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ABSTRACT

Benchmarks play a crucial role in the development and analysis of reinforcement
learning (RL) algorithms, with environment availability strongly impacting re-
search. One particularly underexplored intersection is continual learning (CL) in
cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent
Environments for Adaptive Learning), the first benchmark tailored for continual
multi-agent reinforcement learning (CMARL). Existing CL benchmarks run en-
vironments on the CPU, leading to computational bottlenecks and limiting the
length of task sequences. MEAL leverages JAX for GPU acceleration, enabling
continual learning across sequences of 100 tasks on a single GPU in a few hours.
We show that naïvely combining popular CL and MARL methods yields strong
performance on simple environments, but fails to scale to more complex settings
requiring sustained coordination and adaptation.

1 INTRODUCTION

Continual RL has recently attracted growing interest Hafez & Erekmen (2024); Chen et al. (2024);
Chung et al. (2024); Erden et al., yet remains largely unexplored in multi-agent settings Yuan et al.
(2023; 2024). Combining the two introduces unique challenges. In cooperative environments, agents
ought to establish implicit conventions or roles for coordination Strouse et al. (2021). As tasks
or dynamics change, these conventions may fail, and inter-agent dependencies can turn individual
forgetting into team-wide breakdowns. Unlike traditional MARL, CMARL faces non-stationarity not
only from other learning agents but also from evolving task distributions Yuan et al. (2024). This
dual source of change demands agents that can adapt and transfer knowledge without discarding
prior coordination strategies. This ability is critical in real-world settings where environments
continually evolve. For instance, autonomous vehicles must navigate unseen roads, adapt to new
traffic regulations, and interact with unfamiliar human drivers, while coordinating with other AVs.
Similarly, warehouse robots deployed in a new facility must quickly adapt to unseen layouts and
workflows, while preserving established collaborative behaviors.

To analyze how current methods handle the interplay between CL and MARL, and to drive progress
in this domain, we introduce MEAL1, the first benchmark for CMARL. To the best of our knowledge,
MEAL is also the first continual RL library to leverage JAX for end-to-end GPU acceleration.
Traditional CPU-based benchmarks are limited to short sequences (5–15 tasks) due to low environment
throughput and task diversity Sorokin & Burtsev (2019); Powers et al. (2022); Tomilin et al. (2023),
making them ill-suited for the computational demands of CL across long task sequences. MEAL’s
end-to-end JAX pipeline removes this barrier, enabling training on up to 100 tasks within a few hours
on a single desktop GPU. This unlocks new research directions for scalable, cooperative continual
learning in resource-constrained settings.

MEAL is built on Overcooked Carroll et al. (2019), a widely used cooperative MARL environment Hu
et al. (2020); Wu et al. (2021); Strouse et al. (2021), providing a strong foundation for benchmarking.
Prior work has shown that agents tend to exploit spurious correlations in fixed layouts, resulting in
poor generalization even under minor modifications Knott et al. (2021). This makes Overcooked
particularly well-suited for learning continually: even minor layout variations can present a significant
challenge. To succeed across a sequence of such tasks, agents must avoid overfitting to layout-specific
behaviors and instead learn coordination strategies that are robust and transferable.

1The code and environments are accessible on GitHub.
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Table 1: Comparison of existing Reinforcement Learning benchmarks with MEAL.

Benchmark PCG Difficulty
Levels

GPU-
accelerated

Action
Space

Multi-
Agent

Continual
Learning

CORA ✓/ ✗ ✗ ✓ Mixed ✗ ✓
MPE ✗ ✗ ✗ Continuous ✓ ✗
SMAC ✗ ✓ ✗ Discrete ✓ ✗
Continual World ✗ ✗ ✗ Continuous ✗ ✓
Melting Pot ✗ ✗ ✗ Discrete ✓ ✗
Google Football ✗ ✓ ✓ Discrete ✓ ✗
JaxMARL ✓/ ✗ ✗ ✓ Mixed ✓ ✗
COOM ✗ ✓ ✗ Discrete ✗ ✓

MEAL ✓ ✓ ✓ Discrete ✓ ✓

The contributions of our work are three-fold. (1) We release MEAL, the first CMARL benchmark,
consisting of procedurally generated Overcooked environments spanning three difficulty levels. (2)
We leverage JAX to build the first end-to-end GPU-accelerated task sequences for continual RL,
enabling efficient training on low-budget setups. (3) We implement six popular CL methods in JAX
and evaluate them in MEAL, revealing key shortcomings in retaining cooperative behaviors and
adapting to shifting roles across tasks.

2 RELATED WORK

Continual Reinforcement Learning (CRL) CRL studies how agents can learn sequentially from
a stream of tasks without forgetting previous knowledge. A wide range of methods have been
adapted from the CL literature to facilitate the RL setting, including regularization-based approaches
such as EWC Kirkpatrick et al. (2017), SI Zenke et al. (2017), and MAS Aljundi et al. (2018);
architectural strategies such as PackNet Mallya & Lazebnik (2018); and replay-based methods like
RePR Atkinson et al. (2021). More recent works focus on scalability Hafez & Erekmen (2024),
memory efficiency Chung et al. (2024), and stability during training Chen et al. (2024). However,
these methods are almost exclusively developed for single-agent settings, and their behavior under
multi-agent coordination remains largely unexplored.

Multi-Agent Reinforcement Learning (MARL) In MARL, multiple agents learn to act in a shared
environment, often with partial observability and either cooperative or competitive goals Hernandez-
Leal et al. (2019); OroojlooyJadid & Hajinezhad (2019). A major focus has been on cooperative
settings, where agents share a reward function and must learn to coordinate Lowe et al. (2017);
Foerster et al. (2018). Popular algorithms include IPPO De Witt et al. (2020), VDN Sunehag et al.
(2017), QMIX Rashid et al. (2020), and MAPPO Yu et al. (2022).

Continual MARL Research on CMARL is sparse. Lifelong Hanabi Nekoei et al. (2021) intro-
duces a testbed for evaluating whether agents can coordinate with unseen teammates. The MACPro
framework Yuan et al. (2024) proposes a continual coordination approach, using learned task contex-
tualization and progressive multi-head expansion to handle evolving tasks.

Benchmarks Standard CRL benchmarks include Continual World Wołczyk et al. (2021),
COOM Tomilin et al. (2023), and CORA Powers et al. (2022). While effective in single-agent
settings, they either lack multi-agent capabilities or suffer from slow CPU-bound environments.
SMAC Samvelyan et al. (2019), MPE Mordatch & Abbeel (2018), Google Football Kurach et al.
(2020), and Melting Pot Agapiou et al. (2022) are widely used for MARL, but are not designed for
continual learning. Overcooked Carroll et al. (2019) has emerged as a useful domain for studying
coordination, with recent implementations in JAX Rutherford et al. (2024b). Our benchmark builds on
Overcooked and introduces procedural variation to create long task sequences for continual MARL.

Overcooked The Overcooked environment Carroll et al. (2019) is a cooperative multi-agent
benchmark inspired by a popular video game, where high performance requires strategic collaborative
behaviors. Agents control chefs in a grid-based kitchen to prepare and deliver dishes through
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sequences of interactions with pots, ingredient dispensers, plate stations, and delivery counters.
Compared to the large state spaces and high agent counts in benchmarks like Melting Pot and SMAC,
Overcooked operates on small grid-based environments with few agents. However, its complexity
arises not from scale but from credit assignment challenges, and the need for precise coordination, as
agents must execute tightly coupled action sequences (Hernandez-Leal et al., 2019).

3 PRELIMINARIES

Cooperative Multi-Agent MDP We formulate the setting as a fully observable cooperative multi-
agent task, modeled as a Markov game defined by the tuple ⟨N,S,A, P,R, γ⟩, where N is the
number of agents, S is the state space, Ai is the action space of agent i with joint action space
A = A1 × · · · × AN , P : S × A× S → [0, 1] is the transition function, R : S × A× S → R is a
shared reward function, and γ ∈ [0, 1) is the discount factor. In the fully observable setting, each
agent receives the full state s ∈ S at every time step.

Continual MARL We consider a continual MARL setting in which a shared policy πθ = πi
θi∈N is

learned over a sequence of tasks T = M1, . . . ,MN , where each Mi = ⟨N,Si, A, Pi, Ri, γ⟩ is a
fully observable cooperative Markov game with consistent action and observation spaces. At training
phase i, agents interact exclusively with Mi for a fixed number of iterations ∆, collecting trajectories
τi,1, . . . , τi,∆ to update their policy. Past tasks are inaccessible, and no joint training is allowed. The
objective is to maximize performance on all tasks in the sequence.

