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Abstract

Designing incentives for a multi-agent system to induce a desirable Nash equilib-
rium is both a crucial and challenging problem appearing in many decision-making
domains, especially for a large number of agents /N. Under the exchangeability
assumption, we formalize this incentive design (ID) problem as a parameterized
mean-field game (PMFG), aiming to reduce complexity via an infinite-population
limit. We first show that when dynamics and rewards are Lipschitz, the finite- IV ID
objective is approximated by the PMFG at rate O(1/v/N). Moreover, beyond the
Lipschitz-continuous setting, we prove the same O(1/v~N) decay for the important
special case of sequential auctions, despite discontinuities in dynamics, through
a tailored auction-specific analysis. Built on our novel approximation results, we
further introduce our Adjoint Mean-Field Incentive Design (AMID) algorithm,
which uses explicit differentiation of iterated equilibrium operators to compute gra-
dients efficiently. By uniting approximation bounds with optimization guarantees,
AMID delivers a powerful, scalable algorithmic tool for many-agent (large N) ID.
Across diverse auction settings, the proposed AMID method substantially increases
revenue over first-price formats and outperforms existing benchmark methods.

1 Introduction

Setting the right incentives in a game with many participants is a challenging and high-stakes problem.
Policymakers must frequently make choices that affect millions, for instance, planners must design
rules for curtailing city traffic [46], set pricing to maximize effective bandwidth in telecommunications
networks [3]], design spectrum auctions between telecom operators [41] or manage supply and demand
in energy grids [52].

We study the incentive design (ID) problem. Given an objective (G, a parameterized N-player game
G, and player strategies 71, . . ., my, ID solves the equilibrium constrained optimization problem:
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Maximize G (0,71, ..., my) such that (7,...,mx) € Nashg(0) (ID)

where Nashg(6) denotes the set of Nash equilibria (NE) of a game for the incentive parameter
6 (which is to be learned). is also referred to in the literature as mathematical programming
with equilibrium constraints (MPEC) [51]]. Despite their relevance, MPECs are notoriously
computationally challenging and in the general case NP-hard [39,51]. Simply computing a Nash
equilibrium for a fixed incentive parameter 6 is also PPAD-complete [22], even for 2 players [17].
For games with many players, as in many real-world problems, the so-called curse of many agents
[71] becomes an added challenge. In such cases, computing Nashg(f) becomes prohibitively
expensive, let alone tackling (D).

In this work, we take the approach of mean-field approximation for games with agent exchangeability
(i.e., symmetry) to tackle this problem. Instead of solving (ID) directly, we construct an appropriate
mean-field game (MFG) approximation M to G and solve the mean-field ID (MID) problem:

Maximize G (6, myrg) such that myrg € Nash(0). (MID)

For the mean-field approximation (MID) to be meaningful, its solution should closely match that
of the original N-player incentive design problem (ID), with the approximation error vanishing as
N — oco. We formalize this requirement in the following desideratum.

Desideratum D1 (Approximation) The solution of (MID) should be a good (approximate) solution
for (ID), in particular when N is large, with explicit guarantees.

MFGs are known to approximate finite-player NEs with explicit bounds for large N [63} 114, |19, [75].
Under Lipschitz continuity, a non-asymptotic bound of O(1/v~N) in exploitability is obtained with
a propagation-of-chaos type argument. By contrast, our problem not only contains the
classical MFG as a subproblem but also an incentive objective, accordingly, we must show that the
approximation error still vanishes as N — oco. Establishing this result is our first contribution.

Contribution 1: Lipschitz PMFGs and Approximation. We formalize (MID) as a parameterized
MFG (PMFG), and show that for Lipschitz PMFGs the problem approximates with a
rate of O(1/vN), both in exploitability and optimality of the design objective.

While Lipschitz continuous MFGs cover a broad class of real-world games and are well-studied,
they exclude many important applications, notably large-scale auction design, where the transition
dynamics are inherently correlated and non-Lipschitz. Motivated by the ubiquity and impact of
auctions, we analyze (DI)) beyond Lipschitz PMFGs, which is our second contribution.

Contribution 2: Approximation beyond Lipschitz. We identify a PMFG for sequential batched
auctions (BA-MFG) with many bidders, and establish (DI)) with an O(1/v~) approximation rate, by
identifying a set of “well-behaved” policies that is dense in the set of Nash equilibria.

Although guarantees that the mean-field approximation captures the fundamental solution
structure of the N-player incentive design problem, realizing practical benefits from this framework
requires the following desideratum.

Desideratum D2 (Optimization) We would like to be computationally tractable or easier to
solve than (ID), specifically, admit an efficient first-order oracle that can be used for optimization.

Our algorithmic contribution is to satisfy this desideratum in both settings: (i) PMFGs under Lipschitz
continuity assumptions, and (ii) mean-field auction design.

Contribution 3: Algorithmic Contribution. We formulate our adjoint mean-field incentive design
(AMID) algorithm for solving efficiently. AMID is a modification of backpropagation based
on the adjoint method for computing (approximate) derivatives with Nash equilibrium constraints.
While naive autodiff-based approaches incur a large O(T") memory footprint, our reformulation of the

gradient computations reduces the memory footprint to O(\/T), with up to 80% savings in practice.

Contribution 4: Experimental Contribution. Finally, we use AMID to (i) solve congestion pricing
in the classical beach bar MFG, and (ii) design revenue-optimal mechanisms across a variety of
sequential auctions with a neural network parameterization. Our method consistently outperforms
standard first-price mechanisms used in practice and other optimization approaches to solve (MID).



Table 1: Comparison of selected works on ID in literature. Large N: results scale to many-agent
(symmetric) G, Dynamic: solves ID on games with dynamics, Explicit diff.: explicit differentiation
for first-order information, Approx.: finite-agent approximation in N, Auctions: applies to auctions.

Work Model Large N Dynamic Approx. Explicit diff. Auctions

(48] VI X X - v X
[50] VI Ve X - X X
[23] Cont. time v v v X X
[54] LQ Ve v v X X
[64] Maj.-min. v v v X X
Ours PMFG v/ v v/-Theorem[l] -Section /- Section

1.1 Related Works

We present the works most relevant to this paper, complemented by the discussion in Appendix

Mathematical Programming with Equilibrium Constraints (MPEC). Several works have stud-
ied gradient-based approaches for MPEC [48 150, (70, 47, 26]. Some of these assume that the
equilibrium problem satisfies strong monotonicity to compute the gradients. Others use explicit
differentiation, an approach we also follow in this work. Motivated by the success of reinforcement
learning (RL), many works have focused on the optimal design of (multi-agent) RL environments
[67, 16} 180, 128, 121} 169]. An important instance of designing games with desirable outcomes is
automated mechanism design, capturing many real-world economic problems [18 20} |49].

Steering and Equilibrium Selection. Complementary to [[D]problems, a related strand of work has
focused on steering and equilibrium selection. For mean-field games, [33]] considers a problem of
choosing equilibria with high social welfare. Steering learning dynamics towards desirable equilibria
was studied by [35} [11} [78]] for Markovian and no-regret learners and extended to MFGs by [72].

Mean-Field Games (MFG). MFGs, first formulated in the seminal works of Lasry & Lions [44]]
and Huang et al. [36]], analyze symmetric competitive agents at the many-agent limit. Recently, many
works have studied RL in mean-field settings, such as stationary MFGs [32} 77, (73] |19]], monotone
MEFGs [58,156L 157, [76], static MFGs [[74], and mean-field control [15}15]. While general MFGs remain
a theoretical challenge [[75]], under structured settings, they have shown empirical and algorithmic
efficiency [19,[15,45]. MFGs have also been studied in Stackelberg equilibria, closer to our setting
(131123111 123]. While these works have similar objectives to ours, rather than letting a leader influence
a population through interactions with a static environment, we aim to design parameterized MFGs
directly by explicit differentiation. In this sense, can be seen to differ in objective from these
works. Moreover, these results do not readily apply to auction design, a foundational problem for
incentive design. In Table[I] we provide a comparison with selected works and our results.

2 Designing Games for Large Populations: Lipschitz Case

We first formalize parameterized N-player dynamic games and the corresponding ID problem.

Notation. We use S, A to denote (finite) state-actions spaces. For the horizon H, define policy space
My = {m: [H] x § — A4}, abbreviate 7, (a|s) := w(h, s)(a) and also treat ITz; as a subspace of
RIHIxS*A_ For a finite set X, define the “empirical distribution” o (x)(2') = 1/N Zfil 1y,—. We
also provide a full reference table for our notation in Appendix [A]

Definition 1 (Parameterized Dynamic Games) A finite-horizon parameterized dynamic game
(PDG) is a tuple G := (N, S, A, H, ug, O, {thg}th_ol, {Rh,a},’fz‘ol) of players N € N>, discrete
state actions sets S, A, parameter space ©, parameterized transition dynamics P, g : SN x AN —
Agn, parameterized reward functions Ry, g : SN x AN — [0, 1]V, starting distribution pg € Asg,
and time horizon H € N. For a strategy profilew € TIY, 7 > 0 and some 0 € ©, the expected



(entropy-regularized) sum of rewards of player i € [N| is defined as

H-1 ) o ) ]
TG ml0) =B | Y B plsn,an) + TR, (s))) e ko mh Gt b e =Hed )

Sh41~Pho(sn,an)
h=0

Define £ (n]0) := max;c(n) €5 (n]0) where £5° (n]0) := maxen J' (7', w~4)|0) — JG" (x|6),
the exploitability. If £F(w*|0) = 0 for 7* € II}y, we call 7* a Nash equilibrium (DG-NE) with
respect to parameter ¢. The set of all Nash equilibria for § € © is denoted Nashg; (¢). One is typically
interested in maximizing a function of the aggregated population behavior (e.g., revenue, negative
congestion):

N
P ~ 1 o
G(0,7) :=E[g(0,{Ln}7 =) )|m, 0], where Ly, := N E 1 €y i (ID Objective)
=

given by some ¢ : © X Agx 4 — R, with the constraint that 7 € Hg is an (approximate) Nash
equilibrium under 6 (ignoring multiplicities). The parameter space © and the parameterizations of
Fh)g, Rhﬂ will dictate the implicit constraints on the design, such as the available information at
time h. For such parameterizations, optimizing G will be nontrivial and incorporate an intractable
many-agent NE computation as a subproblem. In the following, we reduce this problem to a
lower-dimensional MFG (i.e. of size independent of V) and propose tractable alternatives.

2.1 Parameterized Mean Field Game Design

Below, we formalize PMFGs. Definition[2]generalizes the standard definition of MFGs to a parametric
family of MFGs, and approximates Definition[IJon a continuum of infinitely many players.

Definition 2 (Parameterized Mean-Field Games) A finite-horizon parameterized mean-field game
(PMFG) is a tuple M := (S, A, H, 110,0,{Pro}r—o', {Rno} =3 of discrete state actions sets
S, A, parameterized transition dynamics P g : S X A X Agx 4 — As, parameterized reward
functions Ry g : S x A X Asxa — [0,1], initial distribution 1o € Ag, and horizon H €
N>o. Define operators U, A as U, (L, mp|0)(s",a") :=3_, , L(s,a)Pho(s|s,a, L)my(a’|s") and
A(7|0) == {Tp—1 (-~ T1(To(po - 70, m1|0)|0) -+, 7h—1)]0)} =", called population operator For
melly, 7>0and L = {Lh}hH;(]l € Agx > the total expected (entropy regularized) reward is
H-1
Vi (L,w|0) :=E [ Z Rhu.o(Sh,an, L) + 7H (7R (sn)) S:::f;f;@:gff%lﬂ
h=0
We define mean-field exploitability as £} ,(7|0) := max e Vi (A(n),7'|0) — VI (A(n), 7|0). If
Exq(m*10) = 0 for m* € Iy, we call ™ a MFG Nash equilibrium (MFG-NE) with respect to
parameter 0. The set of all Nash equilibria for 8 € © is denoted Nash') ,(6).

In this section, we will make the following (standard) assumption on Py(s'|s,a, L), Ry(s, a, L),
which holds in many relevant applications.

Assumption 1 (Lipschitz continuity) For all s,s' € S,a € A, the functions Py ¢(s'|s,a, L),
Rp0(s,a,L), and g(0, L) are Lipschitz continuous in 0, L.

Theorem [I]below demonstrates that by optimizing the objective g(6, A(7*)), one can obtain approxi-
mation guarantees (up to a bias of O(1/v/~N)) on the performance of the PDG that has independent
and symmetric state transitions. We have therefore established (DI)) for PMFGs.

Theorem 1 Let M be a PMFG, Assumption |l|hold, and G be the PDG such that Fh,g (s,a) :=
®icv Py (s’ a",0(s,a)) and R}, 4(s,a) = Ro(s',a*,0(s,a)) for all i. Let 7 € Nash(0) and
m* = (n*,...,7) € OY. Then:

1. £ (m*0) < O(1/VN), that is, 7* is a O(1/VN)-NE of G under 0.

’Note that we define A(7|6)o := po - 7o



2. G(0,7) > g(0, A(n*|0)) — O(1 V).

Theoremmirrors bounds in MFGs without ID [[75] and Stackelberg MFGs in other settings [54].
For clarity, the theorem is stated as an approximation result for a PDG G that exactly satisfies agent
exchangeability, which might not always be the case. In some applications, finding the mean-field
formulation M given a PDF G might be nontrivial. The converse problem of constructing an
appropriate PMFG M that approximates a given G was studied in [76], and this work can be trivially
generalized to this case with an additional approximation bias due to asymmetries in G. The case of
auction design, which also does not satlsfy Assumptlonland the assumption of Ph o being a product
measure, will require specific treatment in Section 3]

2.2 Approximating the First Order Derivatives

Having satisfied for ID with Lipschitz dynamics in the previous section, we turn to (D2)—
formulating algorithmic methods to solve (MID). We state the standard definitions of value and
g-functions for PMFGs, which will be important for learning NEs:

H-1
Vi (s|L,m,0):=E [ > Ro(swoan, L) + 7H (s (sw)) S,jfi’ggh(/s:ﬁ/,fi'i/zl)}
h'=h

qi(s,a|L,m,0) := Ro(s,a,Ly) +E [V,;l ($h1|L,7,0)

Sh=S,ap=a, apr~mpr(spr)
Sh’+1NP0(5h_/7ah/ ,Lh/)

We define the commonly used online mirror descent update rule Fomd : © x Iy — Iy with
Foma(0,7)(h, s) := arg max(qj (s, -|A(n), 7,0), u) + 7H(u) —n~ " (1 — 71) Dia(ulm(s)),

[ISYANY}

for some given learning rate 7 > 0 and entropy regularization 7 > 0. F 4 has received particular
attention in MFG literature due to its theoretical and empirical properties. Abbreviating Foﬁd 0,¢) :=
Foma(0, F7 400, ... Foma(0,C)...)), i.e., Foma(6, ) applied T times, the repeated iterations F)

omd
forT > 0 are known to convert to NE for monotone MFGs theoretically [56,(79,137]], and empirically
find good approximations to NE [19] for general MFGs. Furthermore, any 7* € Nash,(0) is
guaranteed to be a fixed point of the map Fopna(6, ) for some learning rate . We formulate an

explicit differentiation scheme for the PMFG using these properties of Foyg. Defining the softmax

transform softmax : RIAI¥S*A _ T as softmax(¢) (h, s, a) := Ze,xgx{éiffg;a}}» the above OMD

update rule can be reformulated in terms of log probabilities:
Fomd(97 C)(ha S, a) = (1 - nT)Ch,s,a + UQ;TL(Sa a|A(SOftmaX(<))’ SOftmaX(C)7 9)

For fixed 6, the repeated iterations F;,,q will converge (under technical conditions) to log 7* where
7* is an NE of the MFG induced by #. With this motivation, we reformulate the PMFG design
problem (MID)) as a maximization of the T-step approximate objective

G 0 = 9 (0, Alsoftmax(Find (0,60))10) ) (T-approx.)

GT . in general is a well-defined differentiable function (see Lemmal Appendix @) In particular,

approx
standard autograd tools can be used to compute VGapprOX While the behavior of VGapme when

T — oo is not immediate, Lemma |1| below shows that under technical conditions GappmX is a
meaningful objective function to maximize, and produces low-bias estimates of the derivatives of the

true NE with respect to 6 for sufficiently large 7.

Lemma 1 (Differentiability of F/°.) Let ¢ € RIFIXS*A 9 ¢ © be such that the following hold:

omd

1. F(0',0) = limp_yoo F1)

omd omd

(6" ¢) for 8’ € U for a neighborhood U of 0,
2. For (* such that ¢* = F22,0,¢), q} is C' in a neighborhood of (0,(*), and
p(0cqT (-, -|A(softmax(¢*)), softmax(( ) 9)) < 1 forall h € [H].
Then, softmax(F°° (9' Q) € NashT w(@)onb €U, F

omd omd

and lim7_, o 39F, (C 0) = OpF ppy(C. 0).

', is partially differentiable in 6 at (0, (),



Lemma I Just1ﬁes the use of depmx (and subsequently the explicit differentiation scheme) as an

objective function under mild technical conditions. If G is also C?, VGapme converges to the

derivative of a map 6’ — G/(6’, 7%") where 7% is a function of #’ such that 7% € Nash},(8") locally,
that is, for all § in some neighborhood of 6. Moreover, Lemmal[l| provides intuition on how to tune
the parameters 7, T', 7 and characterizes their impact on the quality of explicit differentiation.

One major challenge from a computational point of view of backpropagating (I -approx.) will be the
size of the computational graph, growing with O(T"). In many MFGs, finding a good approximate
MFG-NE will require a large 7', which will incur a large computational overhead.

Algorithm [T} which we call adjoint mean-field Algorithm 1 AMID
incentive design (AMID), reduces the poten- Input Update rule F, objective G, T, 1,7, 6, Co

tially memory-intensive backpropagation through : fort€0,...,T do > Forward pass
a complex computational graph to a simple for- Cor1 = (1 — 1) +nF(0,¢)

ward and backward pass in ¢. Crucially, the up- end for

date operator F' is typically quite complicated for sT41 = 00G(0,(r+1), ar = —0cG({1+1)
PMFGs: for instance, Fyq itself involves solving fort€T,...,0do > Backward pass

at—1 = (1 —n7)ar + nadcF(0, G)
St—1 = St — natagF(G, Q)

end for

return sg

forward (A) and backward equations (q},) in h.
Therefore, for large 7', naive autograd will be in-
efficient due to the storage of many intermediate
values and a large graph.

