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Abstract

Designing incentives for a multi-agent system to induce a desirable Nash equilib-
rium is both a crucial and challenging problem appearing in many decision-making
domains, especially for a large number of agents N . Under the exchangeability
assumption, we formalize this incentive design (ID) problem as a parameterized
mean-field game (PMFG), aiming to reduce complexity via an infinite-population
limit. We first show that when dynamics and rewards are Lipschitz, the finite-N ID
objective is approximated by the PMFG at rate O(1/

√
N). Moreover, beyond the

Lipschitz-continuous setting, we prove the same O(1/
√
N) decay for the important

special case of sequential auctions, despite discontinuities in dynamics, through
a tailored auction-specific analysis. Built on our novel approximation results, we
further introduce our Adjoint Mean-Field Incentive Design (AMID) algorithm,
which uses explicit differentiation of iterated equilibrium operators to compute gra-
dients efficiently. By uniting approximation bounds with optimization guarantees,
AMID delivers a powerful, scalable algorithmic tool for many-agent (large N ) ID.
Across diverse auction settings, the proposed AMID method substantially increases
revenue over first-price formats and outperforms existing benchmark methods.

1 Introduction

Setting the right incentives in a game with many participants is a challenging and high-stakes problem.
Policymakers must frequently make choices that affect millions, for instance, planners must design
rules for curtailing city traffic [46], set pricing to maximize effective bandwidth in telecommunications
networks [3], design spectrum auctions between telecom operators [41] or manage supply and demand
in energy grids [52].

We study the incentive design (ID) problem. Given an objective G, a parameterized N -player game
G, and player strategies π1, . . . , πN , ID solves the equilibrium constrained optimization problem:

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Maximize G(θ, π1, . . . , πN ) such that (π1, . . . , πN ) ∈ NashG(θ) (ID)

where NashG(θ) denotes the set of Nash equilibria (NE) of a game for the incentive parameter
θ (which is to be learned). (ID) is also referred to in the literature as mathematical programming
with equilibrium constraints (MPEC) [51]. Despite their relevance, MPECs are notoriously
computationally challenging and in the general case NP-hard [39, 51]. Simply computing a Nash
equilibrium for a fixed incentive parameter θ is also PPAD-complete [22], even for 2 players [17].
For games with many players, as in many real-world problems, the so-called curse of many agents
[71] becomes an added challenge. In such cases, computing NashG(θ) becomes prohibitively
expensive, let alone tackling (ID).

In this work, we take the approach of mean-field approximation for games with agent exchangeability
(i.e., symmetry) to tackle this problem. Instead of solving (ID) directly, we construct an appropriate
mean-field game (MFG) approximation M to G and solve the mean-field ID (MID) problem:

Maximize G(θ, πMFG) such that πMFG ∈ NashM(θ). (MID)

For the mean-field approximation (MID) to be meaningful, its solution should closely match that
of the original N -player incentive design problem (ID), with the approximation error vanishing as
N → ∞. We formalize this requirement in the following desideratum.

Desideratum D1 (Approximation) The solution of (MID) should be a good (approximate) solution
for (ID), in particular when N is large, with explicit guarantees.

MFGs are known to approximate finite-player NEs with explicit bounds for large N [63, 14, 19, 75].
Under Lipschitz continuity, a non-asymptotic bound of O(1/

√
N) in exploitability is obtained with

a propagation-of-chaos type argument. By contrast, our problem (MID) not only contains the
classical MFG as a subproblem but also an incentive objective, accordingly, we must show that the
approximation error still vanishes as N → ∞. Establishing this result is our first contribution.

Contribution 1: Lipschitz PMFGs and Approximation. We formalize (MID) as a parameterized
MFG (PMFG), and show that for Lipschitz PMFGs the (MID) problem approximates (ID) with a
rate of O(1/

√
N), both in exploitability and optimality of the design objective.

While Lipschitz continuous MFGs cover a broad class of real-world games and are well-studied,
they exclude many important applications, notably large-scale auction design, where the transition
dynamics are inherently correlated and non-Lipschitz. Motivated by the ubiquity and impact of
auctions, we analyze (D1) beyond Lipschitz PMFGs, which is our second contribution.

Contribution 2: Approximation beyond Lipschitz. We identify a PMFG for sequential batched
auctions (BA-MFG) with many bidders, and establish (D1) with an O(1/

√
N) approximation rate, by

identifying a set of “well-behaved” policies that is dense in the set of Nash equilibria.

Although (D1) guarantees that the mean-field approximation captures the fundamental solution
structure of the N -player incentive design problem, realizing practical benefits from this framework
requires the following desideratum.

Desideratum D2 (Optimization) We would like (MID) to be computationally tractable or easier to
solve than (ID), specifically, admit an efficient first-order oracle that can be used for optimization.

Our algorithmic contribution is to satisfy this desideratum in both settings: (i) PMFGs under Lipschitz
continuity assumptions, and (ii) mean-field auction design.

Contribution 3: Algorithmic Contribution. We formulate our adjoint mean-field incentive design
(AMID) algorithm for solving (MID) efficiently. AMID is a modification of backpropagation based
on the adjoint method for computing (approximate) derivatives with Nash equilibrium constraints.
While naive autodiff-based approaches incur a large O(T ) memory footprint, our reformulation of the
gradient computations reduces the memory footprint to O(

√
T ), with up to 80% savings in practice.

Contribution 4: Experimental Contribution. Finally, we use AMID to (i) solve congestion pricing
in the classical beach bar MFG, and (ii) design revenue-optimal mechanisms across a variety of
sequential auctions with a neural network parameterization. Our method consistently outperforms
standard first-price mechanisms used in practice and other optimization approaches to solve (MID).
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Table 1: Comparison of selected works on ID in literature. Large N : results scale to many-agent
(symmetric) G, Dynamic: solves ID on games with dynamics, Explicit diff.: explicit differentiation
for first-order information, Approx.: finite-agent approximation in N , Auctions: applies to auctions.

Work Model Large N Dynamic Approx. Explicit diff. Auctions
[48] VI ✗ ✗ - ✓ ✗
[50] VI ✓ ✗ - ✗ ✗
[23] Cont. time ✓ ✓ ✓ ✗ ✗
[54] LQ ✓ ✓ ✓ ✗ ✗
[64] Maj.-min. ✓ ✓ ✓ ✗ ✗

Ours PMFG ✓ ✓ ✓-Theorem 1 ✓-Section 2.2 ✓- Section 3

1.1 Related Works

We present the works most relevant to this paper, complemented by the discussion in Appendix B.

Mathematical Programming with Equilibrium Constraints (MPEC). Several works have stud-
ied gradient-based approaches for MPEC [48, 50, 70, 47, 26]. Some of these assume that the
equilibrium problem satisfies strong monotonicity to compute the gradients. Others use explicit
differentiation, an approach we also follow in this work. Motivated by the success of reinforcement
learning (RL), many works have focused on the optimal design of (multi-agent) RL environments
[67, 16, 80, 28, 21, 69]. An important instance of designing games with desirable outcomes is
automated mechanism design, capturing many real-world economic problems [18, 20, 49].

Steering and Equilibrium Selection. Complementary to ID problems, a related strand of work has
focused on steering and equilibrium selection. For mean-field games, [33] considers a problem of
choosing equilibria with high social welfare. Steering learning dynamics towards desirable equilibria
was studied by [35, 11, 78] for Markovian and no-regret learners and extended to MFGs by [72].

Mean-Field Games (MFG). MFGs, first formulated in the seminal works of Lasry & Lions [44]
and Huang et al. [36], analyze symmetric competitive agents at the many-agent limit. Recently, many
works have studied RL in mean-field settings, such as stationary MFGs [32, 77, 73, 19], monotone
MFGs [58, 56, 57, 76], static MFGs [74], and mean-field control [15, 5]. While general MFGs remain
a theoretical challenge [75], under structured settings, they have shown empirical and algorithmic
efficiency [19, 15, 45]. MFGs have also been studied in Stackelberg equilibria, closer to our setting
[13, 23, 1, 23]. While these works have similar objectives to ours, rather than letting a leader influence
a population through interactions with a static environment, we aim to design parameterized MFGs
directly by explicit differentiation. In this sense, (MID) can be seen to differ in objective from these
works. Moreover, these results do not readily apply to auction design, a foundational problem for
incentive design. In Table 1, we provide a comparison with selected works and our results.

2 Designing Games for Large Populations: Lipschitz Case

We first formalize parameterized N -player dynamic games and the corresponding ID problem.

Notation. We use S,A to denote (finite) state-actions spaces. For the horizon H , define policy space
ΠH := {π : [H]× S → ∆A}, abbreviate πh(a|s) := π(h, s)(a) and also treat ΠH as a subspace of
R[H]×S×A. For a finite set X , define the “empirical distribution” σ(x)(x′) = 1/N

∑N
i=1 1xi=x′ . We

also provide a full reference table for our notation in Appendix A.

Definition 1 (Parameterized Dynamic Games) A finite-horizon parameterized dynamic game
(PDG) is a tuple G := (N,S,A, H, µ0,Θ, {Ph,θ}H−1

h=0 , {Rh,θ}H−1
h=0 ) of players N ∈ N≥1, discrete

state actions sets S,A, parameter space Θ, parameterized transition dynamics Ph,θ : SN ×AN →
∆SN , parameterized reward functions Rh,θ : SN ×AN → [0, 1]N , starting distribution µ0 ∈ ∆S ,
and time horizon H ∈ N>0. For a strategy profile πππ ∈ ΠN

H , τ ≥ 0 and some θ ∈ Θ, the expected
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(entropy-regularized) sum of rewards of player i ∈ [N ] is defined as

Jτ,i
G (πππ|θ) := E

[
H−1∑
h=0

Ri
h,θ(sh,ah) + τH(πi

h(s
i
h))

∣∣∣∣∣∀j:sj0∼µ0,a
j
h∼πj

h(s
j
h),sh:={sjh}j ,ah:={aj

h}j ,

sh+1∼Ph,θ(sh,ah)

]
.

Define Eτ
G(πππ|θ) := maxi∈[N ] Eτ,i

G (πππ|θ) where Eτ,i
G (πππ|θ) := maxπ′∈Π Jτ,i

G ((π′,πππ−i)|θ)− Jτ,i
G (πππ|θ),

the exploitability. If Eτ
G(πππ

∗|θ) = 0 for πππ∗ ∈ ΠN
H , we call πππ∗ a Nash equilibrium (DG-NE) with

respect to parameter θ. The set of all Nash equilibria for θ ∈ Θ is denoted NashτG(θ). One is typically
interested in maximizing a function of the aggregated population behavior (e.g., revenue, negative
congestion):

G(θ,πππ) := E[g(θ, {L̂h}H−1
h=0 )|πππ, θ], where L̂h :=

1

N

N∑
j=1

esjh,a
j
h
, (ID Objective)

given by some g : Θ × ∆H
S×A → R, with the constraint that πππ ∈ ΠN

H is an (approximate) Nash
equilibrium under θ (ignoring multiplicities). The parameter space Θ and the parameterizations of
Ph,θ, Rh,θ will dictate the implicit constraints on the design, such as the available information at
time h. For such parameterizations, optimizing G will be nontrivial and incorporate an intractable
many-agent NE computation as a subproblem. In the following, we reduce this problem to a
lower-dimensional MFG (i.e. of size independent of N ) and propose tractable alternatives.

2.1 Parameterized Mean Field Game Design

Below, we formalize PMFGs. Definition 2 generalizes the standard definition of MFGs to a parametric
family of MFGs, and approximates Definition 1 on a continuum of infinitely many players.

Definition 2 (Parameterized Mean-Field Games) A finite-horizon parameterized mean-field game
(PMFG) is a tuple M := (S,A, H, µ0,Θ, {Ph,θ}H−1

h=0 , {Rh,θ}H−1
h=0 ) of discrete state actions sets

S,A, parameterized transition dynamics Ph,θ : S × A × ∆S×A → ∆S , parameterized reward
functions Rh,θ : S × A × ∆S×A → [0, 1], initial distribution µ0 ∈ ∆S , and horizon H ∈
N>0. Define operators Γh,Λ as Γh(L, πh|θ)(s′, a′) :=

∑
s,a L(s, a)Ph,θ(s

′|s, a, L)πh(a
′|s′) and

Λ(π|θ) := {Γh−1(···Γ1(Γ0(µ0 · π0, π1|θ)|θ) ··· , πh−1)|θ)}H−1
h=0 , called population operators2. For

π ∈ ΠH , τ ≥ 0 and L = {Lh}H−1
h=0 ∈ ∆H

S×A, the total expected (entropy regularized) reward is

V τ
M (L, π|θ) := E

[H−1∑
h=0

Rh,θ(sh, ah, Lh) + τH(πh(sh))
∣∣∣ s0∼µ0, ah∼πh(sh)
sh+1∼Ph,θ(sh,ah,Lh)

]
.

We define mean-field exploitability as Eτ
M(π|θ) := maxπ′∈Π V τ

M(Λ(π), π′|θ)− V τ
M(Λ(π), π|θ). If

Eτ
M(π∗|θ) = 0 for π∗ ∈ ΠH , we call π∗ a MFG Nash equilibrium (MFG-NE) with respect to

parameter θ. The set of all Nash equilibria for θ ∈ Θ is denoted NashτM(θ).

In this section, we will make the following (standard) assumption on Pθ(s
′|s, a, L), Rθ(s, a, L),

which holds in many relevant applications.

Assumption 1 (Lipschitz continuity) For all s, s′ ∈ S, a ∈ A, the functions Ph,θ(s
′|s, a, L),

Rh,θ(s, a, L), and g(θ,L) are Lipschitz continuous in θ, L.

Theorem 1 below demonstrates that by optimizing the objective g(θ,Λ(π∗)), one can obtain approxi-
mation guarantees (up to a bias of O(1/

√
N)) on the performance of the PDG that has independent

and symmetric state transitions. We have therefore established (D1) for PMFGs.

Theorem 1 Let M be a PMFG, Assumption 1 hold, and G be the PDG such that Ph,θ(s,a) :=⊗
i∈[N ] Ph,θ(s

i, ai, σ(s,a)) and Ri
h,θ(s,a) = Rθ(s

i, ai, σ(s,a)) for all i. Let π∗ ∈ NashτM(θ) and
πππ∗ := (π∗, . . . , π∗) ∈ ΠN

H . Then:

1. Eτ
G(πππ

∗|θ) ≤ O(1/
√
N), that is, πππ∗ is a O(1/

√
N)-NE of G under θ.

2Note that we define Λ(π|θ)0 := µ0 · π0
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2. G(θ, π∗) ≥ g(θ,Λ(π∗|θ))−O(1/
√
N).

Theorem 1 mirrors bounds in MFGs without ID [75] and Stackelberg MFGs in other settings [54].
For clarity, the theorem is stated as an approximation result for a PDG G that exactly satisfies agent
exchangeability, which might not always be the case. In some applications, finding the mean-field
formulation M given a PDF G might be nontrivial. The converse problem of constructing an
appropriate PMFG M that approximates a given G was studied in [76], and this work can be trivially
generalized to this case with an additional approximation bias due to asymmetries in G. The case of
auction design, which also does not satisfy Assumption 1 and the assumption of Ph,θ being a product
measure, will require specific treatment in Section 3.

2.2 Approximating the First Order Derivatives

Having satisfied (D1) for ID with Lipschitz dynamics in the previous section, we turn to (D2)–
formulating algorithmic methods to solve (MID). We state the standard definitions of value and
q-functions for PMFGs, which will be important for learning NEs:

V τ
h (s|L, π, θ) := E

[ H−1∑
h′=h

Rθ(sh′ , ah′ , Lh′) + τH(πh′(sh′))
∣∣∣ sh=s, ah′∼πh′ (sh′ )
sh′+1∼Pθ(sh′ ,ah′ ,Lh′ )

]
qτh(s, a|L, π, θ) := Rθ(s, a, Lh) + E

[
V τ
h+1 (sh+1|L, π, θ)

∣∣∣sh=s,ah=a, ah′∼πh′ (sh′ )
sh′+1∼Pθ(sh′ ,ah′ ,Lh′ )

]
We define the commonly used online mirror descent update rule F omd : Θ×ΠH → ΠH with

F omd(θ, π)(h, s) := arg max
u∈∆A

⟨qτh(s, ·|Λ(π), π, θ), u⟩+ τH(u)− η−1(1− τη)Dkl(u|π(s)),

for some given learning rate η > 0 and entropy regularization τ ≥ 0. F omd has received particular
attention in MFG literature due to its theoretical and empirical properties. Abbreviating F

(T )
omd(θ, ζ) :=

F omd(θ, F
τ
omd(θ, . . . F omd(θ, ζ) . . .)), i.e., F omd(θ, ·) applied T times, the repeated iterations F

(T )
omd

for T > 0 are known to convert to NE for monotone MFGs theoretically [56, 79, 37], and empirically
find good approximations to NE [19] for general MFGs. Furthermore, any π∗ ∈ NashτM(θ) is
guaranteed to be a fixed point of the map F omd(θ, ·) for some learning rate η. We formulate an
explicit differentiation scheme for the PMFG using these properties of F omd. Defining the softmax
transform softmax : R[H]×S×A → Π as softmax(ζ)(h, s, a) :=

exp{ζh,s,a}∑
a′ exp{ζh,s,a′} , the above OMD

update rule can be reformulated in terms of log probabilities:

Fomd(θ, ζ)(h, s, a) := (1− ητ)ζh,s,a + ηqτh(s, a|Λ(softmax(ζ)), softmax(ζ), θ).

For fixed θ, the repeated iterations Fomd will converge (under technical conditions) to log π∗ where
π∗ is an NE of the MFG induced by θ. With this motivation, we reformulate the PMFG design
problem (MID) as a maximization of the T -step approximate objective

GT
approx : θ → g

(
θ, Λ(softmax(F

(T )
omd (θ, ζ0))|θ)

)
. (T -approx.)

GT
approx in general is a well-defined differentiable function (see Lemma 4, Appendix D). In particular,

standard autograd tools can be used to compute ∇GT
approx. While the behavior of ∇GT

approx when
T → ∞ is not immediate, Lemma 1 below shows that under technical conditions GT

approx is a
meaningful objective function to maximize, and produces low-bias estimates of the derivatives of the
true NE with respect to θ for sufficiently large T .

Lemma 1 (Differentiability of F∞
omd) Let ζ ∈ R[H]×S×A, θ ∈ Θ be such that the following hold:

1. F∞
omd(θ

′, ζ) := limT→∞ F
(T )
omd (θ

′, ζ) for θ′ ∈ U for a neighborhood U of θ,

2. For ζ∗ such that ζ∗ = F∞
omd(θ, ζ), qτh is C1 in a neighborhood of (θ, ζ∗), and

ρ(∂ζq
τ
· (·, ·|Λ(softmax(ζ∗)), softmax(ζ∗), θ)) < τ for all h ∈ [H].

Then, softmax(F∞
omd(θ

′, ζ)) ∈ NashτM(θ′) on θ′ ∈ U , F∞
omd is partially differentiable in θ at (θ, ζ),

and limT→∞ ∂θF
(T )
omd (ζ, θ) = ∂θF

∞
omd(ζ, θ).
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Lemma 1 justifies the use of GT
approx (and subsequently the explicit differentiation scheme) as an

objective function under mild technical conditions. If G is also C1, ∇GT
approx converges to the

derivative of a map θ′ → G(θ′, πθ′
) where πθ′

is a function of θ′ such that πθ′ ∈ NashτM(θ′) locally,
that is, for all θ′ in some neighborhood of θ. Moreover, Lemma 1 provides intuition on how to tune
the parameters η, T, τ and characterizes their impact on the quality of explicit differentiation.

One major challenge from a computational point of view of backpropagating (T -approx.) will be the
size of the computational graph, growing with O(T ). In many MFGs, finding a good approximate
MFG-NE will require a large T , which will incur a large computational overhead.