4 MEAL

We present MEAL, the first CMARL benchmark, built on the JaxMARL Rutherford et al. (2024b)
version of Overcooked. The goal in Overcooked is for agents to cooperatively prepare and deliver
soup. They must collect onions, place them into pots, wait for the soup to cook, plate the dish, and
deliver it to a serving station. We leverage JAX Bradbury et al. (2018) for efficient environment
simulation. JAX provides just-in-time compilation, automatic differentiation, and vectorization
through XLA, enabling high-performance computation. In the scope of this work, we deliberately
focus solely on Overcooked to allow for deeper analysis rather than spread thinly across many
domains. We go beyond reporting standard CL performance metrics and analyze the core challenges
unique to cooperative CMARL, including coordination under changing layouts, shifts in roles and
division of labour, and adaptation to evolving partner behaviour. To demonstrate MEAL’s extensibility,
we incorporate JAXNAV Rutherford et al. (2024a) (Appendix K).

4.1 ENVIRONMENT SPECIFICATIONS

Dynamics Agents act synchronously at each time step. Moves into walls or occupied tiles are
no-ops, and simultaneous swaps are disallowed (both agents remain in place). Agents can interact
with the tile they are facing, which deterministically updates the object’s state (pick/place, add onion,
plate, deliver). Pots initiate a fixed cook timer of ccook=20 steps when the third onion is added, and
the cooked soup can only be plated upon completion.

Observations Each agent receives a fully observable grid-based observation of shape (H,W, 26),
where H and W are the height and width of the grid, and the 26 channels encode tile types (e.g.,
walls, agents, onions, plates, pots, delivery stations) and states (e.g., cooking progress, held item). To
maintain a consistent observation space for CL, we fix the shape to (Hmax,Wmax, 26), where Hmax
and Wmax are the largest grid dimensions in the sequence, and pad all smaller layouts with walls.

Action Space At each timestep, both agents select one of six discrete actions from a shared action
space A = {up, down, left, right, stay, interact}. Movement actions translate the
agent forward if the target tile is free (i.e., not a wall or occupied), while stay maintains the current
position. The interact action is context-dependent and allows agents to pick up or place items,
add ingredients to pots, serve completed dishes, or deliver them at the goal location. Importantly,
there is no built-in communication action; all coordination emerges from environment interactions.

3
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(a) Empty grid drawn with
outer walls.

(b) Interactive stations sam-
pled at random locations.

(c) Grid filled with walls to
match obstacle density.

(d) Agents added and un-
reachable tiles pruned.

Figure 1: Procedural generation pipeline of a hard layout. Starting from an empty grid with outer
walls, the generator injects interactive stations, adds walls to match the desired obstacle density,
places agents, and finally prunes unreachable tiles.

Rewards Agents receive a shared team reward: rt = rdeliver + ronion · 1{onion_in_pot} + rplate ·
1{plate_pickup} + rsoup · 1{soup_pickup}, where rdeliver = 20 is the reward for delivering soup, and the
other terms provide shaped rewards for intermediate progress. We include two reward settings: in the
sparse setting, ronion = rplate = rsoup = 0; in the dense setting, ronion = rplate = 3, and rsoup = 5.

4.2 MEAL GENERATOR

Existing continual RL benchmarks only provide a fixed set of tasks Sorokin & Burtsev (2019);
Powers et al. (2022); Tomilin et al. (2023). To avoid over-fitting to a fixed set of environments, we
procedurally generate new Overcooked kitchens on the fly. The generator G draws a random width
and height from the specified range, places an outer wall, then sequentially injects the interactive tiles
(goal, pot, onion pile, plate pile), extra internal walls to match the target obstacle density, and finally,
the agents’ starting positions. Figure 1 depicts the steps in the pipeline, and the process is described
more in-depth in Appendix A.2. Each candidate grid is accepted only if a built-in validation module
confirms that both agents can complete at least one cook–deliver cycle. This yields a continuous space
of solvable, variable-sized kitchens that we can learn continually. We bring further details about the
validator in Appendix A.3. Our approach offers a virtually infinite supply of tasks and evaluates true
lifelong learning under continual exposure to unseen configurations. To ensure reproducibility and a
fair comparison between methods, the generation process can be fully controlled via a user-specified
random seed.

4.3 LAYOUT DIFFICULTY

We categorize environment difficulty based on procedurally generated layout characteristics. We vary
the (1) grid width, (2) grid height, and (3) obstacle density. This approach produces diverse spatial
configurations while maintaining consistent difficulty within each level. Figure 2 depicts layouts
of each difficulty. As grid size and the number of impassable tiles increase, agents must develop
more sophisticated coordination strategies. Higher difficulty layouts feature longer paths between key
items, tighter bottlenecks, and greater structural variability, all of which make exploration, retention,
and adaptation more challenging. Level 1 tasks are designed to be simple enough for existing methods
to achieve reasonably high scores, enabling better comparisons and behavioral analysis. Higher levels
are intended to challenge future methods. Although we currently include three difficulty levels, it is
straightforward to extend the framework. Although obstacle density has a practical upper bound, the
grid size can be increased arbitrarily to scale up environment complexity.

4.4 CONTINUAL LEARNING SEQUENCES

Kitchen Layouts MEAL provides discrete task sequences T = (M1, . . . ,MN ) rather than a
continuous domain shift. For a chosen difficulty level ℓ∈{1, 2, 3}, we sample N solvable layouts i.i.d.
from the generator Gℓ with a fixed seed. At task boundaries, we carry over the optimizer state and
policy parameters, reset rollout buffers, and advance the RNG. We explore three sequence regimes:
(i) fixed-level, where all tasks are drawn from the same difficulty level; (ii) curriculum, where
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(a) Level 1 (Easy): 6 ≤ width/height
≤ 7, obstacle density ≈ 15%. Lay-
outs are compact, making exploration
easy. Interactable items are close to-
gether, making travel distances short.
Agents can often complete the task in-
dependently with no coordination.

(b) Level 2 (Medium): 8 ≤
width/height ≤ 9, obstacle density
≈ 25%. Exploration is harder as sta-
tions are more spread out. Layouts
often introduce chokepoints, requir-
ing agents to coordinate movement
and avoid congestion.

(c) Level 3 (Hard): 10 ≤
width/height ≤ 11, obstacle den-
sity ≈ 35%. Layouts are likely to
split the map into disjoint regions,
forcing agents to specialize. Solv-
ing the task requires deliberate co-
operation and division of labor.

Figure 2: Overcooked layouts generated at each difficulty level. Increasing grid size and obstacle
density lead to longer travel distances, harder exploration, and greater coordination demands.

sequences contain an equal number of tasks in increasing difficulty level (see Appendix E), and (iii)
repetition, where a sequence is repeated r times to study the loss of network plasticity (section 5.5).

Diverse Partners Ad-Hoc Teamwork (Stone et al., 2010, AHT) is the task of coordinating with
unknown partners. AHT algorithms are typically evaluated with diverse partner populations as a
proxy for human-AI coordination performance and to test robustness to a diverse set of strategies
Yan et al. (2023); Wang et al. (2025); Ruhdorfer et al. (2025b). Following prior work Wang et al.
(2025); Ruhdorfer et al. (2025a), we generate diverse evaluation partners by combining (i) hardcoded
strategies (random, static), (ii) planning-based agents (onion-only, plate-only, and a human-like
planner with stochastic task selection), and (iii) populations trained with best-response diversity
(Rahman et al., 2023, BRDiv), which maximizes self-play performance while minimizing cross-play
compatibility. Opposed to much prior work on AHT that targets zero-shot human–AI coordination
Strouse et al. (2021); Zhao et al. (2023); Yan et al. (2023), MEAL provides the tools to test how
agents can continually learn to adapt to novel partners. We evaluate this setting in Appendix J.

4.5 EVALUATION METRICS

We measure task performance by the number of soups delivered per episode. Since MEAL layouts
vary greatly in size, structure, number of interactive stations, and distances between them, raw
delivery counts are not directly comparable. We therefore normalize the delivery count by the
optimal cook-deliver cycle for a single agent on any given task (see Appendix A.1). We account
for the cooking time, pickup/drop interactions, shortest paths between onion piles, pots, plate piles,
and delivery counters. A score of 1 indicates that the agent(s) achieved the optimal single-agent
performance, while values above 1 reflect effective cooperation that exceeds solo efficiency. Let si(t)
denote this normalized delivery score on task i at timestep t. Suppose that the training sequence
consists of N tasks, each lasting ∆ steps, resulting in a total of T = N ·∆ timesteps. The i-th task is
therefore trained during the interval t ∈ [(i− 1)∆, i∆]. Following prior work on CL Wołczyk et al.
(2021); Tomilin et al. (2023), we rely on three metrics.