VRIns DD

Lemma 2 (Adjoint method) Let © C R be an open set and F : © x R* — R? and G :
© x R — R be differentiable functions. Assume Algorithm |1| is run with inputs F,G, and
T € Nug,n,7 > 0,{o € R% Then its return value s is equal to V¢G(6, FT) (8, ¢)).

Remark 1 In Algorithm {Ct}+ will need to be stored for the backward pass in memory, however,
the memory footprint can be reduced to O(\/T) by caching every O(v/T) timesteps of the forward
process and recomputing (; as required, maintaining a time complexity of O(T). Furthermore,
Algorithm[l| can be generalized to arbitrary Bregman divergences, which permits a variety of inner
loop operators to be used (Appendix[D.6).

3 Beyond Lipschitz: Mechanism Design for Large-Scale Auctions

Auction design is a ubiquitous and well-studied problem of extraordinary economic interest [43]].
To analyze auctions at the mean-field regime, we move beyond the Lipschitz PMFG assumptions.
Designing auctions with maximum revenue in the resulting equilibrium can be framed as an instance
of (ID) (see our discussion in Appendix [C)), and with an appropriate PMFG, tackled using AMID.
Specifically, we consider the following sequential batched auction setting motivated by real-world
formats used for selling government debt, broadcast licenses, mineral rights, art, fish, timber [27],
and including transactions in mined Ethereum blocks [62]].

(Parameterized) batched auctions. An H-round N-player batched auction with incentive parame-
ter 0 is a PDG G, with state space S = V U {_L} (where the value space V := {0, ..., (VI =1)/jy|}
represents possible valuations and | denotes non-participation in the current round) and action space
A = {0,...,U0AI=1)/j41} (possible bids). Each bidder ¢ € [N] at round h € [H] has a private
state 32 € S not revealed to the auctioneer or other bidders. Overall, the auctioneer sells at most
[amax V| goods (for some aumax € (0, 1)) and chooses 6, parameterizing the allocations and payments
as outlined below. The auction evolves for h € [H| as follows:

1. Initial states at h = 0 are independently sampled from distribution z9 € Ay.
2. Atevery round i € [H], bidders for wh1ch st 1 submit their bids a, € A.

3. Observing the bid distributions U l/h =% ZZE[ N €ai Lsi 21 » the mechanism decides on a ratio
of goods to be sold this round, af (7, ). Items are allocated to the highest | af (7, =) N | bidders,
with ties broken uniformly at random

4. Each bidder i who receives an item, makes a payment p}, = pf(aj, 7, =) € R>o. A winning
bidder receives utility up (s}, p,) € R and transitions to state L, while non-winning and non-
participating bidders receive zero utility.



5. Before proceeding to round h+ 1, each bidder transitions independently to a new state according to
a dynamics function wy, : S X As — Ag, which maps the agent’s current state and the empirical
population distribution (after the allocation at round h) to a distribution over next states.

To ensure the mechanism can not sell more goods than are available (cam,x), we assume that the
parameterizations of o) are such that 3", af (D, =) < cuax almost surely. This is can be ensured,

for example, by parameterizing az as a fraction of remaining goods at every h. Gy, allows for

complex valuation dynamics, such as single-minded bidders (who stay in L), time-dependent or
population-dependent evolving valuations, as well as super and subadditive valuations over bundles
of goods. Under these dynamics, we denote the expected utility of player ¢ and exploitability as

Jil, E5 respectively, as defined in Deﬁnition
We note that parameterizing az, pz fully captures the intuition of reserve prices in the BA-MFG
setting. In many auction formats, a reserve price, i.e., a minimum price that bidders have to bid and

pay to win, has been shown to increase revenue [S5]. A reserve price 7, € A at round h can be
implemented for example with ay, () = >_ .+, v(a’) and pp(a,v) = a.

3.1 Auctions at the Mean-Field Regime

From the above description, G, clearly has exchangeable agents. However, the corresponding
one-step state evolutions are not independent, making Theorem |I]inapplicable here. Motivated by the
relevance of large-scale auction design, we show that PMFGs are still relevant and (DI)) holds with a
refined analysis of batched auctions in the following. We begin by defining the correct MFG that
characterizes the batch auction at the limit N — oco. While the definition is symbol-laden, we state it
for completeness.

Definition 3 (BA-MFG) A Batched-Auction MFG (BA-MFG) is the PMFG M,y
(S, A, H, o, 0, {PZUZ' hH o {Rmfa ), where Rzlfz, énj;f are given by:
Ry (s,a, L) := puin(s, a, L, af, (v (L)) )un(s, pu(a, v~ (L))
Py s, a, L) = pyin(s, a, L, af, (v~ (L)))wn(s'] L, )
+ (1 pum(s a,L a}eL( (L))))wh(sl‘sng’e)v
where v=+(L) = dospt L(so) ¢l e Ag such that ¢89(1) = L(L) +
(L, pwin (-, 7L,a (v=1(L)))) and &(s) = (L(s,"), Puin(s, ~,L,afb(u_L(L)))>, and p,,;, defined asﬂ

—HE )

o
pwin(sv a, La O[) = ]]-s;ﬁl max {07 min {17

We use to denote expected reward and exploitability in My, as in Definition E}

mfd ’ mfa

The intuition behind Definition [3] l relies on the fact that the function py;, approximately characterizes
the marginal winning probability of an agent when N is large. In fact, Theorem [2]below shows that
BA-MFG is indeed the correct model for auctions with large V. Existing approximation results (such
as [63l [75]] as well as Theorem [I) fundamentally are incompatible with this setting due to (1) the
fact that transitions in (finite-player) auctions are not independent, and (2) due to the inherent jump
discontinuities in both Pg;‘:’ﬁ7 RZ‘:Z- No zero-dominance (NZD) policies, defined below, identify a
subset of policy space I where this difficulty can be circumvented.

Definition 4 (No zero-dominance (NZD)) Let M, be a BA-MF Gand 6 € O. 7 € llg is said to
satisfy the NZD property for 0 if at induced L = { Ly} " = Ay (70|0) there exist no a € A, h €

[H] such that 3", ., Ln(s,a) = 0and Y Ly(s,a’) = of (v=(L)).

sey seV,a’'>a

While NZD is a technical condition, it is for instance satisfied by any entropy regularized MFG-NE
of Mg, if 7 > 0, therefore, contains e-NE for arbitrarily small € > 0. With this property, BA-MFGs
satisfy (D1)) as shown below, making it a relevant model for auction design.

*In this definition we take /o = oo, for any £ > 0 and °/o = 0, for convenience.



Theorem 2 (Approximation for BA-MFG) Let M,y be a BA-MFG with Lipschitz-continuous
Up, Wh, az,pz and let g : © X Ang — R be Lipschitz. Let m € Il be a policy that satisfies the
no zero-dominance property with respect to 0 € ©. Then, forw = (r,...,n) € IIY,

1. &

auc

(m|o) < &

mfa

(w]0) + O (1/VN) , for any 7 > 0,

2. 19(0, Aya(w|0)) — G(0,m)| < O (/VR).

Proof sketch: The proof builds on (1) special handling of the correlated evolution of s, at any
round h and (2) showing that for non-zero dominant policies 7, the dynamics are locally Lipschitz
continuous. The two conclusions are proved separately in Appendices [E.3]and [E.4] O

Theorem 2] demonstrates convergence for a broad class of policies and relates to a large strand of
work on equilibrium computation for auctions, which we discuss in Appendix [B] While a true MF-NE
does not necessarily satisfy the no zero-dominance property, an entropy-regularized MF-NE does. In
this regard, the results above show that the BA-MFG essentially characterizes the limiting behavior
of batched auctions.

Remark 2 In general, Theorem [2] incorporates a standard worst-case exponential bound in H,
depending on wy, . However, in certain cases, such as non-expansive or population-independent
wy, and T with full support, the bound becomes polynomial in H,|S|, |A| (see Appendix[E.3). We
later verify the quality of the bound in real-world experiments.

Finally, we state the following differentiability result of £} ,, thus satisfying (D2)) when combined
with the adjoint method described in Section This result permits mechanism design by backprop-

agation for any entropy regularization 7 > 0, completing the motivation for BA-MFG.

Lemma 3 (Differentiability on G,,) Let M,z be a BA-MFG on an open parameter space © C RY,

with Lipschitz up,, wy, o), pt, then F . is almost everywhere differentiable on RIFI*S*A x @,

Equipped with an algorithmic tool to solve large-scale ID problems, we move to empirical demon-
stration on applications.

4 Experimental Results

We evaluate our methodology on numerical examples of increasing complexity, using AMID to obtain
gradient estimates and ADAM [40] as an update rule on parameters #. All experiment details, including
computational resources, can be found in Appendix [F} We also provide reference implementations in
JAX and PyTorclﬂ

First, we demonstrate the effectiveness of our approach on the prototypical MFG of the beach bar
game [58]. We formulate the PMFG My, where a large population of beachgoers starting from
1o = Uniform(S) can move left, stay, or move right (A : {—1,0,1}) on a beach (S := [K]) over H
steps, while trying to minimize their distance to the bar located at sp,, = ¥ /2 and avoiding busy spots.
We parameterize a pricing mechanism 6 € [0, 1/2]° for spots on the beach to minimize congestion
(the softmax of population flow):

d(s, Spar a log L, (s
Ry’ (s,a|L,0) := —% + % - %’L() — 05, g(0,L) == —>_ exp{[S|Ln(s)}.
h,s

We report the training curves and induced flows in Figure[T] along with 6* in Appendix [F

*The PyTorch implementation was adapted from MFGLib[31]).
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Figure 1: Payment design with AMID in Myy,. Left: objective and exploitability throughout training
iterations. Middle-right: population flow in time before and after learning payments.

Dynamic auction settings. We move to the more challenging but relevant setting of designing
neural network mechanisms BA-MFGs. We focus on risk-neutral bidders (uy, linear in payments)
and on direct revelation mechanisms, i.e. S = AE| We set |S| = 100, and maximize the revenue
objective:

H-1
grev(67 L) = Z Z Lh(sa a)pwin(sa a, th QZ(V—L(Lh)»pZ (aa V_l(Lh)) .
h=0 (s,a)eVx.A

The exact settings, labeled (A1)-(A3) are as follows:

(A1) H =4, up = Uniform(S), amax = 0.8, and single-minded bidders (after winning stay at state
1) with no evolution in valuations s}, otherwise.

(A2) H = 4, amax = 0.8, po(s) « ~*° for v = 0.9, dynamic values with w(s'|s) o
exp{ — (3s — s)? /252 } for o = 0.2, bidders are single-minded.

(A3) H = 5, pp uniformly sampled from Ag, qax ~ Uniform([0.6, 1.2]), participants re-enter
with probability 0.3 each roundﬂ

We parameterize pz, 0‘}01 with a residual neural network (architecture clarified in Appendix E) contain-

ing &~ 2 x 10° parameters, with inputs e, v} -+, and remaining unsold goods at round h, guaranteeing
by parameterization that no more than ay,a.x goods are sold in total.

Baselines. We evaluate AMID against several benchmarks. First, we compare against the results
of running a simple first-price auction (FIRSTPRICE), i.e., the highest bidders win and pay what they
bid, to see how much more revenue we can achieve from optimizing over o and p). Second, we
contrast with various methods without gradient information: two methods using two-point gradient
estimators (0-ADAM and 0-SGD respectively), and a 0-order annealing strategy (ANNEAL) using
random perturbations of 6. We use 7 = 1072, = 10 and T = 400 for computing objective G,

approx*
We report the training curves in Figure 2} where we evaluate GZ;;'gmx throughout training Ty, = 500
for robustness. The results indicate the effectiveness of our method against zeroth-order methods
across different auctions. Evaluations on a larger variety of settings and parameterizations (longer

horizons H, nonlinear utilities, static mechanisms, other g) are also reported in Appendix B

Empirically Testing (DI) & (D2). Figure [3] illustrates that we fulfill (DI) & (D2). Notably,
the actual revenue in the IV player auction is very close to the optimized g, even for N ~ 100.
Furthermore, the exploitability curve of OMD iterates at the optimized 6* also suggests that the
iterates are a good approximation of MF-NE, and empirically, the assumptions of Lemma [T] are
valid. Namely, OMD iterations produce a valid approximate Nash equilibrium after the end-to-end
optimization process with AMID, empirically verifying that the revenue at Nash is indeed optimized.

We further provide empirical evidence supporting (D2) by comparing the computational footprint
of AMID against naive backpropagation through the full computational graph induced by OMD. In

3The latter choice is motivated by the conceptual simplicity, widespread use in practice, and does not represent
a significant restriction given the revelation principle [43].

SThe setting is more challenging for two reasons. First, the neural mechanism must generalize over cimax,
which it can observe. Second, it must generalize over all 10, which it does not observe, but potentially infer
from v~ (L). This is also referred to as prior-free mechanism design [29] [34]
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Table 2] we report the time and memory usage of the two methods when solving (A1) with increasing
time horizons H on a single H100. The results are reported for a single backpropagation step. The
modest growth in memory and computation time observed for AMID as H increases highlights the
scalability and practical suitability of our methodology for solving large-scale ID problems.

100 [ 1 [
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sl A 12
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Figure 3: Left: deviation in revenue in Mg, vs N-player G, at 8* as functions of NV, and middle:
exploitability curve of OMD iterations FO(IQ (6*,-) at optimized 6* in (A1), (A2), (A3). Right: mean
bids of NE computed by F\") for h € [4] before and optimization with AMID in (A1).

omd

Table 2: Empirical compute time and memory usage for single-step naive backpropagation vs. single-
step AMID across different problem horizons, in setting (A1l). The rows with “n/a” indicate the
method did not run on a single H100.

Horizon Naive (time,s) Naive (memory) AMID (time,s) AMID (memory)

H=5 0.19+£0.02s 2760 MiB 0.09£0.01s 560 MiB
H=10 0.25£0.10s 8746 MiB 0.21 £0.08 s 586 MiB
H=25 0.71£0.15s 16960 MiB 0.67+£0.12s 826 MiB
H=50 n/a n/a 1.72+041s 1076 MiB

5 Conclusion

In this work, we presented a novel method for ID relying on PMFGs. In particular, we set forth
two desiderata in order to use scalable first-order optimization to approximately solve ID problems.
Through new analyses, we demonstrated that these conditions hold in both classical Mean Field
Game (MFGQG) settings and batched auction environments. For both settings, we presented a unified
algorithm, called AMID, which can solve a span of ID problems, such as congestion pricing or
optimal auction design. Overall, the AMID framework offers a flexible foundation for diverse
incentive design applications, paving the way for future extensions.

10



Acknowledgments and Disclosure of Funding

This project was supported by Swiss National Science Foundation (SNSF) under the framework
of NCCR Automation and SNSF Starting Grant. V. Thoma acknowledges funding from the Swiss
National Science Foundation (SNSF) Project Funding No. 200021-207343 and is supported by an
ETH AI Center Doctoral Fellowship.

References

[1] Alexander Aurell, Rene Carmona, Gokce Dayanikli, and Mathieu Lauriere. Optimal incentives
to mitigate epidemics: a stackelberg mean field game approach. SIAM Journal on Control and
Optimization, 60(2):S294-S322, 2022.

[2] Santiago R. Balseiro, Omar Besbes, and Gabriel Y. Weintraub. Repeated auctions with budgets
in ad exchanges: Approximations and design. Management Science, 61(4):864—-884, 2015.

[3] Tamer Basar and Rayadurgam Srikant. Revenue-maximizing pricing and capacity expansion
in a many-users regime. In Proceedings. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 1, pages 294-301. IEEE, 2002.

[4] Alain Bensoussan, Michael HM Chau, and Sheung Chi Phillip Yam. Mean field stackelberg
games: Aggregation of delayed instructions. SIAM Journal on Control and Optimization,
53(4):2237-2266, 2015.

[5] Alain Bensoussan, Jens Frehse, Phillip Yam, et al. Mean field games and mean field type control
theory, volume 101. Springer, 2013.

[6] Martin Bichler, Maximilian Fichtl, Stefan Heidekriiger, Nils Kohring, and Paul Sutterer. Learn-
ing equilibria in symmetric auction games using artificial neural networks. Nature Machine
Intelligence, 3(8):687-695, August 2021.

[7] Martin Bichler, Maximilian Fichtl, and Matthias Oberlechner. Computing bayes nash equilib-
rium strategies in auction games via simultaneous online dual averaging. In Proceedings of
the 24th ACM Conference on Economics and Computation, EC °23, page 294, New York, NY,
USA, 2023. Association for Computing Machinery.

[8] Vitor Bosshard, Benedikt Biinz, Benjamin Lubin, and Sven Seuken. Computing Bayes-Nash
equilibria in combinatorial auctions with continuous value and action spaces. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia,
August 2017.

[9] Vitor Bosshard, Benedikt Biinz, Benjamin Lubin, and Sven Seuken. Computing bayes-nash
equilibria in combinatorial auctions with verification. Journal of Artificial Intelligence Research,
69:531-570, 2020.

[10] Yang Cai and Christos Papadimitriou. Simultaneous bayesian auctions and computational
complexity. In Proceedings of the Fifteenth ACM Conference on Economics and Computation,
EC ’14, page 895-910, New York, NY, USA, 2014. Association for Computing Machinery.

[11] Nayda Canyakmaz, losif Sakos, Wayne Lin, Antonios Varvitsiotis, and Georgios Piliouras.
Learning and steering game dynamics towards desirable outcomes. In Proceedings of the 7th
Annual Learning for Dynamics & Control Conference, volume 283 of Proceedings of Machine
Learning Research, pages 1512—-1524. PMLR, 0406 Jun 2025.

[12] René Carmona and Gokge Dayanikli. Mean field game model for an advertising competition in
a duopoly. International Game Theory Review, 23(04):2150024, 2021.

[13] René Carmona, Gokce Dayanikli, and Mathieu Lauriere. Mean field models to regulate carbon
emissions in electricity production. Dynamic Games and Applications, 12(3):897-928, 2022.