Algorithm 1, which we call adjoint mean-field
incentive design (AMID), reduces the poten-
tially memory-intensive backpropagation through
a complex computational graph to a simple for-
ward and backward pass in t. Crucially, the up-
date operator F is typically quite complicated for
PMFGs: for instance, Fomd itself involves solving
forward (Λ) and backward equations (qτh) in h.
Therefore, for large T , naive autograd will be in-
efficient due to the storage of many intermediate
values and a large graph.

Algorithm 1 AMID
Input: Update rule F , objective G, T, η, τ, θ, ζ0
1: for t ∈ 0, . . . , T do ▷ Forward pass
2: ζt+1 = (1− ητ)ζt + ηF (θ, ζt)
3: end for
4: sT+1 = ∂θG(θ, ζT+1), aT = −∂ζG(ζT+1)
5: for t ∈ T, . . . , 0 do ▷ Backward pass
6: at−1 = (1− ητ)at + ηat∂ζF (θ, ζt)
7: st−1 = st − ηat∂θF (θ, ζt)
8: end for
9: return s0

Lemma 2 (Adjoint method) Let Θ ⊂ Rd′
be an open set and F : Θ × Rd → Rd and G :

Θ × Rd → Rd be differentiable functions. Assume Algorithm 1 is run with inputs F,G, and
T ∈ N>0, η, τ > 0, ζ0 ∈ Rd. Then its return value s0 is equal to ∇θG(θ, F (T )(θ, ζ0)).

Remark 1 In Algorithm 1, {ζt}t will need to be stored for the backward pass in memory, however,
the memory footprint can be reduced to O(

√
T ) by caching every O(

√
T ) timesteps of the forward

process and recomputing ζt as required, maintaining a time complexity of O(T ). Furthermore,
Algorithm 1 can be generalized to arbitrary Bregman divergences, which permits a variety of inner
loop operators to be used (Appendix D.6).

3 Beyond Lipschitz: Mechanism Design for Large-Scale Auctions

Auction design is a ubiquitous and well-studied problem of extraordinary economic interest [43].
To analyze auctions at the mean-field regime, we move beyond the Lipschitz PMFG assumptions.
Designing auctions with maximum revenue in the resulting equilibrium can be framed as an instance
of (ID) (see our discussion in Appendix C), and with an appropriate PMFG, tackled using AMID.
Specifically, we consider the following sequential batched auction setting motivated by real-world
formats used for selling government debt, broadcast licenses, mineral rights, art, fish, timber [27],
and including transactions in mined Ethereum blocks [62].

(Parameterized) batched auctions. An H-round N -player batched auction with incentive parame-
ter θ is a PDG Gauc with state space S = V ∪ {⊥} (where the value space V := {0, ..., (|V| − 1)/|V|}
represents possible valuations and ⊥ denotes non-participation in the current round) and action space
A = {0, . . . , (|A| − 1)/|A|} (possible bids). Each bidder i ∈ [N ] at round h ∈ [H] has a private
state sih ∈ S not revealed to the auctioneer or other bidders. Overall, the auctioneer sells at most
⌈αmaxN⌉ goods (for some αmax ∈ (0, 1)) and chooses θ, parameterizing the allocations and payments
as outlined below. The auction evolves for h ∈ [H] as follows:

1. Initial states at h = 0 are independently sampled from distribution µ0 ∈ ∆V .
2. At every round h ∈ [H], bidders for which sih ̸=⊥ submit their bids aih ∈ A.
3. Observing the bid distributions ν̂−⊥

h := 1
N

∑
i∈[N ] eai

h
1sih ̸=⊥, the mechanism decides on a ratio

of goods to be sold this round, αθ
h(ν̂

−⊥
h ). Items are allocated to the highest ⌊αθ

h(ν̂
−⊥
h )N⌋ bidders,

with ties broken uniformly at random.
4. Each bidder i who receives an item, makes a payment pih = pθh(a

i
h, ν̂

−⊥
h ) ∈ R≥0. A winning

bidder receives utility uh(s
i
h, p

i
h) ∈ R and transitions to state ⊥, while non-winning and non-

participating bidders receive zero utility.
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5. Before proceeding to round h+1, each bidder transitions independently to a new state according to
a dynamics function wh : S ×∆S → ∆S , which maps the agent’s current state and the empirical
population distribution (after the allocation at round h) to a distribution over next states.

To ensure the mechanism can not sell more goods than are available (αmax), we assume that the
parameterizations of αθ

h are such that
∑

h α
θ
h(ν̂

−⊥
h ) ≤ αmax almost surely. This is can be ensured,

for example, by parameterizing αθ
h as a fraction of remaining goods at every h. Gauc allows for

complex valuation dynamics, such as single-minded bidders (who stay in ⊥), time-dependent or
population-dependent evolving valuations, as well as super and subadditive valuations over bundles
of goods. Under these dynamics, we denote the expected utility of player i and exploitability as
Jτ,i

auc , Eτ,i
auc respectively, as defined in Definition 1.

We note that parameterizing αθ
h, p

θ
h fully captures the intuition of reserve prices in the BA-MFG

setting. In many auction formats, a reserve price, i.e., a minimum price that bidders have to bid and
pay to win, has been shown to increase revenue [55]. A reserve price rh ∈ A at round h can be
implemented for example with αh(ν) =

∑
a′≥rh

ν(a′) and ph(a, ν) = a.

3.1 Auctions at the Mean-Field Regime

From the above description, Gauc clearly has exchangeable agents. However, the corresponding
one-step state evolutions are not independent, making Theorem 1 inapplicable here. Motivated by the
relevance of large-scale auction design, we show that PMFGs are still relevant and (D1) holds with a
refined analysis of batched auctions in the following. We begin by defining the correct MFG that
characterizes the batch auction at the limit N → ∞. While the definition is symbol-laden, we state it
for completeness.

Definition 3 (BA-MFG) A Batched-Auction MFG (BA-MFG) is the PMFG Mmfa :=

(S,A, H, µ0,Θ, {Pmfa
h,θ }

H−1
h=0 , {R

mfa
h,θ}

H−1
h=0 ), where Rmfa

θ,h, P
mfa
θ,h are given by:

Rmfa
θ,h(s, a, L) := pwin(s, a, L, α

θ
h(ν

−⊥(L)))uh(s, ph(a, ν
−⊥(L)))

Pmfa
θ,h (s

′|s, a, L) := pwin(s, a, L, α
θ
h(ν

−⊥(L)))wh(s
′| ⊥, ξL,θ)

+ (1− pwin(s, a, L, α
θ
h(ν

−⊥(L))))wh(s
′|s, ξL,θ),

where ν−⊥(L) :=
∑

s ̸=⊥ L(s, ·), ξL,θ ∈ ∆S such that ξL,θ(⊥) = L(⊥) +

⟨L, pwin(·, ·, L, αθ
h(ν

−⊥(L)))⟩ and ξ(s) = ⟨L(s, ·), pwin(s, ·, L, αθ
h(ν

−⊥(L)))⟩, and pwin defined as3

pwin(s, a, L, α) := 1s̸=⊥ max

{
0,min

{
1,

α−
∑

s′∈V, a′>a L(s
′, a′)

ν−⊥(L)(a)

}}
.

We use V τ
mfa, Eτ

mfa to denote expected reward and exploitability in Mmfa, as in Definition 2.

The intuition behind Definition 3 relies on the fact that the function pwin approximately characterizes
the marginal winning probability of an agent when N is large. In fact, Theorem 2 below shows that
BA-MFG is indeed the correct model for auctions with large N . Existing approximation results (such
as [63, 75] as well as Theorem 1) fundamentally are incompatible with this setting due to (1) the
fact that transitions in (finite-player) auctions are not independent, and (2) due to the inherent jump
discontinuities in both P auc

θ,h, R
auc
θ,h. No zero-dominance (NZD) policies, defined below, identify a

subset of policy space ΠH where this difficulty can be circumvented.

Definition 4 (No zero-dominance (NZD)) Let Mmfa be a BA-MFG and θ ∈ Θ. π ∈ ΠH is said to
satisfy the NZD property for θ if at induced L = {Lh}H−1

h=0 = Λmfa(π|θ) there exist no a ∈ A, h ∈
[H] such that

∑
s∈V Lh(s, a) = 0 and

∑
s∈V,a′>a Lh(s, a

′) = αθ
h(ν

−⊥(L)).

While NZD is a technical condition, it is for instance satisfied by any entropy regularized MFG-NE
of Mmfa if τ > 0, therefore, contains ε-NE for arbitrarily small ε > 0. With this property, BA-MFGs
satisfy (D1) as shown below, making it a relevant model for auction design.

3In this definition we take ε/0 = ∞, for any ε > 0 and 0/0 = 0, for convenience.
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Theorem 2 (Approximation for BA-MFG) Let Mmfa be a BA-MFG with Lipschitz-continuous
uh, wh, α

θ
h, p

θ
h and let g : Θ×∆H

S×A → R be Lipschitz. Let π ∈ ΠH be a policy that satisfies the
no zero-dominance property with respect to θ ∈ Θ. Then, for πππ = (π, . . . , π) ∈ ΠN

H ,

1. Eτ
auc(πππ|θ) ≤ Eτ

mfa(π|θ) +O (1/
√
N) , for any τ ≥ 0,

2. |g(θ,Λmfa(π|θ))−G(θ,πππ)| ≤ O (1/
√
N).

Proof sketch: The proof builds on (1) special handling of the correlated evolution of sih at any
round h and (2) showing that for non-zero dominant policies π, the dynamics are locally Lipschitz
continuous. The two conclusions are proved separately in Appendices E.3 and E.4. □

Theorem 2 demonstrates convergence for a broad class of policies and relates to a large strand of
work on equilibrium computation for auctions, which we discuss in Appendix B. While a true MF-NE
does not necessarily satisfy the no zero-dominance property, an entropy-regularized MF-NE does. In
this regard, the results above show that the BA-MFG essentially characterizes the limiting behavior
of batched auctions.

Remark 2 In general, Theorem 2 incorporates a standard worst-case exponential bound in H ,
depending on wh, π. However, in certain cases, such as non-expansive or population-independent
wh and π with full support, the bound becomes polynomial in H, |S|, |A| (see Appendix E.3). We
later verify the quality of the bound in real-world experiments.

Finally, we state the following differentiability result of F τ
omd, thus satisfying (D2) when combined

with the adjoint method described in Section 2.2. This result permits mechanism design by backprop-
agation for any entropy regularization τ > 0, completing the motivation for BA-MFG.

Lemma 3 (Differentiability on Gauc) Let Mmfa be a BA-MFG on an open parameter space Θ ⊂ Rd,
with Lipschitz uh, wh, α

θ
h, p

θ
h, then F τ

omd is almost everywhere differentiable on R[H]×S×A ×Θ.

Equipped with an algorithmic tool to solve large-scale ID problems, we move to empirical demon-
stration on applications.

4 Experimental Results

We evaluate our methodology on numerical examples of increasing complexity, using AMID to obtain
gradient estimates and ADAM [40] as an update rule on parameters θ. All experiment details, including
computational resources, can be found in Appendix F. We also provide reference implementations in
JAX and PyTorch4.

First, we demonstrate the effectiveness of our approach on the prototypical MFG of the beach bar
game [58]. We formulate the PMFG Mbb, where a large population of beachgoers starting from
µ0 = Uniform(S) can move left, stay, or move right (A : {−1, 0, 1}) on a beach (S := [K]) over H
steps, while trying to minimize their distance to the bar located at sbar = K/2 and avoiding busy spots.
We parameterize a pricing mechanism θ ∈ [0, 1/2]S for spots on the beach to minimize congestion
(the softmax of population flow):

Rh,θ
bb (s, a|L, θ) := −d(s, sbar)

K
+

|a|
K

− logLh(s)

3
− θs, gbb(θ,L) := −

∑
h,s

exp{|S|Lh(s)}.

We report the training curves and induced flows in Figure 1, along with θ∗ in Appendix F.

4The PyTorch implementation was adapted from MFGLib[31].
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Figure 1: Payment design with AMID in Mbb. Left: objective and exploitability throughout training
iterations. Middle-right: population flow in time before and after learning payments.

Dynamic auction settings. We move to the more challenging but relevant setting of designing
neural network mechanisms BA-MFGs. We focus on risk-neutral bidders (uh linear in payments)
and on direct revelation mechanisms, i.e. S = A.5 We set |S| = 100, and maximize the revenue
objective:

grev(θ,L) :=

H−1∑
h=0

∑
(s,a)∈V×A

Lh(s, a)pwin(s, a, Lh, α
θ
h(ν

−⊥(Lh)))p
θ
h

(
a, ν−⊥(Lh)

)
.

The exact settings, labeled (A1)-(A3) are as follows:

(A1) H = 4, µ0 = Uniform(S), αmax = 0.8, and single-minded bidders (after winning stay at state
⊥) with no evolution in valuations sih otherwise.

(A2) H = 4, αmax = 0.8, µ0(s) ∝ γs for γ = 0.9, dynamic values with w(s′|s) ∝
exp{− (3s − s′)2/2σ2} for σ = 0.2, bidders are single-minded.

(A3) H = 5, µ0 uniformly sampled from ∆S , αmax ∼ Uniform([0.6, 1.2]), participants re-enter
with probability 0.3 each round.6

We parameterize pθh, α
θ
h with a residual neural network (architecture clarified in Appendix F) contain-

ing ≈ 2×105 parameters, with inputs eh, ν−⊥
h , and remaining unsold goods at round h, guaranteeing

by parameterization that no more than αmax goods are sold in total.

Baselines. We evaluate AMID against several benchmarks. First, we compare against the results
of running a simple first-price auction (FIRSTPRICE), i.e., the highest bidders win and pay what they
bid, to see how much more revenue we can achieve from optimizing over αθ

h and pθh. Second, we
contrast with various methods without gradient information: two methods using two-point gradient
estimators (0-ADAM and 0-SGD respectively), and a 0-order annealing strategy (ANNEAL) using
random perturbations of θ. We use τ = 10−3, η = 10 and T = 400 for computing objective GT

approx.
We report the training curves in Figure 2, where we evaluate GTval

approx throughout training Tval = 500
for robustness. The results indicate the effectiveness of our method against zeroth-order methods
across different auctions. Evaluations on a larger variety of settings and parameterizations (longer
horizons H , nonlinear utilities, static mechanisms, other g) are also reported in Appendix F.

Empirically Testing (D1) & (D2). Figure 3 illustrates that we fulfill (D1) & (D2). Notably,
the actual revenue in the N player auction is very close to the optimized grev even for N ≈ 100.
Furthermore, the exploitability curve of OMD iterates at the optimized θ∗ also suggests that the
iterates are a good approximation of MF-NE, and empirically, the assumptions of Lemma 1 are
valid. Namely, OMD iterations produce a valid approximate Nash equilibrium after the end-to-end
optimization process with AMID, empirically verifying that the revenue at Nash is indeed optimized.

We further provide empirical evidence supporting (D2) by comparing the computational footprint
of AMID against naive backpropagation through the full computational graph induced by OMD. In

5The latter choice is motivated by the conceptual simplicity, widespread use in practice, and does not represent
a significant restriction given the revelation principle [43].

6The setting is more challenging for two reasons. First, the neural mechanism must generalize over αmax,
which it can observe. Second, it must generalize over all µ0, which it does not observe, but potentially infer
from ν−⊥(L). This is also referred to as prior-free mechanism design [29, 34]
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Table 2, we report the time and memory usage of the two methods when solving (A1) with increasing
time horizons H on a single H100. The results are reported for a single backpropagation step. The
modest growth in memory and computation time observed for AMID as H increases highlights the
scalability and practical suitability of our methodology for solving large-scale ID problems.
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Figure 3: Left: deviation in revenue in Mmfa vs N -player Gauc at θ∗ as functions of N , and middle:
exploitability curve of OMD iterations F (T )

omd (θ
∗, ·) at optimized θ∗ in (A1), (A2), (A3). Right: mean

bids of NE computed by F
(T )
omd for h ∈ [4] before and after optimization with AMID in (A1).

Table 2: Empirical compute time and memory usage for single-step naive backpropagation vs. single-
step AMID across different problem horizons, in setting (A1). The rows with “n/a” indicate the
method did not run on a single H100.

Horizon Naive (time, s) Naive (memory) AMID (time, s) AMID (memory)
H=5 0.19± 0.02 s 2760 MiB 0.09± 0.01 s 560 MiB
H=10 0.25± 0.10 s 8746 MiB 0.21± 0.08 s 586 MiB
H=25 0.71± 0.15 s 16960 MiB 0.67± 0.12 s 826 MiB
H=50 n/a n/a 1.72± 0.41 s 1076 MiB

5 Conclusion

In this work, we presented a novel method for ID relying on PMFGs. In particular, we set forth
two desiderata in order to use scalable first-order optimization to approximately solve ID problems.
Through new analyses, we demonstrated that these conditions hold in both classical Mean Field
Game (MFG) settings and batched auction environments. For both settings, we presented a unified
algorithm, called AMID, which can solve a span of ID problems, such as congestion pricing or
optimal auction design. Overall, the AMID framework offers a flexible foundation for diverse
incentive design applications, paving the way for future extensions.
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• We recognize that the procedures for this may vary significantly between institutions
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guidelines for their institution.
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A Frequently-Used Notation

General Notation
H(u) := −

∑
x u(x) log u(x), entropy

sigmoid(x) := 1
1+e−x , sigmoid function

∇f ∈ Rd1×d2 , Jacobian of function f : Rd2 → Rd1

SD−1 := {x ∈ RD : ∥x∥ = 1}, (D − 1)-dimensional unit sphere in RD

BD := {x ∈ RD : ∥x∥ ≤ 1}, D-dimensional unit closed ball in RD

Var variance of random variable
ei standard unit vector with i-th entry 1.
∆X := {u ∈ RX :

∑
x ux = 1, ux ≥ 0}, probability simplex on X .