Average Normalized Score To capture the balance between stability and plasticity, we report the
mean score across all tasks at the end of training:

A =
1

N

N∑
i=1

si(T ). (1)
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Figure 3: Top: The average normalized score evaluation curves on Level 1 tasks show a notable
performance gap across baselines. Middle: Per-task evaluation scores for EWC on Level 1 indicate
near-perfect retention. Bottom: EWC manages to outperform the standard IPPO baseline by transfer-
ring knowledge forward on most Level 2 tasks, while under-performing in others. The green area
between the curves indicates positive forward transfer, while red represents the negative counterpart.

Forgetting Forgetting quantifies the decline in performance on past tasks due to interference from
training on later ones. For each task i < N , let τi = i ·∆ be the timestep when its training finishes
and s⋆i = si(τi) the score at that moment. We define the normalized drop di(t) for t > τi and assign
exponentially decaying weights wi(t) (with decay factor λ > 0) to penalize earlier forgetting more
strongly. The overall forgetting is the average across tasks:

di(t) = max
(
0,

s⋆i −si(t)
s⋆i

)
, wi(t) = e

−λ
t−τi
T−τi , F = 1

N−1

N−1∑
i=1

∑
t>τi

wi(t) di(t)∑
t>τi

wi(t)
. (2)

Forward Transfer Forward transfer measures how prior experience accelerates the learning of
new tasks. Rather than evaluating final performance, it captures how quickly each task is learned
relative to a single-task baseline. We compute the normalized area under the learning curves (AUC)
for both the CL agent and the baseline. The area difference between these curves is positive when
prior training helps, and negative when it hinders.

AUCi =
1

∆

∫ i∆

(i−1)∆

si(t) dt, AUCb
i =

1

∆

∫ ∆

0

sbi (t) dt. FT =
1

N

N∑
i=1

AUCi −AUCb
i

1−AUCb
i

. (3)

5 EXPERIMENTS

The agent is trained on each task Ti for ∆ = 107 environment steps on-policy with the dense reward
setting, repeated over five seeds. In our experiments, we adopt the task-incremental continual
learning paradigm, in which the task identity is known during both training and evaluation. During
training, we evaluate the policy after every 100 updates by running 10 evaluation episodes on all
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Figure 4: Jointly visualizing forward transfer and for-
getting results on Level 1 reveals the classic stabil-
ity–plasticity trade-off in continual learning.
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Figure 5: EWC’s performance notably de-
clines as layout complexity increases. Most
high-level tasks remain unsolved.

Table 2: Baseline comparison results across three difficulty levels. The confidence intervals are
omitted for brevity; see Appendix M for the full results.

Method
Level 1 Level 2 Level 3

A↑ F ↓ FT ↑ A↑ F ↓ FT ↑ A↑ F ↓ FT ↑
FT 0.048 0.946 0.201 0.041 0.944 0.065 0.010 0.903 -0.157
EWC 0.839 0.012 0.055 0.604 0.026 -0.086 0.178 0.082 -0.650
Online EWC 0.769 0.062 0.208 0.585 0.096 0.152 0.306 0.141 -0.149
MAS 0.281 0.286 -0.233 0.155 0.309 -0.355 0.034 0.380 -0.542
L2 0.753 0.018 -0.199 0.496 0.058 -0.527 0.127 0.070 -0.827
AGEM 0.204 0.678 0.125 0.117 0.801 -0.083 0.037 0.861 -0.169

tasks in the sequence. The results are displayed with 95% confidence intervals. We leverage JAX to
reduce the wall-clock time for training on a single task to around 5 minutes. Our experiments are
conducted on a dedicated compute node with a 72-core 3.2 GHz AMD EPYC 7F72 CPU and a single
NVIDIA A100 GPU. We adopt many of JaxMARL’s default settings for our network configuration,
IPPO setup, and training processes. For exact hyperparameters please refer to Appendix B.2.

5.1 BASELINE COMPARISON

We evaluate popular CL methods. Fine-Tuning (FT) is a naive baseline where the policy is trained
sequentially across tasks without any mechanism to prevent forgetting. L2-Regularization Kirk-
patrick et al. (2017) adds a penalty on parameter changes to promote stability. EWC (Elastic Weight
Consolidation) Kirkpatrick et al. (2017) penalizes changes to important parameters, with importance
measured using the Fisher Information Matrix. Online EWC is a variant that maintains a running
estimate of parameter importance. MAS (Memory Aware Synapses) Aljundi et al. (2018) computes
importance based on how parameters influence the policy’s output, rather than gradients. AGEM
(Averaged Gradient Episodic Memory) Chaudhry et al. (2018) is a replay-based method that projects
the current gradient update to avoid interference with past tasks, using a memory buffer of stored expe-
riences. As the default MARL algorithm, we opt for IPPO De Witt et al. (2020). It is a natural choice
as it can be seamlessly integrated with all model-free CL methods. Moreover, it has been shown to
outperform other MARL approaches on SMAC De Witt et al. (2020) and Overcooked Rutherford
et al. (2024b), making it a strong candidate for evaluating CMARL in MEAL.

Figure 3 (top) compares our baselines on Level 1, and Table 2 reports the exact metrics for all levels.
Fine-Tuning (FT) and AGEM show high FT , but exhibit immediate forgetting once a task is left
behind. EWC and L2 show near-perfect retention on all levels, with EWC ranking highest in A on
lower levels. Figure 3 (middle) visualizes EWC’s per-task stability. Refer to Appendix I.1 for a deeper
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Table 3: Comparison of EWC with PPO/IPPO across 1–3 agent task sequences. Two agents yield the
best results due to parallelism and cooperative potential. Adding a third agent introduces instability,
non-stationarity, and coordination challenges that hurt performance.

Agents
Level 1 Level 2 Level 3

A↑ F ↓ FT ↑ A↑ F ↓ FT ↑ A↑ F ↓ FT ↑
1 Agent 0.622 0.046 -0.045 0.343 0.071 -0.458 0.285 0.159 -0.531
2 Agents 0.839 0.031 0.055 0.604 0.061 -0.086 0.178 0.053 -0.650
3 Agents 0.860 0.197 -0.129 0.647 0.212 -0.295 0.303 0.211 -0.613
4 Agents 0.361 0.143 -0.714 0.336 0.223 -0.574 0.118 0.109 -0.901

analysis of EWC. Per-task evaluation curves of other baselines can be found in Figure 21. These
curves reveal the full forgetting dynamics across tasks: FT and AGEM collapse immediately after
each switch, MAS drifts steadily, and L2 maintains a stable performance throughout the sequence.
MAS performs poorly in all metrics, although outperforming FT and AGEM. Notably, the simplistic
difficulty level design of MEAL presents notable challenges, as EWC’s score diminishes with
increasing difficulty (Figure 5). Figure 4 illustrates the fundamental stability-plasticity trade-off
in CL. L2 achieves excellent retention but limited forward transfer, while Fine-Tuning and AGEM
demonstrate high plasticity with severe forgetting. EWC and its online version provide a middle
ground, balancing both objectives more effectively than other approaches.

5.2 ABLATION STUDY
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Figure 6: Ablation results on Level-1. The multi-head
architecture is the most beneficial component, while the
task ID and critic regularization have negligible effect.
Layer normalization improves L2.

To determine which components are cru-
cial for CMARL on MEAL, we ablate five
components in our default IPPO learning
setup: multi-head architectures, task iden-
tity inputs, critic regularization, layer nor-
malization, and replacing the MLP with
a CNN encoder. The results in Figure 6
reveal that multi-head outputs are most crit-
ical for MEAL task sequences. Removing
them consistently devastates performance
across all methods, likely due to uncon-
trolled interference between tasks in the
shared output head. In contrast, not provid-
ing the model with the one-hot encoded task ID vector has a negligible effect. Prior continual RL
studies Wołczyk et al. (2021); Tomilin et al. (2023) report that it is beneficial to only regularize
the actor and let the critic adapt freely. In our experiments, however, we find that this has little
effect. Layer normalization shows method-specific sensitivity: while it makes little difference for
EWC and MAS, it more than doubles the performance of L2 regularization. This is likely because
L2 penalizes absolute weight magnitudes, and layer norm helps stabilize activations across tasks,
mitigating harmful scale drift. Finally, swapping to a CNN encoder substantially hurts performance
for all methods. Given the small layouts in Level 1 tasks (6×6 to 7×7), CNNs struggle to extract
meaningful features and add unnecessary parameter overhead, making simple MLPs the better fit in
this setting.

