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Abstract

We present neural geodesic flows (NGFs), a framework for discovering and mod-
elling dynamical systems which assumes the system evolves along the geodesics
of a latent Riemannian manifold. Both the metric of the manifold and coordinate
transforms between observational data and the manifold are simultaneously learned
from observational data. Whilst most approaches for dynamical system modelling
make rigid physical assumptions, NGFs only assume geometrical properties of the
system’s evolution and have the capacity to model a wide range of systems. NGFs
are trained in an end-to-end fashion, backpropagating through the coordinate trans-
forms, a numerical geodesic solver on the manifold, and the metric of the manifold,
and several techniques such as residual learning and extreme value soft-clipping
are required to ensure stable gradient flow. We show that NGFs can accurately
model particle flow on a sphere and the two-body problem, and can be applied
to generative modelling on arbitrary manifolds; with further work, NGFs could
provide a powerful geometry-based framework for dynamical systems modelling.

1 Introduction

Discovering and accurately modelling dynamical systems is an essential task across the sciences, from
understanding planetary motion to modelling fluid flow, as it enables the reconstruction of governing
equations, prediction of long-term behaviour, and control of complex systems. The classical scientific
method is to iterate between handcrafting an ordinary (ODE) or partial (PDE) differential equation
to describe the system and testing its ability to predict observational data, however this relies on
human intuition and often expensive numerical solvers. More recently, data-driven approaches use
observational data to aid the discovery and modelling process, for example by directly estimating
parameters and coefficients of governing equations via a suitable optimisation algorithm [2]. Most
recently, scientific machine learning (SciML)-based approaches discover and model dynamical
systems by integrating prior physical knowledge with ML models, for example by using neural
networks to approximate terms in ODEs and PDEs [4, 15, 10], using physics-informed neural
networks to discover and model PDEs [6], and using ML to discover and model the Hamiltonian or
Lagrangian of physical systems [9, 7]. However, a key challenge with SciML approaches is that they
often assume a rigid physical structure of the dynamical system, for example that the system evolves
in an Euclidean observed data space, or that the governing equation is derived from a predetermined
physics equation, which can lead to poor modelling accuracy and lack of generality to new systems.

In this work we propose an approach for discovering and modelling dynamical systems which
instead only makes broad geometrical assumptions on the dynamics. In particular, we propose
neural geodesic flows (NGFs), which assume that the system evolves along the geodesics of a latent
Riemannian manifold. Many physical systems, such as general relativity and classical dynamics,
can be mathematically interpreted in this way [14] and therefore NGFs have the capacity to model a
wide range of systems. We investigate their ability to model different dynamical systems, specifically
particle flow on a sphere and the two-body problem with restricted orbits, showing that NGFs can
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Figure 1: A schematic of a neural geodesic flow (NGF). Here, y represents observations of the state
of a dynamical system, z represents associated coordinates on a latent Riemannian manifold.

accurately model their evolution. We also discuss strategies to improve their training stability and
convergence, and show that NGFs can be extended to generative modelling on arbitrary manifolds.

2 Methods

2.1 Model definition

We first assume that a dynamical system with some observable state y ∈ Ñ ⊆ Rn (for example,
the positions and velocities of two planets) evolves on a submanifold Ñ ⊆ Rn described by a flow
Ξt : y ∈ Ñ 7→ ȳ ∈ Ñ . Then the core assumption of NGFs is that there exists a diffeomorphism
F (smooth bijective map with smooth inverse) between Ñ and the tangent bundle N = TM of a
Riemannian manifold (M, g) such that the original flow Ξt on Ñ corresponds to the geodesic flow
expg(·, t) on N . An overview of this framework is shown in Figure 1.

