Under review as a conference paper at ICLR 2026

MEAL: A BENCHMARK FOR CONTINUAL MULTI-
AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Benchmarks play a crucial role in the development and analysis of reinforcement
learning (RL) algorithms, with environment availability strongly impacting re-
search. One particularly underexplored intersection is continual learning (CL) in
cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent
Environments for Adaptive Learning), the first benchmark tailored for continual
multi-agent reinforcement learning (CMARL). Existing CL benchmarks run envi-
ronments on the CPU, leading to computational bottlenecks and limiting the length
of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual
learning across sequences of 100 tasks on a standard desktop PC in a few hours.
We show that naively combining popular CL and MARL methods yields strong
performance on simple environments, but fails to scale to more complex settings
requiring sustained coordination and adaptation.

1 INTRODUCTION

Continual RL has recently attracted growing interest|Hafez & Erekmenl (2024); (Chen et al.| (2024);
Chung et al.|(2024); Erden et al.| yet remains largely unexplored in multi-agent settings Yuan et al.
(2023;12024). Combining the two introduces unique challenges. In cooperative environments, agents
ought to establish implicit conventions or roles for coordination [Strouse et al.| (2021)). As tasks
or dynamics change, these conventions may fail, and inter-agent dependencies can turn individual
forgetting into team-wide breakdowns. Unlike traditional MARL, CMARL faces non-stationarity not
only from other learning agents but also from evolving task distributions |Yuan et al.| (2024)). This
dual source of change demands agents that can adapt and transfer knowledge without discarding
prior coordination strategies. This ability is critical in real-world settings where environments
continually evolve. For instance, autonomous vehicles must navigate unseen roads, adapt to new
traffic regulations, and interact with unfamiliar human drivers, while coordinating with other AVs.
Similarly, warehouse robots deployed in a new facility must quickly adapt to unseen layouts and
workflows, while preserving established collaborative behaviors.

To analyze how current methods handle the interplay between CL and MARL, and to drive progress
in this domain, we introduce MEAIE], the first benchmark for CMARL. To the best of our knowledge,
MEAL is also the first continual RL library to leverage JAX for end-to-end GPU acceleration.
Traditional CPU-based benchmarks are limited to short sequences (5—15 tasks) due to low environment
throughput and task diversity Sorokin & Burtsev| (2019); Powers et al.| (2022); |Tomilin et al.| (2023),
making them ill-suited for the computational demands of CL across long task sequences. MEAL’s
end-to-end JAX pipeline removes this barrier, enabling training on up to 100 tasks within a few hours
on a single desktop GPU. This unlocks new research directions for scalable, cooperative continual
learning in resource-constrained settings.

MEAL is built on Overcooked |Carroll et al.|(2019)), a widely used cooperative MARL environment/Hu
et al.[(2020); Wu et al.|(2021); |Strouse et al.|(2021)), providing a strong foundation for benchmarking.
Prior work has shown that agents tend to exploit spurious correlations in fixed layouts, resulting in
poor generalization even under minor modifications [Knott et al.| (2021). This makes Overcooked
particularly well-suited for learning continually: even minor layout variations can present a significant
challenge. To succeed across a sequence of such tasks, agents must avoid overfitting to layout-specific
behaviors and instead learn coordination strategies that are robust and transferable.

'The code and environments are accessible on GitHub.

https://anonymous.4open.science/r/MEAL-1CE0/

Under review as a conference paper at ICLR 2026

Table 1: Comparison of existing Reinforcement Learning benchmarks with MEAL.

Benchmark No. Tasks Difficulty GPU- Action Multi- Continual
: Levels accelerated Space Agent Learning

CORA 31 X Mixed X

MPE 7 X X Continuous X

SMAC 14 X Discrete X

Continual World 10 X X Continuous X

Melting Pot 49 X X Discrete X

Google Football 14 Discrete X

JaxMARL 33 X Mixed X

COOM 8 X Discrete X

MEAL 00 Discrete

The contributions of our work are three-fold. (1) We release MEAL, the first CMARL benchmark,
consisting of procedurally generated Overcooked environments spanning three difficulty levels. (2)
We leverage JAX to build the first end-to-end GPU-accelerated task sequences for continual RL,
enabling efficient training on low-budget setups. (3) We implement six popular CL methods in JAX
and evaluate them in MEAL, revealing key shortcomings in retaining cooperative behaviors and
adapting to shifting roles across tasks.