5.3 N -AGENT MEAL

To better analyze the multi-agent dimension of CMARL, we extend MEAL to support an N -agent
setting, allowing us to systematically study how the number of cooperating agents affects CL. We run
EWC combined with PPO for a single agent, and IPPO for multiple agents. The single agent delivers
fewer soups because it cannot parallelize tasks (Table 3): while one agent delivers soup, the other can
already refill the pot with onions. However, in Level 3, the extra agents and larger grid size increase
the observation space leading to worse performance. IPPO trains independent policies while the
environment remains a joint MDP, where transitions and rewards depend on the combined actions of
all agents. Moving from 2→3 agents expands the joint action space and interaction patterns, amplifies
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Figure 8: Loss of plasticity in MEAL. AUCL (left) captures
performance loss, and the Dormancy ratio (right) quantifies the
fraction of inactive neurons. Increasing the repetition count leads
to lower performance and more dormant neurons.

Table 4: Averaged plasticity met-
rics on Level-1 task sequences. The
larger drop in performance occurs
between 1 and 3 repetitions, sug-
gesting that early degradation is
more severe. AUC-loss increases
by roughly 40% when going from
3→10 repetitions.

Reps AUCL ↓ Dormancy ↓
1 0.000 0.408
3 0.166 0.428
10 0.201 0.509

non-stationarity (as two teammates’ policies change simultaneously), and makes credit assignment
more difficult (since the reward is shared, IPPO does not know which agent made a good action).
Without explicit communication or role allocation, IPPO struggles to learn continually as the team
and layout size grow. These results indicate that CL becomes increasingly challenging as the number
of agents grows. We explore common pitfalls of agent behavior in Appendix H.

5.4 PARTIAL OBSERVABILITY

Although Overcooked is fully observable by design, we introduce a partially observable variant to
better reflect real-world sensing constraints (limited field of view, occlusions). Following popular
MARL environments Resnick et al. (2018); Mohanty et al. (2020); Agapiou et al. (2022); Ellis et al.
(2023), each agent receives an egocentric, direction-aware observation window with all outside tiles
masked. The specification and difficulty scaling of this window are detailed in Appendix C. In this
setting, MAPPO Yu et al. (2022) is known to outperform IPPO, since its centralized critic can 1)
more accurately estimate individual contributions to shared rewards under partial observability, and
2) reduce non-stationarity by conditioning value estimates on the joint actions of all agents, leading to
more stable and coordinated policy updates. We investigate this by running a 20-task sequence under
partial observability (PO) with EWC and compare the results with the fully observable (FO) baseline.
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Figure 7: Performance of EWC under full (FO)
and partial (PO) observability on 20-task Level 1
sequences. FO yields better results, while MAPPO
underperforms in the CL setting.

Across all levels, IPPO (FO) clearly dominates
the partial setting (PO) (Figure 7). The gap be-
tween IPPO(FO) and IPPO(PO) stems from full
state information simplifying credit assignment
and stabilizing value targets. Partial observabil-
ity thus increases task difficulty. Contrary to ex-
pectation, MAPPO underperforms IPPO. A plau-
sible cause is a mismatch between MAPPO’s
centralized critic and the CL regime. Condi-
tioning on joint observations and actions drifts
substantially across tasks, yielding noisier tar-
gets and stronger cross-task interference, while
IPPO’s independent critics learn simpler task-
local value functions that transfer more stably.
These results motivate including PO variants in
MEAL to stress coordination under incomplete
information for more realistic continual MARL
benchmarking.

5.5 NETWORK PLASTICITY

A well-documented pitfall in continual RL is the gradual loss of plasticity, an agent’s ability to fit new
data after many tasks (Abbas et al., 2023; Dohare et al., 2024). To test whether MEAL exhibits the
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same pathology, we continually train IPPO on a Level 1 10-task sequence across multiple repetitions
and compare performance between them. We track two metrics: (i) AUC-loss captures capacity drop,
(ii) Dormancy ratio quantifies the fraction of inactive neurons in the policy network. For definitions
of metrics and additional training curves, see Appendix F. We observe that all metrics deteriorate
with longer training (Table 4 and Figure 8), confirming that loss of plasticity also appears in the
multi-agent setting. Despite our setting spanning over 1B environment steps, well beyond the scale
of prior studies (Abbas et al., 2023; Dohare et al., 2024), those works report a much stronger loss of
plasticity than observed in MEAL. We hypothesize that this difference stems from our experiments
using multiple output heads, which isolate task-specific outputs, reduce gradient interference, and
preserve prior policies while allowing the backbone to learn transferable features.

6 LIMITATIONS

While MEAL provides a scalable and diverse testbed for CMARL, several limitations remain. First,
MEAL is restricted to discrete action spaces, limiting its applicability. Second, while layout diversity
is high, the domain itself is narrow. Overcooked dynamics do not capture the full complexity of
real-world multi-agent interactions involving language, negotiation, or long-horizon planning. Third,
our benchmark only evaluates task-incremental learning by changing layouts, partners, and factors
of non-stationarity. Future work could extend MEAL to other CL settings. Finally, although we
intentionally focused on a single Overcooked domain, other domains and settings remain largely
unexplored.

7 CONCLUSION

We introduced MEAL, a scalable benchmark for CMARL, built on JAX for efficient GPU training.
The on-demand creation of procedurally generated Overcooked layouts enables long-horizon studies
with controlled difficulty, observability, and agents. We evaluated combinations of popular CL
methods and MARL algorithms, revealing that existing techniques struggle to retain cooperative
behaviors while maintaining adaptability to new tasks. The N -agent setting increases coordination
demands and interference, yielding a harder, more variable task distribution. Partial observability
compounds this difficulty, as centralized critics exhibit stronger cross-task drift and interference.
Individual rewards weaken coordination and induce negative transfer. A simple curriculum boosts
performance on complex layouts under an equal data budget. Training on long task sequences
degrades network plasticity in MARL, while multi-head architectures yield the largest structural
gains for performance. Our findings suggest that MEAL exposes the dual challenge of cooperation
and non-stationarity in CMARL. We see immediate headroom for methods that (i) are purpose-built
for CMARL, jointly handling partner and environment-level non-stationarity, (ii) stabilize credit
assignment under partial observability across task sequences, and (iii) drive structured exploration and
robust coordination in diverse, long-horizon settings. We hope MEAL serves as a solid foundation
for pushing this line of work forward.
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A IMPLEMENTATION DETAILS

A.1 MAXIMUM SOUP DELIVERY CALCULATOR

Let a kitchen layout L be defined by four disjoint sets of tiles (onion piles O, plate piles P , pots K,
delivery counters G) and a set of walls W . A tile (x, y) is walkable if (x, y) /∈ W .

Neighbourhood of an object family. We denote the set of walkable tiles adjacent (in the 4-
neighbour sense) to any object in S as:

N (S) =
{
(x′, y′) | (x, y) ∈ S, ∥(x′, y′)− (x, y)∥1 = 1, (x′, y′) /∈ W

}
Shortest obstacle-aware distance. Given two tile sets A,B ⊆ Z2, we define

d(A,B) = min
a∈A, b∈B

distGL
manhattan(a, b),

where GL is the grid graph induced by walkable tiles. We realize this via a breadth-first search (BFS).

Single-agent cook–deliver cycle. A soup requires three onions, one plate pick-up, one soup pick-up,
and one delivery. Let

donion = d
(
N (O),N (K)

)
, dplate = d

(
N (P),N (K)

)
, dgoal = d

(
N (K),N (G)

)
.

The optimistic movement cost for one cycle is

cmove = 3 donion + dplate + 1 + dgoal + 3.

Interaction overhead. Every pick-up or drop is assumed to take a constant cact = 2 steps (turn +
interact). With nint = 3×2+1+1+1 = 9 interactions per cycle, the overhead is cover = nint cact = 18.

Cycle time and upper bound. Including the fixed cooking time ccook = 20 steps, the single-agent
cycle time is

Tcycle = cmove + ccook + cover.

For an episode horizon H , we upper-bound the number of soups by

Nmax(L, H) =
⌊
H/Tcycle

⌋
,

and convert it to reward with rdeliver = 20:

Rmax(L, H) = 20Nmax(L, H).

The bound assumes a single agent acting optimally. It ignores multi–agent collaboration and therefore
underestimates throughput in layouts where multiple agents can parallelize the workflow. Listing 1
contains the exact implementation.

A.2 PROCEDURAL KITCHEN GENERATOR

Objective. Given a random seed and user-selectable parameters (number of agents na, layout
height range [hmin, hmax], layout width range [wmin, wmax], and wall-density ρ), the goal is to emit
a solvable grid string G representing the Overcooked environment.