Dkl(u|v) :=
∑

x u(x) log
u(x)/v(x), Kullback–Leibler divergence

⟨·, ·⟩ dot product.
1 indicator function.
∥ · ∥1 ℓ1 norm (on Euclidean space RD)
∥ · ∥2 ℓ2 norm (on Euclidean space RD)⊗

i∈[N ] m
i product measure

σ(x) empirical counts of entries of some x ∈ XN , σ(x) := 1/N
∑N

i=1 exi

ρ(A) spectral radius of matrix A ∈ RD,D

MargY(d) :=
∑

x∈X d(x, ·) ∈ ∆Y , for d ∈ ∆X×Y .
∥A∥p→q := sup∥x∥p≤1 ∥Ax∥q , operator norm of A with norms ∥ · ∥p, ∥ · ∥q

Generic PMFGs
G parameterized MFG
H horizon (number of rounds) of auction
S (finite) state space
A (finite) action space
N number of players/agents
g ID objective
G := E[g(θ, L̂)], true ID objective in N -player game
Nashτ (G) set of τ -regularized Nash equilibria
Θ parameter space
θ ∈ Θ, ID design parameter
ΠH {π : [H]× S → ∆A}, set of finite-horizon Markovian policies.
µ0 initial state distribution
Ph,θ parameterized state transition dynamics in N -player DG
Rh,θ parameterized reward functions in N -player DG
τ ∈ R entropy regularization magnitude
πππ ∈ ΠN

H , N -tuples of policies
Jτ,i
G expected reward of player i in dynamic game G (see Definition 1)

Eτ,i
G exploitability of player i in dynamic game G (see Definition 1)

Eτ
G maximum exploitability in dynamic game G (see Definition 1)

M parameterized mean-field game (PMFG)
Ph,θ parameterized state transition dynamics in PMFG
Rh,θ parameterized reward functions in PMFG
Γh one-step MFG forward flow (see Definition 2)
Λ maps policies in ΠH to H-step mean-field population flow in ∆H

S×A (see
Definition 2)

Adjoint method:
V τ
h state value function in the PMFG

qτh q-value value function (on state-action pairs) in the PMFG
F : R[H]×S×A×Θ → R[H]×S×A generic policy update operator for computing

NE, defined in log policy space
F omd mirror descent update, in policy space
Fomd mirror descent update, in log-policy space
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For auctions:
Gauc batched Auction
⊥ inactive state for agent not participating in the current round
V value space
αmax parameter for maximal amount of goods
αθ
h parametrized item allocation function

pθh parametrized payment function
uh utility function of bidders
wh valuation dynamics function
P auc
h,θ transition dynamics in batched auction

Rauc
h,θ reward functions

Jτ,i
auc entropy regularized (τ ) sum of rewards for agent i ∈ [N ]

Eτ,i
auc entropy regularized (τ ) exploitability for agent i ∈ [N ]

Mmfa batched auction MFG
Pmfa
h,θ BA-MFG transition dynamics

Rmfa
h,θ BA-MFG reward functions

ν−⊥ action marginal of active (non-⊥) states; maps state-action distributions to
sub-probability distributions over actions

pwin winning probability function, given a bid a, sold goods α and population bid
distribution ν−⊥

ξL,θ post allocation state distribution
V τ

mfa entropy regularized sum of rewards for BA-MFG
Eτ

mfa entropy regularized exploitability of rewards for BA-MFG
Λmfa population operator for BA-MFG
grev revenue objective

B Extended Related Works

Related works on Equilibrium Computation in Auctions. As outlined in Appendix C, many real-
world auctions are not strategyproof. It is thus important to evaluate them at equilibrium—both from
a predictive (how bidders will likely behave), as well as from a normative (bidding recommendations)
standpoint. While some simple formats have been solved analytically [43], existing hardness results
for computing exact equilibria in auctions [10] motivate approximate computational approaches. In
single-round auctions, a strand of work has used iterated best-response computations to calculate
equilibria [61, 68, 60, 8, 9]. Other approaches rely on gradient descent [7, 42] or deep learning
[6, 53]. For multi-round auctions, [65] compute ε-perfect Bayesian equilibria, using best response
dynamics. Others have used (deep) RL to find approximate Nash equilibria [30, 59, 24, 66]. In our
work, by using mean-field approximations, we circumvent the curse of dimensionality inherent to
these multi-agent RL approaches. Using mean-field approaches to solve auctions has been explored
previously to some extent. [2, 32] study specific repeated ad auctions with budget constraints, and
[38] studies dynamic auctions, where bidders iteratively learn about their own type.

Other MFG works. Stackelberg equilibria for MFGs have also been studied in the particular case
of linear-quadratic models [54, 4]. Another relevant model in this setting is mean-field incentive
design with major and minor players [64], where designing incentives for a leader is studied for the
purpose of influencing a population. In continuous time, Stackelberg MFGs have been studied in
applications such as regulating carbon markets [13], epidemics [1], and advertising markets [12].

C Automated Mechanism Design as ID

We note that in contrast to our approach many works on automated mechanism design focus on
designing strategyproof auctions, i.e. auctions in which bidders bid truthful in equilibrium, relying
on the so-called revelation principle[20, 18, 49]. The revelation principle states that any non-
strategyproof equilibrium of an auction can be implemented as an outcome equivalent strategyproof
equilibrium of an adapted auction [43]. Restricting to strategyproof mechanisms bypasses the need
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to differentiate through an equilibrium. Instead of a problem like (ID) where the outer objective
depends on an inner equilibrium solution, the inner solution is already known–bid truthfully–and
instead the problem becomes one of constrained optimization problem, where the so-called incentive
compatibility (IC) constraints ensure that bidding truthfully is in fact an equilibrium [18].

While restricting to strategyproof mechanisms foregoes the need to differentiate through an equilib-
rium, many real-world auctions are not strategyproof. In fact, in 2019 Google for example deliberately
changed towards non-strategyproof first price auctions for selling ads, citing the increased trans-
parency of simple, non-strategyproof format for the bidders [25]. In such cases without IC constraints,
the question is how bidders will respond in equilibrium and in turn designing revenue-optimal
auctions becomes an instance of (ID), which we tackle in Sections 3 and 4.

D Mean-Field Mechanism Design

D.1 Preliminary Lemmas

Theorem 3 (Rademacher) Let U ⊂ Rm be an open set and f : U → Rn be a Lipschitz continuous
map. Then, f is almost everywhere differentiable on U , that is, the points on which f is not
differentiable on U for a set of measure 0.

In some cases, an explicit differentiability assumption might be useful for PMFG dynamics, which
we state below.

Assumption 2 (Differentiability) For all s, s′ ∈ S, a ∈ A, the functions Pθ(s
′|s, a, L), Rθ(s, a, L)

are differentiable on θ, L. Furthermore, g(θ,L) is differentiable on θ,L with bounded derivatives.

In particular, the following simple result is useful for the derivation of AMID.

Lemma 4 (Differentiability of operators) The maps Γ,Λ, qτh, V
τ
h , F omd as well as the map θ, π →

g(θ,Λ(π)) are almost everywhere differentiable under Assumption 1 and differentiable everywhere
under Assumption 2.

Proof: This result is a straightforward result of the definitions of the mentioned operators, in
particular, when Assumption 2 is taken, the mentioned operators are also differentiable as they
are the compositions of differentiable functions. In the case where only Assumption 1 holds, the
above-mentioned functions are also Lipschitz on every bounded domain, which implies by Theorem 3
that they are almost everywhere differentiable. □

Finally, we state the following standard lemma from past work on the approximation of MFG
dynamics by finite player games.

Lemma 5 Assume that the conditions of Theorem 1 hold for the PMFG M and DG G, let π, π ∈ ΠH

be two arbitrary policies, and let θ ∈ Θ be fixed. Let Lπ = {Lπππ
h}h = Λ(π|θ) be the population flow

induced by π on the PMFG with fixed parameter θ. Take the trajectories sih, a
i
h, L̂h induced by the

DG with parameter θ and policy profile (π, π, . . . , π) ∈ ΠN
H . Then,

E[∥L̂h − Lπ
h∥1] ≤

1− Lh+1
pop,µ

1− Lpop,µ
|S||A|

√
2

N
+

1

N

h−1∑
i=0

Lh−i−1
pop,µ ∆h,

where ∆h := sups ∥πh(·|s)− πh(·|s)∥1, and Lpop,µ is a uniform bound on the Lipschitz moduli of
Γh in L. Furthermore, denoting the random variables sh, ah as the distributions of state-action pairs
in the PMFG dynamics with population flow Lπ and policy π,

∥P[sh = ·, ah = ·]− P[s1h = ·, a1h = ·]∥1 ≤ KL

h∑
h′=0

E[∥L̂h − Lπ
h∥1],

where KL is the Lipschitz modulus of transition dynamics Pθ,h in L.

Proof: The proof is a straightforward extension of the approximation results due to [75], to the
case where transition dynamics and rewards also depend on the mean-field flow over actions. See in
particular Theorem 3.2 in [75]. □
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D.2 Proof of Theorem 1

First, we present the bound on exploitability. As in the setting of Lemma 5, let Lπ = {Lπππ
h}h = Λ(π|θ)

be the population flow induced by π on the PMFG with fixed parameter θ. Take the trajectories
sih, a

i
h, L̂h induced by the DG with parameter θ and policy profile πππ := (π, π, . . . , π) ∈ ΠN

H .
Similarly, denote the random variables sh, ah as the distributions of state-action pairs in the PMFG
dynamics with population flow Lπ and policy π.

|V τ
M
(
Lπ, π|θ

)
− Jτ,1

G (πππ|θ)|

=
∣∣∣ ∑
h,s,a

P[sh = s, ah = a](Rh,θ(L
π
h, s, a|θ) + τH(πh(s)))

−
∑

h,s,a,L

P[sh = s, ah = a, L̂h = L](Rh,θ(L, s, a|θ) + τH(πh(s)))
∣∣∣

≤
∣∣∣ ∑
h,s,a,L

P[sh = s, ah = a, L̂h = L](Rh,θ(L, s, a|θ)−Rh,θ(L
π
h, s, a|θ))

∣∣∣
+ |

∑
h,s,a

(P[sih = s, aih = a]− P[sh = s, ah = a])(Rh,θ(L
π
h, s, a|θ) + τH(πh(s)))|.

Since |Rh,θ(L
π
h, s, a|θ)+ τH(πh(s))| ≤ 1+ τ log |A|, and Rh,θ is Lipschitz in L (say with modulus

K), it holds that

|V τ
M
(
Lπ, π|θ

)
− Jτ,1

G (πππ|θ)|

≤ K
∑
h

E[∥L̂h − Lπ
h∥1] +

∑
h

∥P[sh = ·, ah = ·]− P[s1h = ·, a1h = ·]∥1(1 + τ log |A|) ≤ O(1/
√
N),

by an application of Lemma 5. The corresponding bound on Eτ
G(πππ

∗|θ) is obtained by maximizing π
as the best response to the population strategy profile in the DG, and setting π to be an MFG-NE π∗

for the parameter θ.

We also prove a similar bound for the objective value. Assume now that all N players play policy π∗

in the DG. Then, since g is Lipschitz continuous,

|G(θ,πππ∗)− g(θ,Λ(π∗|θ))| ≤ E[|g(θ, {L̂h}H−1
h=0 )− g(θ, {L̂h}H−1

h=0 )|]

≤ E[
∑
h

Kh∥L̂h − Lπ
h∥1],

where we denote the Lipschitz modulus of g with Lh as Kh (with respect to norm ∥ · ∥1). An
application of the technical lemma Lemma 5 yields then the O(1/

√
N) upper bound.

D.3 Proof of Lemma 1

We first prove that if limT→∞ F
(T )
omd (θ

′, ζ) exists and F∞
omd(θ

′, ζ) = ζ∗, the softmax(ζ∗) ∈
NashτM(θ′). Since Fomd is a continuous function, it must hold that

Fomd(θ
′, ζ∗) = Fomd(θ

′, lim
T→∞

F
(T )
omd (θ

′, ζ)) = F∞
omd(θ

′, ζ) = ζ∗,

therefore Fomd(θ
′, ζ∗) = ζ∗. Denoting π∗

h(·|s) := softmax(ζ∗(h, s, ·)), we then have the relations

F omd(θ, ζ
∗)(h, s, a) := (1− ητ)ζ∗(h, s, a) + ηqτh(s, a|Λ(π∗), π∗, θ),

F omd(θ, π)(h, s) := arg max
u∈∆A

⟨qτh(s, ·|Λ(π), π, θ), u⟩+ τH(u)− η−1(1− τη)Dkl(u|π(s)).

Then, for any h, it holds that ζ∗(h, s, a) = τ−1qτh(s, a|Λ(π∗), π∗, θ). We show that π∗ is then the
best response to Λ(π∗) by backward induction. Denote for convenience L∗ := {L∗

h}h = Λ(π∗).

At time H − 1, ζ∗(H − 1, s, a) = τ−1Rh,θ(s, a, L
∗
H−1) and π∗

H−1(a|s) =
exp{τ−1Rh,θ(s,a,L

∗
H−1)}∑

a′ τ−1Rh,θ(s,a′,L∗
H−1)

,

therefore, by first order optimality conditions, π∗
H−1(·|s) maximizes (uniquely) the strongly concave
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function u → ⟨u, τ−1Rh,θ(s, a, L
∗
H−1)⟩ + τH(u) on the simplex ∆A. Hence, at every state s at

time H − 1, the policy π∗
H−1(·|s) is optimal. Assume now π∗

h′(·|s) is optimal for all h′ ≥ h for
some h ∈ [H]. Then, by the inductive assumption, qτh′(s, a|Λ(π∗), π∗, θ) is the optimal regularized
q function for all h′ ≥ h. Since ζ∗(h, s, a) = τ−1qτh(s, a|Λ(π∗), π∗, θ), once again by first order
optimality conditions, π∗

h is also the optimal policy at time h.

We move on to the convergence of derivatives. Firstly, since qτh is given to be C1 in a neighborhood of
(θ, ζ∗) and ρ(∂ζq

τ
· (·, ·|Λ(softmax(ζ∗)), softmax(ζ∗), θ)) < τ , there exists an open neighborhood

U of (θ, ζ∗) where ρ(∂ζq
τ
· (·, ·|Λ(softmax(ζ ′)), softmax(ζ ′), θ′)) < τ − δ for all (θ′, ζ ′) ∈ U for

some δ1 > 0. Then, since

Fomd(θ, ζ)(h, s, a) := (1− ητ)ζh,s,a + ηqτh(s, a|Λ(softmax(ζ)), softmax(ζ), θ),

on U it also holds that ρ(∂ζFomd(θ, ζ)) < 1− δ2 for some δ2 > 0. On U , the map F∞
omd is implicitly

defined by Fomd(θ, F
∞
omd(θ, ζ)) = F∞

omd(θ, ζ), therefore by the implicit function theorem F∞
omd is

differentiable in θ and

∇θF
∞
omd(θ, ζ) = (I − ∂ζFomd(θ, F

∞
omd(θ, ζ)))

−1∂θFomd(θ, ζ), ∀(θ, ζ) ∈ U.

Fixing some direction v ∈ Θ, define inductively the iterates

ζ0 := ζ ′, ζt+1 := Fomd(θ, ζt)

x0 := 0, xt+1 := ∂ζFomd(θ, ζt)xt + ∂θFomd(θ, ζt)v.

Note that by the chain rule, xt+1 = ∇u(F
(T )
omd (θ, ζ

′))v, therefore, if we show that limt→∞ xt =

∇θ(F
(∞)
omd (θ, ζ ′))v for any choice of v, we are done. Firstly, by the assumptions of the lemma, for

sufficiently large T0, it holds that ζt ∈ U for all t > T0, and ζ∗ = limt→∞ ζt. Defining x∗ :=
(I − ∂ζFomd(θ, ζ

∗))−1∂θFomd(θ, ζt)v, which satisfies x∗ := ∂ζFomd(θ, ζ
∗)x∗ + ∂θFomd(θ, ζt)v.

Therefore,

∥xt+1 − x∗∥ =∥∂ζFomd(θ, ζt)xt − ∂ζFomd(θ, ζ
∗)x∗ + ∂θFomd(θ, ζt)v − ∂θFomd(θ, ζ

∗)v∥
≤∥∂ζFomd(θ, ζt)xt − ∂ζFomd(θ, ζ

∗)xt∥+ ∥∂ζFomd(θ, ζ
∗)xt − ∂ζFomd(θ, ζ

∗)x∗∥
+ ∥∂θFomd(θ, ζt)v − ∂θFomd(θ, ζ

∗)v∥,

which proves that xt → x∗. By the implicit function theorem, x∗ is the gradient of F (∞)
omd , concluding

the proof.

D.4 Discussion of Assumptions of Lemma 1

We briefly discuss the ramifications of Lemma 1. Firstly, the result is useful only assuming that the
OMD iterates converge to an NE of the MFG. NE computation in MFGs is a well-studied research
topic on its own, and several positive results are known for various classes of MFGs. We take this for
granted in this lemma, as NE computation is not the main goal.

Next, we note that the lemma suggests that the derivative of (T -approx.) is a valid first-order oracle
provided that the Jacobian of Fomd has bounded spectral radius around the NE induced by a θ.
Importantly, for any PMFG, T -step objective approximates the fixed-point gradient provided that τ is
sufficiently large. For more structured settings, the result can be strengthened to permit τ = 0, for
instance, the derivations in [48] readily extend to the case where H = 1, |S| = 1, and the reward
function R is monotone in population distribution. We leave as future work to generalize this for
monotone PMFGs with dynamics (i.e., for PMFGs with H > 1).

D.5 Proof of Lemma 2

Let Θ = RD1 , Z = RD2 , and assume the functions F : Θ × Z → Z and g : Θ × Z → R are
differentiable. We define ℓ : Θ → R

ℓ(θ) := g(θ, ζT+1(θ)),

ζt+1(θ) := (1− τη)ζt(θ) + ηF (θ, ζt(θ)), ∀t = 0, . . . , T. (1)

for some ζ0 constant. Clearly ℓ(θ) is differentiable; our goal is to efficiently compute ∇θℓ(θ).
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Define for any sequence of (row) vectors {at}Tt=0 for at ∈ Θ the function

L(θ, {at}Tt=0) :=g (θ, ζT+1(θ)) +

T∑
t=0

at · (ζt+1 − (1− ητ)ζt(θ)− ηF (θ, ζt(θ)))

=g (θ, ζT+1(θ)) + aT · ζT+1(θ)− (1− ητ)a0 · ζ0(θ)− η

T∑
t=0

at · F (θ, ζt(θ))

+

T∑
t=1

ζt · (at−1 − (1− ητ)at).

Since for any {at}Tt=0 it holds that L(θ, {at}Tt=0) = ℓ(θ), we have the identities

∂θL(θ, {at}Tt=0) = ∇θℓ(θ), ∂at
L(θ, {at}Tt=0) = 0

Therefore, for any sequence of functions at(θ) that depend on θ, we have

∇θℓ(θ) = ∂θL(θ, {at}Tt=0) +
∑
t

(∇θat)
∂

∂at
L(θ, {at}Tt=0) = ∂θL(θ, {at}Tt=0).

We will therefore compute ∂θL(θ, {at}Tt=0) with a suitable choice of at. By simple derivation:

∂θL(θ, {at}Tt=0) =∂ζg(θ, ζT+1(θ))∇θζT+1(θ) + ∂θg(θ, ζT+1(θ))

+ aT∇θζT+1(θ)− (1− ητ)a0∇θζ0(θ)

− η

T∑
t=0

at∂θF (θ, ζt(θ))− η

T∑
t=0

at∂ζF (θ, ζt(θ))∇θζt(θ)

+

T∑
t=1

(at−1 − (1− ητ)at)∇θζt(θ)

Since ∇θζ0 = 0, as ζ0 is constant, rearranging the terms yields:

∂θL(θ, {at}Tt=0) =(∇ζg(ζT+1(θ)) + aT )∇θζT+1(θ)− η

T∑
t=0

at∂θF (θ, ζt(θ)) + ∂θg(θ, ζT+1(θ))

+

T∑
t=1

(at−1 − (1− ητ)at − ηat∂ζF (θ, ζt(θ)))∇θζt(θ).

Therefore, we pick

aT := −∇ζg(ζT+1(θ))

at−1 := (1− ητ)at + ηat∂ζF (θ, ζt(θ)),

we obtain the equality

∇θℓ(θ) = ∂θL(θ, {at}Tt=0) = −η

T∑
t=0

at∂θF (θ, ζt(θ)) + ∂θg(θ, ζT+1(θ)). (2)

Most importantly, Equation (2) permits the computation of ∇θℓ with T with only caching the
variables ζt. Namely, the forward system Equation (1) can be used to iteratively compute ζT+1, and
the backward system only requires evaluating Jacobians at the current step, meaning other than ζt,
the memory requirements are kept constant.

In case memory is a bottleneck, ζt can be cached during the forward step every β
√
T steps for some

constant β, meaning only O(
√
T ) memory is needed. In this case, during the backward step, ζt will

need to be recomputed every O(
√
T ) steps for O(

√
T ) OMD iterations, maintaining the O(T ) time

complexity. β will introduce a tradeoff between time and space complexity.
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D.6 Extension of Lemma 2 to General Mirror Descent

Lemma 2 analyzes the ajoint method under the specific entropy regularization scheme. Let h : RD1 →
R be a strongly convex distance generating function, and ∇h : RD1 → RD1 the corresponding
mirror map. Then, the generalized mirror descent update rule can be written as (in policy space
ΠH ⊂ R[H]×S×A):

∇h(πt+1) := (1− τη)∇h(πt) + ηF (θ, πt(θ)), ∀t = 0, . . . , T.

Defining the iterates ζt := ∇h(πt+1), we obtain the similar update rule

ℓ(θ) := g(θ, (∇h)−1(ζT+1(θ))),

ζt+1(θ) := (1− τη)ζt(θ) + ηF (θ, (∇h)−1(ζt(θ))), ∀t = 0, . . . , T,

which reduces to the case analyzed in Appendix D.5, by the definitions

F (θ, ζt(θ)) := F (θ, (∇h)−1(ζt(θ)))

g(θ, ζT+1(θ)) := g(θ, (∇h)−1(ζT+1(θ))).