2 RELATED WORK

Continual Reinforcement Learning (CRL) CRL studies how agents can learn sequentially from
a stream of tasks without forgetting previous knowledge. A wide range of methods have been
adapted from the CL literature to facilitate the RL setting, including regularization-based approaches
such as EWC |Kirkpatrick et al.| (2017), SI |[Zenke et al.| (2017), and MAS |Aljundi et al. (2018);
architectural strategies such as PackNet Mallya & Lazebnik|(2018); and replay-based methods like
RePR |Atkinson et al.|(2021)). More recent works focus on scalability Hafez & Erekmen| (2024]),
memory efficiency (Chung et al.|(2024), and stability during training |Chen et al.| (2024). However,
these methods are almost exclusively developed for single-agent settings, and their behavior under
multi-agent coordination remains largely unexplored.

Multi-Agent Reinforcement Learning (MARL) In MARL, multiple agents learn to act in a shared
environment, often with partial observability and either cooperative or competitive goals [Hernandez;
Leal et al.| (2019); |OroojlooyJadid & Hajinezhad (2019). A major focus has been on cooperative
settings, where agents share a reward function and must learn to coordinate |Lowe et al.| (2017);
Foerster et al.|(2018)). Popular algorithms include IPPO |De Witt et al.|(2020), VDN |Sunehag et al.
(2017), QMIX Rashid et al.|(2020), and MAPPO |Yu et al.| (2022).

Benchmarks Standard CRL benchmarks include Continual World [Wotczyk et al.| (2021),
COOM (Tomilin et al.| (2023), and CORA [Powers et al.| (2022). While effective in single-agent
settings, they either lack multi-agent capabilities or suffer from slow CPU-bound environments.
SMAC [Samvelyan et al|(2019), MPE Mordatch & Abbeel| (2018), Google Football Kurach et al.
(2020), and Melting Pot|Agapiou et al.| (2022} are widely used for MARL, but are not designed for
continual learning. Overcooked Carroll et al.|(2019) has emerged as a useful domain for studying
coordination, with recent implementations in JAX [Rutherford et al.[(2024). Our benchmark builds on
Overcooked and introduces procedural variation to create long task sequences for continual MARL.

Overcooked The Overcooked environment |Carroll et al| (2019) is a cooperative multi-agent
benchmark inspired by a popular video game, where high performance requires strategic collaborative
behaviors. Agents control chefs in a grid-based kitchen to prepare and deliver dishes through
sequences of interactions with pots, ingredient dispensers, plate stations, and delivery counters.
Compared to the large state spaces and high agent counts in benchmarks like Melting Pot and SMAC,
Overcooked operates on small grid-based environments with few agents. However, its complexity
arises not from scale but from credit assignment challenges, and the need for precise coordination, as
agents must execute tightly coupled action sequences (Hernandez-Leal et al.,2019).

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

Cooperative Multi-Agent MDP We formulate the setting as a fully observable cooperative multi-
agent task, modeled as a Markov game defined by the tuple (N, S, A, P, R,~), where N is the
number of agents, S is the state space, A’ is the action space of agent i with joint action space
A=A x---x AN, P: S x A xS —[0,1] is the transition function, R : S x A x S — Risa
shared reward function, and v € [0, 1) is the discount factor. In the fully observable setting, each
agent receives the full state s € .S at every time step.

Continual MARL We consider a continual MARL setting in which a shared policy mp = ng en I8
learned over a sequence of tasks 7 = My, ..., My, where each M; = (N, S;, A, P;, R;,~) is a
fully observable cooperative Markov game with consistent action and observation spaces. At training
phase 4, agents interact exclusively with M for a fixed number of iterations A, collecting trajectories
Ti1,---Ti,A to update their policy. Past tasks are inaccessible, and no joint training is allowed. The
objective is to maximize performance on all tasks in the sequence.

4 MEAL

We present MEAL, the first CMARL benchmark, built on the JaxMARL Rutherford et al.| (2024)
version of Overcooked. JAX |Bradbury et al.|(2018)) provides just-in-time compilation, automatic
differentiation, and vectorization through XL A, enabling high-performance computation.