A.2.1 NOTATION

Let h, w ∼ UniformInt(hmin, hmax), UniformInt(wmin, wmax), and denote by C = {(i, j) | 1 ≤
i ≤ h − 2, 1 ≤ j ≤ w − 2} the set of internal cells (outer walls excluded). Its cardinality is
Nint = (h− 2)(w − 2). An unpassable cell contains either a hard wall (#) or an interactive tile; we
write Nunpass(G) for the number of such cells in G.
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Listing 1 Heuristic upper bound (calculate_max_soup).

# overcooked_upper_bound.py (excerpt)
COOK_TIME = 20
ACTION_OVERHEAD = 2
INTERACTIONS_PER_CYCLE = 3 * 2 + 1 + 1 + 1
OVERHEAD_PER_CYCLE = INTERACTIONS_PER_CYCLE * ACTION_OVERHEAD

def calculate_cycle_time(layout, n_agents=2):
...
move_cost = 3 * d_onion + d_plate + 1 + d_goal + 3
return move_cost + COOK_TIME + OVERHEAD_PER_CYCLE

def calculate_max_soup(layout, episode_len, n_agents=2):
cyc = calculate_cycle_time(layout, n_agents)
soups = episode_len // cyc
return int(soups)

A.2.2 ALGORITHM

The generator performs the following loop until a valid grid is produced (Listing 2):

1. Draw size. Sample h,w and create an h×w matrix initialised to FLOOR tiles, then overwrite
the border with WALL.

2. Place interactive tiles. For each symbol in {GOAL, POT, ONION_PILE, PLATE_PILE}
choose a random multiplicity m ∈ {1, 2} and stamp the symbol onto m uniformly chosen
floor cells.

3. Inject extra walls. Let ntarget =
⌈
ρNint

⌉
and nadd = max

(
0, ntarget −Nunpass(G)

)
. Place

nadd additional walls on random floor cells.
4. Place agents. Stamp na AGENT symbols on random remaining floor cells.
5. Validate. Run the deterministic evaluate_grid solver; if it returns True, terminate

and return (G), otherwise restart.
6. Cleanup. Remove any interactive elements and tiles that are unreachable from all agent

positions.
7. Return. Output the final grid.

Solvability criterion. The validator (Appendix A.3) checks (i) path connectivity between every
agent and each interactive tile family, (ii) at least one pot reachable from an onion pile and a plate
pile, and (iii) at least one goal reachable from a pot. This is implemented via multiple breadth-first
searches. Appendix A.3 further details the evaluator logic.

Wall-density effect. Because interactive tiles themselves count as obstacles, the algorithm first
places them, then only as many extra walls as needed to reach the prescribed obstacle ratio ρ. This
keeps difficulty roughly constant even when two copies of every station are spawned.

Failure handling. If any placement stage exhausts the pool of empty cells, or the validator rejects the
grid, the attempt is aborted and restarted with a fresh h,w sample. We cap retries at max_attempts
(default 2000); empirically fewer than five attempts suffice for ρ≤0.3.

Complexity. All placement operations are O(hw) in the worst case (linear scans to collect empty
cells), while validation runs a constant number of BFS passes, each O(hw). Hence one successful
attempt is O(hw).

A.3 LAYOUT VALIDATOR

We guarantee that every procedurally generated kitchen is playable by running a deterministic
validator before training begins. The validator implements ten checks, ranging from basic grid sanity
to cooperative reachability. A grid is accepted only if all checks pass.
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Listing 2 Overcooked Layout Generator

def generate_random_layout(seed, params):
rng = random.Random(seed)
for attempt in range(params.max_attempts):

h = rng.randint(*params.h_range)
w = rng.randint(*params.w_range)
grid = init_floor_with_border(h, w)

# 1. Interactive tiles
for sym in [GOAL, POT, ONION_PILE, PLATE_PILE]:

if not place_random(grid, sym, rng.randint(1, 2), rng):
break # restart

# 2. Extra walls to hit density
n_target = round(params.wall_density * (h-2)*(w-2))
n_add = n_target - count_unpassable(grid)
if not place_random(grid, WALL, n_add, rng):

continue # restart

# 3. Agents
if not place_random(grid, AGENT, params.n_agents, rng):

continue

# 4. Validate
if evaluate_grid(to_string(grid)):

return to_string(grid)

Notation. Let G be an h× w character matrix with symbols {W,X,O,B,P,A, } for walls, delivery,
onion pile, plate pile, pot, agent, and floor. Interactive tiles are I = {X,O,B,P}, and unpassable tiles
U = I ∪ {W}.

Validation rules.

R1 Rectangularity – all rows have equal length.

R2 Required symbols – each of W,X,O,B,P,A appears at least once.

R3 Border integrity – every outer-row/column tile is in {W} ∪ I.

R4 Interactivity access – every tile in I ∪ {A} has at least one 4-neighbour that is A or floor.

R5 Reachable onions – at least one onion pile is reachable by some agent.

R6 Usable pots – at least one pot is reachable and lies in the same connected component as a
reachable onion.

R7 Usable delivery – at least one delivery tile is reachable and lies in a component with a usable pot.

R8 Agent usefulness – each agent can either interact with an object directly or participate in a
hand-off (adjacent wall shared with the other agent’s region).

R9 Coverage – the union of agents’ reachable regions touches every object family in I.

R10 Handoff counter – if one agent cannot reach all families, a wall tile adjacent to both regions
exists, enabling item transfer.

Rules R5–R10 rely on two depth-first searches (DFS) from the agent positions. The DFS explores
floor and agent tiles only; whenever it touches an interactive tile, that family is marked as “found.”
Let Reachk ⊆ [h]× [w] denote tiles reached from agent k (k ∈ {1, 2}).

Algorithmic outline. Listing 3 shows a condensed version of the validator.

Complexity. All checks are O(hw) and require only two DFS traversals, thus one validation runs
in time linear to the grid area and is negligible compared with policy learning.
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Listing 3 Condensed Layout Validator.

def validate(grid_str):
g = [list(r) for r in grid_str.splitlines()]
h, w = len(g), len(g[0])

# R1-R3 omitted for brevity ...

# Depth-first search from a start cell
def dfs(i, j, seen):

if (i, j) in seen or g[i][j] in UNPASSABLE_TILES - {AGENT}:
return

seen.add((i, j))
for di, dj in ((1,0),(-1,0),(0,1),(0,-1)):

dfs(i+di, j+dj, seen)

# Agents and family reachability
a1, a2 = [(i, j) for i,r in enumerate(g)

for j,c in enumerate(r) if c == AGENT]
reach1, reach2 = set(), set()
dfs(*a1, reach1); dfs(*a2, reach2)

# Helper: reachable(\mathcal{S}, reach)
def any_reach(symbols, reach):

return any(g[i][j] in symbols for i,j in reach)

# R5-R7
if not any_reach({ONION_PILE}, reach1|reach2): return False
if not any_reach({POT}, reach1|reach2): return False
if not any_reach({GOAL}, reach1|reach2): return False

# R8-R10 (usefulness & hand-off)
def useful(reach_me, reach_other):

# direct or shared-wall hand-off
for i,j in reach_me:

if g[i][j] in INTERACTIVE_TILES: return True
if g[i][j] == FLOOR and any(

(abs(i-i2)+abs(j-j2) == 1 and g[i2][j2] == WALL)
for i2,j2 in reach_other):
return True

return False

if not useful(reach1, reach2): return False
if not useful(reach2, reach1): return False
return True

Practical impact. In practice, fewer than 1% of generator attempts fail validation when wall-density
ρ≤0.15 and kitchen size ≥ 8× 8. We therefore cap retries at 2000 without noticeable overhead.

B EXPERIMENTAL SETUP

B.1 NETWORK ARCHITECTURE

All agents share the same actor–critic backbone, implemented in Flax. Two encoder variants are
provided:

• MLP (default) : observation tensor is flattened to a vector and passed through 2 fully-connected
layers of width 128.

• CNN : three 32-channel convolutions with kernel sizes 5×5, 3×3, 3×3 feed a 64-unit projection,
followed by a single 128-unit dense layer.

Common design knobs (controlled from the CLI) are:
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• Activation (relu vs. tanh).
• LayerNorm : applied after every hidden layer when use_layer_norm is enabled.
• Shared vs. Separate encoder : with shared_backbone the two heads operate on a common

representation; otherwise actor and critic keep independent trunks.
• Multi-head outputs : if use_multihead is set, each head holds a distinct slice of logits/values

for every task (num_tasks = |T |). The correct slice is selected with a cheap tensor reshape.
• Task-one-hot conditioning : setting use_task_id concatenates a one-hot vector of length |T |

before the actor/critic heads, mimicking “oracle” task identifiers used in many CL papers.