[14] René Carmona and Francois Delarue. Probabilistic analysis of mean-field games. SIAM Journal
on Control and Optimization, 51(4):2705-2734, 2013.

11



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

René Carmona, Mathieu Lauriere, and Zongjun Tan. Model-free mean-field reinforcement
learning: mean-field mdp and mean-field g-learning. The Annals of Applied Probability,
33(6B):5334-5381, 2023.

Siyu Chen, Donglin Yang, Jiayang Li, Senmiao Wang, Zhuoran Yang, and Zhaoran Wang.
Adaptive model design for Markov decision process. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 3679-3700. PMLR, 17-23 Jul 2022.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
nash equilibria. Journal of the ACM (JACM), 56(3):1-57, 2009.

Vincent Conitzer and Tuomas Sandholm. Self-interested automated mechanism design and
implications for optimal combinatorial auctions. In Proceedings of the 5th ACM Conference
on Electronic Commerce, EC *04, page 132-141, New York, NY, USA, 2004. Association for
Computing Machinery.

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized
deep reinforcement learning. In International Conference on Artificial Intelligence and Statistics,
pages 1909-1917. PMLR, 2021.

Michael Curry, Vinzenz Thoma, Darshan Chakrabarti, Stephen McAleer, Christian Kroer,
Tuomas Sandholm, Niao He, and Sven Seuken. Automated design of affine maximizer mech-

anisms in dynamic settings. Proceedings of the AAAI Conference on Artificial Intelligence,
38(9):9626-9635, March 2024.

Michael Curry, Alexander R Trott, Soham Phade, Yu Bai, and Stephan Zheng. Finding general
equilibria in many-agent economic simulations using deep reinforcement learning, 2022.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a nash equilibrium. Communications of the ACM, 52(2):89-97, 2009.

Gokce Dayanikli and Mathieu Lauriere. A machine learning method for stackelberg mean field
games. arXiv preprint arXiv:2302.10440, 2023.

Greg d’Eon, Neil Newman, and Kevin Leyton-Brown. Understanding iterative combinatorial
auction designs via multi-agent reinforcement learning. In Proceedings of the 25th ACM
Conference on Economics and Computation, EC *24, page 1102-1130, New York, NY, USA,
2024. Association for Computing Machinery.

Stylianos Despotakis, R. Ravi, and Amin Sayedi. First-price auctions in online display advertis-
ing. Journal of Marketing Research, 58(5):888-907, October 2021.

Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. Implicit learning dynamics in stackelberg
games: Equilibria characterization, convergence analysis, and empirical study. In Hal Daumé
IIT and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 3133-3144. PMLR,
13-18 Jul 2020.

Ian Gale and Mark Stegeman. Sequential auctions of endogenously valued objects. Games and
Economic Behavior, 36:74-103, 07 2001.

Matthias Gerstgrasser and David C. Parkes. Oracles & followers: Stackelberg equilibria in
deep multi-agent reinforcement learning. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 11213-11236. PMLR, 23-29 Jul 2023.

Andrew V. Goldberg, Jason D. Hartline, and Andrew Wright. Competitive auctions and digital
goods. page 735 — 744, 2001. Cited by: 199.

12



[30] Amy Greenwald, Jiacui Li, and Eric Sodomka. Approximating equilibria in sequential auctions
with incomplete information and multi-unit demand. In F. Pereira, C.J. Burges, L. Bottou, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[31] X. Guo, A. Hu, M. Santamaria, M. Tajrobehkar, and J. Zhang. MFGLib: A library for mean
field games. arXiv preprint arXiv:2304.08630, 2023.

[32] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[33] Xin Guo, Lihong Li, Sareh Nabi, Rabih Salhab, and Junzi Zhang. Mesob: Balancing equilibria
& social optimality, 2023.

[34] Jason D. Hartline and Tim Roughgarden. Optimal mechanism design and money burning. In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC *08, page
75-84, New York, NY, USA, 2008. Association for Computing Machinery.

[35] Jiawei Huang, Vinzenz Thoma, Zebang Shen, Heinrich H. Nax, and Niao He. Learning to steer
markovian agents under model uncertainty. In The Thirteenth International Conference on
Learning Representations, 2025.

[36] Minyi Huang, Roland P Malhamé, and Peter E Caines. Large population stochastic dynamic
games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle. Com-
munications in Information & Systems, 6(3):221-252, 2006.

[37] Noboru Isobe, Kenshi Abe, and Kaito Ariu. Last iterate convergence in monotone mean field
games. arXiv preprint arXiv:2410.05127, 2024.

[38] Krishnamurthy Iyer, Ramesh Johari, and Mukund Sundararajan. Mean field equilibria of
dynamic auctions with learning. Management Science, 60(12):2949-2970, dec 2014.

[39] Robert G. Jeroslow. The polynomial hierarchy and a simple model for competitive analysis.
Mathematical Programming, 32(2):146—-164, June 1985.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[41] Paul Klemperer. How (not) to run auctions: The european 3g telecom auctions. European
Economic Review, 46(4-5):829-845, May 2002.

[42] Nils Kohring, Fabian Raoul Pieroth, and Martin Bichler. Enabling first-order gradient-based
learning for equilibrium computation in markets. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 17327-17342. PMLR, 23-29 Jul 2023.

[43] Vijay Krishna. Auction Theory. Academic Press, 2002.

[44] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese journal of mathematics,
2(1):229-260, 2007.

[45] Mathieu Lauriere, Sarah Perrin, Julien Pérolat, Sertan Girgin, Paul Muller, Romuald Elie,
Matthieu Geist, and Olivier Pietquin. Learning in mean field games: A survey. arXiv preprint
arXiv:2205.12944, 2022.

[46] Ana Ley, Winnie Hu, and Keith Collins. Less traffic, faster buses: Congestion pricing’s first
week. The New York Times, January 2025. Accessed: 2025-15-01.

[47] Jiayang Li, Jing Yu, Boyi Liu, Yu Nie, and Zhaoran Wang. Achieving hierarchy-free approxima-

tion for bilevel programs with equilibrium constraints. In Proceedings of the 40th International
Conference on Machine Learning, ICML’ 23, Honolulu, Hawaii, USA, 2023. JMLR.org.

13



[48] Jiayang Li, Jing Yu, Yu Nie, and Zhaoran Wang. End-to-end learning and intervention in games.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 16653—16665. Curran Associates, Inc.,
2020.

[49] Anton Likhodedov and Tuomas Sandholm. Methods for boosting revenue in combinatorial
auctions. In Proceedings of the 19th National Conference on Artifical Intelligence, AAAT’ 04,
page 232-237, San Jose, California, 2004. AAAI Press.

[50] Boyi Liu, Jiayang Li, Zhuoran Yang, Hoi-To Wai, Mingyi Hong, Yu Nie, and Zhaoran Wang.
Inducing equilibria via incentives: Simultaneous design-and-play ensures global convergence.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 29001-29013. Curran Associates,
Inc., 2022.

[51] Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical Programs with Equilibrium
Constraints. Cambridge University Press, nov 1996.

[52] Sabita Maharjan, Quanyan Zhu, Yan Zhang, Stein Gjessing, and Tamer Basar. Dependable de-
mand response management in the smart grid: A stackelberg game approach. IEEE Transactions
on Smart Grid, 4(1):120-132, 2013.

[53] Carlos Martin and Tuomas Sandholm. Finding mixed-strategy equilibria of continuous-action
games without gradients using randomized policy networks. In Edith Elkind, editor, Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pages
2844-2852. International Joint Conferences on Artificial Intelligence Organization, 8 2023.
Main Track.

[54] Jun Moon and Tamer Bagar. Linear quadratic mean field stackelberg differential games. Auto-
matica, 97:200-213, 2018.

[55] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58-73,
1981.

[56] Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Lauriere, Georgios Piliouras, Matthieu
Geist, Karl Tuyls, and Olivier Pietquin. Scaling mean field games by online mirror descent.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 1028—1037, 2022.

[57] Sarah Perrin, Mathieu Lauriere, Julien Pérolat, Romuald Elie, Matthieu Geist, and Olivier
Pietquin. Generalization in mean field games by learning master policies. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 9413-9421, 2022.

[58] Sarah Perrin, Julien Pérolat, Mathieu Lauriere, Matthieu Geist, Romuald Elie, and Olivier
Pietquin. Fictitious play for mean field games: Continuous time analysis and applications.
Advances in Neural Information Processing Systems, 33:13199-13213, 2020.

[59] Fabian R. Pieroth, Nils Kohring, and Martin Bichler. Equilibrium computation in multi-stage
auctions and contests. ArXiv, abs/2312.11751, 2023.

[60] Zinovi Rabinovich, Victor Naroditskiy, Enrico H. Gerding, and Nicholas R. Jennings. Comput-
ing pure bayesian-nash equilibria in games with finite actions and continuous types. Artificial
Intelligence, 195:106—139, February 2013.

[61] Daniel M. Reeves and Michael P. Wellman. Computing best-response strategies in infinite
games of incomplete information. In Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, UAI °04, page 470-478, Arlington, Virginia, USA, 2004. AUAI Press.

[62] Tim Roughgarden. Transaction fee mechanism design. In Proceedings of the 22nd ACM
Conference on Economics and Computation, EC *21, page 792, New York, NY, USA, 2021.
Association for Computing Machinery.

[63] Naci Saldi, Tamer Basar, and Maxim Raginsky. Markov—nash equilibria in mean-field games
with discounted cost. SIAM Journal on Control and Optimization, 56(6):4256-4287, 2018.

14



[64] Sina Sanjari, Subhonmesh Bose, and Tamer Basar. Incentive designs for stackelberg games
with a large number of followers and their mean-field limits. Dynamic Games and Applications,
15(1):238-278, 2025.

[65] Vinzenz Thoma, Vitor Bosshard, and Sven Seuken. Computing perfect bayesian equilibria
in sequential auctions with verification. Proceedings of the AAAI Conference on Artificial
Intelligence, 39(13):14158-14166, April 2025.

[66] Vinzenz Thoma, Michael Curry, Niao He, and Sven Seuken. Learning best response policies in
dynamic auctions via deep reinforcement learning, 2023.

[67] Vinzenz Thoma, Barna Pasztor, Andreas Krause, Giorgia Ramponi, and Yifan Hu. Contextual
bilevel reinforcement learning for incentive alignment. In Advances in Neural Information
Processing Systems, volume 37, pages 127369-127435, 2024.

[68] Yevgeniy Vorobeychik and Michael P. Wellman. Stochastic search methods for nash equilibrium
approximation in simulation-based games. In Proceedings of the 7th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS °08, page 1055-1062,
Richland, SC, 2008. International Foundation for Autonomous Agents and Multiagent Systems.

[69] Jing Wang, Meichen Song, Feng Gao, Boyi Liu, Zhaoran Wang, and Yi Wu. Differentiable
arbitrating in zero-sum markov games. In Proceedings of the 2023 International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’23, page 1034—-1043, Richland, SC,
2023. International Foundation for Autonomous Agents and Multiagent Systems.

[70] Kai Wang, Lily Xu, Andrew Perrault, Michael K. Reiter, and Milind Tambe. Coordinat-
ing followers to reach better equilibria: End-to-end gradient descent for stackelberg games.
Proceedings of the AAAI Conference on Artificial Intelligence, 36(5):5219-5227, June 2022.

[71] Lingxiao Wang, Zhuoran Yang, and Zhaoran Wang. Breaking the curse of many agents:
Provable mean embedding g-iteration for mean-field reinforcement learning. In International
conference on machine learning, pages 10092-10103. PMLR, 2020.

[72] Leo Widmer, Jiawei Huang, and Niao He. Steering no-regret agents in mfgs under model
uncertainty, 2025.

[73] Batuhan Yardim, Semih Cayci, Matthieu Geist, and Niao He. Policy mirror ascent for efficient
and independent learning in mean field games. In International Conference on Machine
Learning, pages 39722-39754. PMLR, 2023.

[74] Batuhan Yardim, Semih Cayci, and Niao He. A variational inequality approach to independent
learning in static mean-field games. ACM / IMS Journal of Data Science, 2(2), July 2025.

[75] Batuhan Yardim, Artur Goldman, and Niao He. When is mean-field reinforcement learning
tractable and relevant? In Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 24, page 2038-2046, Richland, SC, 2024. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

[76] Batuhan Yardim and Niao He. Exploiting approximate symmetry for efficient multi-agent
reinforcement learning. In Proceedings of the 7th Annual Learning for Dynamics & Control
Conference, volume 283 of Proceedings of Machine Learning Research, pages 31-44. PMLR,
04-06 Jun 2025.

[77] Muhammad Aneeq Uz Zaman, Alec Koppel, Sujay Bhatt, and Tamer Basar. Oracle-free
reinforcement learning in mean-field games along a single sample path. In International
Conference on Artificial Intelligence and Statistics, pages 10178—10206. PMLR, 2023.

[78] Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen
McAleer, Andreas Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas Sandholm.
Steering no-regret learners to a desired equilibrium. In Proceedings of the 25th ACM Conference
on Economics and Computation, EC *24, page 73-74, New York, NY, USA, 2024. Association
for Computing Machinery.

15



[79] Fengzhuo Zhang, Vincent YF Tan, Zhaoran Wang, and Zhuoran Yang. Learning regularized
monotone graphon mean-field games. arXiv preprint arXiv:2310.08089, 2023.

[80] Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard Socher. The
ai economist: Taxation policy design via two-level deep multiagent reinforcement learning.
Science Advances, 8(18), May 2022.

16



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claimed convergence rate is proven in the paper and the experimental
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* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Assumption [2] and Assumption [T] and the extensive appendix with all
proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce and formally define our approximation framework in Definition 2]
and describe the algorithmic procedure using pseudocode in Algorithm [I] The experimental
setting (Batched Auction MFG) (Definition 3] and objectives are precisely specified. The
various experiments where we apply our framework are clearly defined in Sectiond} and
full details are presented in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code with both JAX and PyTorch implementations, along with
instructions to execute the experiments. All experiments are seeded to ensure reproducibility.
The main experiments are implemented using the JAX codebase.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are documented in Section[d] Details on the hyperpa-
rameters and experimental setup are provided in Appendix[F] and the accompanying code
includes the full configuration used for each experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All experiments include error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide detailed information about computing resources in Appendix [F]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We use neither human subjects nor sensitive data, and we do not foresee dual
use of our work.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Not applicable, no immediate social impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used JAX, PyTorch, and adapted code from MFGLib. No additional
third-party datasets or pretrained models were used. Everything is properly cited.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not applicable.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Frequently-Used Notation

General Notation
sigmoid(x)

Vf

Sp-1

Bp

Var

€;

Ax

Dkl (u|v)

1
- Il
IR

®i€[N] m'

Margy,(d)
[Allp—q

Generic PMFGs

250 n @

ash”(G)

HooZa®w

5
s

= =Y, u(2) log u(a), entropy
= 1+€ ~, sigmoid function
€ Rled2, Jacobian of function f : R% — R%
= {x € RP : ||z|| = 1}, (D — 1)-dimensional unit sphere in R”
= {z € R”: ||z|| < 1}, D-dimensional unit closed ball in R”
variance of random variable
standard unit vector with i-th entry 1.
={ueRY:Y  wu, =1,u, > 0}, probability simplex on X
= Zz u(z) log () Jv(@), Kullback-Leibler divergence
dot product.
indicator function.
¢1 norm (on Euclidean space RP)
{5 norm (on Euclidean space RD)
product measure

empirical counts of entries of some x € XN, o(x) :=
spectral radius of matrix A € RP-P

= er/’\.’ d(I, ) € Ay, ford € AXX)J~
1= SUP| 4|, <1 |[AZ||q, operator norm of A with norms [| - |, || - [|q

N
l/N Zi:l €z,

parameterized MFG
horizon (number of rounds) of auction
(finite) state space
(finite) action space
number of players/agents
ID objective
=E[g(6, L)], true ID objective in N-player game
set of T-regularized Nash equilibria
parameter space
€ 0, ID design parameter
{7 : [H] x 8§ — A4}, set of finite-horizon Markovian policies.
initial state distribution
parameterized state transition dynamics in N-player DG
parameterized reward functions in N-player DG
€ R entropy regularization magnitude
1%, N-tuples of policies
expected reward of player 7 in dynamic game G (see Deﬁnition
exploitability of player i in dynamic game G (see Definition 1)
maximum exploitability in dynamic game G (see Definition 1)
parameterized mean-field game (PMFG)
parameterized state transition dynamics in PMFG
parameterized reward functions in PMFG
one-step MFG forward flow (see Deﬁmtlon'
maps policies in I to H-step mean-field population flow in A%, 4 (see
Definition 2))

state value function in the PMFG

g-value value function (on state-action pairs) in the PMFG

: RIFIXSXA s @ — RITIXSXA generic policy update operator for computing
NE, defined in log policy space

mirror descent update, in policy space

mirror descent update, in log-policy space
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For auctions:

Gaue batched Auction

1 inactive state for agent not participating in the current round
)% value space

Omax parameter for maximal amount of goods

az parametrized item allocation function

pz pgrgmetrizefi payment function

Up, utility function of bidders

wp, valuation dynamics function

P transition dynamics in batched auction

R reward functions

Jave entropy regularized (7) sum of rewards for agent i € [N]
Eaie entropy regu}arized (7) exploitability for agent i € [N]
Minta batched auction MFG

ppia BA-MFG transition dynamics

Ry BA-MFG reward functions

v+ action marginal of active (non-_1) states; maps state-action distributions to

sub-probability distributions over actions

Pwin winning probability function, given a bid a, sold goods o and population bid
distribution v~+
gLo post allocation state distribution
A entropy regularized sum of rewards for BA-MFG
Ea entropy regularized exploitability of rewards for BA-MFG
Anfa population operator for BA-MFG
Jrev revenue objective

B Extended Related Works

Related works on Equilibrium Computation in Auctions. As outlined in Appendix |C}, many real-
world auctions are not strategyproof. It is thus important to evaluate them at equilibrium—both from
a predictive (how bidders will likely behave), as well as from a normative (bidding recommendations)
standpoint. While some simple formats have been solved analytically [43]], existing hardness results
for computing exact equilibria in auctions [[10] motivate approximate computational approaches. In
single-round auctions, a strand of work has used iterated best-response computations to calculate
equilibria [61 |68 60, |8, [9]. Other approaches rely on gradient descent [7), 42]] or deep learning
[6,153]]. For multi-round auctions, [65] compute e-perfect Bayesian equilibria, using best response
dynamics. Others have used (deep) RL to find approximate Nash equilibria [30} 59} 24} 166]. In our
work, by using mean-field approximations, we circumvent the curse of dimensionality inherent to
these multi-agent RL approaches. Using mean-field approaches to solve auctions has been explored
previously to some extent. [2,132] study specific repeated ad auctions with budget constraints, and
[38] studies dynamic auctions, where bidders iteratively learn about their own type.