To predict the evolution of the system given an initial observation of the system y, we first map y
to a coordinate z ∈ U ⊆ R2m on a chart of N , with m = dim(M), using a neural network encoder
z = ψθ(y) to represent the mapping F . Next, we evolve the system over time by moving it along
geodesics on the latent manifold, i.e. computing the exponential map z̄ = expgθ (z, t), where we
use a neural network to represent the metric, gθ, of the manifold M . Practically this is done by
numerically solving the geodesic flow ODE on the chart. Finally, we map the chart coordinates back
to the observed data space using a neural network decoder ȳ = ϕθ(z̄) ≈ ψ−1

θ (z̄), representing F−1.
The entire forward pass of the NGF is given by

y 7→ ȳ =
(
ϕθ ◦ expgθ (·, t) ◦ ψθ

)
(y) . (1)

2.2 Training

We use the following loss function to simultaneously train ψθ, ϕθ and gθ via gradient descent,

L =
1

|I|
∑
i∈I

k∑
j=0

(
∥(ϕθ ◦ ψθ)(y

(i)
j )− y

(i)
j ∥2︸ ︷︷ ︸

reconstruction loss

+ ∥(ϕθ ◦ expgθ (·, tj) ◦ ψθ)(y
(i)
0 )− y

(i)
j ∥2︸ ︷︷ ︸

data space prediction loss

+ ∥(expgθ (·, tj) ◦ ψθ)(y
(i)
0 )− ψθ(y

(i)
j )∥2︸ ︷︷ ︸

latent space prediction loss

)
,

(2)

given a training dataset, D =
{
y
(i)
0 , .., y

(i)
k

}
i∈I

, defined on k time points, {t0, ...tk}, of many

example state trajectories with different initial conditions. This loss function compares the difference
between predicted and ground truth trajectories in both the observed and latent space, as well as the
invertibility of the coordinate transform.
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Figure 2: Modelling particle flow on the sphere; (a) ground truth test trajectories (black), NGF
predictions (red), and learned manifold (grey) in observed data space, (b) ground truth and predicted
trajectories in manifold chart coordinates, (c) sectional curvature of the learned manifold.

Differentiability and gradient stability Assuming that Ξt and F are smooth, we expect the entire
forward pass (Equation (1)) to be smooth. By choosing smooth neural network architectures for
ψθ, ϕθ (which model F ) and gθ (which models g and completely determines expg on N ) we can
ensure smoothness and therefore differentiability of the forward pass, which allows us to train ψθ, ϕθ
and gθ via end-to-end gradient descent in JAX [1]. Whilst differentiable, in practice we find a
number of strategies significantly improve gradient stability and training convergence. First, any
Riemannian metric must be symmetric positive definite, and therefore we hard-constrain our metric to
be gθ = I+LT

θ Lθ where I is the identity matrix and Lθ is a learnt upper triangular matrix with a soft
plus applied to the diagonal. Note we learn a residual correction, i.e. the model is initialised with a flat
(Euclidean) metric, which we find further stabilises convergence. Secondly, we use tanh activation
functions in ψθ and ϕθ to ensure smoothness. Finally, we employ extreme value soft-clipping during
time stepping in the numerical geodesic solver to guard against exploding values.

2.3 Related work

Floryan & Graham [8] and others [17, 16] propose models to discover dynamics on a manifold
in a similar fashion to NGFs. The central difference is that a standard neural ODE [4] is used in
their latent space, while ours is strictly a geodesic ODE, which endows NGFs with inherently more
geometric structure. NGFs automatically obtain the underlying Lagrangian and Hamiltonian of the
learnt dynamics, similar to Lagrangian (LNNs [7]) and Hamiltonian neural networks (HNNs [9]), but
in addition to these approaches NGFs also allow coordinate transforms to be learned.

3 Results

3.1 Modelling particle flow on the sphere

As a proof of concept, we first task NGFs with learning the dynamics of particles flowing on the upper
half sphere, S2+. We construct a training set of 16384 trajectories on S2+ and test on 1024 trajectories.
The trajectories are constructed by setting Ñ = TS2+ ⊆ R6, drawing uniform random initial points
{yi}i∈I on TS2+, and evolving them for unit time along spherical geodesics using the standard Runge
Kutta 4 (RK4) scheme with 49 timesteps, ȳi = expgS2

+

(yi, t = 1). This yields trajectories with 50

points, i.e., the dataset:
{
yi = y

(i)
0 , . . . , y

(i)
49 = ȳi

}
i∈I

on
{
t0 = 0, . . . , t49 = 1

}
. For this problem,

since Ñ is itself a tangent bundle, we can restrict ψθ and ϕθ so that only the point mapping is learned
whilst tangents are mapped using its derivative, i.e., use the Jacobian split described in [3]. We use
MLPs with 2 hidden layers and 32 neurons to define ψθ and ϕθ, whilst for the metric, gθ, we directly
learn the values of the upper triangular matrix Lθ (as described in Section 2.2). We use the same RK4
solver to compute the exponential map expgθ (·, t), and the Adam optimiser for training.