All linear/conv layers use orthogonal weight initialisation with gain
√
2 (or 0.01 for policy logits)

and zero biases. The policy outputs a distrax.Categorical; the critic outputs a scalar.

B.2 HYPERPARAMETERS

Table 5 lists settings that are constant across every experiment unless stated otherwise. Values match
the Config dataclass in the training script.

Table 5: Fixed hyper-parameters. All experiments use dense reward shaping, two agents, and IPPO
unless noted. CL coefficients λ refer to the regularization strength passed to each method.

Parameter Value

Optimization (PPO)

Activation ReLU
Optimizer Adam (Optax)
Adam (β1, β2) (0.9, 0.999)
Adam ϵ 10−5

Weight decay none
Learning rate η 10−3

LR annealing linear (10−3 → 10−4)
Env. steps per task ∆ 108

Parallel envs 2048
Rollout length T 400
Effective batch size 2048× 400 = 819 200
Updates per task ⌊108/819 200⌋ = 122
Update epochs 8
Minibatches per update 16
Gradient steps per task 122× 8× 16 = 15,616
Discount γ 0.99
GAE λ 0.95
PPO clip ϵ 0.2
Entropy coef. αent 0.01
Value-loss coef. αvf 0.5
Max grad-norm 1.0

Continual-learning specifics

Sequence length |T | 20 (base sequence), repeated r times
Reg. coefficient λ 1011 (EWC), 109 (MAS), 107 (L2)
Online EWC/MAS decay 0.9
Importance episodes / steps 5 / 500
Regularize critic / heads No / No
AGEM Memory size 100 000 transitions
AGEM Sample size (per proj.) 1024

Miscellaneous

Reward shaping horizon 2.5× 106 steps (linear to 0)
Evaluation interval every 5 policy updates
Evaluation episodes 10
Random seeds {1 .. 5}
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Table 6: Field-of-view specification for the partially observable MEAL variant. Window size and
directional extents scale with difficulty.

Difficulty Grid Size Forward View Side View Rear View Obs Window (H×W)
Easy 6–7 1 1 0 2×3
Medium 8–9 2 1 0 3×3
Hard 10–11 3 2 1 3×5

(a) Level 1: 2×3 window. (b) Level 2: 3×3 window. (c) Level 3: 3×5 window.

Figure 9: Egocentric observation windows by difficulty. Visibility grows with difficulty but remains
partial, preserving the need for exploration and memory.

C PARTIALLY OBSERVABLE MEALS

To more closely mimic the constraints faced by real-world agents, we introduce a direction-aware
egocentric observation setting. Each agent perceives a rectangular window centered on itself, with
tiles outside this window masked. The window is anisotropic with respect to the agent’s heading:
we separate forward, side, and rear extents, which increase with difficulty (Table 6). This scaling
is intentionally balanced with the overall environment design: as the grid size grows with diffi-
culty, the perceptual window also expands to maintain a comparable challenge-to-information ratio.
Consequently, the tasks become POMDPs, where exploration, memory (e.g., recurrent state), and
implicit/explicit coordination provide tangible benefits. In particular, Level 1 removes rear context
entirely, Level 2 extends the look-ahead by one tile, and Level 3 adds both longer look-ahead and
rear visibility, reducing blind spots while preserving partial observability (Figure 9).

D DIFFICULTY LEVELS

Higher levels of difficulty in MEAL pose greater challenges for both learning and retention. As
the grid size and obstacle density increase, the environment becomes more complex: interactable
items are farther apart, and navigation paths are longer and more convoluted. This increases the
number of steps required to complete a recipe. Not only does this make learning each task harder,
but it also forces the agent to retain and execute longer action sequences to successfully complete a
recipe. Higher-level layouts also add demands for plasticity and transfer. The larger layout space
introduces greater variability between tasks, making it harder to reuse learned behavior. These factors
collectively lead to lower performance as difficulty increases, as shown in Figure 10. Online EWC
has a steady upward trend on Level 1, while on higher levels, the performance gap becomes more
evident as the number of tasks increases.

E CURRICULUM LEARNING

In all training settings, agents consistently struggle on Level 3 tasks with large grids. Curriculum
learning has been shown to improve final performance on difficult tasks by gradually increasing task
complexity (Bengio et al., 2009; Narvekar et al., 2020; Portelas et al., 2020). We investigate whether
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Figure 10: Average Normalized Score over the course of training Online EWC on a sequence of
100 generated tasks per difficulty level. Shaded regions indicate 95% confidence intervals across 5
seeds. The clear gap between levels shows the effectiveness of MEAL’s naïve difficulty level design.

a simple difficulty-based curriculum can help agents better learn harder MEAL tasks under the same
data budget. To this end, we design a curriculum sequence where each difficulty level contributes an
equal number of tasks. Specifically, we sample 5 layouts each from Level 1 (easy), Level 2 (medium),
and Level 3 (hard), and present them in ascending order of difficulty (layouts 1–5, then 6–10, then
11–15). As a baseline, we compare with a default sequence that trains on 15 hard (Level 3) layouts
without any prior exposure to easier tasks. Performance is evaluated based on the normalized average
score over the 5 tasks in the sequence of the respective difficulty.

Table 7: Curriculum vs. default training under an
equal data budget. We report the average score over
the task windows of the respective difficulty.

Strategy Medium (6–10) Hard (11–15)

Default 0.693 ± 0.147 0.328 ± 0.238
Curriculum 0.668 ± 0.152 0.653 ± 0.181

The results in Table 7 show no statistically sig-
nificant difference between the two strategies
on Level 2, given the high variance. However,
on Level 3, the curriculum strategy nearly dou-
bles performance. A plausible explanation is
that, under curriculum training, the agent first
experiences 5 easy and 5 medium tasks, where
it receives denser reward signals and more fre-
quent successes. This exposure likely builds
useful priors and stabilizes learning, improving adaptation to harder tasks later. In contrast, the default
strategy trains only on hard tasks throughout the sequence, where exploration is more challenging
and initial rewards are more difficult to obtain, leading to weaker performance overall.

F NETWORK PLASTICITY

Loss of neural network plasticity is a well-studied phenomenon in continual RL, where agents
gradually become less able to adapt to new tasks as training progresses. A number of metrics have
been proposed to characterize this effect, typically measuring how updates propagate through the
network or how parameter sensitivity changes over time.

F.1 METRICS

We follow Abbas et al. (2023); Dohare et al. (2024) and quantify plasticity, the ability to fit fresh
data after many tasks, by three complementary metrics computed from the training reward.

Notation. For a single task let rt be the online reward at step t ≤ T . A repetition experiment
presents the same task R times, so the trace splits into R contiguous segments of equal length
L = T/R. We smooth rt with a Gaussian kernel (bandwidth σ) and define the cumulative average

r̄(t) =
1

t

t∑
i=1

ri, t = 1, . . . , L.

All metrics compare a later repetition j > 0 with the baseline repetition j = 0.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 1

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 2

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 3

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 4

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 5

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 6

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 7

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 8

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 9

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.2

0.4

0.6

0.8

1.0
Task 10

Environment steps

No
rm

al
ise

d 
Sc

or
e

Figure 11: Training curves of FT across a Level 1 10-task sequence repeated ten times over 5 seeds.

Table 8: All sequence-averaged metrics for FT with 95% confidence intervals.

Repeats AUC-loss ↓ Dormant Ratio ↓ FPR ↑ RAUC ↑
1 0.000 ± 0.000 0.408 ± 0.003 1.000 ± 0.000 1.000 ± 0.000
3 0.166 ± 0.052 0.428 ± 0.006 0.926 ± 0.111 0.901 ± 0.114
10 0.201 ± 0.018 0.509 ± 0.022 0.891 ± 0.066 0.872 ± 0.070

AUC–loss. Let AUCj =
∫ L

0
r̄j(t) dt. The capacity drop for repetition j is

lossj = 1− AUCj

AUC0
, j = 1, . . . , R− 1, (4)

where 0 indicates perfect retention. We report the mean of Eq. (4) over repetitions and seeds.

Dormant Neuron Ratio. Following Sokar et al. (2023), we also measure dormancy, the fraction of
units that remain effectively inactive during training. Given hidden activations h ∈ RB×H for batch
size B and layer width H , we compute the mean absolute activation per unit m = 1

B

∑B
b=1 |hb,:|.

Normalizing by the global mean m̄ = 1
H

∑H
j=1 mj , we obtain scores sj = mj/(m̄+ ϵ). A unit is

considered dormant if sj ≤ τ for some threshold τ (we use τ = 0.01). The Dormant Neuron Ratio is
the fraction of dormant units, averaged across layers and seeds. Higher values indicate more inactive
capacity, and hence reduced plasticity.