Other MFG works. Stackelberg equilibria for MFGs have also been studied in the particular case
of linear-quadratic models [54, 4]]. Another relevant model in this setting is mean-field incentive
design with major and minor players [64], where designing incentives for a leader is studied for the
purpose of influencing a population. In continuous time, Stackelberg MFGs have been studied in
applications such as regulating carbon markets [13]], epidemics [1]], and advertising markets [12]].

C Automated Mechanism Design as

We note that in contrast to our approach many works on automated mechanism design focus on
designing strategyproof auctions, i.e. auctions in which bidders bid truthful in equilibrium, relying
on the so-called revelation principle[20, |18, 49]. The revelation principle states that any non-
strategyproof equilibrium of an auction can be implemented as an outcome equivalent strategyproof
equilibrium of an adapted auction [43]]. Restricting to strategyproof mechanisms bypasses the need

26



to differentiate through an equilibrium. Instead of a problem like (ID) where the outer objective
depends on an inner equilibrium solution, the inner solution is already known-bid truthfully—and
instead the problem becomes one of constrained optimization problem, where the so-called incentive
compatibility (IC) constraints ensure that bidding truthfully is in fact an equilibrium [18]].

While restricting to strategyproof mechanisms foregoes the need to differentiate through an equilib-
rium, many real-world auctions are not strategyproof. In fact, in 2019 Google for example deliberately
changed towards non-strategyproof first price auctions for selling ads, citing the increased trans-
parency of simple, non-strategyproof format for the bidders [25]. In such cases without IC constraints,
the question is how bidders will respond in equilibrium and in turn designing revenue-optimal
auctions becomes an instance of (ID), which we tackle in Sections [3]and 4]

D Mean-Field Mechanism Design

D.1 Preliminary Lemmas

Theorem 3 (Rademacher) Let U C R™ be an open set and [ : U — R™ be a Lipschitz continuous
map. Then, f is almost everywhere differentiable on U, that is, the points on which f is not
differentiable on U for a set of measure 0.

In some cases, an explicit differentiability assumption might be useful for PMFG dynamics, which
we state below.

Assumption 2 (Differentiability) Forall s,s' € S,a € A, the functions Py(s'|s,a, L), Rg(s,a, L)
are differentiable on 0, L. Furthermore, g(0, L) is differentiable on 0, L with bounded derivatives.

In particular, the following simple result is useful for the derivation of AMID.

Lemma 4 (Differentiability of operators) The maps T, A, g}, ViT, Foma as well as the map 0,7 —
9(0, A()) are almost everywhere differentiable under Assumption and differentiable everywhere
under Assumption 2}

Proof: This result is a straightforward result of the definitions of the mentioned operators, in
particular, when Assumption [2]is taken, the mentioned operators are also differentiable as they
are the compositions of differentiable functions. In the case where only Assumption [I]holds, the
above-mentioned functions are also Lipschitz on every bounded domain, which implies by Theorem 3]
that they are almost everywhere differentiable. ]

Finally, we state the following standard lemma from past work on the approximation of MFG
dynamics by finite player games.

Lemma S Assume that the conditions of Theoremholé for the PMFG Mand DG G, let 7,7 € 1ly
be two arbitrary policies, and let 0 € © be fixed. Let L™ = {L} };, = A(T|0) be the population flow

induced by T on the PMFG with fixed parameter 0. Take the trajectories s}'l, afl, Ly, induced by the
DG with parameter 0 and policy profile (7r Ty...,70) € IIY. Then,

h+1

E[| Ly — L}[1] < —2 |S\|A|\/ +fZL;zpzlAm

Lpop,u

where Ay, := sup, ||Tn(-|s) — 7 (:|s)||1, and Lpop . is a uniform bound on the Lipschitz moduli of
Iy in L. Furthermore, denoting the random variables sy, a, as the distributions of state-action pairs
in the PMFG dynamics with population flow L™ and policy T,

I Plsn = - an =] —Plsj, Jh < Kp Z I1Zn = L3 |I1],
where K7, is the Lipschitz modulus of transition dynamics Py, in L.

Proof: The proof is a straightforward extension of the approximation results due to [[75]], to the
case where transition dynamics and rewards also depend on the mean-field flow over actions. See in
particular Theorem 3.2 in [[75]. O
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D.2 Proof of Theorem[T]

First, we present the bound on exploitability. As in the setting of Lemma L let L™ = {LT}, = A(7|0)
be the populatlon flow induced by 7 on the PMFG with fixed parameter 6. Take the trajectories

st ab, L, induced by the DG with parameter ¢ and policy profile m := (m,7,...,7) € IIN.
Similarly, denote the random variables sy,, aj, as the distributions of state-action pairs in the PMFG
dynamics with population flow L™ and policy 7.

Vi (L7, 7|6) — Jg" (x|6)]
= | 37 Plsn = 5,00 = al(Rno(LF, 5.al0) + (7 (5)))

h,s,a
— 3" Plsy = s,an = a,Ly = L](Ruo(L, s,al0) + m(f,,,(s)))]
h,s,a,L
< ’ S~ Plsy = s,an = a, Ly = L](Rug(L.s.al8) — Ryo(LF, s,a|9))’
h,s,a,L
+1 Y (Pls), = s.a}, = a] — Plsy = s,an = a])(Ruo (L], s,alf) + 7H(Fn(s)))].
h,s,a

Since |Rp (L7, s,al0) +7H(Tr(s))| < 1+7log|A| and Ry g is Lipschitz in L (say with modulus

K), it holds that

Vi (L7, 7|6) = IG5 (x6)]

< K Y E[|Ln = Lillu] + Y IIPlsn = -y an = ] = Psh, = -, aj, = |1 (1 + 7log [4]) < O(/v®),
h h

by an application of Lemma The corresponding bound on & (m*|0) is obtained by maximizing 7
as the best response to the population strategy profile in the DG, and setting 7 to be an MFG-NE 7*
for the parameter 6.

We also prove a similar bound for the objective value. Assume now that all N players play policy 7*
in the DG. Then, since g is Lipschitz continuous,

|G(0,7%) — 9(8, A(x*(0))| < Ellg(0,{Ln}1=") — 9(0, {Tn} )]
<E[Y  KnlLn — L7 1],

h

where we denote the Lipschitz modulus of g with L, as K}, (with respect to norm || - ||1). An
application of the technical lemma Lemma|[3]yields then the O(1/v¥) upper bound.

D.3 Proof of Lemmal(l]

We first prove that if limy_,o F, (T)(H’ ¢) exists and F20,(¢',¢) = (*, the softmax(¢*) €

omd omd
Nash’y((0"). Since Fypq is a continuous function, it must hold that

Foma(0/, ") = Foma(0', Jim Food(0',0)) = Fina(0',0) = ¢,
therefore Foma(0',(*) = ¢*. Denoting 77 (+|s) := softmax({*(h, s, -)), we then have the relations

Fomd(97c*)(h787a) ( _7]7') (h s a’) +77qg(37a|A(7T*)»7T*79)7
Foma(0,7)(h, s) := arg gl&x(qh( A(7), 7, 0),u) + TH(u) — " (1 — 7)) Dy (ulr(s)).
UuEA 4
Then, for any h, it holds that (*(h, s,a) = 7 q] (s, a|A(7*),7*,6). We show that 7* is then the
best response to A(7*) by backward induction. Denote for convenience L* := {L} };, = A(7™*).

. 'R L}
Attime H — 1, (*(H — 1,s,a) = 7 'Ry 9(s,a, L% _;) and 7};_, (als) = ‘;(ji,{:—lR’:i((ii’LH,:B’

therefore, by first order optimality conditions, 75, _;(:|$) maximizes (uniquely) the strongly concave
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function u — (u, 7" Ry 9(s,a, L% _,)) + TH(u) on the simplex A 4. Hence, at every state s at
time H — 1, the policy 7},_,(+|s) is optimal. Assume now 77, (-|s) is optimal for all »’ > h for
some h € [H]. Then, by the inductive assumption, g7, (s, a|A(7*), 7*, ) is the optimal regularized
q function for all o’ > h. Since (*(h,s,a) = 77 1q] (s,a|A(7*), 7*, ), once again by first order
optimality conditions, 7}, is also the optimal policy at time h.

We move on to the convergence of derivatives. Firstly, since ¢, is given to be C'* in a neighborhood of
(0,¢*) and p(Ocq7 (-, -|A(softmax(¢*)), softmax(¢*), 0)) < 7, there exists an open neighborhood
U of (0,¢*) where p(9¢q7 (-, | A(softmax(¢’)), softmax(¢’),0")) < 7 — & for all (¢,¢’) € U for
some d; > 0. Then, since

Fomd(ea C)(h‘v S, CI,) = (1 - T]T)Ch,s,a + WQ}:(Sa a|A(s0ftmaX(C)), SOftmaX(C)a 9))

on U it also holds that p(0¢ Foma (6, ¢)) < 1 — 8 for some d > 0. On U, the map F2, is implicitly
defined by Foma(0, Fooy(6,0)) = F$2,4(0,C), therefore by the implicit function theorem FSo; is
differentiable in 0 and

0md(0 C) (Iia(Fomd( omd(e C)))7189F0md(974)5 V(G’C) eU
Fixing some direction v € O, define inductively the iterates

CO = C/a CtJrl = Fomd(gv gt)
2o :=0, 441 = 0cFoma(0,C)ws + O Foma(0, (i )v.

Note that by the chain rule, x4 = Vu(Fo(rfd) (0,¢"))v, therefore, if we show that lim;_, o x4 =

(F(f,iﬁ) (0, ¢"))v for any choice of v, we are done. Firstly, by the assumptions of the lemma, for
sufﬁ01ently large Ty, it holds that ¢; € U for all t > Ty, and ¢* = lim;_, (;. Defining 2* :=
I - 8<F0md(9,C*))*lagF‘,md(&Ct)v, which satisfies z* = O¢Foma (0, (*)x* + O0gFoma(0, ().
Therefore,

|Zt41 — 2| =[|0¢ Foma (0, Ct) Tt — O Foma (8, ¢*)x™ + O Foma (8, C)v — O Foma (8, ¢*)v |
<||8CFomd(0 Cf)xt - 8CF‘omd( 74*)xt” + HaCFomd(e C )xt 3<Fomd(97§ ) *H
+ HaﬁFomd(a Cf)vfaﬂFomd(o ) Ha

which proves that x; — z*. By the implicit function theorem, x* is the gradient of Fo(rflz), concluding
the proof.

D.4 Discussion of Assumptions of Lemmal (]|

We briefly discuss the ramifications of Lemmal[I] Firstly, the result is useful only assuming that the
OMD iterates converge to an NE of the MFG. NE computation in MFGs is a well-studied research
topic on its own, and several positive results are known for various classes of MFGs. We take this for
granted in this lemma, as NE computation is not the main goal.

Next, we note that the lemma suggests that the derivative of is a valid first-order oracle
provided that the Jacobian of Fy,g has bounded spectral radius around the NE induced by a 6.
Importantly, for any PMFG, T'-step objective approximates the fixed-point gradient provided that 7 is
sufficiently large. For more structured settings, the result can be strengthened to permit 7 = 0, for
instance, the derivations in [48] readily extend to the case where H = 1, |S| = 1, and the reward
function R is monotone in population distribution. We leave as future work to generalize this for
monotone PMFGs with dynamics (i.e., for PMFGs with H > 1).

D.5 Proof of Lemmal[2]

Let © = RP1, Z = RP2, and assume the functions F : © x Z — Zand g : © x Z — R are
differentiable. We define / : © — R

(0) == g(0, Cr+41(9)),
<t+1(9) = (1 - TU)Ct(O) + 77F(97 Ct(o))v vt=0,...,T. (D

for some (j constant. Clearly ¢(9) is differentiable; our goal is to efficiently compute V£(9).
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Define for any sequence of (row) vectors {a; };_, for a; € © the function

L(0,{as};_q) =g (0, Cria (0 +Zat (Ce1 — (L = n7)Ce(0) — nF (0,G(0)))
T
=g (0,Cr+1(0)) +ar - Crea(0) — (L —nr)ag - Go(0) —n)_a;- F (6,:(6))
=0

T
+3 G (a1 — (1= nm)ay).

t=1
Since for any {a;}~_, it holds that L(#, {at}fzo) = (), we have the identities

L0, {ar};_,) = Vol(0), 0a,L(0,{as},_y) =0

Therefore, for any sequence of functions a;(#) that depend on 6, we have

Vol(0) = dpL(0, {as},_, +Z (Voar) =—L(0, {ar}1_y) = 9 L(0, {as};_,)-

0
8
We will therefore compute 9p L (6, {at}f:()) with a suitable choice of a;. By simple derivation:

BeL(0, {a};_o) =0cg(0, Cr+1(0))VoCr+1(0) + og (0, Cr+1(6))
+ aTv0CT+1( )—(1— UT)aovaCo( )

—UzataeF (0.6 (¢ nzata( (0, G (0)) VoG (0)
t=0 t=0
T

+ Z(atfl — (1 —=n7)a) Ve (0)

Since Vg(y = 0, as (p is constant, rearranging the terms yields:

0oL (0, {ar},—y) =(Vcg(Cria(0)) +ar)Volria(6) — 1 Z 2,09 F (0, G:(0)) + Dag (0, Cr11(6))

t=0
T
+ Y (a1 — (1= nr)ar — nadcF (0, G(6)))Vale(6).
t=1

Therefore, we pick

ar = —V¢g(lr+1(0))
a;_1 = (1 - 7]7')515 + nétaCF(gv Ct(g))v

we obtain the equality

Vol(0) = 0y L(0, {ar};_,) nZataeF 0,61(0)) + 9ag (0, Cr11(6)). ©)

t=0

Most importantly, Equation permits the computation of Vy/¢ with T with only caching the
variables ;. Namely, the forward system Equation (1)) can be used to iteratively compute (741, and
the backward system only requires evaluating Jacobians at the current step, meaning other than (;,
the memory requirements are kept constant.

In case memory is a bottleneck, ¢; can be cached during the forward step every 3v/T steps for some
constant 3, meaning only O(v/T') memory is needed. In this case, during the backward step, ¢; will

need to be recomputed every O(v/T) steps for O(v/T) OMD iterations, maintaining the O(T) time
complexity. 8 will introduce a tradeoff between time and space complexity.
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D.6 Extension of Lemma 2] to General Mirror Descent

Lemma analyzes the ajoint method under the specific entropy regularization scheme. Let b : RP —
R be a strongly convex distance generating function, and VA : RP1 — RP1 the corresponding
mirror map. Then, the generalized mirror descent update rule can be written as (in policy space
Iy C R[H]XSX.A):

Vh(mit1) == (1 — ) Vh(m) + nF(0,m(0)), Vt=0,...,T.

Defining the iterates (; := Vh(m41), we obtain the similar update rule
(0) = g(0, (V)™ (¢r+1(0))),
Ge1(0) := (1= mm)G(0) + 0 F (0, (VR) T (G(9))), ¥t =0,....T,
which reduces to the case analyzed in Appendix [D.5] by the definitions
F(0,6(0)) = F(0,(Vh) ' (¢e(6)))
(0, ¢r11(0)) = g(0, (VR) ™ (¢r41(0))).

E Results on Batched Auctions

This section presents the formal analysis of parameterized batched auctions introduced in the main
text. We also provide rigorous statements and complete the proofs left out in the main text.

Appendix [E.T| provides formal definitions of the settings omitted in the main text and useful auxiliary
constructions to assist the proofs. Appendix [E.2]presents a collection of auxiliary lemmas that support
the subsequent analysis. In Appendix [E.3] we prove the first part of Theorem 2} establishing an upper
bound on the exploitability of mean field policies under the no zero-dominance condition. The second
part of the theorem, which addresses convergence of the mechanism-level objective, is proved in
Appendix [E.4] Finally, Appendix [E.5|provides the proof of Lemma 3] which establishes the Lipschitz
continuity of the (entropy regularized) q values under full-support policies.

E.1 Extended Definitions

Additional useful notation. To streamline the proofs, we also introduce some useful notation. For
any arbitrary finite set X’ and a scalar 5 € R>( define the sets:

A’f(::{dERX:VxeX:d(x)zO,Zd(m)zﬁ},

rzeX
A ={deRY: Vo e X dx)>0,8< ) dx)<1},
zeX
AV ={deRY: Ve X d(x)>0, ) d(z)<p}.
zeX

For z € R, where X has a total order, denote the cumulative mass function S, (d) := " - d(z').
For some d € Ay, define the marginal distribution

Margy,(d) := Z d(z,-) € Ay.
zEX
For « € [0, 1], define the threshold bid operator Th,, : Aio — Aas
The(d) := max ({a € A: S,(d) > a,d(a) >0} U{ao}),
where ag is the smallest element of .A. For d € AE;XA we also define Th,,(d) := Th,(Margg(d)).

We define the operator =, : A%i‘ 4~ RY*A, which maps a matrix state-action distribution L to a

matrix L', where each entry L' (s, a) represents the expected probability mass of agents in state s
who chose action a and did not win an item this round, given that o goods are allocated. Formally:
0 ifa > Th(d),a >0

- Dslev.al d(s’,a’)—a .
Ea(d)(s,a) = GZ\:/;Tdh((;E?%ha(d)) d(s,Thy(d)) ifa=Th(d),a >0

d(s,a) otherwise
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Eq is well-defined as >, .y, d(s’, Th, (d)) > 0 whenever a > 0 by definition.

s'eVy

Using the operator =, we define the post allocation operator Y, : A%i‘ 4 — Ay, which maps a
sub-probability distribution d over active state-action pairs to the post allocation state distribution.
That is,

Yol(L)(s) =Y Ea(L)(s,a).

acA

The operator I',, which governs the transition of the population state distribution after item allocation,
can be expressed in terms of T, by explicitly accounting for the inactive state L. Specifically, let d €
Asx 4 be a state-action distribution and assume o (v =+ (d)) < ||[v=*(d)||1. Then Ty, : Asxa — As

is defined as
Yow-ran(d-1)(s) ifseV
— a(v=H(@)\4-L )
Fald)(s) {zaeA d(La)+a ifs=L

where d_ | denotes the restriction of d to active states V.