4.1 ENVIRONMENT SPECIFICATIONS

Dynamics Agents act synchronously at each time step. Moves into walls or occupied tiles are
no-ops, and simultaneous swaps are disallowed (both agents remain in place). Agents can interact
with the tile they are facing, which deterministically updates the object’s state (pick/place, add onion,
plate, deliver). Pots initiate a fixed cook timer of c.,ox=20 steps when the third onion is added, and
the cooked soup can only be plated upon completion.

Observations Each agent receives a fully observable grid-based observation of shape (H, W, 26),
where H and W are the height and width of the environment, and the 26 channels encode entity
types (e.g., walls, agents, onions, plates, pots, delivery stations) and object states (e.g., cooking
progress, held item). To ensure compatibility across environments in a continual learning setting, we
fix Hpax and Wi to the largest layout size and pad smaller layouts with walls. Observations are
then standardized to the shape (Hax, Winax, 26).

Action Space At each timestep, both agents select one of six discrete actions from a shared action
space A = {up, down, left, right, stay, interact}. Movement actions translate the
agent forward if the target tile is free (i.e., not a wall or occupied), while st ay maintains the current
position. The interact action is context-dependent and allows agents to pick up or place items,
add ingredients to pots, serve completed dishes, or deliver them at the goal location. Importantly,
there is no built-in communication action; all coordination emerges from environment interactions.

Rewards Agents receive a shared team reward: 7; = 7geliver + Tonion * T onion_in_pot} + Tplate -
1 ptate_pickup} + Tsoup * Lsoup_pickup}» Where Tgetiver = 20 is the reward for delivering soup, and the
other terms provide shaped rewards for intermediate progress. We include two reward settings: in the
sparse Setting, Tonion = Tplate = Tsoup = 05 in the dense setting, 7onion = Tplate = 3, and T'goup = 5.

4.2 MEAL GENERATOR

Existing continual RL benchmarks only provide a fixed set of tasks |Sorokin & Burtsev| (2019);
Powers et al.[(2022)); Tomilin et al.| (2023). To avoid over-fitting to a fixed set of environments, we
procedurally generate new Overcooked kitchens on the fly. The generator G draws a random width
and height from the specified range, places an outer wall, then sequentially injects the interactive tiles
(goal, pot, onion pile, plate pile), extra internal walls to match the target obstacle density, and finally,
the agents’ starting positions. Figure|l|depicts the steps in the pipeline, and the process is described

Under review as a conference paper at ICLR 2026

(a) Empty grid drawn with (b) Interactive stations sam-(c) Grid filled with walls to (d) Agents added and un-
outer walls. pled at random locations. match obstacle density. reachable tiles pruned.

Figure 1: Procedural generation pipeline of a hard layout. Starting from an empty grid with outer
walls, the generator injects interactive stations, adds walls to match the desired obstacle density,
places agents, and finally prunes unreachable tiles.

more in-depth in Appendix[A.2] Each candidate grid is accepted only if a built-in validation module
confirms that both agents can complete at least one cook—deliver cycle. This yields a continuous space
of solvable, variable-sized kitchens that we can learn continually. We bring further details about the
validator in Appendix [A.3] Our approach offers a virtually infinite supply of tasks and evaluates true
lifelong learning under continual exposure to unseen configurations. To ensure reproducibility and a
fair comparison between methods, the generation process can be fully controlled via a user-specified
random seed.

4.3 LAYOUT DIFFICULTY

We categorize environment difficulty based on procedurally generated layout characteristics. We vary
the (1) grid width, (2) grid height, and (3) obstacle density. This approach produces diverse spatial
configurations while maintaining consistent difficulty within each level. Figure [2]depicts layouts
of each difficulty. As grid size and the number of impassable tiles increase, agents must develop
more sophisticated coordination strategies. Higher difficulty layouts feature longer paths between key
items, tighter bottlenecks, and greater structural variability, all of which make exploration, retention,
and adaptation more challenging. Level 1 tasks are designed to be simple enough for existing methods
to achieve reasonably high scores, enabling better comparisons and behavioral analysis. Higher levels
are intended to challenge future methods. Although we currently include three difficulty levels, it is
straightforward to extend the framework. Although obstacle density has a practical upper bound, the
grid size can be increased arbitrarily to scale up environment complexity.