E Results on Batched Auctions

This section presents the formal analysis of parameterized batched auctions introduced in the main
text. We also provide rigorous statements and complete the proofs left out in the main text.

Appendix E.1 provides formal definitions of the settings omitted in the main text and useful auxiliary
constructions to assist the proofs. Appendix E.2 presents a collection of auxiliary lemmas that support
the subsequent analysis. In Appendix E.3, we prove the first part of Theorem 2, establishing an upper
bound on the exploitability of mean field policies under the no zero-dominance condition. The second
part of the theorem, which addresses convergence of the mechanism-level objective, is proved in
Appendix E.4. Finally, Appendix E.5 provides the proof of Lemma 3, which establishes the Lipschitz
continuity of the (entropy regularized) q values under full-support policies.

E.1 Extended Definitions

Additional useful notation. To streamline the proofs, we also introduce some useful notation. For
any arbitrary finite set X and a scalar β ∈ R≥0 define the sets:

∆β
X := {d ∈ RX : ∀x ∈ X : d(x) ≥ 0,

∑
x∈X

d(x) = β},

∆≥β
X := {d ∈ RX : ∀x ∈ X : d(x) ≥ 0, β ≤

∑
x∈X

d(x) ≤ 1},

∆≤β
X := {d ∈ RX : ∀x ∈ X : d(x) ≥ 0,

∑
x∈X

d(x) ≤ β}.

For x ∈ RX , where X has a total order, denote the cumulative mass function Sx(d) :=
∑

x′≥x d(x
′).

For some d ∈ ∆X×Y , define the marginal distribution

MargY(d) :=
∑
x∈X

d(x, ·) ∈ ∆Y .

For α ∈ [0, 1], define the threshold bid operator Thα : ∆≥0
A → A as

Thα(d) := max ( {a ∈ A : Sa(d) ≥ α, d(a) > 0} ∪ {a0}) ,

where a0 is the smallest element of A. For d ∈ ∆≥α
V×A we also define Thα(d) := Thα(MargS(d)).

We define the operator Ξα : ∆≥α
V×A → RV×A, which maps a matrix state-action distribution L to a

matrix L′, where each entry L′(s, a) represents the expected probability mass of agents in state s
who chose action a and did not win an item this round, given that α goods are allocated. Formally:

Ξα(d)(s, a) =


0 if a > Th(d), α > 0∑

s′∈V,a′≥Thα(d) d(s
′,a′)−α∑

s′∈V d(s′,Thα(d)) d(s,Thα(d)) if a = Th(d), α > 0

d(s, a) otherwise
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Ξα is well-defined as
∑

s′∈V d(s′,Thα(d)) > 0 whenever α > 0 by definition.

Using the operator Ξα, we define the post allocation operator Υα : ∆≥α
V×A → ∆V , which maps a

sub-probability distribution d over active state-action pairs to the post allocation state distribution.
That is,

Υα(L)(s) :=
∑
a∈A

Ξα(L)(s, a).

The operator Γα, which governs the transition of the population state distribution after item allocation,
can be expressed in terms of Υα by explicitly accounting for the inactive state ⊥. Specifically, let d ∈
∆S×A be a state-action distribution and assume α(ν−⊥(d)) ≤ ∥ν−⊥(d)∥1. Then Γα : ∆S×A → ∆S
is defined as

Γα(d)(s) :=

{
Υα(ν−⊥(d))(d−⊥)(s) if s ∈ V,∑

a∈A d(⊥, a) + α if s =⊥,

where d−⊥ denotes the restriction of d to active states V .

The BA-MFG is a parametrized PMFG, where both the payment function and the allocation threshold
function are parameterized as αθ

h and pθh. Throughout this section, we assume these parameters are
fixed and omit them, writing without loss of generality αh, ph instead.

Definition 5 (Batched Auction MFG (BA-MFG)) A Batched-Auction MFG (BA-MFG) is a MFG
defined by the tuple Mmfa = (S,A, H, µ0, {Pmfa

h }H−1
h=0 , {R

mfa
h }H−1

h=0 ) of discrete state space S =
V ∪{⊥}, discrete action space A, horizon H ∈ N>0, initial distribution µ0 ∈ S , transition dynamics
Pmfa
h : S ×A×∆S×A → ∆S and reward functions Rmfa

h : S ×A×∆S×A → [0, 1]. The transition
dynamics Pmfa and the reward functions Rmfa depend from the allocation functions {αh}H−1

h=0 , the
dynamic functions {wh}H−1

h=0 , the payment functions {ph}H−1
h=0 and the utility functions {uh}H−1

h=0 .
Define the “winning probability” as

pwin(s, a, L, α) = 1s̸=⊥


1 if

∑
s′
∑

a′≥a L(s
′, a′) ≤ α

0 if
∑

s′
∑

a′>a L(s
′, a′) ≥ α

α−
∑

s′
∑

a′>a L(s′,a′)∑
s′ L(s,a) otherwise

.

For the allocation α and valuation transition w, define the operators Γα : ∆S×A → ∆S ,Γw :
∆S ×∆S as

Γα(L)(s) :=

{∑
a L(s, a)(1− pwin(s, a, L, α(ν

−⊥(L)))) if s ̸=⊥
L(⊥) +

∑
s′
∑

a′ L(s′, a′)pwin(s
′, a′, L, α(ν−⊥(L))) otherwise

,

Γw(ξ) :=
∑
z∈S

ξ(z)w(·|z, ξ),

Define also Γh,Λmfa as 7

Γh(L, π)(s, a) := Γwh
(Γαh

(L))(s)π(a|s),
Λmfa(π) := {Γh−1(...Γ1(Γ0(µ0 · π0, π1), π2)..., πh−1)}H−1

h=0 .

The transition probability and rewards can be written as:

Pmfa
h (s′|s, a, L) := pwin(s, a, L, αh(ν

−⊥))wh(s
′| ⊥,Γαh

(L))

+ (1− pwin(s, a, L, αh(ν
−⊥)))wh(s

′|s,Γαh
(L))

Rmfa
h (s, a, L) := pwin(s, a, L, αh(ν

−⊥(L)))uh(s, ph(a, ν
−⊥(L))).

For π ∈ ΠH , τ ≥ 0 and L = {Lh}H−1
h=0 , the total expected (entropy regularized) reward is

V τ
mfa(L, π) := E

[
H−1∑
h=0

Rmfa
h (s, a, Lh) + τH(πh(sh))

∣∣∣∣∣ s0∼µ0,ah∼π(sh)

sh+1∼Pmfa
h (sh,ah,Lh)

]
7Note that this way of writing Γh,Λmfa is consistent with the MFG definition.
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For a policy π ∈ ΠH we denote with Lπ = Λmfa(π) the induced state-action distribution, with µπ

the induced state distribution and with ξπ the induced hidden state distribution, with ξπh = Γαh
(Lπ

h).
Additionally, we define with Pα the transition probabilities associated with the item allocation
dynamics

Pα(s
′|s, a, L) :=


pwin(s, a, L, α(ν

−⊥(L))) if s′ =⊥
(1− pwin(s, a, L, α(ν

−⊥(L)))) if s′ = s

0 otherwise
.

Then, the total expected (entropy regularized) reward can also be expressed as

V τ
mfa(L, π) := E

[
H−1∑
h=0

Rmfa
h (s, a, Lh) + τH(πh(sh))

∣∣∣∣∣s0∼µ0,ah∼π(sh),zh∼Pαh
(sh,ah,Lh)

sh+1∼wh(zh,Γαh
(Lh))

]

Definition 6 (N -player Batched Auction (N -BA)) An N - player batched auction (N -BA) is a dy-
namic game Gauc = (N,S,A, H, µ0, {P auc

h }H−1
h=0 , {Rauc

h }H−1
h=0 ) of discrete state space S = V ∪ {⊥},

discrete action space A, horizon H ∈ N>0, starting distribution µ0 ∈ S, transition dynamics
P auc
h : SN × AN → ∆N

S and rewards functions Rauc
h : SN × AN → [0, 1]N . The transition

dynamics P auc
h and the reward functions Rauc

h depend from the allocation functions {αh}H−1
h=0 , the

dynamic functions {wh}H−1
h=0 , the payment functions {ph}H−1

h=0 and the utility functions {uh}H−1
h=0 . Let

s = (s1, . . . , sN ) ∈ SN denote the joint state of all agents, and a = (a1, . . . , aN ) ∈ AN the joint
action profile. Assume items are allocated to the top bidders according to the submitted actions, with
uniform random tie-breaking at the allocation threshold. This induces a joint allocation probability
kernel PN,α : SN ×AN → ∆SN formally defined as

PN,α(z|s,a) =


1( |T |

⌊αN⌋−|W|
) if

∀i ∈ W ∪ {i ∈ [N ] : sj =⊥}, zi =⊥,

|{j ∈ T : zj =⊥}| = ⌊α(ν) ·N⌋ − |W|,
∀i ∈ L, zi = si

0 otherwise

,

where ν =
∑

j eaj1sj ̸=⊥, a∗ = max{a ∈ A :
∑

j∈[N ] 1aj≥a,sj ̸=⊥ ≥ ⌊α(ν)N⌋}, T = {j ∈ [N ] :

aj = a∗, sj ̸=⊥}, W = {j ∈ [N ] : aj > a∗, sj ̸=⊥} and L = {j ∈ [N ] : aj < a∗, sj ̸=⊥}. The
marginal winning probability and the rewards, similar as its corresponding MFG can be expressed as

P i
N,α(⊥ |s,a) =:

∑
z

PN,α(z|s,a)1zi=⊥ = pwin(s
i, ai, σ(s,a), ⌊Nα(ν−⊥(σ(s,a)))⌋

N )

Rauc, i
h (s,a) = pwin(s

i, ai, σ(s,a), ⌊Nαh(ν
−⊥(σ(s,a)))⌋
N )uh(s

i, ph(a
i, ν−⊥(σ(s,a))))

We define with Rmfa
N,h the N-player discretization of Rmfa

h :

Rmfa
N,h(s, a, L) := pwin(s, a, L,

⌊Nαh(ν
−⊥(L))⌋
N )uh(s, ph(a, ν

−⊥(L)))

Note that if L(s, a) = 0, the reward Rmfa
N,h(s, a, L) is not defined. Additionally, observe that

Rauc,i
h (s,a) = Rmfa

N,h(s
i, ai, σ(s,a)).

For a strategy profile πππ ∈ ΠN
H , τ ≥ 0 the (entropy regularized) sum of rewards of player i ∈ [N ] is

defined as

Jτ,i
auc(πππ) := E

H−1∑
h=0

Rmfa
N,h(s

i
h, a

i
h, L̂h) + τH(πi

h(s
i
h))

∣∣∣∣∣∣
∀j∈[N ]:sj0∼µ0, a

j
h∼πi

h(s
j
h)

zh∼PN,αh
(sh,ah), L̂h=

1
N

∑
j∈[N] es

j
h
,a

j
h

sjh+1∼w(zj
h,ξ̂h),ξ̂h=

1
N

∑
j∈[N] ez

j
h

 ,

exploitability Eτ,i
auc as Eτ,i

auc(πππ) := maxπ′∈ΠH
Jτ,i

auc(π
′,πππ−i)− Jτ,i

auc(πππ).
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E.2 Preliminary Lemmas

We present several important lemmas that will be used later to prove the main convergence theorem.

Lemma 6 (Sensitivity of Ξα to the Population) Let α ∈ [0, 1] and let d, d′ ∈ ∆≥α
V×A. Then Ξα is

Lipschitz-continuous with respect to the ℓ1-norm, with constant 1:

∥Ξα(d)− Ξα(d
′)∥1 ≤ ∥d− d′∥1.

Proof: It is straightforward to verify that Ξα is continuous. We verify that it is also Lipschitz
continuous with modulus 1. Assume α > 0, as otherwise Ξα(d) is the identity map and the
claim is trivial. Denote the bids by A := {1, . . . , A}, and let Sa(d) :=

∑
s′
∑

a′≥a d(s
′, a′) with

SA+1(d) := 0, and ra(d) :=
∑

s′∈V d(s′, a). For ā ∈ {1, . . . , A+ 1}, define the regions

Rā := {d ∈ ∆≥α
V×A : Sā(d) ≥ α > Sā+1(d)}.

On the region Rā, the map Ξα(d) is differentiable, in fact, for d ∈ Rā, it holds that ā = Thα(d) and

Ξα(d)(s, a) =


0 if a > ā
Sā(d)−α
rā(d)

d(s, ā) if a = ā

d(s, a) otherwise

We calculate the Jacobian of Ξα and upper bound its operator norm ∥∇Ξα∥1→1 given by the
max column sum ∥∇Ξα∥1→1 = maxs,a

∑
s′,a′ |(∇Ξα)s′a′,sa|. We upper bound the column sums

corresponding to s, a.

Case 1. If a < ā, then ∂Ξα(d)(s′,a′)
∂dsa

= 0 for any (s′, a′) ̸= (s, a) and ∂Ξα(d)(s,a)
∂dsa

= 1, therefore the
column sum is ∑

s′,a′

∣∣∣∣∂Ξα(d)(s
′, a′)

∂dsa

∣∣∣∣ = ∣∣∣∣∂Ξα(d)(s, a)

∂dsa

∣∣∣∣ = 1.

Case 2. If a = ā, then ∂Ξα(d)(s′,a′)
∂dsa

= 0 if a′ ̸= ā, therefore∑
s′,a′

∣∣∣∣∂Ξα(d)(s
′, a′)

∂dsa

∣∣∣∣ =∑
s′

∣∣∣∣∂Ξα(d)(s
′, ā)

∂dsā

∣∣∣∣ = ∣∣∣∣∂Ξα(d)(s, ā)

∂dsā

∣∣∣∣+∑
s′ ̸=s

∣∣∣∣∂Ξα(d)(s
′, ā)

∂dsā

∣∣∣∣
=

∣∣∣∣Sā(d)− α

rā(d)
+ d(s, ā)

rā(d)− Sā(d) + α

rā(d)2

∣∣∣∣
+
∑
s′ ̸=s

∣∣∣∣d(s′, ā)rā(d)− Sā(d) + α

rā(d)2

∣∣∣∣ = 1,

since all terms in the absolute values are nonnegative if ā = Thα(d).

Case 3. If a > ā, then only the rows corresponding to the active action ā has nonzero gradient, and∑
s′,a′

∣∣∣∣∂Ξα(d)(s
′, a′)

∂dsa

∣∣∣∣ =∑
s′

∣∣∣∣∂Ξα(d)(s
′, ā)

∂dsā

∣∣∣∣ =∑
s′

1∑
s′′ d(s

′′, ā)
d(s, ā) = 1.

To conclude, it holds that on any arbitrary region Rā,

∥∇Ξα∥1→1 = max
s,a

∑
s′,a′

∣∣∣∣∂Ξα(d)(s
′, ā)

∂dsā

∣∣∣∣ = 1.

Therefore, ∥∇Ξα∥1→1 ≤ 1 on all regions Rā, and Ξα is non-expansive in the ℓ1 norm. □

Lemma 7 (Sensitivity of Ξα to the Allocation Parameter) Let d ∈ ∆≤1
V×A arbitrary, let α1, α2 ≤

∥d∥1 arbitrary. Then
∥Ξα1

(d)− Ξα2
(d)∥1 ≤ |α1 − α2|.
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Proof: As in Lemma 6, let A := {1, . . . , A}, and let Sa(d) :=
∑

s′
∑

a′≥a d(s
′, a′) with

SA+1(d) := 0, and ra(d) :=
∑

s′∈V d(s′, a).

For ā ∈ {1, . . . , A + 1} such that rā(d) > 0, define the partition of the interval [0, ∥d∥1] into the
intervals

Rā := {α ∈ [0, ∥d∥1] : Sā(d) ≥ α > Sā+1(d)}.
On the interval Rā, the map Ξα(d) is differentiable in α, and it holds that ā = Thα(d) and

Ξα(d)(s, a) =


0 if a > ā
Sā(d)−α
rā(d)

d(s, ā) if a = ā

d(s, a) otherwise

Then, again, we upper bound the operator norm of the Jacobian (in this case, gradient):

∥∇αΞα(d)∥1→1 =
∑
s′,a′

∣∣∣∣∂Ξα(d)(s
′, a′)

∂α

∣∣∣∣ =∑
s′

∣∣∣∣ −1

rā(d)
d(s′, ā)

∣∣∣∣ = 1,

So ∥∇αΞα(d)∥1→1 ≤ 1, implying the claim of the lemma. □

For completeness, we state the simple corollaries of the above two sensitivity analyses in the following.

Corollary 1 (Lipschitz Continuity of Ξ) Let d, d′ ∈ ∆≤1
V×A, α ∈ [0, ∥d∥1), and α′ ∈ [0, ∥d′∥1)

arbitrary, then
∥Ξα(d)− Ξα′(d′)∥1 ≤ ∥d− d′∥1 + |α− α′|.

Proof: Let d, d′ ∈ ∆≤1
V×A, α ∈ [0, ∥d∥1), and α′ ∈ [0, ∥d′∥1) arbitrary. Without loss of generality

assume ∥d∥1 ≥ ∥d′∥1, then by applying triangular inequality we have

∥Ξα(d)− Ξα′(d′)∥1 ≤ ∥Ξα(d)− Ξα′(d)∥1 + ∥Ξα′(d)− Ξα′(d′)∥1 ≤ |α− α′|+ ∥d− d′∥1,
where the last step follows from Lemmas 6 and 7. □

Corollary 2 (Lipschitz Continuity of Υα) Let d, d′ ∈ ∆≤1
V×A, α ∈ [0, ∥d∥1), and α′ ∈ [0, ∥d′∥1)

arbitrary, then Υα is non-expansive in the ℓ1 norm, that is

∥Υα(d)−Υα′(d′)∥1 ≤ |α− α′|+ ∥d− d′∥1.

Proof: Let d, d′ ∈ ∆≤1, α ∈ [0, ∥d∥1), and α′ ∈ [0, ∥d′∥1) arbitrary, then

∥Υα(d)−Υα′(d′)∥1 =

∥∥∥∥∥∑
a∈A

Ξα(d)(·, a)−
∑
a∈A

Ξα′(d′)(·, a)

∥∥∥∥∥
1

≤
∑
a∈A

∥Ξα(d)(·, a)− Ξα′(d′)(·, a)∥1 = ∥Ξα(d)− Ξα′(d′)∥1.

The upper bound follows by the result of Corollary 1. □

Corollary 3 (Lipschitz Continuity of Γα) Let d, d′ ∈ ∆S×A, and suppose the threshold function
α : ∆≤1

A → [0, 1] is Lipschitz continuous with constant Kα, and satisfies the feasibility condition
α(ν) ≤ ∥ν∥1 for all ν ∈ ∆≤1

A . Then,

∥Γα(d)− Γα(d
′)∥1 ≤ (Kα + 1) ∥d− d′∥1.

Proof: By Corollary 2 and the Lipschitz continuity of α, it follows that:

∥Γα(d)− Γα(d
′)∥1 ≤ |α(ν−⊥(d))− α(ν−⊥(d′))|+ ∥d− d′∥1

≤ Kα∥d− d′∥1 + ∥d− d′∥1.
□

In the next sequence of results, we deal with the stability of winning probabilities given by the
function pwin. In general, pwin is easily seen to have discontinuous jumps, however, a local stability
result can be shown if the NZD condition holds.
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Lemma 8 (Stability of Winning Probabilities) Let A = {a1, a2, . . . , aK} be a finite set of actions
with total order a1 < a2 < · · · < aK , and let ν ∈ ∆≤1

A . For any α ∈ [0, 1], define the winning
probability for action a ∈ A as

pwin(a, ν, α) :=


0 if

∑
a′>a ν(a

′) ≥ α or α = 0,

1 if
∑

a′≥a ν(a
′) ≤ α and α > 0,

α−
∑

a′>a ν(a′)

ν(a) otherwise.