The BA-MFG is a parametrized PMFG, where both the payment function and the allocation threshold
function are parameterized as 04,61 and pz. Throughout this section, we assume these parameters are
fixed and omit them, writing without loss of generality oy, py, instead.

Definition 5 (Batched Auction MFG (BA-MFG)) A Batched-Auction MFG (BA-MFG) is a MFG
defined by the tuple My, = (S, A, H, po, { P Y- {RY“YH= 1Y of discrete state space S =
VU{L}, discrete action space A, horizon H € N+, initial dlstrzbutwn o € S, transition dynamics

Pmﬂl S x A X Asxa — As and reward functions Rmﬁl SxAX Agxa — [0,1]. The transition
dynamics P™* and the reward functions R™® depend from the allocation functions {ah} the

dynamic functions {wh} h:O , the payment functions {ph} b0 U and the utility functions {uh} h:O .
Define the “winning probability” as

1 iy, Za,za L(s,d) < a
Puin(s,a, Lya) = 1oz 0 o Y wse (s a)>a.
a*Zsé:ZaLf?; aL)(S 9D otherwise

For the allocation o and valuation transition w, define the operators I'y, : Asxa — As, T
Ags X Ag as

_ 2a L(s,a)(1 = puin(s, a, L, a(v *l(L)))) ifs #L
FalL)(s) := { L)+ > Y L(s' . )pyin(s',a’, La(v=1(L)))  otherwise’

=Y &2)w(-|z,€),

z€S
Define also I'y,, Ay, as[]
Ln(L,7)(s,a) :=Lw, (Ta, (L)) (s)7(als),
Amfa(W) = {Fhfl(ml—‘l(r()(,u() : 7T0,7T1)»7T2)~~~77Th71)};?;01~
The transition probability and rewards can be written as:
P(s|s,a, L) == puin(s,a, L, an (v 1)) wp(s'] L, Ta, (L))
+ (1 pwm(s a,L, ah(V )))wh(s |87Fah(L))
Ry (s,a, L) = puin(s, @, L (v (L))un (s, p(a, v (L)),

Formellg, 7> 0and L = {Lh} he 0 , the total expected (entropy regularized) reward is

V(L) :=E Z Rmf“ (s,a,Lp) + 7H(mn(sn))

so~po,an~T(sn)
shp1~P™ (sh,an,Ln)

"Note that this way of writing I‘h, Amfa is consistent with the MFG definition.
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For a policy m € Iy we denote with L™ = A, () the induced state-action distribution, with p™
the induced state distribution and with {™ the induced hidden state distribution, with {§ =T', (L7).
Additionally, we define with P, the transition probabilities associated with the item allocation
dynamics

Pwin(s,a, L, a(v="(L))) ifs' =1
P,(s'|s,a,L) :== < (1 — pyin(s, a, L ;a(v™t (L)) ifs’=s
0 otherwise

Then, the total expected (entropy regularized) reward can also be expressed as

H-1
VTfa(L77T) —E Z Rr}x;fa(s’a’Lh) + TH(Wh(Sh)) S0~ p0,an~T(Sh),2n~Pay, (Sh,an,Ln)

m Sht1~wn(2h,Tay, (Lr))
h=0

Definition 6 (N-player Batched Auction (N -BA)) An N- player batched auction (N-BA) is a dy-
namic game Gu,e = (N, S, A, H, p1o, { PP Y=t { R = 1) of discrete state space S = V U { L},
discrete action space A, hortzon H € Ny, starting dlstrlbutlon wo € S, transition dynamics
paue o SN x AN — AN and rewards functions R3 : SN x AN — [0,1]N. The transition
dynamics Pi* and the reward Sunctions R§" depend from the allocation functions {ah}h _0 , the
dynamic functtons {wp Y1 1oL the payment functions {pn}i, - and the utility functzons {up - o Let
s = (s',...,s") € SN denote the joint state of all agents, and a = (a*, ... ,a"V) € AN the joint
action proﬁle. Assume items are allocated to the top bidders according to the submitted actions, with

uniform random tie-breaking at the allocation threshold. This induces a joint allocation probability
kernel Py o : SN x AN — Agn formally defined as

VieWu{ie[N]:s' =1}, 2/ =1

if{jeT:2 =L} = la(v)-N]— W],
Pya(zls.a) = § (jan] ) VieLl, si=s ’

0 otherwise

where v =37 e,ilgzy, a* =max{a € A: 3\ Laisasizl > [a(W)N]|} T ={j € [N]:
o) =a*, s AL}, W={j€[N]:ad >a*,s’ #L}and L = {j € [N] : &/ < a*,s’ #L}. The

marginal winning probability and the rewards, similar as its corresponding MFG can be expressed as

P} o(L |s,a) = ZPN’Q(Z|S,3)127;=L = puin(s',a’, o (s, a), w)

Rjt(s,8) = pun(s', ' o (s, ), Herlgleealy, (4, p (o', v~ (0(s, 2))
We define with Rmf“ the N-player discretization of R}’ .
5 1
Rr]g?h(& a, L) = pwin(su a, L7 I-NO”L(VNA)U%(Saph(a7 V_L(L)))
Note that if L(s,a) = 0, the reward Rmfa (s, a, L) is not defined. Additionally, observe that
R{“'(s,a) = R'K{“h(s a',o(s,a)).

For a strategy profile w € 11, 7 > 0 the (entropy regularized) sum of rewards of player i € [N] is
defined as

H-1 Vj€[N]: 85~M0>a;;~7fﬁ(8’)
T, _ mfa zp~P sp.an), Ln= e ;
Jam( ) E E : RN h Slu alu Lh) + TH(W}L(S}L)) " N ah( moan), Ln= N EJE S-ZL ap | s
h=0 Sh+1 w(zhagh) 5}1, N EJE ez;

(' w ) = e (m).

auc

exploitability ET:¢ as ETH(m) := max, e, Jo

auc auc auc
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E.2 Preliminary Lemmas

We present several important lemmas that will be used later to prove the main convergence theorem.

Lemma 6 (Sensitivity of =,, to the Population) Ler o € [0,1] and let d,d’ € A D Then 2 is
Lipschitz-continuous with respect to the {1-norm, with constant 1:
1Ea(d) = Ea(d)ll < [ld = d'l|x.
Proof: It is straightforward to verify that =, is continuous. We verify that it is also Lipschitz
continuous with modulus 1. Assume « > 0, as otherwise =,(d) is the identity map and the
claim is trivial. Denote the bids by A := {1,..., A}, and let So(d) := >, > ,/5, d(s';a") with
Sat1(d) :=0,and ro(d) := ZS/GV d(s';a). Fora € {1,..., A+ 1}, define the regions
a={deATS 4 Sa(d) > a> Saa(d)}.

On the region R, the map Ea(d) is differentiable, in fact, for d € R, it holds that @ = Th,(d) and

0 ifa>a
Ea(d)(s,a) = { Sld(s,a) ifa=a
d(s,a) otherwise

We calculate the Jacobian of =, and upper bound its operator norm ||VZE,]||1—1 given by the
max column sum ||VZq|[151 = maxs o Y. o [(VEa)sar,sa|- We upper bound the column sums
corresponding to s, a.

Case 1. If ¢ < a, then %S/’a/) = 0 for any (s’,a’) # (s,a) and M = 1, therefore the
column sum is h

s’,a’

0=, (d)(s',a")

=1
adsa

_ |9Za(d)(s,a)
B adsa

Case 2. If a = a, then %}S’ﬂ')

= 0if a’ # a, therefore

0=Z4(d)(s',a)| 024 (d)(s',a)|  |0Ea(d)(s,a) 0E,(d)(s',a)
Z ddwe | Z dda | ‘ 9d | %: Odss
o Sa(d) — s.d T@(d)—Sa(d)‘FOé
= T
; ra(d) = Sa(d) +af
+ ; d(s ra(d)? =1,

since all terms in the absolute values are nonnegative if @ = Th,, (d).

Case 3. If a > a, then only the rows corresponding to the active action @ has nonzero gradient, and

0Zq(d 0=, (d 1 B
2 8dm Z’ adsa :ZZSN T =1

To conclude, it holds that on any arbitrary region R,

0=4(d)(s',a)
vz = ma: E — | =1.
|| o || 1—-1 — X 2 8dsfz
Therefore, |[VZ,|1—1 < 1 on all regions R, and =, is non-expansive in the ¢; norm. O

Lemma 7 (Sensitivity of =, to the Allocation Parameter) Let d € A A arbitrary, let ay, g <

\d||1 arbitrary. Then
B0, (d) = Eay (d)]l1 <[ — gl
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Proof: As in Lemma@ let A = {1,...,A}, and let So(d) = >, > .5,d(s',a") with
Sati(d) :==0,and ro(d) := > o, d(s', a).

Fora € {1,..., A + 1} such that r5(d) > 0, define the partition of the interval [0, ||d||1] into the
intervals

Rz :={a €[0,|d|1] : Sa(d) > a > Sz+1(d)}.
On the interval R, the map E,(d) is differentiable in «, and it holds that @ = Th,(d) and

0 ifa>a
Ea(d)(s,a) = { FU2d(s,a) ifa=a
d(s,a) otherwise

Then, again, we upper bound the operator norm of the Jacobian (in this case, gradient):

02a(d)(s", ) -1
VaZa(d = — = d(s',a)| =1,
I9aZa@lhon = 30 |G = 3| )
So ||[VaEa(d)|l1—1 < 1, implying the claim of the lemma. O

For completeness, we state the simple corollaries of the above two sensitivity analyses in the following.

Corollary 1 (Lipschitz Continuity of Z) Ler d,d’ € ASL ,, o € [0,]|d]1), and o/ € [0, ||d'|1)
arbitrary, then
1Ea(d) = Ear(d)1 < |ld = d'll1 + o = o].

Proof: Letd,d € A%iA, a €10,]|d|l1), and &’ € [0, ||d’||1) arbitrary. Without loss of generality
assume ||d||; > ||d’||1, then by applying triangular inequality we have

[1Ea(d) = Zar(d)]l1 < [1Eald) = Ear(d)]l1 + ||Ear (d) = Zar(d)]l1 < o = [ + ||d = d'||1,
where the last step follows from Lemmas|[6]and O

Corollary 2 (Lipschitz Continuity of Y,) Let d,d' € A\%iAv a € [0,]|d]1), and &' € [0, ||d'||1)
arbitrary, then Y, is non-expansive in the {1 norm, that is

ITa(d) = Yar(d)ll1 < |a = a'| + ||d = d'[|1.

Proof: Letd,d € AS! a €0,|d||1), and o’ € [0, ||d||1) arbitrary, then

”Ta(d) - Ta’(d/)Hl =

Z Za(d)(,a) — Z Ea(d)(-,a)

acA acA 1
< D IEald)(ya) = Ewr(d)( a) i = |Eald) = Ear (d)]1.
acA
The upper bound follows by the result of Corollary [I] (]

Corollary 3 (Lipschitz Continuity of T',) Ler d,d’ € Agsx ., and suppose the threshold function
(o Ail — [0, 1] is Lipschitz continuous with constant K, and satisfies the feasibility condition
a(v) < ||v|1 forallv € Ail. Then,

ITa(d) = Ta(d)]x <

(Ko +1) |d = d'[|1.

Proof: By Corollary2|and the Lipschitz continuity of «, it follows that:
ITa(d) = Ta(d)l1 < la(v™(d) — a(v™(d))| +|ld - d'|,
< Kolld = d'[ly + ||d = d's.
O

In the next sequence of results, we deal with the stability of winning probabilities given by the
function pyi,. In general, pyi, is easily seen to have discontinuous jumps, however, a local stability
result can be shown if the NZD condition holds.
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Lemma 8 (Stability of Winning Probabilities) Ler A = {a1,as,...,ax} be a finite set of actions

with total order a1 < az < --- < ag, and let v € Af‘l. For any o € [0, 1], define the winning
probability for action a € A as

0 iIf Y asev(d)>aora=0,
Puin(a, v, ) =< 1 if Za'za v(a) <aanda >0,
% otherwise.
Assume that o, v satisfy the no zero-dominance property (i.e., for any a € A, v(a) = 0 =

Yarsa (@) < a(v))and||v||1 > 0. Then for all v' € Ail,o/ € [0,1],a € A, pyin satisfies

|pwin(avyaa) _pwin(au V/>O/)| S CV,aHV - V/”l + Cu,a|a - a/|7

where:
1 ; —
min{v(a*)} fa=0
min{v(a*) Vl(a*) Ay ot ’ifAVvO‘ >0,a” ¢J‘7 a>0
Coa= W Jdf Ay >0,a7 =L,a>0
f o

min{u(a*).w(a )}
1

min{v(a*)}

7lfAV,(x =0,a" #J_,Oé >0
JifAye=0,a- =1,a>0

and where a* := Th (v) is the threshold action, a™ is the action just below the threshold (a~ :=

ap—1 if a* = ay for some k > 1 and a~ =L ifa* = a1), and A, o := mingeq |a — Y v, v(a')].

Proof: Importantly, C, ,, is finite in each case if v, L satisfies the NZD condition. The proof, while
notionally dense, works on a simple idea: in general, py;, incorporates discontinuities where the
winning probability of an action below the threshold might jump from 0 to 1. However, this does
not happen locally when there is some probability mass on ¢~ just below the threshold action. Note
that when ||v||; # 0 and NZD holds, it holds that v(a*) > 0, and v(a~) > 0if a* # a; and a > 0.
Furthermore, by NZD, if o = 0, it must hold that v(ax) > 0 and a* = ax by definition. Define the
useful constant

Ay a, ifA, o >0,
0 := < max{l/v(a*), Yv@)}, ifA,o=0,a" #L
1/1/((1*), if A%a =0,a" =1

which will be the radius of the open set around which there are no discontinuities of pyip.

First, we show that |pyin(a, v, &) — pwin(a, v, )| < Cy ol — | for any o/. Without loss of
generality, we can assume that o < ||v]|1, 0’ < ||V]|1, as pwin(a, v, @) = pyin(a, v, min{c’/, ||V||1})
for any o’ by definition, and | min{e, ||v|1} — min{c/, ||V|1}| < |a — &/|. If |a — /| < 4, then
o € (o —9,0,a+ 0) NR>p. On the interval (o — 6, & + &) N R0, Pwin is continuous for any a
since

Fora < a*,a#a” : pwn(a,v,a’) =0,
Fora >a": pyin(a,v,o) =1,
) o 1 if Y s, v(d) <o,
Fora=a": pun(a”,v,a) = {W otherwise.
Fora — a_’ fa #L pwm(a_’y7 O/) _ {2,_2 L ) if Za’?a* V(CL’) Z a’v
—=es— otherwise.

Moreover, from above, pyi, is almost everywhere differentiable in o in this interval with

< {max{l/u(a‘), 1/1/(0,*)}, if a* 7é ap,a >0

apwin(a'7 v, Oé)
1/v(a®), otherwise

oo

as in this interval the “active” threshold action will always be either a* of a~. Therefore,

|pWin(a7Va Oé) _pwin(a7ya O/)| S Cl/7a|a - O/"
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If on the other hand |ae — &'| > 4, then
‘pwin(aa v, a) 7pwin(aa v, 05/)| <1< 571‘04 - 0/| < Cv,ala - O/|~
So in both cases it holds that |pyin (@, v, &) — pwin(a, v, )| < C), oo — |
Next, we show the stability in v. Once again, assume that ||/ — v||; < 4. On the open set

{V' : ||/ — v|]1 < 0} the function pyin(a, -, ) is once again continuous in ¢’ for any a, and almost
everywhere differentiable with

<

apwin(aa V/7 O[)
ov'(a’)

ﬁ, ifam =1L ora=0
ifa” #1,aa>0

min{v(a*),v(a")}’
for almost every v’. Therefore, it holds that

|pwin(a7 V/7 a) - pwin(aa v, a)‘ < Cl/,aHV - I/Hl'
On the other hand, if ||v/ — v||; > 0, then

‘pwin(aw I/I,CK) _pWin(a'a I/,Oé)| S 1 S 6_1||V - V/Hl'

To complete the proof, we use the triangle inequality:
|pwin(a7 l/’ Oé/) — Pwin (a7 v, O‘)‘ S |pwin (CL, v, O/) - pwin(a7 v, O[)| + |pwin(a7 v, O/) — Pwin (CL, Vl) O/)|
]
Remark 3 The proof of Lemma (8| can be adapted to handle action distributions with full support.

In this case, a refined version of the first part of the argument shows that the winning probability
is Lipschitz-continuous with a constant bounded by ST CENE where a*,a™,a™ are

min{v(a=),v(a
actions around the threshold. Consequently, for policies with full support, i.e., m,(als) > e forall s €
V, a € A, and some € > 0, the deviation in winning probability is bounded by c [l —v||.

1—amax)€

Lemma9 Let p, i/ € As be two arbitrary state distributions, and let 7,7’ € II be two arbitrary
policies. Define the corresponding state-action distributions L, L’ € Agsx 4 as

L(s,a) := u(s)n(als), L'(s,a) = p'(s)'(als).
Then, it holds that
1L = L'l < sup | (-]s) = 7' (|s)llx + [l = 1/l
S

Proof: We compute the total variation distance:

1L = L' = Y u(s)m(als) — @/ (s)7' (als)]
= > luls)m(als) — u(s)r’ (als) + p(s)n’(als) — ' (s)x' (als)]
<> uls) Y Imlals) —x'(als)| + Y lu(s) = u'(s)| Y _ ' (als)

= sup |7 (-|s) = 7' ()l + [l — w'll1,

where the last line uses that > ©_ 7’(als) = 1 for all s. O

E.3 Proof of Theorem 2, part 1 (Approximation in Exploitability)

The theorem considers BA-MFGs with Lipschitz-continuous reward, dynamics, and utility functions.
Let K, € [0, 2] denote the Lipschitz modulus of the state dynamics wy,, K, the Lipschitz modulus
of the payment function p;,, K, the Lipschitz modulus of the utility function u; with respect to its
second argument, and K, be the Lipschitz modulus of the allocation funciton «y,. That is, for any
seV,ae A v, € Ay, p,p € R,

|uh(57p) - Uh(sap/)| § Ku : |p 7p/|7 |ph(aa V) *ph<aa V/)| § Kp : ”V - VlHla
o (v) — an (V)| < Ko - v = /|1
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The composed function uy, (s, pr, (a, v)) then is also Lipschitz with modulus K, K, as
|uh(57ph(a7 V)) - uh(saph(aa V/))| < KU ' |ph(a7 V) 7ph(aa Vl)| < KUKP : ||V - VlHlv

<1
forall v, € A%

Additionally, let B, be an upper bound on the absolute value of payments, i.e., |py(a, )| < Bp, and
let B,, be an upper bound on the absolute value of utilities, i.e., |ux(s,p)| < By, for all s, a,v, h.