We observe stable convergence during training, and after training we find that our model accurately
predicts our test set trajectories, achieving a mean squared trajectory error (MSE) of 8.5 · 10−5 in the
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Figure 3: Modelling the two-body problem; (a) ground truth test trajectories (black) and NGF
predictions (red) in observed data space, (b) ground truth and predicted trajectories in manifold chart
coordinates, (c) energy of ground truth system, NGF, and reference HNN.

observed data space, where the average trajectory length is approximately 0.5 units. See Figure 2 for
a visual comparison between the predicted and ground truth trajectories. Furthermore, we plot the
sectional curvature of our learned latent manifold using our learned metric, gθ, in Figure 2, and find
our model learned a geometry with positive constant sectional curvature, which, by the Killing-Hopf
theorem [11], means that it successfully learned a geometry isometric to the sphere. We conclude
that NGFs can successfully model this problem, accurately learning the dynamics of the system and
its underlying manifold.

3.2 Modelling the two-body problem
Since NGFs are aimed at dynamics discovery, next we attempt to discover the dynamics of two
bodies orbiting each other under the influence of Newtonian gravity. We use the code of HNNs [9] to
generate our training and test sets of trajectories, where each trajectory is of two bodies of unit mass
on near circular orbits with varying radii, as shown in Figure 3. Because the NGF code is currently
only implemented for a single global manifold chart, we restrict orbits to the first quadrant for body
A and third quadrant for body B, as a multi-chart atlas is required to cover the full orbit [8]. We
generate 4000 training trajectories and 900 test trajectories, where each trajectory has 30 timesteps.
Similar to Section 3.1, we use MLPs with 2 hidden layers and 32 neurons to define ψθ and ϕθ, in this
case without a Jacobian split, a RK4 solver to compute expgθ (·, t), and the Adam optimiser.

We observe stable training, and after training find that the NGF accurately predicts the test set
trajectories, achieving a trajectory MSE of 3.6 · 10−5 in the data space, where the average trajectory
length is approximately 1.5 units. We plot 15 example test predictions in Figure 3. In addition, we
find that the NGF model conserves total energy well; the total energy MSE of the test set is 1.4 · 10−5,
almost on par with the reference HNN used in [9] (designed specifically for energy conservation)
which achieves 4 · 10−6 on our test set. We note that by construction NGFs conserve geodesic energy,
which is also plotted in Figure 3. In summary, NGFs effectively capture the dynamics of this system.
However, extending the framework to a multi-chart atlas will be an important next step for modelling
complete orbital trajectories and evaluating the model’s long-term stability.

3.3 Generative flow matching on arbitrary manifolds
An interesting future extension of NGFs is to utilise their geodesic solver and latent manifold learning
ability to extend existing Riemannian flow matching models [5] and carry out generative modelling
on arbitrary manifolds. We present preliminary work towards this goal in Appendix A.

4 Conclusions and further work
NGFs offer a geometry-based framework for discovering and modelling dynamical systems, and we
showed they are able to accurately model particle flow on a sphere and the two body problem with
restricted orbits. Future work will investigate their performance on more complex systems such as
the chaotic N-body problem and fluid flow, the use of multiple charts to represent more complex
manifolds, and their application to generative modelling on learned manifolds.
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Figure 4: Schematic of a generative NGF. Learnable components are in red.

A Generative NGFs

In this section we present preliminary results on extending NGFs to carry out generative modelling on
arbitrary manifolds. We define the task of generative modelling on an arbitrary manifold as follows:
let x = (x1, x2, . . . , xd) ∈ Ñ ∈ Rd be data points on a submanifold Ñ of Rd. A generative model is
then a model, ξ, that takes samples, x0 ∼ p0 from a base distribution defined on the manifold and
transforms them to samples, x1 ∼ p1, so that they resemble samples, x̂1 ∼ q taken from some target
distribution q defined on the manifold, i.e. that ξ(x0) = x1 ∼ p1 ≈ q.