Final-Performance Ratio (FPR). With pj = r̄j(L− 1) the plateau reward of repetition j,

FPRj =
pj
p0

, j = 1, . . . , R− 1, (5)

so FPRj > 1 implies no loss, FPRj < 1 indicates degraded plateau performance.

Raw-AUC Ratio (RAUC). Using the unsmoothed running reward,

RAUCj =
AUCraw

j

AUCraw
0

, j = 1, . . . , R− 1, (6)

which captures the total reward accumulated during learning. Higher values in Eq. (5)–Eq. (6) are
better.

Sequence-level aggregation. For a task sequence of length |T | we compute the per-task means of
(4)–(6) and average across tasks, yielding a single global score per repetition count R.

F.2 TRAINING CURVES

Figure 11 plots the mean normalized score of the fine-tuning (FT) baseline over ten repetitions.
Performance on Tasks 8 and 9 remains virtually unchanged, indicating little to no plasticity loss. In
contrast, Tasks 1, 2, 6, and 10 show a clear degradation: the agent fails to recover the score achieved
during the first repetition, illustrating a pronounced loss of plasticity.
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Table 9: Homogeneous vs. heterogeneous (designated roles) 2-agent training results over Level 1
20-task generated sequences using shared rewards and IPPO in combination with EWC.

Setting A↑ F ↓ FT ↑
Homogeneous 0.90 ± 0.04 0.01 ± 0.01 0.20 ± 0.08
Heterogeneous 0.68 ± 0.09 0.03 ± 0.02 −0.05 ± 0.09

(a) Single-pot fixation. All agents are
clustered around a single pot, waiting
for it to finish cooking, while ignoring
a ready soup in the bottom pot.

(b) Deadlock. The red agent tries
to place an onion into the pot, but
is blocked by the blue agent, who
cannot move aside.

(c) Role collapse. One agent com-
pletes the pipeline solo while the
other wanders or idles. The policy
settles on a local minimum.

Figure 12: Qualitative failure modes observed in Overcooked. All behaviors stem from inadequate
coordination, limited exploration, or insufficient role allocation.

G DESIGNATED ROLES

In Overcooked, agents are identical in their capabilities and attributes. However, in many real-world
scenarios, autonomous agents either 1) possess different physical properties or 2) are functionally
identical but are expected to fulfill distinct, complementary roles to cooperate effectively for a
common goal. To capture this dimension in MEAL, we design a heterogeneous agent setting with
designated roles.

In this variant, two agents are randomly assigned one of the two predefined roles at the start of each
task: chef and waiter. The chef is responsible for preparing the soup by loading onions into the pot,
but cannot pick up plates. The waiter handles dish delivery but cannot pick up onions. This enforces
complementary capabilities, meaning neither agent can complete the full recipe alone, meaning
that successful catering requires coordinated role execution and adaptation. Note that the roles are
sampled per task and may switch across tasks, making continual learning essential.

We evaluate this setting over 20-task Level 1 sequences using EWC with IPPO under shared rewards.
Table 9 compares the heterogeneous setup to the default homogeneous setting. We observe a clear
performance drop in the role-restricted setting, as throughput decreases when agents are limited to
certain actions and cannot flexibly switch between tasks. Another factor is asymmetric step costs:
in many layouts, loading the pot with 3 onions takes more steps than a single plate-and-deliver trip,
making the chef the throughput bottleneck. Generalization also suffers as agents struggle to transfer
knowledge when their roles change across tasks, since skills learned in one role do not apply to
the other. This role-switching dynamic further exacerbates forward transfer challenges in continual
learning.

H COMMON PITFALLS

Despite shared rewards and simple layouts, learned policies frequently fall into recurring failure
modes that throttle throughput and coordination. Figure 12 illustrates three such patterns we observe
consistently across layouts and levels.
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Figure 13: EWC over 100 tasks. Left: gradual decline in average score as more tasks are encountered.
Right: on higher levels, forgetting increases more rapidly.

I 100-TASK SEQUENCES

For the extensive analysis in this paper (e.g., partial observability, model component ablations,
different numbers of agents), we use 20-task sequences to maintain a fast evaluation loop. However,
a core aspect of MEAL is its ability to support continual learning at scale. To demonstrate this
capability, we evaluate 100-task sequences. To the best of our knowledge, such an extensive continual
RL task sequence has not previously been reported in the literature.

For these runs, we reduce the evaluation frequency to once every 25 policy updates, yielding fewer
data points. We evaluate EWC using the same training configuration as in our main experiments.
Figure 13 shows that performance gradually declines as the number of tasks grows. The performance
gap across difficulty levels is especially pronounced for forgetting. Executing 10 billion environment
steps (plus policy updates) for 100 tasks required ∼ 4 hours on a single GPU.

I.1 A CASE STUDY: EWC VS. ONLINE EWC

EWC accumulates importance over all past tasks and penalizes drift along high-Fisher directions
with a fixed quadratic. Online EWC maintains a running, exponentially decayed Fisher, emphasizing
recent tasks and relaxing old constraints. Both use the same heads, meaning that the penalty acts on
the shared trunk. When layouts are small, not only are the tasks easier to learn, but the same features
are more likely to work across tasks. Strong anchoring preserves those features, curbing forgetting
and yielding a higher average score. The stability–plasticity trade-off is favorable because plasticity
demands are modest. This trade-off is visualized in Figure 14, where Online EWC demonstrates
higher plasticity at the cost of increased forgetting, while EWC excels in stability but struggles to
adapt on Level 3. The cumulative Fisher penalty pays off on small Level 1–2 layouts, but underfits
on Level 3 since harder layouts demand larger representation shifts. By contrast, Online EWC uses
a decayed Fisher that down-weights older tasks and manages to keep enough plasticity to learn the
new layouts. Level 3 forces longer paths, bottlenecks, and role specialization, which require larger
representational updates. EWC’s cumulative constraints over-tighten the trunk and slow adaptation,
while Online EWC’s decay frees capacity for those shifts, so it learns the hard tasks more effectively.
The multiple output heads alone are not enough. They isolate outputs, but the penalty sits on the
shared backbone. When the trunk needs to be rewired for new Level 3 tasks, EWC resists too much,
while Online EWC allows it more. Moreover, credit assignment is noisier on Level 3 due to sparser
effective signals and longer horizons. A single, stale Fisher snapshot can misdirect EWC’s penalty.
The rolling estimate in Online EWC smooths that noise and tracks the current regime more closely.

Scaling up the number of tasks from 20 to 100 amplifies the behavioral difference between these
methods. As shown in Figure 15, standard EWC quickly saturates: its performance plateaus around
20 tasks, while Online EWC continues to improve throughout the sequence. The difference arises
from how the two methods accumulate and apply their regularization terms. EWC optimizes the loss

LEWC = Ltask +
λ

2

k−1∑
t=1

∑
i

Ft,i

(
θi − θ∗t,i

)2
, (7)
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Figure 14: Comparison of EWC and Online EWC across all difficulty levels on 20-task sequences,
evaluated in terms of forward transfer and forgetting. Each point denotes a method’s performance at a
given level. Online EWC consistently exhibits higher plasticity (less-negative or positive, particularly
at Level 3, while EWC achieves notably lower forgetting on all levels.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×1010

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

No
rm

al
ize

d 
Sc

or
e

EWC Online_EWC

Task 10 Task 20 Task 30 Task 40 Task 50 Task 60 Task 70 Task 80 Task 90 Task 100

Figure 15: Average normalized performance of EWC and Online EWC over a 100-task sequence
(Level 2). The standard EWC variant continuously accumulates regularization terms from all previous
tasks, leading to excessive constraint and early performance saturation around 20 tasks. In contrast,
Online EWC compresses past information with a decay factor, maintaining plasticity and achieving
sustained learning throughout the sequence.

where each Fisher matrix Ft captures parameter importance after task t. The regularizer grows
with every task, anchoring the network more tightly to older solutions. Consequently, plasticity
decays over time, and adaptation to new tasks becomes progressively harder. Online EWC instead
compresses past information through an exponentially decayed Fisher:

F
(k)
online = γF

(k−1)
online + Fk, (8)

where the decay factor γ ∈ (0, 1) controls how quickly the influence of older tasks fades to restore the
capacity for new ones. This running Fisher approximation is then used to define a single consolidated
quadratic penalty:

LOnline EWC = Ltask +
λ

2

∑
i

F
(k)
online,i

(
θi − θ∗k,i

)2
. (9)

Over long sequences, these mechanisms diverge sharply: standard EWC eventually over-regularizes,
effectively freezing the shared backbone. The model retains early knowledge but cannot repurpose
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Figure 16: Evaluation curves of adapting to 8 diverse partners.

features as the environment shifts. Online EWC’s decayed Fisher avoids this over-constraining and
sustains meaningful adaptation even after dozens of tasks. The continued improvement across 100
tasks illustrates that certain dynamics in continual reinforcement learning only emerge over long
horizons, where saturation and drift become clear.