. . . . . <1 .
Such an upper bound always exists if uy, pj, are continuous in v, since A" is a compact set.

The argument proceeds in three steps:

1. First, we bound the expected deviation between the empirical distributions and their mean
field counterparts. That is, we show an upper bound on the deviation E [||L§ — Ly ||1} .

2. Second, we show that for policies satisfying the no zero-dominance property, the expected
transition probabilities associated with item allocation, under both the mean field and
finite-population settings, differ proportionally to the deviation in population distributions.

3. Finally, we bound the exploitability of a single agent when all other agents follow a policy
that satisfies the no zero-dominance property with respect to the mechanism.

In our analysis, we also make use of the population distribution &, after item allocation at round 5.
In the mean field setting, this is defined as &, := Ty, (Lp), where Lj, € Agx 4 is the state-action
distribution at round h, and the operator I',,, captures the expected post-allocation state distribution
under the mechanism (e.g., by marking winners as inactive). This quantity serves as the input to
the state transition function wy, in the MFG dynamics. In the finite-agent setting, we denote the
analogous empirical quantity by &;,, representing the empirical distribution over states immediately
after allocation. We also define the random variables {z} } as 2 =_ if agent i was not active in
round A (i.e. 52 =_1) or agent ¢ won the the auction in round h, and z}l = 32 otherwise. With this
definition,

1 N
fi= % e e
=1

Finally, we define the constants used in our convergence analysis as follows. Define

1
K = sup [lw(s,©) —w(s, Ol Ke = Ko+ 5 K..

s,8',¢

E.3.1 Step 1: Expected Deviation of Empirical Distributions

We derive explicit bounds on the expected deviation between the empirical distributions and their
mean field counterparts. In particular, we bound the deviations for the state distribution and the
state-action distribution.

Lemma 10 Let M, = (S, A, H, 1o, {P)" Y- ARV L) define a BA-MFG. Consider the
corresponding finite-agent Batched Auction model with N agents, G, which is approximated by
Mpa. Let ® = {7} }p—o,... . H-1,ic[N] € 1Y denote the joint policy of the population. Denote by
Iin € Ag the empirical state distribution and by Eh € Asx A the empirical state-action distribution
at round h.

Let T € Iy arbitrary, and define the associated mean field state-action distribution flow L™ :=
Aot (), with corresponding marginal state distribution pj, := 3 L7 (-,a). Then, for all h €
{0,..., H — 1}, the following bound holds:

[AllS|

T _ T T~ 1 = i
EILF = Zull] S E [If = fnl] + 5 3 Imn = mhll + /25
i€[N]
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Proof: We decompose the deviation:

E[IIL7 — Zall|{sh}in] < ILF = EZal{shinlll+E [[| 2o — EIZn s el [{sh}in]
(=)

(&)

We bound the two terms separately. For (O), define L € Agyx 4 as L(s,a) = fip(s)7(als) =
& Y ien 1,; —,7m(als). We (almost surely) have:

1L — E[Lal{sh }inllls < ILT — L]l1 + IIE[L}LIFML] — Ll

PP — fin(s)w(als)| + |E[Lnl{sh}in] — Ll
sESacA
T ~ 1 — i 7 7
< llpk = Anlls + > > Iw(alsy) — i (als,)]
i€[N]acA

o~ 1 — i
< k= Balle + D 1R =il
i€[N]

For the second term (A), by applying Jensen’s inequality, we have:

E H‘Eh 7E[zh‘{sz}lh} 1 {Sﬁl}ivh} Z Z]E HLh s, a) Lh(s,a)l{sﬁ;}i,h}\ {52}14
seSacA
< Z Z \/Var Lh s, a {sh}, h]
s€eSacA

=SS [ w@s - mhels).

s€ES acA ie[N],sZ:s
Applying Cauchy-Schwarz’s inequality, we get for any s € S:

> > 7T%;(CLIS)(l—?T%;(aIS))S\/IAIZ Y. mlals)(l - (als))

a€A \ ig[N],si =s a€Aie[N],si=s

AY Y mals)
a€Aie[N],si=s
< /NTATn(s).

By integrating this result into the previous computation and using Cauchy-Schwarz’s inequality, we
get:

2 (|20~ BZulsidial]| [tshdia] = 5 3000 [ S0 mhals)(1 — mials))

s€SacA || i€[N],si=s
VA EONF \/|A|8| o) < /L
s€S N

Combining the upper bounds derived for terms ([J) and (A), we obtain the desired result, as
E[ILF - Zall ] =B [B [1LF - Zal| i o] | O

Lemma 11 (Deviation Between Empirical and Mean Field Population) Ler Mga =
(S, A, H, o, {P}Tfa}h 0> {Rmfa th_ol) be a BA-MFG. Let {O‘h}hH:_()l’ {wh}}?:_ol, {ph}hH:_01’
and {uh}th_Ol denote the allocation thresholds, transition dynamics, payment, and utility functions,

respectively, from which {P;L”f“ o and {Rmf“} H- are derived. Assume these functions are
Lipschitz continuous, with respectlve Llpschltz constants K, K,,, K, and K,,.

Consider the corresponding finite-agent Batched Auction model with N agents G, which is approxi-
mated by M. Let m = {7} },— 0,...H—1,ic[N] € [ denote the joint policy of the population. For
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each round h, denote by Ly, € Asx 4 the empirical state-action distribution and by [i, € As the
corresponding empirical state distribution.

Let ™ € 11y be an arbitrary policy, and define the associated mean field state-action distribution
flow L™ := A,y (T), with corresponding marginal state distribution pj, ==Y L7 (-, a). Then, for
all h € {0,...,H — 1}, it holds that

1— (Ke(1+ Ka))"*' /IS

B [~ ) < LUK VTS
1— (Ke(1+ Ka))" (V/IS] | 1 VISIIA]
+K§ 1—K§(1+Ka) (\/7+N+(1+Ka) \/N )

+ Z (Ke - (Ko + 1)) N Z T — 7 1,
h'<h i€ [N]

ifKe(14+ K,) # 1, and

= S S||A
E[nuzwhmg(ml)v' | \/]'Vi o, <2vf| ;V)
+ Z Z |7 — 71,
h’<h €[N

fKe(1+ K,) =1

Proof: Let {s}}h—o. 1,i€[N]5 {a} bn—o, 1 1,ic[N] and {zi Y=o LH-1,ic[N] 8s in Defini-
tion @ We prove the lemma inductively over h. For h = 0 we have uf = po = E[fig]. Let
X5 = Zle[ ~] L{si=sy» which is by definition X, a binomial random variable with parame-

ters N and po(s). Since it is a sum of independent Bernoulli random variables, its variance is
Var[Xs] = Npo(s)(1 — po(s)). By using Jensen’s, we can upper bound the expected absolute
deviation for each state s € V

E[lpo(s) — fio(s)]] < /Var[fio(s)] = \/NO(S)(lj\; Ho(s)) \/m}és)

By summing over all states s € V and applying Cauchy-Schwarz’s inequality, we get:

E[[|o — foll1] = ZEHNO( — Jio(s Z MO C S. \/‘7

sEV sEV

Next, for h > 0, we compute an upper bound for the deviation at step h + 1. In particular, we analyze
the conditional expectation

E [luhs1 — Ansalla] {2 1]
<E[lluhr — Elfnea{zi W {203 ] + B (B — Blinga {20 ]l {zh o ]
=(A) :=(0)

almost surely, where {2} } /¥ | are the states of agents after the item allocation in round / as before.
We upper bound the two terms ([J) and (A) separately. For ((J) we have:

= 3 E[|fne1() ~ Elfnea () [{)1 [{03] < 3 /Y[ () {24)]-

seS SGS

For arbitrary s € S, noting that &, is {2} }-measurable,

Var[fin1(s)] {21,}] = N2 > NEw(s ) w(sls', ) (1 — w(s|s', &) Z w(s|s’, ).

s'eS s'eS

By the Cauchy-Schwarz inequality, we have
2

ST DT &lswsls &) <ZZ£h (s]s', @))) S| = [S].

seS s'eS seS s'eS
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Therefore, we (almost surely) have

Z > &n(s)w(s|s’, &n) S\/%|

SGS s'eS
For (A) it holds that
(8) =B T = s AN < B
~[[ruten) - T, < (Ko + %5 ) 16E -Gl

where in the last step we applied Lemma 2.2 from [73]]. Merging the upper bounds for (A) and (OJ)
and taking expectations, we obtain

_ S .
E[lufy1 — finglla] < \/\/; + (K + K) {th §h||1} .

Next, we bound the expected deviation between the post-allocation state distribution in the mean
field model and its empirical counterpart in the finite-agent system. Specifically, we consider

E {Hff — §h||1], where £ := T, (L7) is the mean field post-allocation distribution induced by

policy 7, and E » is the corresponding empirical distribution in the finite-agent auction, computed
from realized allocations rather than via the operator I',, . Denote the o-algebra induced by {s},, a}, }:
as JFy, for simplicity, then

E[I67 - &lli|Fn] < E [I€F — BEIFl 1| F] +E [1€n — BEIF] I |7a] -

=(0) =(9)

= ZE Hfh E[n(5)|Fn] ’ ’]:h} :

We upper-bound the two terms separately once again. For () we have:

V) =E [th - E[Eh|~7:h]||1|}—h] = [ ‘ﬁh En(s )|]'—h]‘
seV

We establish an upper bound on the absolute deviation for each state s € V. Let s € V be
arbitrary. Given the empirical state-action distribution Eh € Asx 4, the corresponding empirical
state distribution is given by marginalizing over actions: fi, = Y, 4 Eh(~7 a). By definition of
fin, there are Nij(s) agents in state s at round h. Denoting these agents as i1, ..., iy, (s)» W€ can

express & (s) as:

~ 1

Gs)=5 D Lu_,

JEINTR(s)]

Two key observations can be made regarding these indicator variables:
1. The indicators are negatively correlated due to the structure of the auction. To illustrate this, assume
without loss of generality that the first M/ agents have not won yet, i.e., s} #.L forall ¢ € [M]. Since
the number of items in each round is fixed, when conditioning on Ly, we have

L@h( Lh J Z lz, =1

which implies that the indicator variables JIZ; _ are negatively correlated. Consequently, their
complements ]lZ i = =1-1, = are also negatively correlated. This implies that any subset of

these indicator Varlables retains this negative correlation property. Specifically, for every state s, the
random variables 1 i, _ , j € [N7in(s)], are negatively correlated.
h

41



2. Since these are Bernoulli random variables, their variance is at most 1/4.

It follows from the two observations above that the variance of Eh conditioned on F}, can be upper
bounded almost surely as follows:

N IO E A S o S W I D DI W )

Sims g sims
JENTn(s)] JE[NTin(s)]
1 [in(s)
<y i |m]< S
JEINTR(s)]

Using Jensen’s inequality, we can bound the absolute deviation using the variance:

Hfh E[(5)|F] ’]:h <1/Var En(s ‘]:h Mh

Using this result, together with Cauchy-Schwarz’s inequality, we can further bound (©):

_ ~ fin(s cs\/|7
—;}EH@I( EfEn(5)| ]| | 7] <XVav

For the term (<)), applying the result of Corollary I yields:

() = E [I€7 — Bl Fallls[ Fu] = ITay (£7) — Tan (Eu)ls + NEEIFa] — Ty (En)ln

- ~ - = 1
< Jan(v™H(LF)) = an(v™(Ln))| + ILT — Lall + N

- ~ - = 1
< Koll(w™ (L) = (v (La) I + LT = Lall + v

= =~ 1

< (Ko + DILT = Lulh + 5+

where the second to last step follows from the Lipschitz continuity of «,, while the last step follows

from [|(v~+(L7) — (v~ (Ln)|l1 < [|IL — L 1. Additionally, | E[€x]F5] —Ta, (La)ll1 < 5 comes
from Lemmal7] as |[Nay, (v~ (LT))| — Nan(v~(L]))| < L.

Combining the upper bounds for (©) and ({) we get:

(€7 &l
< (Ko +1E {||L§—Eh||1] + z\/ﬁ +%
1% % 1
< (80 -+ 1) (B (14 - ] Zum—whn wy LD DL L

where the last step follows from Corollary F]
Combining this result with the bound on E[[|1if;, ; — fin41/[1], we apply induction on £ to conclude
the proof of the lemma. (]

Corollary 4 (Deviation Between Empirical and Mean Field State-Action Population) Under
the conditions ofLemmafor allh € {0,...,H — 1}, it holds that:

- = 1— (Ke(T+ K )" (VIS VISIA
E[ILT - Zull] < 1—%(1“{) (f \ﬁ)
(Ke(1+ K))" (]S] 1
K 1—K£(1+K) (2f+N>

+ Y (e (Ko +1)" " leﬂh/—ﬂhllh

h'<h ze[N]
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fKe(14+ K,) # 1, and

E[ILF - Znli] < <h+1>(¢'?+ W) +hKf(m+1>
Py 4 > =il

2V/N N
h’<h €[N

Proof: The upper bound is obtained easily from Lemmas [[0]and [TT] (|

E.3.2 Step 2: Expected Deviation of Winning probabilities

We derive an explicit upper bound on the expected deviation in winning distributions between the
mean field auction and its finite-agent counterpart, under a single-agent deviation from a common
policy.

Lemma 12 (Expected Deviation in Allocation Dynamics) Let Mmﬂ, =
(S, A H, M0> {P}lznfa}h 0° {Rmfa ilj 01) be a BA-MFG. Let {ah}h 0 {wh}h 0’ {ph}h 0’
and {uh} he 70 denote the allocation thresholds transition dynamics, payment, and utility functions,

respectively, from which {Pmﬁl}h o and {Rmfa "o are derived. Assume these functions are
Lipschitz continuous, with respective Lipschitz modulz K., Ky, Kp, and K,. Consider the
corresponding finite-agent Batched Auction model with N agents approximated by M. Let
T = {ﬂfl}hzo,wH_L ic[N] € Hg denote the joint policy of the population, and let Ly, € Ag be the
empirical state-action distribution at round h.

Let 7™ € Iy arbitrary, and define the associated mean field state-action distribution flow L™ :=
Apgo (). Then, forall h € {0, ..., H — 1}, the following bounds hold:

. ] _ _ . PN n
E[‘pwill(S;wa;L,LgvV_l(L;zr)) _pwin(SZaaZ7Lh7LA :|
< Crpo, E[ILT = Lnlh] + Cipen L
= YLian h Ko+1 N
and
CLf,a;L 1

E [I1Pa (s}, L7) = P, (Smoan)ll] < 2017 0, B (127 — Bl | + 2577

where for an arbitrary state-action distribution L € Agx 4 and o : A§1 — [0, 1], the constant C1, 4
is defined as in Lemmal8]

Proof: For the first inequality, we have

Y S e o i i T |Nv (I
E“pWin(Sh’ah?Lh’V J_(Lh))_pwin<shvah’LhaLi[\f(])J)”

. . ~ . . — D*J_ T
< Y Plsj, = s,a}, =a,Lp = L] ‘pwm(sz,aﬁuLZ, v=H(LT)) — puin(sh, af, Ly, L5l

s,a,L
< D Plsi =s.ah =aln = LCpa, 1] - L+ 225 - 5
s,a,L
— ~ CL?IX ]-
< CLf,OthE [”LZ — Lh||1:| + Kah#_hlﬁv

where in the second-to-last step we used Lemma §]
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Additionally, for the allocation dynamics Py, , since each state s € V can transition only either to
itself or to the inactive state L, it follows that:

E[”Pah(sgwa;w[/ﬂ) PNah(shvah H ZE HPah( |Sh7athh) P}V,ah(slshaah)lll]
seS

= E [|| Py, (sh5h, @} LT) = Pii o, (shlsns an)|1]
+ E [[|Po, (L [sh, ap,, Ly) — P g, (L I8, an) 1]
=2E [HPOUL(J- ‘3h7aha ) PN a;L(J- |Sha ah)” ]

Since the marginal probability of transitioning to the state L corresponds to the winning probability,
the bound follows directly from the first inequality.

O

E.3.3 Step 3: Exploitability Deviation for BA-MFG

Finally we prove the absolute difference in expected reward due to a single-side policy deviation.

Theorem 4 Let M, = (S, .A H, po, {mea}f 0 {Rmfa =0 be a Batched Auction Mean Field
Game (BA-MFG). Let {a }1=, {wn}1=0, {pn}1=y, and {uh}h o denote the allocation thresh—
olds, transmon dynamics, payment, and utility functions, respectively, from which {P,Tfa 0 L and

{R;'ffa h:O are derived. Assume these functions are Lipschitz continuous, with respective LlpSChllZ
constants K, K., Ky, and K,,.

Consider the corresponding finite-agent Batched Auction G, with N agents, which is approximated
by Myya. Let T € Iy an arbitrary policy satisfying the no-zero dominance property. Then, for any

policy m € Iy, ™ > 0 it holds
1
:O _—
(%)

Vr;L—a(Amfa(ﬁ%W) - Jaucl (ﬂ— , %)
Proof: Deﬁne the random variables {s},,a},, 2} }ic[N], hefo,....H—1}» along with {Lh}h o>

H/—/
N —1 times

(i}, 0 , and {fh} -1, as in the definition of the N-player Batched Auction (see Deﬁnltlon@)
Here, sj, denotes the state of agent 4 at round h, ah its action, and 2}, its hidden state following the al-
location step. The random variables Lh, 1, and f n represent, respectively, the empirical state-action
distribution, the empirical state distribution, and the empirical post-allocation state distribution at
round h.