Assume that α, ν satisfy the no zero-dominance property (i.e., for any a ∈ A, ν(a) = 0 ⇒∑
a′>a ν(a

′) < α(ν)) and ∥ν∥1 > 0. Then for all ν′ ∈ ∆≤1
A , α′ ∈ [0, 1], a ∈ A, pwin satisfies

|pwin(a, ν, α)− pwin(a, ν
′, α′)| ≤ Cν,α∥ν − ν′∥1 + Cν,α|α− α′|,

where:

Cν,α =



1
min{ν(a∗)} , if α = 0

1
min{ν(a∗),ν(a−),∆ν,α} , if ∆ν,α > 0, a− ̸=⊥, α > 0

1
min{ν(a∗),∆ν,α} , if ∆ν,α > 0, a− =⊥, α > 0

1
min{ν(a∗),ν(a−)} , if ∆ν,α = 0, a− ̸=⊥, α > 0

1
min{ν(a∗)} , if ∆ν,α = 0, a− =⊥, α > 0

and where a∗ := Thα(ν) is the threshold action, a− is the action just below the threshold (a− :=

ak−1 if a∗ = ak for some k > 1 and a− =⊥ if a∗ = a1), and ∆ν,α := mina∈A

∣∣∣α−
∑

a′⪰a ν(a
′)
∣∣∣.

Proof: Importantly, Cν,α is finite in each case if ν, L satisfies the NZD condition. The proof, while
notionally dense, works on a simple idea: in general, pwin incorporates discontinuities where the
winning probability of an action below the threshold might jump from 0 to 1. However, this does
not happen locally when there is some probability mass on a− just below the threshold action. Note
that when ∥ν∥1 ̸= 0 and NZD holds, it holds that ν(a∗) > 0, and ν(a−) > 0 if a∗ ̸= a1 and α > 0.
Furthermore, by NZD, if α = 0, it must hold that ν(aK) > 0 and a∗ = aK by definition. Define the
useful constant

δ :=


∆ν,α, if ∆ν,α > 0,

max{1/ν(a∗), 1/ν(a−)}, if ∆ν,α = 0, a− ̸=⊥
1/ν(a∗), if ∆ν,α = 0, a− =⊥

which will be the radius of the open set around which there are no discontinuities of pwin.

First, we show that |pwin(a, ν, α)− pwin(a, ν, α
′)| ≤ Cν,α|α − α′| for any α′. Without loss of

generality, we can assume that α ≤ ∥ν∥1, α′ ≤ ∥ν∥1, as pwin(a, ν, α
′) = pwin(a, ν,min{α′, ∥ν∥1})

for any α′ by definition, and |min{α, ∥ν∥1} −min{α′, ∥ν∥1}| ≤ |α − α′|. If |α − α′| < δ, then
α′ ∈ (α − δ, 0, α + δ) ∩ R≥0. On the interval (α − δ, α + δ) ∩ R≥0, pwin is continuous for any a
since

For a < a∗, a ̸= a− : pwin(a, ν, α
′) = 0,

For a > a∗ : pwin(a, ν, α
′) = 1,

For a = a∗ : pwin(a
∗, ν, α′) =

{
1 if

∑
a′≥a∗ ν(a′) ≤ α′,

α′−
∑

a′>a∗ ν(a′)

ν(a∗) otherwise.

For a = a−, if a− ̸=⊥: pwin(a
−, ν, α′) =

{
0 if

∑
a′>a− ν(a′) ≥ α′,

α′−
∑

a′>a− ν(a′)

ν(a−) otherwise.

Moreover, from above, pwin is almost everywhere differentiable in α′ in this interval with∣∣∣∣∂pwin(a, ν, α)

∂α

∣∣∣∣ ≤ {max{1/ν(a−), 1/ν(a∗)}, if a∗ ̸= a1, α > 0
1/ν(a∗), otherwise

as in this interval the “active” threshold action will always be either a∗ of a−. Therefore,

|pwin(a, ν, α)− pwin(a, ν, α
′)| ≤ Cν,α|α− α′|.
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If on the other hand |α− α′| ≥ δ, then

|pwin(a, ν, α)− pwin(a, ν, α
′)| ≤ 1 ≤ δ−1|α− α′| ≤ Cν,α|α− α′|.

So in both cases it holds that |pwin(a, ν, α)− pwin(a, ν, α
′)| ≤ Cν,α|α− α′|.

Next, we show the stability in ν. Once again, assume that ∥ν′ − ν∥1 < δ. On the open set
{ν′ : ∥ν′ − ν∥1 < δ} the function pwin(a, ·, α) is once again continuous in ν′ for any a, and almost
everywhere differentiable with∣∣∣∣∂pwin(a, ν

′, α)

∂ν′(a′)

∣∣∣∣ ≤
{

1
ν(a∗) , if a− =⊥ or α = 0

1
min{ν(a∗),ν(a−)} , if a− ̸=⊥, α > 0

for almost every ν′. Therefore, it holds that

|pwin(a, ν
′, α)− pwin(a, ν, α)| ≤ Cν,α∥ν − ν′∥1.

On the other hand, if ∥ν′ − ν∥1 ≥ δ, then

|pwin(a, ν
′, α)− pwin(a, ν, α)| ≤ 1 ≤ δ−1∥ν − ν′∥1.

To complete the proof, we use the triangle inequality:

|pwin(a, ν
′, α′)− pwin(a, ν, α)| ≤ |pwin(a, ν, α

′)− pwin(a, ν, α)|+ |pwin(a, ν, α
′)− pwin(a, ν

′, α′)|
□

Remark 3 The proof of Lemma 8 can be adapted to handle action distributions with full support.
In this case, a refined version of the first part of the argument shows that the winning probability
is Lipschitz-continuous with a constant bounded by 1

min{ν(a−),ν(a∗),ν(a+)} , where a∗, a−, a+ are
actions around the threshold. Consequently, for policies with full support, i.e., πh(a|s) ≥ ϵ for all s ∈
V , a ∈ A, and some ϵ > 0, the deviation in winning probability is bounded by 1

(1−αmax)ϵ
∥ν − ν′∥1.

Lemma 9 Let µ, µ′ ∈ ∆S be two arbitrary state distributions, and let π, π′ ∈ Π be two arbitrary
policies. Define the corresponding state-action distributions L,L′ ∈ ∆S×A as

L(s, a) := µ(s)π(a|s), L′(s, a) := µ′(s)π′(a|s).
Then, it holds that

∥L− L′∥1 ≤ sup
s

∥π(·|s)− π′(·|s)∥1 + ∥µ− µ′∥1.

Proof: We compute the total variation distance:

∥L− L′∥1 =
∑
s,a

|µ(s)π(a|s)− µ′(s)π′(a|s)|

=
∑
s,a

|µ(s)π(a|s)− µ(s)π′(a|s) + µ(s)π′(a|s)− µ′(s)π′(a|s)|

≤
∑
s

µ(s)
∑
a

|π(a|s)− π′(a|s)|+
∑
s

|µ(s)− µ′(s)|
∑
a

π′(a|s)

= sup
s

∥π(·|s)− π′(·|s)∥1 + ∥µ− µ′∥1,

where the last line uses that
∑

a π
′(a|s) = 1 for all s. □

E.3 Proof of Theorem 2, part 1 (Approximation in Exploitability)

The theorem considers BA-MFGs with Lipschitz-continuous reward, dynamics, and utility functions.
Let Kw ∈ [0, 2] denote the Lipschitz modulus of the state dynamics wh, Kp the Lipschitz modulus
of the payment function ph, Ku the Lipschitz modulus of the utility function uh with respect to its
second argument, and Kα be the Lipschitz modulus of the allocation funciton αh. That is, for any
s ∈ V, a ∈ A, ν, ν′ ∈ ∆A, p, p

′ ∈ R≥0,

|uh(s, p)− uh(s, p
′)| ≤ Ku · |p− p′| , |ph(a, ν)− ph(a, ν

′)| ≤ Kp · ∥ν − ν′∥1,
|αh(ν)− αh(ν

′)| ≤ Kα · ∥ν − ν′∥1.
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The composed function uh(s, ph(a, ν)) then is also Lipschitz with modulus KuKp as

|uh(s, ph(a, ν))− uh(s, ph(a, ν
′))| ≤ Ku · |ph(a, ν)− ph(a, ν

′)| ≤ KuKp · ∥ν − ν′∥1,

for all ν, ν′ ∈ ∆≤1
A .

Additionally, let Bp be an upper bound on the absolute value of payments, i.e., |ph(a, ν)| ≤ Bp, and
let Bu be an upper bound on the absolute value of utilities, i.e., |uh(s, p)| ≤ Bu, for all s, a, ν, h.
Such an upper bound always exists if uh, ph are continuous in ν, since ∆≤1

A is a compact set.

The argument proceeds in three steps:

1. First, we bound the expected deviation between the empirical distributions and their mean
field counterparts. That is, we show an upper bound on the deviation E

[
∥Lπ

h − L̂h∥1
]
.

2. Second, we show that for policies satisfying the no zero-dominance property, the expected
transition probabilities associated with item allocation, under both the mean field and
finite-population settings, differ proportionally to the deviation in population distributions.

3. Finally, we bound the exploitability of a single agent when all other agents follow a policy
that satisfies the no zero-dominance property with respect to the mechanism.

In our analysis, we also make use of the population distribution ξh after item allocation at round h.
In the mean field setting, this is defined as ξh := Γαh

(Lh), where Lh ∈ ∆S×A is the state-action
distribution at round h, and the operator Γαh

captures the expected post-allocation state distribution
under the mechanism (e.g., by marking winners as inactive). This quantity serves as the input to
the state transition function wh in the MFG dynamics. In the finite-agent setting, we denote the
analogous empirical quantity by ξ̂h, representing the empirical distribution over states immediately
after allocation. We also define the random variables {zih} as zih =⊥ if agent i was not active in
round h (i.e. sih =⊥) or agent i won the the auction in round h, and zih = sih otherwise. With this
definition,

ξ̂h =
1

N

N∑
i=1

ezi
h
∈ ∆S .

Finally, we define the constants used in our convergence analysis as follows. Define

Ks := sup
s,s′,ξ

∥w(s, ξ)− w(s′, ξ)∥1, Kξ := Kw +
1

2
Ks.

E.3.1 Step 1: Expected Deviation of Empirical Distributions

We derive explicit bounds on the expected deviation between the empirical distributions and their
mean field counterparts. In particular, we bound the deviations for the state distribution and the
state-action distribution.

Lemma 10 Let Mmfa = (S,A, H, µ0, {Pmfa
h }H−1

h=0 , {R
mfa
h }H−1

h=0 ) define a BA-MFG. Consider the
corresponding finite-agent Batched Auction model with N agents, Gauc, which is approximated by
Mmfa. Let πππ = {πi

h}h=0,...,H−1, i∈[N ] ∈ ΠN
H denote the joint policy of the population. Denote by

µ̂h ∈ ∆S the empirical state distribution and by L̂h ∈ ∆S×A the empirical state-action distribution
at round h.

Let π ∈ ΠH arbitrary, and define the associated mean field state-action distribution flow Lπ :=
Λmfa(π), with corresponding marginal state distribution µπ

h :=
∑

a L
π
h(·, a). Then, for all h ∈

{0, . . . ,H − 1}, the following bound holds:

E
[
∥Lπ

h − L̂h∥1
]
≤ E

[
∥µπ

h − µ̂h∥1
]
+

1

N

∑
i∈[N ]

∥πh − πi
h∥1 +

√
|A||S|
N

.
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Proof: We decompose the deviation:

E
[
∥Lπ

h − L̂h∥1
∣∣∣{sih}i,h] ≤ ∥Lπ

h − E[L̂h|{sih}i,h]∥1︸ ︷︷ ︸
(□)

+E
[∥∥∥L̂h − E[L̂h|{sih}i,h]

∥∥∥
1

∣∣∣{sih}i,h]︸ ︷︷ ︸
(△)

.

We bound the two terms separately. For (□), define L ∈ ∆S×A as L(s, a) = µ̂h(s)π(a|s) =
1
N

∑
i∈N 1sih=sπ(a|s). We (almost surely) have:

∥Lπ
h − E[L̂h|{sih}i,h]∥1 ≤ ∥Lπ

h − L∥1 + ∥E[L̂h|µ̂h]− L∥1
≤
∑
s∈S

∑
a∈A

|µπ
h(s)π(a|s)− µ̂h(s)π(a|s)|+ ∥E[L̂h|{sih}i,h]− L∥1

≤ ∥µπ
h − µ̂h∥1 +

1

N

∑
i∈[N ]

∑
a∈A

|π(a|sih)− πi
h(a|sih)|

≤ ∥µπ
h − µ̂h∥1 +

1

N

∑
i∈[N ]

∥πh − πi
h∥1.

For the second term (△), by applying Jensen’s inequality, we have:

E
[∥∥∥L̂h − E[L̂h|{sih}i,h]

∥∥∥
1

∣∣∣{sih}i,h] =∑
s∈S

∑
a∈A

E
[∣∣∣L̂h(s, a)− E[L̂h(s, a)|{sih}i,h]

∣∣∣∣∣∣{sih}i,h]
≤
∑
s∈S

∑
a∈A

√
Var
[
L̂h(s, a)

∣∣∣{sih}i,h]
=

1

N

∑
s∈S

∑
a∈A

√ ∑
i∈[N ],sih=s

πi
h(a|s)(1− πi

h(a|s)).

Applying Cauchy-Schwarz’s inequality, we get for any s ∈ S:∑
a∈A

√ ∑
i∈[N ],sih=s

πi
h(a|s)(1− πi

h(a|s)) ≤
√
|A|

∑
a∈A

∑
i∈[N ],sih=s

πi
h(a|s)(1− πi

h(a|s))

≤
√
|A|

∑
a∈A

∑
i∈[N ],sih=s

πi
h(a|s)

≤
√
N |A|µ̂h(s).

By integrating this result into the previous computation and using Cauchy-Schwarz’s inequality, we
get:

E
[∥∥∥L̂h − E[L̂h|{sih}i,h]

∥∥∥
1

∣∣∣{sih}i,h] = 1

N

∑
s∈S

∑
a∈A

√ ∑
i∈[N ],sih=s

πi
h(a|s)(1− πi

h(a|s))

≤
√
|A|√
N

∑
s∈S

√
µ̂h(s) ≤

√
|A||S|
N

∑
s∈S

µ̂h(s) ≤
√

|A||S|
N

.

Combining the upper bounds derived for terms (□) and (△), we obtain the desired result, as
E
[
∥Lπ

h − L̂h∥1
]
= E

[
E
[
∥Lπ

h − L̂h∥1
∣∣∣{sih}i,h]]. □

Lemma 11 (Deviation Between Empirical and Mean Field Population) Let Mmfa =

(S,A, H, µ0, {Pmfa
h }H−1

h=0 , {R
mfa
h }H−1

h=0 ) be a BA-MFG. Let {αh}H−1
h=0 , {wh}H−1

h=0 , {ph}H−1
h=0 ,

and {uh}H−1
h=0 denote the allocation thresholds, transition dynamics, payment, and utility functions,

respectively, from which {Pmfa
h }H−1

h=0 and {Rmfa
h }H−1

h=0 are derived. Assume these functions are
Lipschitz continuous, with respective Lipschitz constants Kα, Kw, Kp, and Ku.

Consider the corresponding finite-agent Batched Auction model with N agents Gauc, which is approxi-
mated by Mmfa. Let πππ = {πi

h}h=0,...,H−1, i∈[N ] ∈ ΠN
H denote the joint policy of the population. For
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each round h, denote by L̂h ∈ ∆S×A the empirical state-action distribution and by µ̂h ∈ ∆S the
corresponding empirical state distribution.

Let π ∈ ΠH be an arbitrary policy, and define the associated mean field state-action distribution
flow Lπ := Λmfa(π), with corresponding marginal state distribution µπ

h :=
∑

a L
π
h(·, a). Then, for

all h ∈ {0, . . . ,H − 1}, it holds that

E
[
∥µπ

h − µ̂h∥1
]
≤ 1− (Kξ(1 +Kα))

h+1

1−Kξ(1 +Kα)

√
|S|√
N

+Kξ
1− (Kξ(1 +Kα))

h

1−Kξ(1 +Kα)

(√
|S|

2
√
N

+
1

N
+ (1 +Kα)

√
|S||A|√
N

)
+
∑
h′<h

(Kξ · (Kα + 1))h−h′
· 1

N

∑
i∈[N ]

∥πh′ − πi
h′∥1,

if Kξ(1 +Kα) ̸= 1, and

E
[
∥µπ

h − µ̂h∥1
]
≤ (h+ 1)

√
|S|√
N

+ h

√
|S||A|√
N

+ hKξ

(√
|S|

2
√
N

+
1

N

)
+
∑
h′<h

1

N

∑
i∈[N ]

∥πh′ − πi
h′∥1,

if Kξ(1 +Kα) = 1.

Proof: Let {sih}h=0,...,H−1,i∈[N ], {aih}h=0,...,H−1,i∈[N ] and {zih}h=0,...,H−1,i∈[N ] as in Defini-
tion 6. We prove the lemma inductively over h. For h = 0 we have µπ

0 = µ0 = E[µ̂0]. Let
Xs :=

∑
i∈[N ] 1{si0=s}, which is by definition Xs a binomial random variable with parame-

ters N and µ0(s). Since it is a sum of independent Bernoulli random variables, its variance is
Var[Xs] = Nµ0(s)(1 − µ0(s)). By using Jensen’s, we can upper bound the expected absolute
deviation for each state s ∈ V

E[|µ0(s)− µ̂0(s)|] ≤
√

Var[µ̂0(s)] =

√
µ0(s)(1− µ0(s))

N
≤
√

µ0(s)

N
By summing over all states s ∈ V and applying Cauchy-Schwarz’s inequality, we get:

E[∥µ0 − µ̂0∥1] =
∑
s∈V

E[|µ0(s)− µ̂0(s)|] ≤
∑
s∈V

√
µ0(s)

N

C.S.
≤
√
|V|√
N

.

Next, for h ≥ 0, we compute an upper bound for the deviation at step h+1. In particular, we analyze
the conditional expectation

E
[
∥µπ

h+1 − µ̂h+1∥1
∣∣{zih}Ni=1

]
≤ E

[
∥µπ

h+1 − E[µ̂h+1|{zih}Ni=1]∥1
∣∣{zih}Ni=1

]︸ ︷︷ ︸
:=(△)

+E
[
∥µ̂h+1 − E[µ̂h+1|{zih}Ni=1]∥1

∣∣{zih}Ni=1

]︸ ︷︷ ︸
:=(□)

,

almost surely, where {zih}Ni=1 are the states of agents after the item allocation in round h as before.
We upper bound the two terms (□) and (△) separately. For (□) we have:

(□) =
∑
s∈S

E
[
|µ̂h+1(s)− E[µ̂h+1(s) |{zih}]|1

∣∣{zih}] ≤∑
s∈S

√
Var
[
µ̂h+1(s)

∣∣{zih}].
For arbitrary s ∈ S, noting that ξ̂h is {zih}-measurable,

Var
[
µ̂h+1(s)

∣∣ {zih}] = 1

N2

∑
s′∈S

Nξ̂h(s
′)w(s|s′, ξ̂h)(1− w(s|s′, ξ̂h)) ≤

1

N

∑
s′∈S

ξ̂h(s
′)w(s|s′, ξ̂h).

By the Cauchy-Schwarz inequality, we have∑
s∈S

√∑
s′∈S

ξ̂h(s′)w(s|s′, ξ̂h)

2

≤

(∑
s∈S

∑
s′∈S

ξ̂h(s
′)w(s|s′, ξ̂h))

)
|S| = |S|.
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Therefore, we (almost surely) have

(□) ≤ 1√
N

∑
s∈S

√∑
s′∈S

ξ̂h(s′)w(s|s′, ξ̂h) ≤
√
|S|√
N

.

