

∥∥
1∥∥yΛ

i

∥∥
1

+

∥∥yΛ
i −AΛx̂

Θ
i

∥∥
2∥∥yΛ

i

∥∥
2

(C.1)

where AΛ is the forward operator with ones in the selection mask P at only the measurement
locations in the loss set and zeros elsewhere. In this work, we selected hθ(·) to have the MoDL
architecture (Aggarwal et al., 2019). We trained individual models at four different acceleration
levels (R = 2, 4, 6, 8). Each model was trained for ten epochs using the same training set (10, 000
slices) as previously described. We used uniform random sampling to separate the training and loss
measurement groups for each sample and found that a split of ρ = |Λ|

|Ω| = 0.2 provided the best
performance and thus was used for reporting all subsequent metrics.

MoDL Supervised (MoDL-Sup) To provide an upper bound on performance for supervised end-
to-end methods we also trained the MoDL architecture in a supervised fashion (Aggarwal et al.,
2019). Again, we trained individual models at four different acceleration levels (R = 2, 4, 6, 8). Each
model was trained using the same 10, 000 slices as above. However, for these models, we used the
normalized root mean squared error (NRMSE) as the loss function:

L(xi, x̂i) =
∥xi − x̂i∥2

∥xi∥2
(C.2)

where xi are the ground truth images from our dataset and x̂i = hθ(yi, Ai) are the reconstructions
provided by our network based on under-sampled measurements yi.

D HYPERPARAMETERS FOR MRI MODELS

Training Hyperparameters. The EDM model trained on the fully-sampled (R = 1) dataset, as
well as the four EDM models trained on L1-Wavelet reconstructions at each acceleration factor
R ∈ {2, 4, 6, 8} were all trained with 65 million parameters. The Ambient Diffusion models on the
other hand were trained with 36 million parameters, for faster training. All the Ambient Diffusion
models were trained for 250 epochs. For the Ambient Diffusion training experiments, the further
corrupted sampling masks are given as an input to the model by concatenating with the measurements
along the channel dimension, as in the original Ambient Diffusion (Daras et al., 2023b) paper.

Sampling Hyperparameters. The only tunable parameters for DPS (Eq. 2.3) and Ambient DPS
(Eq. 2.11) are in the scheduling of the magnitude of the measurements likelihood term. In all
the experiments in the DPS paper, this term is kept constant throughout the diffusion sampling
trajectory and the authors recommend selecting a value in the range between [0.1, 10]. We follow this
recommendation and we keep this term constant. The value of the step size for each model is selected
with a hyperparameter search in the recommended range. For all our experiments, we follow exactly
the DPS implementation provided in the official code repository of the paper. The other parameter
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that impacts performance is the number of steps we are going to run each algorithm for, i.e. the
discretization level of the SDEs of Equations 2.3, 2.11. Typically, the higher the number of steps the
better the performance since the discretization error decreases (Chen et al., 2022b; 2023). For the
performance results, we run each method for several steps ∈ {50, 100, 150, 200, 250, 300}.

E ADDITIONAL MRI RESULTS

Table 3: Accelerated MRI reconstruction performance evaluation using LPIPS ↓ and DISTS ↓,
averaged across 100 test samples.

Training Training Reconstruction R = 2 R = 4 R = 6 R = 8
Method Data Method LPIPS DISTS LPIPS DISTS LPIPS DISTS LPIPS DISTS

Supervised R = 1 FS-DPS 0.061 0.028 0.106 0.059 0.166 0.094 0.231 0.126

Self-Supervised

R = 2

A-DPS 0.118 0.062 0.127 0.068 0.138 0.076 0.150 0.082
A-ALD 0.119 0.063 0.127 0.068 0.139 0.077 0.151 0.083
L1-DPS 0.067 0.032 0.131 0.075 0.201 0.115 0.262 0.143

1D-Partitioned SSDU 0.141 0.084 0.144 0.081 0.187 0.108 0.223 0.129

R = 4

A-DPS 0.155 0.090 0.155 0.092 0.161 0.095 0.168 0.099
A-ALD 0.156 0.090 0.155 0.092 0.161 0.095 0.168 0.099
L1-DPS 0.096 0.051 0.193 0.112 0.258 0.147 0.301 0.167

1D-Partitioned SSDU 0.169 0.105 0.169 0.092 0.187 0.104 0.214 0.123

R = 6

A-DPS 0.180 0.110 0.178 0.110 0.181 0.111 0.186 0.114
A-ALD 0.179 0.109 0.179 0.111 0.181 0.111 0.186 0.114
L1-DPS 0.112 0.061 0.221 0.128 0.282 0.161 0.318 0.179