This case study reinforces one of the core motivations behind MEAL: short sequences often fail to
reveal such discrepancies. We therefore urge the continual RL community to focus on longer streams
of tasks, where stability–plasticity trade-offs are more likely to truly emerge.

J CONTINUAL PARTNER ADAPTION

MEAL enables the generation of diverse partner policies, allowing continual learning methods to
be evaluated not only across layouts but also across sequences of partners, e.g., T = (π0

p, . . . , π
L
p ),

where L is the sequence length. To this end, we aim to generate partner policy sequences that are
maximally diverse in their behaviour.

As described in Section 4.4, we use (i) hardcoded strategies (random, static), (ii) planning-based
agents (onion-only, plate-only, and a human-like planner with stochastic task selection), and (iii)
populations trained with best-response diversity (Rahman et al., 2023, BRDiv), which maximizes
self-play performance while minimizing cross-play compatibility.

BRDiv populations in particular yield highly incompatible strategies. Coordinating with a new BRDiv
partner typically requires learning behaviours that differ substantially from those seen before, making
them a strong testbed for continual adaptation. In our experiments, we train BRDiv populations with
a size of three, a cross-play weight of 1.0, in 64 parallel environments, using simple MLP policies.

Planning-based agents follow fixed strategies that learned policies rarely adopt. The onion-only agent
collects onions and, with probability ponion-counter = 0.1, places them on counters instead of pots. The
plate-only agent collects plates and delivers dishes. With probability pplate-counter = 0.1 it places the
plate on a counter instead of plating a soup. The human-like planner follows simple heuristics: it
prioritizes filling pots, but if no pot is free, it collects a plate and delivers a soup. With probability
0.1, it may place either onions or plates on counters instead.

For the partner-adaptation experiments, we fix the schedule as follows: the ego agent first encounters
the three BRDiv partners, followed by the human-like planner, then the onion-only, plate-only,
random, and static agents. Unlike the layout-adaptation experiments, we keep the environment fixed
to the cramped_room layout from the original Overcooked repository (Carroll et al., 2019), which
is particularly sensitive to variations in partner behaviour.
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Figure 17: Example JAXNAV environments on a 7×7 grid with 2–4 agents. Dark cells denote
walls/obstacles, and light cells denote free space. Agents are depicted as red squares with orientation
markers. Goal locations are marked with crosses. Thin lines show the direct vector from each agent
to its goal. Blue dots visualize lidar sensor returns.

In our partner-adaptation experiments, we use a fixed schedule: the ego agent is first exposed to the
three BRDiv policies, followed by the human-like planner, then the onion-only, plate-only, random,
and static agents. Instead of using the Meal Generator (Section 4.2) to generate an array of different
layouts, we adopt the cramped_room layout from the original Overcooked repository Carroll
et al. (2019). In this layout, the ego agent has been shown to be susceptible to variations in partner
behaviour Ruhdorfer et al. (2025b).

Table 10: Continual learning metrics for
partner adaptation across 8 diverse part-
ners in the cramped_room layout.

Method A↑ F ↓
FT 0.272±0.03 0.707±0.02

L2 0.563±0.04 0.172±0.02

Table 10 compares the performance between naive fine-
tuning(FT) and L2-regularization. FT manages to forget
less in this setting and obtains a higher average score than
when adapting to different layouts (Table 2. The continual
evaluation curves in Figure 16 show that when the ego
agent is exposed to a new fixed partner policy, it can still
coordinate to some extent with previous partners, although
rapidly adapting its policy to align with the new partner. In
contrast, such transfer is largely absent when the challenge
comes from adapting to a new layout. Contrary to FT, L2 performs worse in this setting compared to
layout adaptation, forgetting more and delivering fewer soups on average. Improved retention comes
at the cost of adapting less freely and achieving less total soup deliveries during training.

K JAXNAV
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Figure 18: Online EWC performance on JAXNAV over 20-task
sequences. Forgetting increases steadily with additional agents,
while average score degrades more mildly.

While in the scope of this pa-
per, MEAL is centered around
Overcooked, we wish to demon-
strate that the continual learning
framework is not restricted to a
single domain. To this end, we
incorporate JAXNAV Rutherford
et al. (2024a), a navigation-based
continuous multi-agent environ-
ment. JAXNAV introduces dif-
ferent challenges: agents must
reach their assigned goal locations relying on local lidar observations while avoiding collisions
with walls and each other. Some layouts contain narrow bottlenecks where two agents can not pass
simultaneously, requiring one to explicitly give way to the other(s).

To create continual learning task sequences, we rely on JAXNAV’s built-in randomized layout
generator. For our experiments, we use 7×7 grids with an obstacle fill ratio of 0.3. Unlike Overcooked,
where we derive continual learning metrics from the normalized soup delivery score, JAXNAV allows
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us to compute these metrics directly from the environment’s raw returns. We keep all training
settings identical to OverCooked, including the MLP encoder, PPO algorithm, Adam optimizer,
hyperparameters, and evaluation schedule. We run 20-task sequences over 5 seeds and evaluate
Online EWC with 2–4 agents. Figure 17 depicts example environments used in our experiments.

We can observe a slight downward trend in performance in Figure 18 when increasing the number
of agents. Importantly, the increase of forgetting is more notable, meaning that tasks with more
agents are harder both to learn and to remember. This once again reflects a key point of our work:
continual learning gets more difficult as the number of interacting agents increases. The addition of
JAXNAV shows that MEAL naturally extends to other JAX-based environments while preserving its
high-throughput training pipeline.

L USE OF LLMS

We used large language models (LLMs) exclusively to aid in polishing the language and improving
the clarity of presentation. No part of the research design, experiments, or analysis was generated or
influenced by LLMs.

M EXTENDED RESULTS

In this section, we provide additional experimental results. Tables 11, 12, 13 add 95% confidence
intervals to the main baseline results. Figures 19 and 20 show performance curves of higher levels.
Figure 21 depicts the per-task evaluation curves of Level 1. Figure 22 illustrates forward transfer.
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Figure 19: Average Normalized Score curves on Level 2.
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Figure 20: Average Normalized Score curves on Level 3.
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Table 11: Level 1 baseline results with confidence intervals.

Method A↑ F ↓ FT ↑
FT 0.048±0.00 0.946±0.00 0.201±0.03

EWC 0.839±0.03 0.012±0.01 0.055±0.06

Online EWC 0.769±0.09 0.062±0.05 0.208±0.03

MAS 0.281±0.07 0.302±0.08 -0.233±0.03

L2 0.753±0.02 0.018±0.00 -0.199±0.09

AGEM 0.204±0.05 0.678±0.04 0.125±0.10

Table 12: Level 2 baseline results with confidence intervals.

Method A↑ F ↓ FT ↑
FT 0.041±0.01 0.944±0.00 0.065±0.02

EWC 0.604±0.21 0.027±0.01 -0.086±0.34

Online EWC 0.585±0.03 0.100±0.04 0.152±0.05

MAS 0.155±0.09 0.356±0.06 -0.355±0.06

L2 0.496±0.02 0.059±0.00 -0.527±0.04

AGEM 0.117±0.01 0.801±0.02 -0.083±0.07

Table 13: Level 3 baseline results with confidence intervals.

Method A↑ F ↓ FT ↑
FT 0.010±0.02 0.947±0.05 -0.157±0.20

EWC 0.178±0.02 0.091±0.08 -0.650±0.13

Online EWC 0.306±0.00 0.144±0.01 -0.149±0.15

MAS 0.034±0.01 0.450±0.09 -0.542±0.20

L2 0.127±0.03 0.096±0.00 -0.827±0.04

AGEM 0.037±0.02 0.861±0.01 -0.169±0.18

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1e8

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Sc

or
e

FT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1e8

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Sc

or
e

Online_EWC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1e8

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Sc

or
e

EWC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1e8

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Sc

or
e

MAS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1e8

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Sc

or
e

L2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Environment Steps 1e8

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Sc

or
e

AGEM

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

Figure 21: The evaluation curves of Level 1 illustrate the extent of forgetting across tasks. FT
suffers from clear catastrophic forgetting: once the agent transitions to a new task, performance on
the previous task collapses immediately. EWC and L2 display near-perfect retention.
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Figure 22: Forward transfer on Level 1. The green shaded areas depict positive transfer compared
to the IPPO baseline, and the red shaded areas show negative transfer.
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