For the Mean-Field Batched Auction, define {s, a, zh}th_Ol, where s;, and aj, represent the state
and action of a representative agent at round h, and z;, denotes its post-allocation hidden state. These
evolve deterministically according to the mean-field population flows L™, u™, £™ induced by the
population policy 7.

We divide the proof into three steps:
1. We show that for every h € {0,..., H — 1} we have:

[Plsn = ]-P[s}, = ]|,
_ ~ 2CL ,,(l ’
< 3 B[IL — Dl (K +1) #2007, 0,) + G 53
h<h
VIS] |1 )
+hK,| V= +
(m/ﬁ N
2. We show that for every h € {0, ..., H — 1} we have:
’E[er?fa(sha Qh, Lz)_R%fdh(Sh’ Qps Lh)”
— ~ CL?,OL Bu
< (Kul + BuCrp o B [T~ all | + 252 2

+ BulP[sp, = ] — P[s, = ]||1.
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3. In the last step we combine the results of the previous steps to prove the man claim of the
theorem.

Step 1: We prove the inequality by induction on h. For the base case h = 0, we have ||P[sy =
] = P[s§ = *]|l1 = 0, since both distributions are equal to the initial distribution 9. Now, assuming
the bound holds for some h > 0, we show that it also holds for round h + 1.

IPls1 =] = Plsi i =]l = || D_Plep = 2,6 = un(z,8) - ZP zn = 2Jwn(2,&F)

2 .

By adding and subtracting > . Pz} = 2 & = Euwn(z, &) = Y Plz} = Zwn(2,&f), and
applying triangular inequality, we get

[Plshr1 =] = Plspyy = Il < = 2,6 = €] (wn(2,€) — wn(2,€]))
+ Z(]P’[Zh = 2] = Plzj, = 2])wn(2, &)
< KLE(l1€F — &nlla] + [Pzn = ] = Plzi, = .

The term E[||{] — &n|l1], using the same derivation as in the inductive step of Lemma 11| can be
further upper bounded as

_ o~ — = \/|V| 1
]E{ T }< K, 1]E{L”—L } VIFLL =
167 = &nlli] = (Ko + DE[IL4 = Lalls | + 5= + -
Finally applying a similar reasoning we can upper bound ||P[z, = -] — P[z} = -]||1.
IPlzn = ] = Plzy, = Il

Z]P’sh—s a, = a|Py ,, (s,a) Z]P’sh—s an = a]P,, (s,a, L})

s,a s,a

1
By adding and subtracting >__  Pls), = s,a, = a|P,,(s',a',L}) = Y,  Pls; = s,q;,
a]P,, (s,a, LT), and applying triangular inequality, we get

[Plzn = -] = Plzy, = Il < Y _Plsn = s, a5 = a][|Pyq, (s:) = Pa, (s'a", L)1

+ Z ”Pah (Svasz)”l“P[sh = S5,ap = CL} - ]P)[Sflz = 5,&111 = a’”

s,a

S E[IPN o, (81, an) = Pay (sh, ah, LF) 1]
+ ) [Plsn = s] - Sh75|zﬂ—h $)|| Py, (5, a, L7) |1

Applying Lemma 2]t follows

IBlzn = ] = Plzh = ]l
L OL—,%
< 2017,0,E LT — Lulh | + 232575 55 + [Pl = ] = Blsh = .
By combining the two bounds, we obtain
IPlons =1 Flshor = 1l < Ko (o 4 DR [17 - Zall] + X 4 1)
2VN N

20y 0 B (17 - Tall] + i
o (Ko +1)N

+[IPlsn =] = Plsy, = ]l
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Applying the induction hypothesis completes the proof for round i + 1.

Step 2: We prove the inequality by using the result obtained in step 1. Let h € {0,..., H — 1}
arbitrary, then

|E[Rli?fa(shv Qh, LZ) - RIIT\IIf%z(shv Qh, Lh)”
< [E[RR™(sn, an, L}) — Ry™ (s}, ah, LT)]| + [E[RR™ (s}, ah, LT) — RN (s} ai, In)]|

() (2)

The first term ((J) can be upper bounded by
0) =[S (Blsn = 5] ~ Blsh = s)) Y walals) B (s, 0, L)
For the second term (A) we have:

A) < Z P[si = s,a), =a,L = L)|Rp™ (s, a, L) — Ry, (s,a, L)|

s,a,L

< Z P[s} = s,a}, = a,L = Ll|un(s,pn(a, v (L}))) — un(s,pn(a, v~ (L)))]
s,a,L

— _ R .
+ BuEUpwin(S}lm ailza LZ, I/_J-(Lg)) — pwin(s}“ a}” Ly, WM]

< KK, Y Plsj = s,a}, = a,L = L]| L} — L|x
s,a,L

< By|P[sp, = ] — P[s} = |1

L . B,
B,Cyr . E [ 7T -1 } Zu
+ Lh,ah, || h h”l K +1 N

CLfon Bu

K,+1N’

where in the second to last step we used the Lipschitz continuity of u o p and Lemma[T2] Combining
both results we get:

< (KuKp + BuCry 0, )E [ILF = Il ] +

_ _ ~ CL? B

mfa T mfa _ T ho%h u
|E[Rh (sn,an, Ly,) — Ry h(Shaathh)H < (Kqu + BuCLg,ah)E [”Lh Lh”l} + K,+1N
+ BullP[sn = -] — P[s}, = [|1-

Step 3: We now combine the results from the previous two steps to establish the final bound stated in
the theorem.

anfa(Amf'd(ﬂ—) ) ‘];1(,1( Ty Ty vﬁ)
H-1 B

= E | Y RP™(sn,an, L}) + H(mn(sn)) — RYS, (sh, ap, Ly) - TH(?Th(Si))] '
h=0

H-1
< Z ‘E [R?L‘fa(sh, an, Lp) + 7H(mn(sn)) — R%f‘}l(sh, aj,, Ly) — TH(ﬂh(s,lL))} ‘ .

We proceed by bounding each term individually for every round h. Let h € {0, - - - H — 1} arbitrary,
then

B[R (sn, an, LT) + TH(mn(5n)) — RES,(shs ah In) — 7H(m(51))]|

< | [BR®(sn,an, L7) — RRS (s, ah, L) | + 7B [H(ma(sn) = Himn(s3))]]

The first term is bounded using the result from Step 2, while the second term can be handled as
follows:

|E [H(mn(sn)) — H(mn(sy))]| < Z [P[sn Pls;, = s]H(mn(s))]

< ||P[Sh =] = Plsy, = ][l log(|A]).
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Therefore the (entropy regularized) absolute difference in rewards at round h can be upper bounded
by

’E {R?L’fa(sh,ah, LT)+7H(mh(sn)) — R“A‘;ah(sh, ah, L) — 7H(mh(sh) ] ’

- » Bu
< (Kl + BuCyz o B I~ Lnll | + 5 57
+ (Bu + 7log(JA]))|[P[sh = ] = P[s), = ||
By applying the bound on |P[s), = ] — P[s}, = -]|; derived in Step 1, and summing the per-round
deviations over all A, it follows:
Vit (At (), 1) — Jie (7,7, ..., )
H/—’
N —1 times
H-1 B
T_ T Ch
< ;(KUKP + BuCLf,ah)E [”Lh - Lh”l} + Kath 1N
Al — o~ 2CL 1Ot
+(But 71054 Y S E[IEE - Dl ] (K (B 1) + 2057, 0 + oot
= (Ko +1)N
=0 h'<h
H(H-1) <\/|S| 1)
+ (B, + 7log(].A K, + =
(B log(|A) 5 -

In pairticular, Corollary ] implies that the total (entropy-regularized) reward difference is of order
O(—). O
VN

Conclusion and Statement of Result. Let M, be a BA-MFG with Lipschitz-continuous

{uh}th_Ol, {wh}th_Ol, {ah}th_Ol, {ph}hH:_O1 Let ms € Ily be a policy that satisfy the no zero-
dominance property. Let further assume 7 is a §—MFG-NE, namely

d> né:%lx Vo (Amga(75), ') — Vi (Amga(75), 6.

Then, for 7 = (75, ..., 7s), we have:

max J(n,m ) = T ()

= max J{(r', w78 — JTi(m)

i EH auc auc
+ Viaa (Amta (775) 77/) = Vinta(Amnta (705, WI) + Vinta(Amta(76) 75) — Viga (Amta (705), 75)
< max Vi (Ama(7s), ") = Vinta(Amta(75), 75)

| (Amfa(ms), ™ ") - J;;ml(ﬂ' m ""‘ (Amfa(7s), 75) — Jz;ml( )’
Cl Cg _ 1
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In case K¢(Ko + 1) # 1, the constants C; and Cs are given by

H—-1
1_(KE(1+K0¢))
=2 K,K, + B,C,~
= — (Ke(1+ Ka))* e
£
+ hZO(K’uKP + BUCL’L5 ap )K§ 1 K (1 +Ka) |S|
H-1
+ +2C'L a
h=0 h’<h( " )
(Ks(1+K )M+
|2(By + 10g |A]) T ( ST+ V/ISTIA])
— (Ke(1+ Ko))"
+ (Bt rlog | AR A
Ky,\/|S
+ (Bt log(A H(E - 1) VIS
H—-1
1 — (Ke(1+ Ky))ht? 1-— (K5(1+Ka))h>
Cy=2) (K K,+ Bu.Cprs < + K,
i h:o( ! e\ To(mi+ K TS (R4 Kl
H—-1 C
L s Qp
+2 B, —-
= K,+1
H-1 /
1— (Ke(1+ K,))M'+1
+ 2(By + Tlog|A|) (Kw(Ko+1)+2C, 5 s ) (Ke(1 + Ko))
h=0 h’ M1 = (Ke(1+ Ka))
= <h
= — (Ke(1+ Ka))"
. 3
+2(Bu+710g|A|) 2 2 (Kw(Ka+1)+2CLh?,ah,)K£ 1—(K5(1+Ka))
= <h
H71 QC(LW‘S OL;/
n! '“h
+2(B, + Tlog|Al|) 7[(& 1
h=0 h/<h

+ (B, + Tlog|A|)KwH(H —1).

In case K¢(Ko + 1) = 1, the constants C; and C5 are given by

Cr=23"(h+1) (KK, + BuCyrs ) ( S|+ |S\|A>
h=0
H—-1
+ 3 b (KUK, + BuCyrs 0 )Ee\/[S]
h=0
H—-1
+2(B, + Tlog|A|) Z > (W +1)- ( w(Ka+1)+2C7s )( S|+ \S||A)
h=0 h'<h "
—1
+(Bu+ﬂog\A| Son ( (Ko + 1) +2C, ah,>K@/|S|
=0 h/<h

(B 7 og(LAD) B - 1)L
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H-1
Cy =2 (KuKp+ BuCprs o )(h+ 1+ Kch) + B g
2 Pt uddp u L;LJ,Oéh 13 uKa+1
H—
+2(B +T10g |A| Z Z +2CL ‘5ah/)(h‘l+1+K§h/)

0 h'<h

+ 2(B,, + 71og(]A])) Z; K1
+ (B + 7log(|A])) KwH(H — 1).

Remark 4 For policies with full support, the Lipschitz constant associated with the winning prob-
ability is of order % as discussed in Remark Consequently, the constants Cy and Cs scale as

o(tH?. %) when K¢(Ko 4+ 1) # 1, and as O(2 H?) when K¢ (Ko + 1) = 1.

Explanation of Constants. In the above expression, the constants represent key components of the
BA-MFG dynamics:

* B, and K, are the bound and Lipschitz constant of the utility function u respectively.

* B, and K, are the bound and Lipschitz constant of the payment function p respectively.

» K, denotes the Lipschitz constant of the transition function w.

* K, is the Lipschitz constant of the allocation threshold function c.

© Ky =sup, ¢ [lw(s, §) —w(s’, &)

c Ke =Ky + %K s-

* (' is the Lipschitz constant of the winning probability function evaluated at the distribu-

tion L, assuming L satisfies the no zero-dominance property. For its precise definition, see
Lemma

* 7 is the entropy regularization parameter.
E.4 Proof of Theorem 2} part 2 (Approximation in Objective)

We show that, under Lipschitz conditions, the objective computed under the mean field approximation
closely matches its expected value under a finite population of agents.

Theorem 5 (Convergence of the Mechanism Objective) Let g : AH Sxa — R be a Lipschitz-
continuous objective defined over the class of Batched Auction Mean Field Games (BA MFGs).

Let /\/lmfa be a BA-MFG with Lipschitz-continuous {up} 1", {wn }1 =" {an i = Apn } =y Let
7w = (m,...,m) be the joint population policy for some w € Ily. Then:

[9(Ama(m) = Gm)| = O (F5 ) -
where G() = Elg({Ln}12))|x].

Proof: We use a decomposition over the support of L and apply the triangle inequality:

|9(Amea(T) m)| = (9(Amga(m)) — g(L))

< ZIP’ [L = Lin] |g(Ama(7)) — g(L)|
L

< ZP[E = L|7|'}Kg||Amfa(7r) - LHl
L

= Ko [ Ama(m) — L]

where K is the Lipschitz constant of g. The result follows by applying the bound from Corollary [}
O
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Lemma 13 (Lipschitz Continuity of Expected Revenue) Let g,., denote the expected revenue ob-
Jective. Let Mz, be a BA-MFG with Lipschitz-continuous payment functions {ph}th_Ol and allo-
cation functions {cy } 1=t Let L = {Ly}7 =} and L' = {L} }=} be two arbitrary state-action
distribution trajectories over H rounds. Then,

|9rev(L) = Grew(L)] < (Bp(2 + Ka) + Kp)| L — L1,

where B, is a uniform bound on the absolute value of the payment functions, K, is their Lipschitz
constant, and K, is the Lipschitz constant of the allocation threshold functions.

Proof: The expected revenue, for L = {Lp,} ’11—1:—01’ can be rewritten using the operator =

H—-1
Grev(L) =Y > (Ln(s,0) = Za vt (£ (Ln)(5,@)) pa (@, v (L)) -

h=0 s,a
To simplify notation, we define
Zo(L):=L—Z,(L),
representing the residual (unallocated) mass at each state-action pair. Applying the triangle inequality:

H-1

|grev(L> - grev(L/)‘ < Z

h=0

Y Cant o (Ln)(s,@) pula, v (Ln))

s,a

- (Eah(V_L(L;L))(L;z)(Sv CL)) pu(a, V_l(L;z))‘

H-1
<3 Y Bt wan (B (5:0) = B gy (L) (5. )| | (a7 (L)
h=0 s,a

H—-1
+ Z Zéah(V*J—(L/h))(L;z)(sﬂ a) ‘ph(aﬂ V_L(Lh)) - ph(a7 V_L(L?L))‘ .
h=0 s,a

Using the boundedness of the payment function p and the Lipschitz continuity of the allocation
operator Z,, the first term can be bounded by B, (2 + K, ) ZhH;Ol |Ln — L}, ||1. For the second

term, the Lipschitz property of p implies a bound of Z,If:_ol Kp|| Ly — L}, ||11. Combining these, we
conclude that the revenue objective grey is Lipschitz continuous with constant B, (2 + K,,) + K,
and satisfies the bound

|Grev (L) = grev (L')] < (Bp(2 + Ka) + Kp)|IL = L'y
|
Corollary 5 (Convergence of Expected Revenue) Let g, the expected revenue objective. Let

My be a BA-MFG with Lipschitz-continuous {up }1—o {wn 2= {an =g {pn iy Let
w = (m,...,7) be the joint population policy for some w € 1. Then:

[grer(Bga(m) = Gin(m)| = O ().
Proof: The result follows by combining Theorem [5]and lemma[T3] g

E.5 Proof of Lemma[3|

In this section, we prove that the (entropy regularized) g-functions are Lipschitz continuous with
respect to the population policy, assuming full support. We begin by showing that the population
flow is Lipschitz in the policy. Next, we establish that both the transition dynamics and the reward
function are Lipschitz continuous with respect to the population distribution. Finally, we combine
these results to derive a bound on the Lipschitz constant of the (entropy regularized) g-functions.
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Lemma 14 (Lipschitz Continuity of Population Operator) Let Mg =
(S, A H, uo,{Pgnﬂl}th_Ol,{R;':f“ fz_ol) be a Batched Auction Mean Field Game (BA-MFG).
Let {ap}7=0 {wn Y= {pnyis), and {up}f=) denote the allocation thresholds, transition
dynamics, payment, and utility functions, respectively, from which {P;L"f“}f;ol and {RZ”C“ i
are derived. Assume these functions are Lipschitz continuous. Consider two arbitrary policies
m, " € Iy, then

[Ampa(m) = Apga (7)1 < D (Ke(1+ Ko))" ™" | — wholln
h'<h

Proof: We prove the bound inductively. Let L™ := App(7) and L™ = A (1) denote the

population flows induced by policies 7 and 7/, respectively. Similarly, let 4™ and ;ﬂ/ denote the
corresponding marginal state distributions.

For h = 0 we have uf = u = pio. Therefore by Lemma@we have || L3 — L7 ||y < |70 — w41

For h + 1 > 0 by applying the result of Lemma[9| we have

||LZ+1 - Z+1”1 < |7hy1 — 7T;z+1H1 + HMZH - NZH”I'
We then bound the variational difference in state distribution:

i1 = phaalls = ITw(ER) = Tw(Eh )l < Kell§F — &5 [1h
= K¢|[Ta, (LF) = Tay, (Ly )l < Ke(1 + Kol Ly — L [|1;

where in the last step we used Corollary [3] By induction over A the claim follows. (|

Lemma 15 (Lipschitz Continuity of Transitions and Rewards under Full-Support Policies)
Let Mz, be a BA-MFG with utility functions {uh}hHgol, transition dynamics {wh}hHgol, payment
functions {pn}1—y', and allocation thresholds {ay, }1—), all of which are Lipschitz-continuous with
constants K,,, K., Kp, and K, respectively. Consider two policies 7, 7' € Iy with full support;
thatis, forall s € S, a € A, and h € 0,...,H — 1, we have mp,(a|s) > € and ) (a|s) > € for some
constant € > 0. Then

|errzlfa(saa7LZ)_Rl}?fa(s>a’Lz/)|
B, Y
: ( +Kqu) S (Ke (1 + Ka))" "l — i,
(1 — max )€ oh
and

PP (s, L7 P50, 27 |
h , A, Ly, h , @y Lip, 1

<

2 .
- (M*Ka“> D (Ke(l+ Ka)"™" [ln = w1

h'<h

Proof: Letw,n’ € Iy be two arbitrary policies with full support Let LT = A, () and LZi =
A (7). We then bound separately the rewards and the transition probabilities.