For (△) it holds that

(△) = E
[
∥µπ

h+1 − E[µ̂h+1|{zih}]∥1
∣∣{zih}] = ∥µπ

h+1 − E[µ̂h+1|{zih}]∥1

=
∥∥∥Γg(ξ

π
h )− Γg(ξ̂h)

∥∥∥
1
≤
(
Kw +

Ks

2

)
∥ξπh − ξ̂h∥1,

where in the last step we applied Lemma 2.2 from [75]. Merging the upper bounds for (△) and (□)
and taking expectations, we obtain

E
[
∥µπ

h+1 − µ̂h+1∥1
]
≤
√

|S|√
N

+

(
Kw +

Ks

2

)
E
[
∥ξπh − ξ̂h∥1

]
.

Next, we bound the expected deviation between the post-allocation state distribution in the mean
field model and its empirical counterpart in the finite-agent system. Specifically, we consider
E
[
∥ξπh − ξ̂h∥1

]
, where ξπh := Γαh

(Lπ
h) is the mean field post-allocation distribution induced by

policy π, and ξ̂h is the corresponding empirical distribution in the finite-agent auction, computed
from realized allocations rather than via the operator Γαh

. Denote the σ-algebra induced by {sih, aih}i
as Fh for simplicity, then

E
[
∥ξπh − ξ̂h∥1

∣∣Fh

]
≤ E

[
∥ξπh − E[ξ̂h|Fh]∥1

∣∣Fh

]
︸ ︷︷ ︸

:=(♢)

+E
[
∥ξ̂h − E[ξ̂h|Fh]∥1

∣∣Fh

]
︸ ︷︷ ︸

:=(♡)

.

We upper-bound the two terms separately once again. For (♡) we have:

(♡) = E
[
∥ξ̂h − E[ξ̂h|Fh]∥1

∣∣Fh

]
= E

[∑
s∈V

∣∣∣ξ̂h(s)− E[ξ̂h(s)|Fh]
∣∣∣ ∣∣∣∣∣Fh

]
=
∑
s∈V

E
[∣∣∣ξ̂h(s)− E[ξ̂h(s)|Fh]

∣∣∣ ∣∣∣Fh

]
.

We establish an upper bound on the absolute deviation for each state s ∈ V . Let s ∈ V be
arbitrary. Given the empirical state-action distribution L̂h ∈ ∆S×A, the corresponding empirical
state distribution is given by marginalizing over actions: µ̂h =

∑
a∈A L̂h(·, a). By definition of

µ̂h, there are Nµ̂h(s) agents in state s at round h. Denoting these agents as i1, . . . , iNµ̂h(s), we can
express ξ̂h(s) as:

ξ̂h(s) =
1

N

∑
j∈[Nµ̂h(s)]

1
z
ij
h =s

Two key observations can be made regarding these indicator variables:

1. The indicators are negatively correlated due to the structure of the auction. To illustrate this, assume
without loss of generality that the first M agents have not won yet, i.e., sih ̸=⊥ for all i ∈ [M ]. Since
the number of items in each round is fixed, when conditioning on L̂h, we have

⌊
αh(ν

−⊥(L̂h))N
⌋
=

M∑
i=1

1zi
h=⊥,

which implies that the indicator variables 1zi
h=⊥ are negatively correlated. Consequently, their

complements 1zi
h=sih

= 1− 1zi
h=⊥ are also negatively correlated. This implies that any subset of

these indicator variables retains this negative correlation property. Specifically, for every state s, the
random variables 1

z
ij
h =s

, j ∈ [Nµ̂h(s)], are negatively correlated.
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2. Since these are Bernoulli random variables, their variance is at most 1/4.

It follows from the two observations above that the variance of ξ̂h conditioned on Fh can be upper
bounded almost surely as follows:

Var
[
ξ̂h(s)

∣∣∣Fh

]
= Var

 1

N

∑
j∈[Nµ̂h(s)]

1
z
ij
h =s

∣∣∣∣∣∣Fh

 =
1

N2
Var

 ∑
j∈[Nµ̂h(s)]

1
z
ij
h =s

∣∣∣∣∣∣Fh


≤ 1

N2

∑
j∈[Nµ̂h(s)]

Var
[
1
z
ij
h =s

∣∣∣Fh

]
≤ µ̂h(s)

4N
.

Using Jensen’s inequality, we can bound the absolute deviation using the variance:

E
[∣∣∣ξ̂h(s)− E[ξ̂h(s)|Fh]

∣∣∣ ∣∣∣Fh

]
≤
√

Var
[
ξ̂h(s)

∣∣∣Fh

]
≤
√

µ̂h(s)

4N

Using this result, together with Cauchy-Schwarz’s inequality, we can further bound (♡):

(♡) =
∑
s∈V

E
[∣∣∣ξ̂h(s)− E[ξ̂h(s)|Fh]

∣∣∣ ∣∣∣Fh

]
≤
∑
s∈V

√
µ̂h(s)

4N

C.S.
≤
√
|V|

2
√
N

For the term (♢), applying the result of Corollary 3 yields:

(♢) = E
[
∥ξπh − E[ξ̂h|Fh]∥1

∣∣Fh

]
= ∥Γαh

(Lπ
h)− Γαh

(L̂h)∥1 + ∥E[ξ̂h|Fh]− Γαh
(L̂h)∥1

≤ |αh(ν
−⊥(Lπ

h))− αh(ν
−⊥(L̂h))|+ ∥Lπ

h − L̂h∥1 +
1

N

≤ Kα∥(ν−⊥(Lπ
h)− (ν−⊥(L̂h)∥1 + ∥Lπ

h − L̂h∥1 +
1

N

≤ (Kα + 1)∥Lπ
h − L̂h∥1 +

1

N
,

where the second to last step follows from the Lipschitz continuity of αh, while the last step follows
from ∥(ν−⊥(Lπ

h)−(ν−⊥(L̂h)∥1 ≤ ∥Lπ
h−L̂h∥1. Additionally, ∥E[ξ̂h|Fh]−Γαh

(L̂h)∥1 ≤ 1
N comes

from Lemma 7, as |⌊Nαh(ν
−⊥(Lπ

h))⌋ −Nαh(ν
−⊥(Lπ

h))| ≤ 1.

Combining the upper bounds for (♡) and (♢) we get:

E
[
∥ξπh−ξ̂h∥1

]
≤ (Kα + 1)E

[
∥Lπ

h − L̂h∥1
]
+

√
|V|

2
√
N

+
1

N

≤ (Kα + 1)

(
E
[
∥µπ

h − µ̂h∥1
]
+

1

N

∑
i∈[N ]

∥πh − πi
h∥1 +

√
|A| · |V|

N

)
+

√
|V|

2
√
N

+
1

N
,

where the last step follows from Corollary 4.

Combining this result with the bound on E[∥µπ
h+1 − µ̂h+1∥1], we apply induction on h to conclude

the proof of the lemma. □

Corollary 4 (Deviation Between Empirical and Mean Field State-Action Population) Under
the conditions of Lemma 11, for all h ∈ {0, . . . ,H − 1}, it holds that:

E
[
∥Lπ

h − L̂h∥1
]
≤ 1− (Kξ(1 +Kα))

h+1

1−Kξ(1 +Kα)

(√
|S|√
N

+

√
|S||A|√
N

)
+Kξ

1− (Kξ(1 +Kα))
h

1−Kξ(1 +Kα)

(√
|S|

2
√
N

+
1

N

)
+
∑
h′≤h

(Kξ · (Kα + 1))h−h′
· 1

N

∑
i∈[N ]

∥πh′ − πi
h′∥1,
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if Kξ(1 +Kα) ̸= 1, and

E
[
∥Lπ

h − L̂h∥1
]
≤ (h+ 1)

(√
|S|√
N

+

√
|S||A|√
N

)
+ hKξ

(√
|S|

2
√
N

+
1

N

)
+
∑
h′≤h

1

N

∑
i∈[N ]

∥πh′ − πi
h′∥1,

if Kξ(1 +Kα) = 1.

Proof: The upper bound is obtained easily from Lemmas 10 and 11. □

E.3.2 Step 2: Expected Deviation of Winning probabilities

We derive an explicit upper bound on the expected deviation in winning distributions between the
mean field auction and its finite-agent counterpart, under a single-agent deviation from a common
policy.

Lemma 12 (Expected Deviation in Allocation Dynamics) Let Mmfa =

(S,A, H, µ0, {Pmfa
h }H−1

h=0 , {R
mfa
h }H−1

h=0 ) be a BA-MFG. Let {αh}H−1
h=0 , {wh}H−1

h=0 , {ph}H−1
h=0 ,

and {uh}H−1
h=0 denote the allocation thresholds, transition dynamics, payment, and utility functions,

respectively, from which {Pmfa
h }H−1

h=0 and {Rmfa
h }H−1

h=0 are derived. Assume these functions are
Lipschitz continuous, with respective Lipschitz moduli Kα, Kw, Kp, and Ku. Consider the
corresponding finite-agent Batched Auction model with N agents approximated by Mmfa. Let
πππ = {πi

h}h=0,...,H−1, i∈[N ] ∈ ΠN
H denote the joint policy of the population, and let L̂h ∈ ∆S be the

empirical state-action distribution at round h.

Let π ∈ ΠH arbitrary, and define the associated mean field state-action distribution flow Lπ :=
Λmfa(π). Then, for all h ∈ {0, . . . ,H − 1}, the following bounds hold:

E
[∣∣pwin(s

i
h, a

i
h, L

π
h, ν

−⊥(Lπ
h))− pwin(s

i
h, a

i
h, L̂h,

⌊Nν−⊥(L̂h)⌋
N )

∣∣]
≤ CLπ

h,αh
· E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1
· 1

N

and

E
[
∥Pαh

(sih, a
i
h, L

π
h)− P i

N,αh
(sh,ah)∥1

]
≤ 2CLπ

h,αh
E
[
∥Lπ

h − L̂h∥1
]
+ 2

CLπ
h,αh

Kα + 1

1

N
,

where for an arbitrary state-action distribution L ∈ ∆S×A and α : ∆≤1
S → [0, 1], the constant CL,α

is defined as in Lemma 8.

Proof: For the first inequality, we have

E
[∣∣pwin(s

i
h, a

i
h, L

π
h, ν

−⊥(Lπ
h))− pwin(s

i
h, a

i
h, L̂h,

⌊Nν−⊥(L̂h)⌋
N )

∣∣]
≤
∑
s,a,L

P[sih = s, aih = a, L̂h = L]
∣∣∣pwin(s

i
h, a

i
h, L

π
h, ν

−⊥(Lπ
h))− pwin(s

i
h, a

i
h, L̂h,

⌊Nν−⊥(L̂h)⌋
N )

∣∣∣
≤
∑
s,a,L

P[sih = s, aih = a, L̂h = L]CLπ
h,αh

· ∥Lπ
h − L∥1 +

CLπ
h,αh

Kα + 1
· 1

N

≤ CLπ
h,αh

E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1

1

N
,

where in the second-to-last step we used Lemma 8.
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Additionally, for the allocation dynamics PN,αh
, since each state s ∈ V can transition only either to

itself or to the inactive state ⊥, it follows that:

E
[
∥Pαh

(sih, a
i
h, L

π
h)− P i

N,αh
(sh,ah)∥1

]
=
∑
s∈S

E
[
∥Pαh

(s|sih, aih, Lπ
h)− P i

N,αh
(s|sh,ah)∥1

]
= E

[
∥Pαh

(sih|sih, aih, Lπ
h)− P i

N,αh
(sih|sh,ah)∥1

]
+ E

[
∥Pαh

(⊥ |sih, aih, Lπ
h)− P i

N,αh
(⊥ |sh,ah)∥1

]
= 2E

[
∥Pαh

(⊥ |sih, aih, Lπ
h)− P i

N,αh
(⊥ |sh,ah)∥1

]
.

Since the marginal probability of transitioning to the state ⊥ corresponds to the winning probability,
the bound follows directly from the first inequality.

□

E.3.3 Step 3: Exploitability Deviation for BA-MFG

Finally we prove the absolute difference in expected reward due to a single-side policy deviation.

Theorem 4 Let Mmfa = (S,A, H, µ0, {Pmfa
h }H−1

h=0 , {R
mfa
h }H−1

h=0 ) be a Batched Auction Mean Field
Game (BA-MFG). Let {αh}H−1

h=0 , {wh}H−1
h=0 , {ph}H−1

h=0 , and {uh}H−1
h=0 denote the allocation thresh-

olds, transition dynamics, payment, and utility functions, respectively, from which {Pmfa
h }H−1

h=0 and
{Rmfa

h }H−1
h=0 are derived. Assume these functions are Lipschitz continuous, with respective Lipschitz

constants Kα, Kw, Kp, and Ku.

Consider the corresponding finite-agent Batched Auction Gauc with N agents, which is approximated
by Mmfa. Let π ∈ ΠH an arbitrary policy satisfying the no-zero dominance property. Then, for any
policy π ∈ ΠH , τ ≥ 0 it holds∣∣∣∣V τ

mfa(Λmfa(π), π)− Jτ,1
auc (π, π, . . . , π︸ ︷︷ ︸

N−1 times

)

∣∣∣∣ = O
(

1√
N

)

Proof: Define the random variables {sih, aih, zih}i∈[N ], h∈{0,...,H−1}, along with {L̂h}H−1
h=0 ,

{µ̂h}H−1
h=0 , and {ξ̂h}H−1

h=0 , as in the definition of the N -player Batched Auction (see Definition 6).
Here, sih denotes the state of agent i at round h, aih its action, and zih its hidden state following the al-
location step. The random variables L̂h, µ̂h, and ξ̂h represent, respectively, the empirical state-action
distribution, the empirical state distribution, and the empirical post-allocation state distribution at
round h.

For the Mean-Field Batched Auction, define {sh, ah, zh}H−1
h=0 , where sh and ah represent the state

and action of a representative agent at round h, and zh denotes its post-allocation hidden state. These
evolve deterministically according to the mean-field population flows Lπ, µπ, ξπ induced by the
population policy π.

We divide the proof into three steps:

1. We show that for every h ∈ {0, . . . ,H − 1} we have:∥∥P[sh = ·]−P[s1h = ·]
∥∥
1

≤
∑
h′<h

E
[
∥Lπ

h′ − L̂h′∥1
]
(Kw(Kα + 1) + 2CLπ

h′ ,αh′ ) +
2CLπ

h′ ,αh′

(Kα + 1)N

+ hKw

(√
|S|

2
√
N

+
1

N

)
2. We show that for every h ∈ {0, . . . ,H − 1} we have:∣∣E[Rmfa

h (sh, ah, L
π
h)−Rmfa

N,h(s
1
h, a

1
h, L̂h)]

∣∣
≤ (KuKp +BuCLπ

h,αh
)E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1

Bu

N

+Bu∥P[sh = ·]− P[s1h = ·]∥1.
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3. In the last step we combine the results of the previous steps to prove the man claim of the
theorem.

Step 1: We prove the inequality by induction on h. For the base case h = 0, we have ∥P[s0 =
·]− P[s10 = ·]∥1 = 0, since both distributions are equal to the initial distribution µ0. Now, assuming
the bound holds for some h ≥ 0, we show that it also holds for round h+ 1.

∥P[sh+1 = ·]− P[s1h+1 = ·]∥1 =

∥∥∥∥∥∥
∑
z,ξ

P[z1h = z, ξ̂h = ξ]wh(z, ξ)−
∑
z

P[zh = z]wh(z, ξ
π
h )

∥∥∥∥∥∥
1

.

By adding and subtracting
∑

z,ξ P[z1h = z, ξ̂h = ξ]wh(z, ξ
π
h ) =

∑
z P[z1h = z]wh(z, ξ

π
h ), and

applying triangular inequality, we get

∥P[sh+1 = ·]− P[s1h+1 = ·]∥1 ≤

∥∥∥∥∥∑
z,ξ

P[z1h = z, ξ̂h = ξ]
(
wh(z, ξ)− wh(z, ξ

π
h )
)∥∥∥∥∥

1

+

∥∥∥∥∥∑
z

(P[zh = z]− P[z1h = z])wh(z, ξ
π
h )

∥∥∥∥∥
1

≤ KwE[∥ξπh − ξ̂h∥1] + ∥P[zh = ·]− P[z1h = ·]∥1.

The term E[∥ξπh − ξ̂h∥1], using the same derivation as in the inductive step of Lemma 11, can be
further upper bounded as

E
[
∥ξπh − ξ̂h∥1

]
≤ (Kα + 1)E

[
∥Lπ

h − L̂h∥1
]
+

√
|V|

2
√
N

+
1

N
.

Finally applying a similar reasoning we can upper bound ∥P[zh = ·]− P[z1h = ·]∥1.

∥P[zh = ·]− P[z1h = ·]∥1

=

∥∥∥∥∥∑
s,a

P[sh = s,ah = a]P 1
N,αh

(s,a)−
∑
s,a

P[sh = s, ah = a]Pαh
(s, a, Lπ

h)

∥∥∥∥∥
1

.

By adding and subtracting
∑

s,a P[sh = s,ah = a]Pαh
(s1, a1, Lπ

h) =
∑

s,a P[s1h = s, a1h =

a]Pαh
(s, a, Lπ

h), and applying triangular inequality, we get

∥P[zh = ·]− P[z1h = ·]∥1 ≤
∑
s,a

P[sh = s,ah = a]∥P 1
N,αh

(s,a)− Pαh
(s1, a1, Lπ

h)∥1

+
∑
s,a

∥Pαh
(s, a, Lπ

h)∥1|P[sh = s, ah = a]− P[s1h = s, a1h = a]|

≤ E
[
∥P 1

N,αh
(sh,ah)− Pαh

(s1h, a
1
h, L

π
h)∥1

]
+
∑
s

|P[sh = s]− P[s1h = s]|
∑
a

πh(a|s)∥Pαh
(s, a, Lπ

h)∥1.

Applying Lemma 12 it follows

∥P[zh = ·]− P[z1h = ·]∥1

≤ 2CLπ
h,αh

E
[
∥Lπ

h − L̂h∥1
]
+ 2

CLπ
h,αh

Kα + 1

1

N
+ ∥P[sh = ·]− P[s1h = ·]∥1.

By combining the two bounds, we obtain

∥P[sh+1 = ·]− P[s1h+1 = ·]∥1 ≤ Kw

(
(Kα + 1)E

[
∥Lπ

h − L̂h∥1
]
+

√
|V|

2
√
N

+
1

N

)
+ 2CLπ

h,αh
E
[
∥Lπ

h − L̂h∥1
]
+

2CLπ
h,αh

(Kα + 1)N

+ ∥P[sh = ·]− P[s1h = ·]∥1.
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Applying the induction hypothesis completes the proof for round h+ 1.

Step 2: We prove the inequality by using the result obtained in step 1. Let h ∈ {0, . . . ,H − 1}
arbitrary, then∣∣E[Rmfa

h (sh, ah, L
π
h)−Rmfa

N,h(s
1
h, a

1
h, L̂h)]

∣∣
≤
∣∣E[Rmfa

h (sh, ah, L
π
h)−Rmfa

h (s1h, a
1
h, L

π
h)]
∣∣︸ ︷︷ ︸

(□)

+
∣∣E[Rmfa

h (s1h, a
1
h, L

π
h)−Rmfa

N,h(s
1
h, a

1
h, L̂h)]

∣∣︸ ︷︷ ︸
(△)

.

The first term (□) can be upper bounded by

(□) =
∣∣∣∑

s

(P[sh = s]− P[s1h = s])
∑
a

πa(a|s)Rmfa
h (s, a, Lπ

h)
∣∣∣ ≤ Bu∥P[sh = ·]− P[s1h = ·]∥1.