4.4 CONTINUAL LEARNING SEQUENCES

Kitchen Layouts MEAL provides discrete task sequences 7 = (M, ..., My) rather than a
continuous domain shift. For a chosen difficulty level £ € {1, 2, 3}, we sample N solvable layouts i.i.d.
from the generator G, with a fixed seed. At task boundaries, we carry over the optimizer state and
policy parameters, reset rollout buffers, and advance the RNG. We explore three sequence regimes:
(i) fixed-level, where all tasks are drawn from the same difficulty level; (ii) curriculum, where
sequences contain an equal number of tasks in increasing difficulty level (see Appendix [E), and (iii)
repetition, where a sequence is repeated r times to study the loss of network plasticity (section[5.3).

Diverse Partners Ad-Hoc Teamwork (Stone et al., 2010, AHT) is the task of coordinating with
unknown partners. AHT algorithms are typically evaluated with diverse partner populations as a
proxy for human-AlI coordination performance and to test robustness to a diverse set of strategies
2023); Wang et al.| (2025)); Ruhdorfer et al| (2025b). Following prior work Wang et al.|
(2025); [Ruhdorfer et al.|(2025a)), we generate diverse evaluation partners by combining (i) hardcoded
strategies (random, static), (ii) planning-based agents (onion-only, plate-only, and a human-like
planner with stochastic task selection), and (iii) populations trained with best-response diversity
(Rahman et al., 2023, BRDiv), which maximizes self-play performance while minimizing cross-play
compatibility. Opposed to much prior work on AHT that targets zero-shot human—AI coordination

Strouse et al| (2021); [Zhao et al. (2023); [Yan et al.| (2023), MEAL provides the tools to test how

agents can continually learn to adapt to novel partners. We evaluate this setting in Appendix [J}

4

Under review as a conference paper at ICLR 2026

(a) Level 1 (Easy): 6 < width/height (b) Level 2 (Medium): 8 < (c¢) Level 3 (Hard: 10 <
< 7, obstacle density ~ 15%. Lay- width/height < 9, obstacle density width/height < 11, obstacle den-
outs are compact, making exploration = 25%. Exploration is harder as sta- sity &~ 35%. Layouts are likely to
easy. Interactable items are close to- tions are more spread out. Layouts split the map into disjoint regions,
gether, making travel distances short. often introduce chokepoints, requir- forcing agents to specialize. Solv-
Agents can often complete the task in- ing agents to coordinate movement ing the task requires deliberate co-
dependently with no coordination. and avoid congestion. operation and division of labor.

Figure 2: Representative Overcooked layouts generated at each difficulty level. Increasing grid size
and obstacle density lead to longer travel distances, harder exploration, and greater coordination
demands.

4.5 EVALUATION METRICS

We measure task performance by the number of soups delivered per episode. Since MEAL layouts
vary greatly in size, structure, number of interactive stations, and distances between them, raw
delivery counts are not directly comparable. We therefore normalize the delivery count by the
optimal cook-deliver cycle for a single agent on any given task (see Appendix [A.T). We account
for the cooking time, pickup/drop interactions, shortest paths between onion piles, pots, plate piles,
and delivery counters. A score of 1 indicates that the agent(s) achieved the optimal single-agent
performance, while values above 1 reflect effective cooperation that exceeds solo efficiency. Let s;(t)
denote this normalized delivery score on task ¢ at timestep ¢. Suppose that the training sequence
consists of N tasks, each lasting A steps, resulting in a total of 7" = N - A timesteps. The i-th task is
therefore trained during the interval ¢ € [(i — 1)A, ¢A]. Following prior work on CL

(202T)); [Tomilin et al|(2023)), we rely on three metrics.

Average Normalized Score To capture the balance between stability and plasticity, we report the
mean score across all tasks at the end of training:

1 N
AZEVZ;&QU. (1)

Forgetting Forgetting quantifies the decline in performance on past tasks due to interference from
training on later ones. For each task ¢ < N, let 7; = i - A be the timestep when its training finishes
and s} = s;(7;) the score at that moment. We define the normalized drop d;(¢) for ¢ > 7; and assign
exponentially decaying weights w;(t) (with decay factor A > 0) to penalize earlier forgetting more
strongly. The overall forgetting is the average across tasks:

* _ t—Ti t)
(1) = sizsi(t) () = oM Vi, wilt) di
di(t) max(O, o5) . owi(t) = e , E)

Forward Transfer Forward transfer measures how prior experience accelerates the learning of
new tasks. Rather than evaluating final performance, it captures how quickly each task is learned
relative to a single-task baseline. We compute the normalized area under the learning curves (AUC)
for both the CL agent and the baseline. The area difference between these curves is positive when
prior training helps, and negative when it hinders.