A computationally efficient option is flow matching [12], where a neural network is used to
parametrise a time-dependent velocity field, vθt (with learnable parameters θ), that is then used
to construct ξ as a solution to a flow ODE,

d

dt
ξt(x) = vθt (ξt(x)), ξ0(x) = x0 , (3)

for times t ∈ [0, 1], where vθt is trained using the conditional loss function,

LCFM(θ) = Et,q(x̂1),pt(x|x̂1)||v
θ
t (x)− ut(x|x̂1)||2 . (4)

Here ut(x) is the velocity field which generates pt(x), and typically linear Gaussian conditional
probability paths pt(x|x̂1) are assumed to make computation of ut(x|x̂1) tractable. However, in this
standard formulation, flow matching does not ensure that samples ξt(x0) from the flow remain on the
manifold Ñ .

Our generative model is instead defined as follows; first, we assume we have access to a pretrained
NGF equipped with the mappings ψθ,ϕθ and metric gθ related to Ñ . Then we use the NGF encoder
ψθ to encode base samples x0 to chart coordinates z0. Next, we learn a flow velocity vθt (z) defined
in the latent (chart) space, which moves z0 to z1. Finally, we use ϕθ to map z1 back to a target
sample x1 in the data space. In this way, samples from the flow always remain constrained to the
manifold defined by the NGF. An overview of this model is shown in Figure 4. We then use a similar
conditional loss function to learn vθt (z),

LLCRFM(θ) = Et,q̃(ẑ1),p̃t(z|ẑ1)||v
θ
t (z)− ut(z|ẑ1)||2gθ , (5)

where target velocities ut(z|ẑ1) are computed by first combining the NGF’s geodesic solver with an
iterative shooting method to search for an initial velocity u0 which moves a randomly sampled z0
along a geodesic to a random true sample ẑ1, and then computing (zt, ut) = expgθ ((z0, u0), t). Our
approach closely follows Riemannian flow matching (RFM) proposed in [5], except that we compute
Equation (5) directly in the latent space rather than the data space, use a pretrained metric, and a
geodesic solver to generate training velocities.
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In initial experiments, we compare generative NGFs to Euclidean flow matching [12] and Riemannian
flow matching [5] in three test cases. The first, simplest problem, compares the models on two-
dimensional Euclidean space. For the base distribution, we use a uniform distribution constrained to
a unit square; the target distribution is the “make_moons” dataset from Scikit-learn [13]. We then
move to two more complex geometries, namely the positive half sphere and the ring torus. The base
distribution for both experiments was again a uniform patch lying on the respective geometries. On
the sphere, we used a spiral distribution as our target (see Figure 4), and on the torus, the target was
the same uniform patch translated to the opposite side. Each model was trained with 1024 samples
from the same base and target distributions on each geometry for 5000 epochs. The neural networks
for the trained velocity fields are simple MLPs with width 128, depth 5, ELU activations, and we use
the Adam optimiser.

Our results demonstrate that the NGF generative model produces higher fidelity samples than
Euclidean flow matching in all tests; we record an order of magnitude energy distance improvement
when the data lies on a non-Euclidean manifold. Notably, on the ring torus, our model produces a
distribution with an energy distance of 4.99 ·10−3 between itself and the target distribution, compared
to 1.26 · 10−2 from Euclidean flow matching. Importantly, and as expected, our NGF model produces
distributions with zero samples lying off the data manifold. The results for these experiments are
displayed in Table 1. Note that ED represents the energy distance and Frac represents the fraction of
points in the produced distribution that lie off the data manifold.

2D Euclidean Sphere Torus
Model ED Frac ED Frac ED Frac
FM 4.87× 10−3 0.00 4.71× 10−2 2.47× 10−1 1.26× 10−2 9.45× 10−1

RFM – – 2.36 × 10−3 0.00 – –
NGF 2.76 × 10−3 0.00 3.13× 10−3 0.00 4.99 × 10−3 0.00

Table 1: Table showing the results from the generative flow matching experiments.
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