For the second term (△) we have:

(△) ≤
∑
s,a,L

P[s1h = s, a1h = a, L̂ = L]
∣∣Rmfa

h (s, a, Lπ
h)−Rmfa

N,h(s, a, L)
∣∣

≤
∑
s,a,L

P[s1h = s, a1h = a, L̂ = L]
∣∣uh(s, ph(a, ν

−⊥(Lπ
h)))− uh(s, ph(a, ν

−⊥(L)))
∣∣

+BuE
[∣∣pwin(s

1
h, a

1
h, L

π
h, ν

−⊥(Lπ
h))− pwin(s

1
h, a

1
h, L̂h,

⌊Nν−⊥(L̂h)⌋
N )

∣∣]
≤ KuKp

∑
s,a,L

P[s1h = s, a1h = a, L̂ = L]∥Lπ
h − L∥1

+BuCLπ
h,αh

E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1

Bu

N

≤ (KuKp +BuCLπ
h,αh

)E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1

Bu

N
,

where in the second to last step we used the Lipschitz continuity of u ◦ p and Lemma 12. Combining
both results we get:∣∣E[Rmfa

h (sh, ah, L
π
h)−Rmfa

N,h(s
1
h, a

1
h, L̂h)]

∣∣ ≤ (KuKp +BuCLπ
h,αh

)E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1

Bu

N

+Bu∥P[sh = ·]− P[s1h = ·]∥1.
Step 3: We now combine the results from the previous two steps to establish the final bound stated in
the theorem.∣∣∣∣V τ

mfa(Λmfa(π), π)− Jτ,1
auc (π, π, . . . , π)

∣∣∣∣
=

∣∣∣∣∣E
[
H−1∑
h=0

Rmfa
h (sh, ah, L

π
h) + τH(πh(sh))−Rmfa

N,h(s
1
h, a

1
h, L̂h)− τH(πh(s

1
h))

]∣∣∣∣∣
≤

H−1∑
h=0

∣∣∣E [Rmfa
h (sh, ah, L

π
h) + τH(πh(sh))−Rmfa

N,h(s
1
h, a

1
h, L̂h)− τH(πh(s

1
h))
]∣∣∣ .

We proceed by bounding each term individually for every round h. Let h ∈ {0, · · ·H − 1} arbitrary,
then ∣∣∣E [Rmfa

h (sh, ah, L
π
h) + τH(πh(sh))−Rmfa

N,h(s
1
h, a

1
h, L̂h)− τH(πh(s

1
h))
]∣∣∣

≤
∣∣∣E [Rmfa

h (sh, ah, L
π
h)−Rmfa

N,h(s
1
h, a

1
h, L̂h)

]∣∣∣+ τ
∣∣E [H(πh(sh))−H(πh(s

1
h))
]∣∣ .

The first term is bounded using the result from Step 2, while the second term can be handled as
follows: ∣∣E [H(πh(sh))−H(πh(s

1
h))
]∣∣ ≤∑

s

|P[sh = s]− P[s1h = s]H(πh(s))|

≤ ∥P[sh = ·]− P[s1h = ·]∥1 log(|A|).
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Therefore the (entropy regularized) absolute difference in rewards at round h can be upper bounded
by

∣∣∣∣E[Rmfa
h (sh, ah, L

π
h)+τH(πh(sh))−Rmfa

N,h(s
1
h, a

1
h, L̂h)− τH(πh(s

1
h))

]∣∣∣∣
≤ (KuKp +BuCLπ

h,αh
)E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1

Bu

N

+ (Bu + τ log(|A|))∥P[sh = ·]− P[s1h = ·]∥1.

By applying the bound on |P[sh = ·]− P[s1h = ·]|1 derived in Step 1, and summing the per-round
deviations over all h, it follows:

∣∣∣∣V τ
mfa(Λmfa(π), π)− Jτ,1

auc (π, π, . . . , π︸ ︷︷ ︸
N−1 times

)

∣∣∣∣
≤

H−1∑
h=0

(KuKp +BuCLπ
h,αh

)E
[
∥Lπ

h − L̂h∥1
]
+

CLπ
h,αh

Kα + 1

Bu

N

+ (Bu + τ log(|A|))
H−1∑
h=0

∑
h′<h

E
[
∥Lπ

h′ − L̂h′∥1
]
(Kw(Kα + 1) + 2CLπ

h′ ,αh′ ) +
2CLπ

h′ ,αh′

(Kα + 1)N

+ (Bu + τ log(|A|))H(H − 1)

2
Kw

(√
|S|

2
√
N

+
1

N

)

In particular, Corollary 4 implies that the total (entropy-regularized) reward difference is of order
O( 1√

N
). □

Conclusion and Statement of Result. Let Mmfa be a BA-MFG with Lipschitz-continuous
{uh}H−1

h=0 , {wh}H−1
h=0 , {αh}H−1

h=0 , {ph}
H−1
h=0 Let πδ ∈ ΠH be a policy that satisfy the no zero-

dominance property. Let further assume πδ is a δ−MFG-NE, namely

δ ≥ max
π′∈ΠH

V τ
mfa(Λmfa(πδ), π

′)− V τ
mfa(Λmfa(πδ), πδ).

Then, for πππ = (πδ, . . . , πδ), we have:

max
π′∈ΠH

Jτ,i
auc(π

′,πππ−i)− Jτ,i
auc(πππ)

= max
π′∈ΠH

Jτ,i
auc(π

′,πππ−i)− Jτ,i
auc(πππ)

+ V τ
mfa(Λmfa(πδ), π

′)− V τ
mfa(Λmfa(πδ), π

′) + V τ
mfa(Λmfa(πδ), πδ)− V τ

mfa(Λmfa(πδ), πδ)

≤ max
π′∈ΠH

V τ
mfa(Λmfa(πδ), π

′)− V τ
mfa(Λmfa(πδ), πδ)

+
∣∣V τ

mfa(Λmfa(πδ), π
′)− Jτ,i

auc(π
′,πππ−i)

∣∣+ ∣∣V τ
mfa(Λmfa(πδ), πδ)− Jτ,i

auc(πππ)
∣∣

≤ δ +
C1√
N

+
C2

N
= δ +O

(
1√
N

)
.
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In case Kξ(Kα + 1) ̸= 1, the constants C1 and C2 are given by

C1 = 2

H−1∑
h=0

(KuKp +BuCL
πδ
h ,αh

)
1− (Kξ(1 +Kα))

h+1

1−Kξ(1 +Kα)

(√
|S|+

√
|S||A|

)
+

H−1∑
h=0

(KuKp +BuCL
πδ
h ,αh

)Kξ
1− (Kξ(1 +Kα))

h

1−Kξ(1 +Kα)

√
|S|

+

H−1∑
h=0

∑
h′<h

(
Kw(Kα + 1) + 2CL

πδ
h′ ,αh′

)
·

[
2(Bu + τ log |A|)1− (Kξ(1 +Kα))

h′+1

1−Kξ(1 +Kα)

(√
|S|+

√
|S||A|

)
+ (Bu + τ log |A|)Kξ

1− (Kξ(1 +Kα))
h′

1−Kξ(1 +Kα)

√
|S|

]

+ (Bu + τ log(|A|))H(H − 1)
Kw

√
|S|

2
,

C2 = 2

H−1∑
h=0

(KuKp +BuCL
πδ
h ,αh

)

(
1− (Kξ(1 +Kα))

h+1

1− (Kξ(1 +Kα))
+Kξ

1− (Kξ(1 +Kα))
h

1− (Kξ(1 +Kα))

)

+ 2

H−1∑
h=0

Bu

CL
πδ
h ,αh

Kα + 1

+ 2(Bu + τ log |A|)
H−1∑
h=0

∑
h′<h

(Kw(Kα + 1) + 2CL
πδ
h′ ,αh′ )

1− (Kξ(1 +Kα))
h′+1

1− (Kξ(1 +Kα))

+ 2(Bu + τ log |A|)
H−1∑
h=0

∑
h′<h

(Kw(Kα + 1) + 2CL
πδ
h′ ,αh′ )Kξ

1− (Kξ(1 +Kα))
h′

1− (Kξ(1 +Kα))

+ 2(Bu + τ log |A|)
H−1∑
h=0

∑
h′<h

2CL
πδ
h′ ,αh′

Kα + 1

+ (Bu + τ log |A|)KwH(H − 1).

In case Kξ(Kα + 1) = 1, the constants C1 and C2 are given by

C1 = 2

H−1∑
h=0

(h+ 1) · (KuKp +BuCL
πδ
h ,αh

)
(√

|S|+
√
|S||A|

)
+

H−1∑
h=0

h · (KuKp +BuCL
πδ
h ,αh

)Kξ

√
|S|

+ 2(Bu + τ log |A|)
H−1∑
h=0

∑
h′<h

(h′ + 1) ·
(
Kw(Kα + 1) + 2CL

πδ
h′ ,αh′

)(√
|S|+

√
|S||A|

)

+ (Bu + τ log |A|)
H−1∑
h=0

∑
h′<h

h′ ·
(
Kw(Kα + 1) + 2CL

πδ
h′ ,αh′

)
Kξ

√
|S|

+ (Bu + τ log(|A|))H(H − 1)
Kw

√
|S|

2
,
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C2 = 2

H−1∑
h=0

(KuKp +BuCL
πδ
h ,αh

)(h+ 1 +Kξh) +Bu

CL
πδ
h ,αh

Kα + 1

+ 2(Bu + τ log(|A|))
H−1∑
h=0

∑
h′<h

(Kw(Kα + 1) + 2CL
πδ
h′ ,αh′ )(h

′ + 1 +Kξh
′)

+ 2(Bu + τ log(|A|))
H−1∑
h=0

∑
h′<h

2CL
πδ
h′ ,αh′

Kα + 1

+ (Bu + τ log(|A|))KwH(H − 1).

Remark 4 For policies with full support, the Lipschitz constant associated with the winning prob-
ability is of order 1

ϵ , as discussed in Remark 3. Consequently, the constants C1 and C2 scale as

O( 1ϵH
2 · 1−(Kξ(Kα+1))H

1−Kξ(Kα+1) ) when Kξ(Kα + 1) ̸= 1, and as O( 1ϵH
3) when Kξ(Kα + 1) = 1.

Explanation of Constants. In the above expression, the constants represent key components of the
BA-MFG dynamics:

• Bu and Ku are the bound and Lipschitz constant of the utility function u respectively.
• Bp and Kp are the bound and Lipschitz constant of the payment function p respectively.
• Kw denotes the Lipschitz constant of the transition function w.
• Kα is the Lipschitz constant of the allocation threshold function α.
• Ks = sups,s′,ξ ∥w(s, ξ)− w(s′, ξ)∥1.

• Kξ = Kw + 1
2Ks.

• CL,α is the Lipschitz constant of the winning probability function evaluated at the distribu-
tion L, assuming L satisfies the no zero-dominance property. For its precise definition, see
Lemma 8.

• τ is the entropy regularization parameter.

E.4 Proof of Theorem 2, part 2 (Approximation in Objective)

We show that, under Lipschitz conditions, the objective computed under the mean field approximation
closely matches its expected value under a finite population of agents.

Theorem 5 (Convergence of the Mechanism Objective) Let g : ∆H
S×A → R be a Lipschitz-

continuous objective defined over the class of Batched Auction Mean Field Games (BA-MFGs).
Let Mmfa be a BA-MFG with Lipschitz-continuous {uh}H−1

h=0 , {wh}H−1
h=0 , {αh}H−1

h=0 , {ph}
H−1
h=0 . Let

πππ = (π, . . . , π) be the joint population policy for some π ∈ ΠH . Then:

|g(Λmfa(π))−G(πππ)| = O
(

1√
N

)
,

where G(πππ) = E[g({L̂h}H−1
h=0 )|πππ].

Proof: We use a decomposition over the support of L̂ and apply the triangle inequality:

|g(Λmfa(π))−G(πππ)| =

∣∣∣∣∣∑
L

P[L̂ = L|πππ] (g(Λmfa(π))− g(L))

∣∣∣∣∣
≤
∑
L

P[L̂ = L|πππ] |g(Λmfa(π))− g(L)|

≤
∑
L

P[L̂ = L|πππ]Kg∥Λmfa(π)−L∥1

= KgE
[
∥Λmfa(π)− L̂∥1

]
,

where Kg is the Lipschitz constant of g. The result follows by applying the bound from Corollary 4.
□
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Lemma 13 (Lipschitz Continuity of Expected Revenue) Let grev denote the expected revenue ob-
jective. Let Mmfa be a BA-MFG with Lipschitz-continuous payment functions {ph}H−1

h=0 and allo-
cation functions {αh}H−1

h=0 . Let L = {Lh}H−1
h=0 and L′ = {L′

h}
H−1
h=0 be two arbitrary state-action

distribution trajectories over H rounds. Then,

|grev(L)− grev(L
′)| ≤ (Bp(2 +Kα) +Kp)∥L−L′∥1,

where Bp is a uniform bound on the absolute value of the payment functions, Kp is their Lipschitz
constant, and Kα is the Lipschitz constant of the allocation threshold functions.

Proof: The expected revenue, for L = {Lh}H−1
h=0 , can be rewritten using the operator Ξ

grev(L) :=

H−1∑
h=0

∑
s,a

(
Lh(s, a)− Ξαh(ν−⊥(Lh))(Lh)(s, a)

)
ph
(
a, ν−⊥(Lh)

)
.

To simplify notation, we define
Ξα(L) := L− Ξα(L),

representing the residual (unallocated) mass at each state-action pair. Applying the triangle inequality:

|grev(L)− grev(L
′)| ≤

H−1∑
h=0

∣∣∣∣∣∑
s,a

(
Ξαh(ν−⊥(Lh))(Lh)(s, a)

)
ph(a, ν

−⊥(Lh))

−
(
Ξαh(ν−⊥(L′

h))
(L′

h)(s, a)
)
ph(a, ν

−⊥(L′
h))

∣∣∣∣∣
≤

H−1∑
h=0

∑
s,a

∣∣∣Ξαh(ν−⊥(Lh))(Lh)(s, a)− Ξαh(ν−⊥(L′
h))

(L′
h)(s, a)

∣∣∣ ∣∣ph(a, ν−⊥(Lh))
∣∣

+

H−1∑
h=0

∑
s,a

Ξαh(ν−⊥(L′
h))

(L′
h)(s, a)

∣∣ph(a, ν−⊥(Lh))− ph(a, ν
−⊥(L′

h))
∣∣ .

Using the boundedness of the payment function p and the Lipschitz continuity of the allocation
operator Ξα, the first term can be bounded by Bp(2 + Kα)

∑H−1
h=0 ∥Lh − L′

h∥1. For the second
term, the Lipschitz property of p implies a bound of

∑H−1
h=0 Kp∥Lh − L′

h∥11. Combining these, we
conclude that the revenue objective grev is Lipschitz continuous with constant Bp(2 +Kα) +Kp,
and satisfies the bound

|grev(L)− grev(L
′)| ≤ (Bp(2 +Kα) +Kp)∥L−L′∥1

□

Corollary 5 (Convergence of Expected Revenue) Let grev the expected revenue objective. Let
Mmfa be a BA-MFG with Lipschitz-continuous {uh}H−1

h=0 , {wh}H−1
h=0 , {αh}H−1

h=0 , {ph}
H−1
h=0 . Let

πππ = (π, . . . , π) be the joint population policy for some π ∈ ΠH . Then:

|grev(Λmfa(πππ))−Grev(πππ)| = O
(

1√
N

)
.

Proof: The result follows by combining Theorem 5 and lemma 13. □

E.5 Proof of Lemma 3

In this section, we prove that the (entropy regularized) q-functions are Lipschitz continuous with
respect to the population policy, assuming full support. We begin by showing that the population
flow is Lipschitz in the policy. Next, we establish that both the transition dynamics and the reward
function are Lipschitz continuous with respect to the population distribution. Finally, we combine
these results to derive a bound on the Lipschitz constant of the (entropy regularized) q-functions.
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Lemma 14 (Lipschitz Continuity of Population Operator) Let Mmfa =

(S,A, H, µ0, {Pmfa
h }H−1

h=0 , {R
mfa
h }H−1

h=0 ) be a Batched Auction Mean Field Game (BA-MFG).
Let {αh}H−1

h=0 , {wh}H−1
h=0 , {ph}H−1

h=0 , and {uh}H−1
h=0 denote the allocation thresholds, transition

dynamics, payment, and utility functions, respectively, from which {Pmfa
h }H−1

h=0 and {Rmfa
h }H−1

h=0
are derived. Assume these functions are Lipschitz continuous. Consider two arbitrary policies
π, π′ ∈ ΠH , then

∥Λmfa(π)− Λmfa(π
′)∥1 ≤

∑
h′≤h

(Kξ(1 +Kα))
h−h′

∥πh′ − π′
h′∥1

Proof: We prove the bound inductively. Let Lπ := Λmfa(π) and Lπ′
:= Λmfa(π

′) denote the
population flows induced by policies π and π′, respectively. Similarly, let µπ and µπ′

denote the
corresponding marginal state distributions.

For h = 0 we have µπ
0 = µπ′

0 = µ0. Therefore by Lemma 9 we have ∥Lπ
0 − Lπ′

0 ∥1 ≤ ∥π0 − π′
0∥1.

For h+ 1 > 0 by applying the result of Lemma 9 we have

∥Lπ
h+1 − Lπ′

h+1∥1 ≤ ∥πh+1 − π′
h+1∥1 + ∥µπ

h+1 − µπ′

h+1∥1.
We then bound the variational difference in state distribution:

∥µπ
h+1 − µπ′

h+1∥1 = ∥Γw(ξ
π
h )− Γw(ξ

π′

h )∥1 ≤ Kξ∥ξπh − ξπ
′

h ∥1
= Kξ∥Γαh

(Lπ
h)− Γαh

(Lπ′

h )∥1 ≤ Kξ(1 +Kα)∥Lπ
h − Lπ′

h ∥1,
where in the last step we used Corollary 3. By induction over h the claim follows. □

Lemma 15 (Lipschitz Continuity of Transitions and Rewards under Full-Support Policies)
Let Mmfa be a BA-MFG with utility functions {uh}H−1

h=0 , transition dynamics {wh}H−1
h=0 , payment

functions {ph}H−1
h=0 , and allocation thresholds {αh}H−1

h=0 , all of which are Lipschitz-continuous with
constants Ku, Kw, Kp, and Kα, respectively. Consider two policies π, π′ ∈ ΠH with full support;
that is, for all s ∈ S , a ∈ A, and h ∈ 0, . . . ,H − 1, we have πh(a|s) > ϵ and π′

h(a|s) > ϵ for some
constant ϵ > 0. Then∣∣Rmfa

h (s, a, Lπ
h)−Rmfa

h (s, a, Lπ′

h )
∣∣

≤
(

Bu

(1− αmax)ϵ
+KuKp

) ∑
h′≤h

(Kξ(1 +Kα))
h−h′

∥πh′ − π′
h′∥1,

and ∥∥Pmfa
h (s, a, Lπ

h)−Pmfa
h (s, a, Lπ′

h )
∥∥
1

≤
(

2

(1− αmax)ϵ
+Kα + 1

) ∑
h′≤h

(Kξ(1 +Kα))
h−h′

∥πh′ − π′
h′∥1.

Proof: Let π, π′ ∈ ΠH be two arbitrary policies with full support Let Lπ
h = Λmfa(π) and Lπ′

h =
Λmfa(π

′). We then bound separately the rewards and the transition probabilities.