We first bound bound the absolute difference in rewards, let s € S, a € A arbitrary, assume s # L,
else the claim holds trivially, then, by applying triangular inequality we have:

(Ri(s,a, 7)) = By (s,a, 7))

< By

Puin(s, 0, L an(v (7)) = puins, 0, L (v (L7)))|
+ |un(s, pua, v (L5))) = un (s, pula, v ™(ZF)
B’U« T 7’ ki I
< m”l’h — Ly |l + KuKp| Ly — L, |1,

where the last step follows by Remark 3]and the Lipschitz continuity of p and «. By Lemma [14]the
bound for the rewards follows.

51



Similarly for the transition probabilities we have:
1P (s, a, Lf) — Pir®(s,a. LE, )
<Y llwn(zITa, (L)1 [Pay (215, LT ) = Pa, (215, a, L)

+ ZPO(h (Z|8,CL, L;Lr)||wh(z7rah (LZ)) - wh(zv Foéh (LZ ))”1

<[ Pay (8,0, Ly ) = P, (s, 0, L) |1 + Kuw|[Tay, (L) = Ty, (L7 )1
From Remark [3]and Corollary [3]it follows

| PP (s, a, LE) — PP (s, L )| < +Ka+1) 127 — LF I,

(

( I - amaX)E
b y Lemma @ the bOU.nd fOHO WS.

I:l

Lemma 16 (Lipschitz Continuity of Regularized Value Functions) Let M, be a BA-MFG with
utility functions {uh}hHgol, transition dynamics {wh}hHgol, payment functions {ph}hH;Ol, and alloca-
tion thresholds {ah}hHgol, all of which are Lipschitz-continuous with constants K,,, K, K,, and
K, respectively.

Let , 7" € Il be two policies with full support, i.e., for some € > 0, wy(als), 7, (a|s) > €, for all
h,s,a. Let Vi (s|L™,m) and Vi (s|L™ , ') denote the entropy-regularized value functions under
policies w and 7', defined recursively as

(s,a,L7T) —l—Zme“ "Is,a, LY)Vir 1 (8| L™, )|

s’/

Vi (8| L7, 7) := 7H (mh(s +Z 7r(als)
acA

where {LT}=' := A,y () is the population distribution induced by policy .
Then, there exists a constant C > 0 such that for all h and all s € S, the following bound holds:

< Cllw = 7'l

Vi sIL7,m) = Vi (sI27 )

where C = O(LH?) when K¢(14+K,) = 1, and C = O(%H%—;ﬁ;ﬁ) when K¢ (14+ K,,) #
1.

Proof: We prove a stronger inductive bound that implies the result of the lemma. To simplify
notation, we introduce the following constants:

. 5:: Kg(].-l—Ka),
* B:=DB, +Tlog( ),
+ K. Ky,

00 = et

(Bu + 71log(|Al)) (m Rt 1)

L[] gl :
We also define the following h-dependent quantities, which will be used in the inductive argument:
« Ap:=7(log($)+ 1)+ (H — h)B

* Ghi=go+ g (H—h-1),
© Ap = lm =l

We proceed by backward induction on the round h, and show that the following bound holds:

Z Ap Ay + Z G Z Bhl hNAhu

h'=h W=h  h'<W

Vi(s| L™, m) = Vi (s| L™ ,«')
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For h = H by definition, the value function at round H is zero for all states, i.e.,

Vi (s| L7, m) = Vi (s|L™, ) = 0

Assume that for value function at time 2 + 1, V7, ; the upper bound holds. We now prove the same
for V,. The regularized value function is:

Vir (s|L7, ) = H(mn(s)) + Y mn(als)a (s, al L7, ).

a

Then,
Vi (s|L7, ) = Vi (s|L™, 7))

< 7[H(mn(s)) — H(m, ()] + Zm, s)qy, (s, alL™, ) Zﬂz(als)qﬁ(s,alL“'m’) :
=0) :

=(A)
For the entropy term (J) we have
T[H(mn(s)) = H(mp(s))] < 7 (log(z) + 1) ma(s) = mh(s)lh
By applying triangular inequality we can upper bound (A) as follows:
£) <Y Imnlals) = w,(als)laf (s, al L7, m) + > i, (als)lap (s, al L7, 7) = g7 (s, al L™, )]
The first term can be bounded as a function of H and the maximal absolute utility B,;:

3 Ir(als) = ' als)lai (s, |27, < ( = 1) (B + 71og(|AD) mn(3) = i3

where the term 7 log(].4]) comes from the maximal additional reward from the entropy regularizer.s

For the second term we bound the absolute difference in ¢ functions:
47, (s, alL™, ™) ~gf (s, a| L™, )|
< !R;L"fa(s,a,LZ) — RM(s, q, L”I)’
+ 1P s, 0, LF) — PR (s'|s,a, L} )| | Vil (s, al L7, )|
"

Y B |s, a, Ly ) Vi (8'IL7, m) = Vil (8127, )]

< |RP™(s,a, Lf) — Ry (s,a, L} )|
+ (H — h = 1)(By + 7 log(|A)) | P (s, a, L)) — Pi™(s,a, L} )
max (VT (|17, 7) = Vil (/|7 7))
By combining all intermediate bounds and applying Lemma[T3] we have

Vi(s| L™,m) = Vi (s | L™ )| < ApAy + Gy Y B A,
R/ <h

+ max [V ('|L7, 7) — Vi (8117, )],
S

by induction the bound holds. As next we compute the global Lipschitz constant.

Z Ap Ay + Z G Z ﬂh _hNAhH.

h'=h W=h  Rh'<W

Vi(s| L™ 7)) = Vi(s| L™ 7

(=) (D)

53



For (OJ) we have:

H-1 H-1 H-—1
S AwAw <Y AAL < Ag Y Ay
h'=h h=0 h=0

For (A) we have:

H-1 H-1
’ 1" ’
E G g B Ay < G, B Ay
W=h  hU<h h=0  W<h
H-1 H—1—1'
= Ah/ Gh/+jﬁj
h’=0 7=0
H-1 H—-1-h' H—-1-h'
= Ap | Giy B — ¢ E Jp?
h=0 =0 =0
H-1 H—1-h'
< Ap Gy E B’
h=0 =0

Using the definition of the geometric sum, and observing that the constants GG,/ as well as the nested
geometric sum decrease as h’ increases, we can further simplify the bound by pulling out the leading
terms. For g # 1:

H—-1-h' 1_ H

H-1 ' 3 H-1
Z Ap Gy Z B < -5 (90 + 91 (H — 1)) Z Ap,
h'=0 j=0 h=0

while for § = 1:

H-1 H—1-h" H-1
Z Ah/Gh/ Z ﬁ] < H(QO +91(H - 1)) Z Ah'
h'=0 7=0 h=0

Combining the results (for 5 # 1) of () and (A) we have:

1-p#
1-p
For = 1 the geometric term is replaced by H. By the definitions of B, gy and g; the claim follows.

d

V(s | L™ 7) = Vi (s | L™ ;") | (r(log(L) + 1) + HB +

H-1
(90 + 9:1(H —1))) Z Ap.
h=0

F Experiment Details

Implementation Details. The experiments were implemented in JAX and PyTorch, the code is
provided in the supplementary material. We implement the adjoint method in JAX. For the PyTorch
implementation, some code was adapted from [31]]. All error bars in experiments are one standard
deviation away from the mean.

Hardware and Compute Time. We run our experiments on a single NVIDIA H100 GPU with an
AMD EPYC 16-core CPU. One run of AMID for 1000 iterations takes 6 minutes, apart from the
experiment (A8) described below with a long time horizon H = 100, which takes 20 minutes for
1000 iterations. The beach bar process experiments take roughly 3 minutes for 1000 iterations.

Parameterizing ¢ in My,. For the beach bar process, we parameterize the per state payments
as 05 = pmax sigmoid(&s), where pnax is the maximum per state payment and the unconstrained
parameters ¢ € RS are learned via AMID.
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Parameterizing 0 in M. We parameterize pz and sold goods 0‘2 as residual neural networks
sharing a base. The base network, f ., has di, = H + |.A| 4 1 inputs consisting of one-hot encoded

time vector ey, |.A|-dimensional vector of bid distribution »~*, and remaining goods at round h
h—1

denoted 1y, (given by atmax — ) _j,— @nr). For the input vector xj, € R the base residual network
is defined as
ep
T = vt | e RE+dHL
Th
h = ReLU(WW zy,, + b)),
Ybase 1= h2) — ReLU(W(Q) D L@ L@ Tin + 0(2)) € Rnidden
The goods to be sold this round are then computed by:
ap =1 X U(w;— Ybase + bg), e R.

and the payments functions for bids is computed then by:

1
W = ReLU(W® ypace +0P) + poace, B = —— o (WHt+®) e RAT,
i—1
Tpayment,1 = 0, Tpayment,i = h5‘4)a 1=2,... 7A-
j=1

Note that this parameterization ensures that the payment rule pfb is a monotonic
increasing function of bids a. The parameters € of the mechanism overall are
W(l)’ V@ ¢ Rdl1idden><(H+d+1)’ [/[/(2)7 w® ¢ Rdhiddenthidden’ W& ¢ R(A—1)Xdniaden gpd
bW b2 ) pB) € Rmiaden  p1) ¢ RAZL b € R.

Baseline algorithms. For the zeroth-order baseline algorithms 0-SGD and 0-Adam, we use the
standard 2-point (biased) gradient estimator

o Clpnl0 i)~ G0~ )
2Uzero

where § € RP, 2 is uniformly distributed on the sphere Sp_1, and e, is a tunable hyperparameter.
This estimator satisfies the well-known property
E[Ve] = VE[GT . (0 4 tero?)], Z o< Uniform(Bp).

approx

That is, Vg is an unbiased estimator of the gradient of a smoothed version of the function Gg;pmx. The
bias is tunable by the parameter u,e,, with smaller values corresponding to less bias but potentially
higher variance in estimates. Since a single evaluation of this gradient estimator takes 2 forward
passes over Gz;pmx, its run time is comparable to that of AMID per iteration. For the baseline
ANNEAL, each iteration, we sample a perturbation n from the D-dimensional standard normal
distribution. After evaluating G710, (60), Gioprox (6 + Tannea), Gilporox (6 — Tannearn2) for the tunable
hyperparameter o e > 0, ANNEAL updates 6 to be the best among 6,60 — Tanpeai”, 0 + Tanneal-

Hyperparameters. All hyperparameters for the baselines as well as AMID are presented in Table ]
For a fair comparison, we perform a grid search on a range of values for the parameters for all baselines
and take the best run after 10 repetitions. In our experiments, AMID is robust to hyperparameter
choices while zeroth order methods require some tuning.

F.1 Additional Results on the Beach Bar Process
As mentioned in the main body of the paper, we first present the payment function 6 learnt AMID

after 1000 iterations. As before, we report these by using a slightly higher OMD iteration step
Tyva = 500 than used for training, to demonstrate the robustness of our method.
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Parameter Explanation Values

n Adam/SGD learning rate 3e—5, le—4, 3e—4, le—3,
le—3, le—2
Ugero Noise magnitude for evaluating zeroth-order gradi- 1le—3, le—2, 3e—2
ent estimator @9, for 0-SGD and 0-ADAM
Canneal Perturbation magnitude for ANNEAL le—6, le—5, le—4, le—3,
le—2, 3e—2
T Entropy regularization le—3
TOMD OMD learning rate 10
T OMD iterations in (™-approx.) 400
Toal OMD iterations for validation 500
dhidden Hidden dimension of residual network parameter- 256

izing payments and sold goods

Table 4: Hyperparameters for the experiments on auctions.

0 20 40 60 80 100
State (S)

Figure 4: Payment function s — 6, learned after training with AMID, where payments are bounded
on [0, 1/2].

A bottleneck in the beach bar experiment is the magnitude of payments 6, which is restricted
to be bounded on [0,1/2]. We also report the experiment when 6 € [0,4/5]° below (i.e., when
Pmax = 0.8), in FigureE} As expected, the population distributions L, are smoother and closer to
uniform in this case. In both cases, AMID behaves as expected: the exploitability of T iterates of
OMD is consistently low throughout training, suggesting that the 7" step approximation objective
remains close to a NE throughout training iterations (with exploitability < 0.02). The fact that the
exploitability of the policy induced by the T repeated iterations of OMD is due to the fact that in the
beach bar experiments, tuning payments yields a NE distribution closer to uniform, which is also the
initialization of OMD iterates.
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Figure 5: Payment design with AMID in My, with larger payments. Left: objective and exploitability
throughout training iterations. Middle: learned payment rule after training with AMID. Right:
population flow in time after learning payments.

F.2 Additional Results on Auctions

We first analyze 3 further auctions with nonlinear utility functions for bidders. Namely, we take
(A1) presented in the main body of the paper where H = 4, pg = Uniform(S), amax = 0.8,
|S| = |.A] = 100 and bidders are single-minded with no evolution in valuations s}, other than to
transitions to L.

(A4) Risk-averse utilities formulated by
1 —exp{-f(s —p)}
1—exp?

Uh(S,p) =

)

where we take = 1.
(AS) Risk-seeking utilities formulated by

_explBls—p)) -1
N exp? —1

Uh(S,p)

)

where we take 5 = 1.
(A6) Hyperbolic time discounting, which discounts future rewards, where the utility at time 5/ is
given by:
(5.7) = T
up(s,p) = ———
IACINY 1+ A ha

where we take A = 1 as the time discount factor.

Across utility functions, AMID manages to beat all baselines. In our experiments, we also observed
significant qualitative changes in both the mean-field Nash equilibrium and the payment rule when
nonlinear utility functions are used. We show NE and payment rules suggested by the neural
mechanism as NE in Figure[7]

Experiments regarding the impact of horizon. We report the impact of agent regeneration and
time horizon by evaluating AMID on the following auction setups:

(A7) H = 6, agents regenerate with probability 1 (that is, they never transition to L even when they
win a round), linear utilities for bidders, aupax = 0.8, po(s) o v* for v = 0.9, dynamic values
with w(s'|s) x exp{ — (1.2s — s")? )22} for 0 = 0.2.

(A8) Long horizon H = 100, amax = 5, linear utilities for bidders, agents regenerate with probability
0.015, pg(s) o< +* for v = 0.9, dynamic values with w(s’|s) « exp{ - (1.2s — s")* /252 } for
o = 0.01.

The results are reported on Figure|[g]
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Figure 6: g, throughout iterations of AMID and baseline algorithms in settings with nonlinear
utilities for bidders (A4-6), left to right.
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Figure 7: Left: mean bids at NE at §* after training with AMID on the risk-seeking utility
experiment (A5) for h € {0,1,2,3}. Middle: mean bids at NE at 6* after training with AMID
on the hyperbolic time discounting utility experiment (A6) for h € {0,1,2,3}. Right: payment
function in setting (A5) at the bids induced by the NE policy at 6* for h € {0, 1, 2, 3}.

General objectives. Finally, we explore the impact of optimizing over more general objectives
other than revenue. We define the objective

gmix(aa L) ‘= Orev (97 L) + gefﬁciency(ea L)7

where we define gefficiency as:

H-1
gefﬁciency(eaL) = Z Z Lh(saa)pwin(saa7Lh7aZ(V_L(Lh)))uh(sapi9L (a,y_l(Lh))).
h=0 (s,a)EVX.A

We modify experiment (A1) and evaluate our AMID on the following setting.

(A9) H = 4, 19 = Uniform(S), amax = 0.8, and single-minded bidders (after winning stay at state
1) with no evolution in valuations s}, otherwise. The objective function is gmix.

The results are reported on Figure|[g]

Experiments with static o, and payment rules. Finally, to verify the impact of the mecha-

nism having access to bids v, L at round h, we run a final experiment where the mechanism is
independent of bids, which we call a static mechanism. In this case, we simply parameterize

9(a) = siemoid(8™M)) . 00\ _ exp{0>}
ph(a) = sigmoi (Qh@) a and o (a) = amaXZ TN to ensure no more than ayy,, hoods
n! €X n!
are sold and the payments never exceed the bid. The parameter space is then 6 := [0(1), 0(2)}, for

o) ¢ RIHIXA 9(2) ¢ R, For static mechanisms, we observe much less significant improvement
over the first price mechanism in general, which most likely originates from better allocation of goods
over time when there are dynamics such as regeneration.

(A10) H = 4, static mechanism parameterization (independent of v, 1), each agent regenerates with
probability 0.3 at the end of every round, and has a linear utility function.

The results in this setting are reported in Figure[9]
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Figure 8: Left-middle: g, throughout iterations of AMID and baseline algorithms in settings
(A7-8). Right: gnix throughout iterations of AMID and baseline algorithms, in setting (A9).

Experiments on approximating exploitability. We also report our attempts to measure the true N
player exploitability gap suggested by Theorem 2] when N is finite. For the first price mechanism,
we compute the MFG-NE on the auction setting (A1) introduced in the main paper. Then, fixing
N = 1000, we simulate trajectories in the batched auction by setting the policies of 999 agents to the
MFG-NE, and train PPO on the last bidder. In this setting, we were not able to achieve a better mean
reward for the last bidder than the MFG-NE. This suggests the exploitability is close to 0, we report
the expected reward achieved by PPO throughout training in Figure 9]

0.4 —_—
203+ Ny
=
o
5
0.2 | n
01 | | 1 L O
0 02040608 1 0 20 40 60
Iteration Sampled games (10?)

Figure 9: Left: Revenue throughout training in the static mechanism setting (A10). Right: PPO
episodic rewards trained on the batched auction (A1) with N = 1000 agents, all but one playing NE.
Blue is the MFG best response expected reward, red is PPOs expected reward throughout training.
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