1D-Partitioned SSDU 0.143 0.092 0.169 0.102 0.196 0.117 0.222 0.133

R = 8

A-DPS 0.212 0.129 0.204 0.127 0.204 0.127 0.204 0.127
A-ALD 0.213 0.130 0.204 0.127 0.204 0.127 0.204 0.127
L1-DPS 0.114 0.064 0.227 0.134 0.291 0.168 0.327 0.187

1D-Partitioned SSDU 0.142 0.094 0.176 0.109 0.206 0.127 0.231 0.140

Figure 7: Ambient diffusion posterior sampling (A-DPS) multi-step performance metrics at R =
2, 4, 6, 8 for models trained at R = 2, 4, 6, 8.
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Figure 8: Ambient diffusion one step (A-OS) performance metrics at R = 2, 4, 6, 8 for models
trained at R = 2, 4, 6, 8.

Figure 9: Performance metrics for FS-DPS, L1-DPS, FS-ALD, and L1-CS at R = 2, 4, 6, 8

Figure 10: Fully supervised MoDL performance metrics at R = 2, 4, 6, 8 for models trained at
R = 2, 4, 6, 8.
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Figure 11: SSDU performance metrics at R = 2, 4, 6, 8 for models trained at R = 2, 4, 6, 8.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F ADDITIONAL NATURAL IMAGE PERFORMANCE RESULTS
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(a) Compressed Sensing with 4000 measurements
per Number of Function Evaluations (NFEs).
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(b) 2× Super-Resolution per Number of Function
Evaluations (NFEs).

Figure 12: Speed performance plots for AFHQ.
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(a) LPIPS per Number of Measurements.
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Figure 13: Compressed Sensing Results for FFHQ.
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(a) LPIPS per Downscaling Factor.
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Figure 14: Downscaling Results for FFHQ.
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Figure 15: Compressed Sensing Results for Celeb-A.
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Figure 16: Downscaling Results for Celeb-A.
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For the following experiments, we compare a model trained without corruption to a model trained
with randomly inpainted data at p = 0.6. The evaluation dataset is FFHQ. The training size and
hyperparameters for both models are the same. For both models, we extensively tune the sampling
hyperparameters to maximize their performance (starting from the recommended hyperparameters
from the DPS work). The finding we get in these additional experiments is that the model trained on
corrupted data (inpainting) outperforms the model trained on clean data in the high corruption regime
across all evaluation tasks.

Figure 17: Box Inpainting results for FFHQ

Figure 18: Additive Gaussian Noise results for FFHQ

Figure 19: Super Resolution + Additive Gaussian Noise (σ = 0.05) results for FFHQ
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G ADDITIONAL NATURAL IMAGE SPEED RESULTS
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(a) Compressed Sensing with 4000 measurements per
Number of Function Evaluations (NFEs).
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Figure 20: Speed LPIPS performance plots for AFHQ.
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Figure 21: Speed MSE performance plots for FFHQ.
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(a) Compressed Sensing with 4000 measurements per
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Figure 22: Speed LPIPS performance plots for FFHQ.
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Figure 23: Speed MSE performance plots for Celeb-A.
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Figure 24: Speed LPIPS performance plots for Celeb-A.

H LIMITATIONS AND FUTURE DIRECTIONS.

Our work has several limitations. First, there is a lack of theoretical understanding of the observed
experimental phenomenon: we do not have a good grasp of why models trained on highly corrupted
data lead to better priors for inverse problems of another corruption type. Second, we only tested the
reconstruction performance of our models using the DPS algorithm. Several other recent algorithms
have been developed for solving inverse problems with diffusion models and it is unknown whether
our findings generalize for these reconstruction algorithms. Finally, our method relies on the existence
of Ambient Diffusion models. There are many more models available trained on clean data than
models trained on highly corrupted data.

The auto-calibration signal (ACS) region is shared across training samples, which could lead to an
over-representation of certain k-space regions. While our current approach does not explicitly address
this, introducing a diagonal weighting matrix in the loss function, as suggested by Millard & Chiew
(2023), is a promising direction to mitigate this issue.

Currently, we define Atrain according to Eq 2.7. This is convenient because it lets us use an image-
to-image network architecture such as that used by EDM. An alternative could be to define Atrain

directly as in Eq 2.5, in which case the network would go from multi-coil k-space to an image. This
network could be preceded by an IFFT, which would effectively be a multi-coil-to-image network, and
could be standardized using coil compression (Zhang et al., 2013). Such a network architecture could
be interesting and potentially more expressive, as we currently collapse the multi-coil information
through zero-filling adjoint. Another possibility is to define Atrain as the pseudo-inverse applied to
A, which could be solved efficiently with the conjugate gradient algorithm.
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