We first bound bound the absolute difference in rewards, let s ∈ S, a ∈ A arbitrary, assume s ̸=⊥,
else the claim holds trivially, then, by applying triangular inequality we have:∣∣∣Rmfa

h (s, a, Lπ′

h )−Rmfa
h (s, a, Lπ′

h )
∣∣∣

≤ Bu

∣∣∣pwin(s, a, L
π
h, αh(ν

−⊥(Lπ
h)))− pwin(s, a, L

π′

h , αh(ν
−⊥(Lπ′

h )))
∣∣∣

+
∣∣∣uh(s, ph(a, ν

−⊥(Lπ
h)))− uh(s, ph(a, ν

−⊥(Lπ′

h )))
∣∣∣

≤ Bu

(1− αmax)ϵ
∥Lπ

h − Lπ′

h ∥1 +KuKp∥Lπ
h − Lπ′

h ∥1,

where the last step follows by Remark 3 and the Lipschitz continuity of p and u. By Lemma 14 the
bound for the rewards follows.
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Similarly for the transition probabilities we have:

∥Pmfa
h (s, a, Lπ

h)− Pmfa
h (s, a, Lπ′

h )∥1

≤
∑
z

∥wh(z|Γαh
(Lπ′

h ))∥1
∣∣∣Pαh

(z|s, a, Lπ′

h )− Pαh
(z|s, a, Lπ

h)
∣∣∣

+
∑
z

Pαh
(z|s, a, Lπ

h)∥wh(z,Γαh
(Lπ

h))− wh(z,Γαh
(Lπ′

h ))∥1

≤ ∥Pαh
(s, a, Lπ′

h )− Pαh
(s, a, Lπ

h)∥1 +Kw∥Γαh
(Lπ

h)− Γαh
(Lπ′

h )∥1.
From Remark 3 and Corollary 3 it follows

∥Pmfa
h (s, a, Lπ

h)− Pmfa
h (s, a, Lπ′

h )∥1 ≤
(

2

(1− αmax)ϵ
+Kα + 1

)
∥Lπ

h − Lπ′

h ∥1,

by Lemma 14 the bound follows.

□

Lemma 16 (Lipschitz Continuity of Regularized Value Functions) Let Mmfa be a BA-MFG with
utility functions {uh}H−1

h=0 , transition dynamics {wh}H−1
h=0 , payment functions {ph}H−1

h=0 , and alloca-
tion thresholds {αh}H−1

h=0 , all of which are Lipschitz-continuous with constants Ku, Kw, Kp, and
Kα, respectively.

Let π, π′ ∈ ΠH be two policies with full support, i.e., for some ϵ > 0, πh(a|s), π′
h(a|s) > ϵ, for all

h, s, a. Let V τ
h (s|Lπ, π) and V τ

h (s|Lπ′
, π′) denote the entropy-regularized value functions under

policies π and π′, defined recursively as

V τ
h (s|Lπ, π) := τH(πh(s))+

∑
a∈A

πh(a|s)

[
Rmfa

h (s, a, Lπ
h) +

∑
s′

Pmfa
h (s′|s, a, Lπ

h)V
τ
h+1(s

′|Lπ, π)

]
,

where {Lπ
h}

H−1
h=0 := Λmfa(π) is the population distribution induced by policy π.

Then, there exists a constant C > 0 such that for all h and all s ∈ S, the following bound holds:∣∣∣V τ
h (s|Lπ, π)− V τ

h (s|Lπ′
, π′)

∣∣∣ ≤ C∥π − π′∥1,

where C = O( 1ϵH
2) when Kξ(1+Kα) = 1, and C = O( 1ϵH

1−(Kξ(1+Kα))H

1−Kξ(1+Kα) ) when Kξ(1+Kα) ̸=
1.

Proof: We prove a stronger inductive bound that implies the result of the lemma. To simplify
notation, we introduce the following constants:

• β := Kξ(1 +Kα),
• B := Bu + τ log(|A|),
• g0 := Bu

(1−αmax)ϵ
+KuKp,

• g1 := (Bu + τ log(|A|))
(

2
(1−αmax)ϵ

+Kα + 1
)

.

We also define the following h-dependent quantities, which will be used in the inductive argument:

• Ah := τ(log( 1ϵ ) + 1) + (H − h)B,
• Gh := g0 + g1(H − h− 1),
• ∆h := ∥πh − π′

h∥1.

We proceed by backward induction on the round h, and show that the following bound holds:∣∣∣V τ
h (s | Lπ, π)− V τ

h (s | Lπ′
, π′)

∣∣∣ ≤ H−1∑
h′=h

Ah′∆h′ +

H−1∑
h′=h

Gh′

∑
h′′≤h′

βh′−h′′
∆h′′ .
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For h = H by definition, the value function at round H is zero for all states, i.e.,

V τ
H(s|Lπ, π) = V τ

H(s|Lπ, π) = 0

Assume that for value function at time h+ 1, V τ
h+1 the upper bound holds. We now prove the same

for V τ
h . The regularized value function is:

V τ
h (s|Lπ, π) = τH(πh(s)) +

∑
a

πh(a|s)qτh(s, a|Lπ, π).

Then,

|V τ
h (s|Lπ, π)− V τ

h (s|Lπ′
, π′)|

≤ τ |H(πh(s))−H(π′
h(s))|︸ ︷︷ ︸

:=(□)

+

∣∣∣∣∣∑
a

πh(a|s)qτh(s, a|Lπ, π)−
∑
a

π′
h(a|s)qτh(s, a|Lπ′

, π′)

∣∣∣∣∣︸ ︷︷ ︸
:=(△)

.

For the entropy term (□) we have

τ |H(πh(s))−H(π′
h(s))| ≤ τ

(
log( 1ϵ ) + 1

)
∥πh(s)− π′

h(s)∥1

By applying triangular inequality we can upper bound (△) as follows:

(△) ≤
∑
a

|πh(a|s)− π′
h(a|s)|qτh(s, a|Lπ, π)|+

∑
a

π′
h(a|s)|qτh(s, a|Lπ, π)− qτh(s, a|Lπ′

, π′)|

The first term can be bounded as a function of H and the maximal absolute utility Bu:∑
a

|π(a|s)− π′(a|s)|qτh(s, a|Lπ, π)| ≤ (H − h) (Bu + τ log(|A|)) ∥πh(s)− π′
h(s)∥1,

where the term τ log(|A|) comes from the maximal additional reward from the entropy regularizer.s

For the second term we bound the absolute difference in q functions:

|qτh(s, a|Lπ, π)−qτh(s, a|Lπ′
, π′)|

≤
∣∣Rmfa

h (s, a, Lπ
h)−Rmfa

h (s, a, Lπ′

h )
∣∣

+
∑
s′

|Pmfa
h (s′|s, a, Lπ

h)− Pmfa
h (s′|s, a, Lπ′

h )||V τ
h+1(s, a|Lπ, π)|

+
∑
s

Pmfa
h (s′|s, a, Lπ′

h )|V τ
h+1(s

′|Lπ, π)− V τ
h+1(s

′|Lπ′
, π′)|

≤
∣∣Rmfa

h (s, a, Lπ
h)−Rmfa

h (s, a, Lπ′

h )
∣∣

+ (H − h− 1)(Bu + τ log(|A|))∥Pmfa
h (s, a, Lπ

h)− Pmfa
h (s, a, Lπ′

h )∥1
max

s
|V τ

h+1(s
′|Lπ, π)− V τ

h+1(s
′|Lπ′

, π′)|.

By combining all intermediate bounds and applying Lemma 15 we have∣∣∣V τ
h (s | Lπ, π)− V τ

h (s | Lπ′
, π′)

∣∣∣ ≤ Ah∆h +Gh

∑
h′≤h

βh−h′
∆′

h

+max
s

|V τ
h+1(s

′|Lπ, π)− V τ
h+1(s

′|Lπ′
, π′)|,

by induction the bound holds. As next we compute the global Lipschitz constant.∣∣∣V τ
h (s | Lπ, π)− V τ

h (s | Lπ′
, π′)

∣∣∣ ≤ H−1∑
h′=h

Ah′∆h′︸ ︷︷ ︸
(□)

+

H−1∑
h′=h

Gh′

∑
h′′≤h′

βh′−h′′
∆h′′

︸ ︷︷ ︸
(△)

.
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For (□) we have:

H−1∑
h′=h

Ah′∆h′ ≤
H−1∑
h=0

Ah∆h ≤ A0

H−1∑
h=0

∆h

For (△) we have:

H−1∑
h′=h

Gh′

∑
h′′≤h′

βh′−h′′
∆h′′ ≤

H−1∑
h=0

Gh

∑
h′≤h

βh−h′
∆h′

=

H−1∑
h′=0

∆h′

H−1−h′∑
j=0

Gh′+jβ
j

=

H−1∑
h′=0

∆h′

Gh′

H−1−h′∑
j=0

βj − g1

H−1−h′∑
j=0

jβj


≤

H−1∑
h′=0

∆h′Gh′

H−1−h′∑
j=0

βj

Using the definition of the geometric sum, and observing that the constants Gh′ as well as the nested
geometric sum decrease as h′ increases, we can further simplify the bound by pulling out the leading
terms. For β ̸= 1:

H−1∑
h′=0

∆h′Gh′

H−1−h′∑
j=0

βj ≤ 1− βH

1− β
(g0 + g1(H − 1))

H−1∑
h=0

∆h,

while for β = 1:

H−1∑
h′=0

∆h′Gh′

H−1−h′∑
j=0

βj ≤ H(g0 + g1(H − 1))

H−1∑
h=0

∆h.

Combining the results (for β ̸= 1) of (□) and (△) we have:∣∣∣V τ
h (s | Lπ, π)− V τ

h (s | Lπ′
, π′)

∣∣∣ (τ(log( 1ϵ ) + 1) +HB +
1− βH

1− β
(g0 + g1(H − 1)))

H−1∑
h=0

∆h.

For β = 1 the geometric term is replaced by H . By the definitions of B, g0 and g1 the claim follows.

□

F Experiment Details

Implementation Details. The experiments were implemented in JAX and PyTorch, the code is
provided in the supplementary material. We implement the adjoint method in JAX. For the PyTorch
implementation, some code was adapted from [31]. All error bars in experiments are one standard
deviation away from the mean.

Hardware and Compute Time. We run our experiments on a single NVIDIA H100 GPU with an
AMD EPYC 16-core CPU. One run of AMID for 1000 iterations takes 6 minutes, apart from the
experiment (A8) described below with a long time horizon H = 100, which takes 20 minutes for
1000 iterations. The beach bar process experiments take roughly 3 minutes for 1000 iterations.

Parameterizing θ in Mbb. For the beach bar process, we parameterize the per state payments
as θs = pmax sigmoid(ξs), where pmax is the maximum per state payment and the unconstrained
parameters ξ ∈ RS are learned via AMID.
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Parameterizing θ in Mmfa. We parameterize pθh and sold goods αθ
h as residual neural networks

sharing a base. The base network, fθ
base, has din = H + |A|+ 1 inputs consisting of one-hot encoded

time vector eh, |A|-dimensional vector of bid distribution ν−⊥, and remaining goods at round h

denoted rh, (given by αmax −
∑h−1

h′=0 αh′ ). For the input vector xin ∈ Rdin , the base residual network
is defined as

xin =

 eh

ν−⊥

rh

 ∈ RH+d+1,

h(1) = ReLU
(
W (1) xin + b(1)

)
,

ybase := h(2) = ReLU
(
W (2) h(1) + b(2) + V (2) xin + c(2)

)
∈ Rdhidden .

The goods to be sold this round are then computed by:

αh = r × σ
(
w⊤

g ybase + bg
)
,∈ R.

and the payments functions for bids is computed then by:

h(3) = ReLU
(
W (3) ybase + b(3)

)
+ ybase, h(4) =

1

A− 1
σ
(
W (4) t+ b(4)

)
∈ RA−1,

xpayment,1 = 0, xpayment,i =

i−1∑
j=1

h
(4)
j , i = 2, . . . , A.

Note that this parameterization ensures that the payment rule pθh is a monotonic
increasing function of bids a. The parameters θ of the mechanism overall are
W (1), V (2) ∈ Rdhidden×(H+d+1), W (2), W (3) ∈ Rdhidden×dhidden , W (4) ∈ R(A−1)×dhidden and
b(1), b(2), c(2), b(3), wg ∈ Rdhidden , b(4) ∈ RA−1, bg ∈ R.

Baseline algorithms. For the zeroth-order baseline algorithms 0-SGD and 0-Adam, we use the
standard 2-point (biased) gradient estimator

∇̂θ :=
GT

approx(θ + uzeroz)−GT
approx(θ − uzeroz)

2uzero
Dz,

where θ ∈ RD, z is uniformly distributed on the sphere SD−1, and uzero is a tunable hyperparameter.
This estimator satisfies the well-known property

E[∇̂θ] = ∇E[GT
approx(θ + uzeroz)], z ∝ Uniform(BD).

That is, ∇̂θ is an unbiased estimator of the gradient of a smoothed version of the function GT
approx. The

bias is tunable by the parameter uzero, with smaller values corresponding to less bias but potentially
higher variance in estimates. Since a single evaluation of this gradient estimator takes 2 forward
passes over GT

approx, its run time is comparable to that of AMID per iteration. For the baseline
ANNEAL, each iteration, we sample a perturbation n from the D-dimensional standard normal
distribution. After evaluating GT

approx(θ), G
T
approx(θ + σannealn), G

T
approx(θ − σannealn) for the tunable

hyperparameter σanneal > 0, ANNEAL updates θ to be the best among θ, θ − σannealn, θ + σannealn.

Hyperparameters. All hyperparameters for the baselines as well as AMID are presented in Table 4.
For a fair comparison, we perform a grid search on a range of values for the parameters for all baselines
and take the best run after 10 repetitions. In our experiments, AMID is robust to hyperparameter
choices while zeroth order methods require some tuning.

F.1 Additional Results on the Beach Bar Process

As mentioned in the main body of the paper, we first present the payment function θs learnt AMID
after 1000 iterations. As before, we report these by using a slightly higher OMD iteration step
Tval = 500 than used for training, to demonstrate the robustness of our method.
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Parameter Explanation Values
η Adam/SGD learning rate 3e−5, 1e−4, 3e−4, 1e−3,

1e−3, 1e−2
uzero Noise magnitude for evaluating zeroth-order gradi-

ent estimator ∇̂θ, for 0-SGD and 0-ADAM

1e−3, 1e−2, 3e−2

σanneal Perturbation magnitude for ANNEAL 1e−6, 1e−5, 1e−4, 1e−3,
1e−2, 3e−2

τ Entropy regularization 1e−3
ηOMD OMD learning rate 10
T OMD iterations in (T -approx.) 400
Tval OMD iterations for validation 500

dhidden Hidden dimension of residual network parameter-
izing payments and sold goods

256

Table 4: Hyperparameters for the experiments on auctions.
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Figure 4: Payment function s → θs learned after training with AMID, where payments are bounded
on [0, 1/2].

A bottleneck in the beach bar experiment is the magnitude of payments θs, which is restricted
to be bounded on [0, 1/2]. We also report the experiment when θ ∈ [0, 4/5]S below (i.e., when
pmax = 0.8), in Figure 5. As expected, the population distributions Lh are smoother and closer to
uniform in this case. In both cases, AMID behaves as expected: the exploitability of T iterates of
OMD is consistently low throughout training, suggesting that the T step approximation objective
remains close to a NE throughout training iterations (with exploitability < 0.02). The fact that the
exploitability of the policy induced by the T repeated iterations of OMD is due to the fact that in the
beach bar experiments, tuning payments yields a NE distribution closer to uniform, which is also the
initialization of OMD iterates.
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Figure 5: Payment design with AMID in Mbb with larger payments. Left: objective and exploitability
throughout training iterations. Middle: learned payment rule after training with AMID. Right:
population flow in time after learning payments.

F.2 Additional Results on Auctions

We first analyze 3 further auctions with nonlinear utility functions for bidders. Namely, we take
(A1) presented in the main body of the paper where H = 4, µ0 = Uniform(S), αmax = 0.8,
|S| = |A| = 100 and bidders are single-minded with no evolution in valuations sih other than to
transitions to ⊥.

(A4) Risk-averse utilities formulated by

uh(s, p) =
1− exp{−β(s− p)}

1− exp−β
,

where we take β = 1.
(A5) Risk-seeking utilities formulated by

uh(s, p) =
exp{β(s− p)} − 1

expβ −1
,

where we take β = 1.
(A6) Hyperbolic time discounting, which discounts future rewards, where the utility at time h is

given by:

uh(s, p) =
s− p

1 + λh
,

where we take λ = 1 as the time discount factor.

Across utility functions, AMID manages to beat all baselines. In our experiments, we also observed
significant qualitative changes in both the mean-field Nash equilibrium and the payment rule when
nonlinear utility functions are used. We show NE and payment rules suggested by the neural
mechanism as NE in Figure 7.

Experiments regarding the impact of horizon. We report the impact of agent regeneration and
time horizon by evaluating AMID on the following auction setups:

(A7) H = 6, agents regenerate with probability 1 (that is, they never transition to ⊥ even when they
win a round), linear utilities for bidders, αmax = 0.8, µ0(s) ∝ γs for γ = 0.9, dynamic values
with w(s′|s) ∝ exp{− (1.2s − s′)2/2σ2} for σ = 0.2.

(A8) Long horizon H = 100, αmax = 5, linear utilities for bidders, agents regenerate with probability
0.015, µ0(s) ∝ γs for γ = 0.9, dynamic values with w(s′|s) ∝ exp{− (1.2s − s′)2/2σ2} for
σ = 0.01.

The results are reported on Figure 8.
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Figure 6: grev throughout iterations of AMID and baseline algorithms in settings with nonlinear
utilities for bidders (A4-6), left to right.
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Figure 7: Left: mean bids at NE at θ∗ after training with AMID on the risk-seeking utility
experiment (A5) for h ∈ {0, 1, 2, 3}. Middle: mean bids at NE at θ∗ after training with AMID
on the hyperbolic time discounting utility experiment (A6) for h ∈ {0, 1, 2, 3}. Right: payment
function in setting (A5) at the bids induced by the NE policy at θ∗ for h ∈ {0, 1, 2, 3}.

General objectives. Finally, we explore the impact of optimizing over more general objectives
other than revenue. We define the objective

gmix(θ,L) := grev(θ,L) + gefficiency(θ,L),

where we define gefficiency as:

gefficiency(θ,L) :=

H−1∑
h=0

∑
(s,a)∈V×A

Lh(s, a)pwin(s, a, Lh, α
θ
h(ν

−⊥(Lh)))uh(s, p
θ
h

(
a, ν−⊥(Lh)

)
).

We modify experiment (A1) and evaluate our AMID on the following setting.

(A9) H = 4, µ0 = Uniform(S), αmax = 0.8, and single-minded bidders (after winning stay at state
⊥) with no evolution in valuations sih otherwise. The objective function is gmix.

The results are reported on Figure 8.

Experiments with static αh and payment rules. Finally, to verify the impact of the mecha-
nism having access to bids ν−⊥

h at round h, we run a final experiment where the mechanism is
independent of bids, which we call a static mechanism. In this case, we simply parameterize

pθh(a) = sigmoid(θ
(1)
h,a) · a and αθ

h(a) = αmax
exp{θ(2)

h }∑
h′ exp{θ(2)

h′ }
, to ensure no more than αmax hoods

are sold and the payments never exceed the bid. The parameter space is then θ := [θ(1), θ(2)], for
θ(1) ∈ R[H]×A, θ(2) ∈ R[H]. For static mechanisms, we observe much less significant improvement
over the first price mechanism in general, which most likely originates from better allocation of goods
over time when there are dynamics such as regeneration.

(A10) H = 4, static mechanism parameterization (independent of ν−⊥
h ), each agent regenerates with

probability 0.3 at the end of every round, and has a linear utility function.

The results in this setting are reported in Figure 9.
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Figure 8: Left-middle: grev throughout iterations of AMID and baseline algorithms in settings
(A7-8). Right: gmix throughout iterations of AMID and baseline algorithms, in setting (A9).

Experiments on approximating exploitability. We also report our attempts to measure the true N
player exploitability gap suggested by Theorem 2 when N is finite. For the first price mechanism,
we compute the MFG-NE on the auction setting (A1) introduced in the main paper. Then, fixing
N = 1000, we simulate trajectories in the batched auction by setting the policies of 999 agents to the
MFG-NE, and train PPO on the last bidder. In this setting, we were not able to achieve a better mean
reward for the last bidder than the MFG-NE. This suggests the exploitability is close to 0, we report
the expected reward achieved by PPO throughout training in Figure 9.
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Figure 9: Left: Revenue throughout training in the static mechanism setting (A10). Right: PPO
episodic rewards trained on the batched auction (A1) with N = 1000 agents, all but one playing NE.
Blue is the MFG best response expected reward, red is PPOs expected reward throughout training.
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