(@)

1 [AUC; — AUCP

1 A
AUC,; = si(t)dt, AUCP = —/ sP(t) dt. .3
A Jizna) A Jo ©) "N Z — AUC?)

5

Under review as a conference paper at ICLR 2026

) Task 1 Task 2 Task3 Task4 Task5 Task6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
fud T T T
3 —— EWC —— Online EWC —— L2 —— MAS FT — AGEM | ___
»n 0.8 — |
Ee] H H H H H H H H H H i f——\/—ﬂ‘_-
N Y |
2 0.6 | |
© | |
E
S 0.4 |
z i
& 0.2 ——
e e e
g 00 / = i i i i i i i h i i i i i i
z 0.
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 1.7 18 19 2.0

Environment Steps le8

Task 1 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
i | i i e N A Y e SN e

lized Score
o o o o -
o o o

‘ \‘i
4

q

)

i

00 (I 1 1 T’iﬁ A;7 717 al] T [o [o 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 13 1.4 15 1.6 1.7 1.8 1.9 2.0
Environment Steps le8

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
o -
S 1.00
]
2075
N
TEG 050 —— EWC
5 — IPPO
2025
1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Environment steps le8

Figure 3: Top: The average normalized score evaluation curves on Level 1 tasks show a notable
performance gap across baselines. Middle: Per-task evaluation scores for EWC on Level 1 indicate
near-perfect retention. Bottom: EWC manages to outperform the standard IPPO baseline by transfer-
ring knowledge forward on most Level 2 tasks, while under-performing in others. The green area
between the curves indicates positive forward transfer, while red represents the negative counterpart.

5 EXPERIMENTS

The agent is trained on each task 7; for A = 107 environment steps on-policy with the dense reward
setting, repeated over five seeds. In our experiments, we adopt the task-incremental continual
learning paradigm, in which the task identity is known during both training and evaluation. During
training, we evaluate the policy after every 100 updates by running 10 evaluation episodes on all
tasks in the sequence. The results are displayed with 95% confidence intervals. We leverage JAX to
reduce the wall-clock time for training on a single task to around 5 minutes. Out experiments are
conducted on a dedicated compute node with a 72-core 3.2 GHz AMD EPYC 7F72 CPU and a single
NVIDIA A100 GPU. We adopt many of JaxMARL’s default settings for our network configuration,
IPPO setup, and training processes. For exact hyperparameters please refer to Appendix

5.1 BASELINE COMPARISON

We evaluate popular CL methods. Fine-Tuning (FT) is a naive baseline where the policy is trained
sequentially across tasks without any mechanism to prevent forgetting. L2-Regularization [Kirk]
patrick et al. adds a penalty on parameter changes to promote stability. EWC Kirkpatrickl
etal, penalizes changes to important parameters, with importance measured using the Fisher
Information Matrix. Online EWC is a variant that maintains a running estimate of parameter im-
portance. MAS |Aljundi et al.| (2018]) computes importance based on how parameters influence the
policy’s output, rather than gradients. AGEM [Chaudhry et al|(2018) is a replay-based method that
projects the current gradient update to avoid interference with past tasks, using a memory buffer
of stored experiences. As the default MARL algorithm, we opt for IPPO De Witt et al.| (2020). It
is a natural choice as it can be seamlessly integrated with all model-free CL methods. Moreover,
it has been shown to outperform other MARL approaches on SMAC [De Witt et al| (2020) and
Overcooked Rutherford et al.|(2024), making it a strong candidate for evaluating CMARL in MEAL.

Under review as a conference paper at ICLR 2026

| FT
i AGEM O
0.8 i w 0.8
| 5 T
g, 0.6 MAS i % 0.6
S0 | e |
) ! 204
g | <
i Online EWC ‘©
0.2 i uE_ 0.2

L2 EWC o [
00 @ I

-0.2 -0.1 0.0 0.1 0.2
Forward Transfer 1

e
o

Level 1 Level 2 Level 3

Figure 4: Jointly visualizing forward transfer and for- Figure 5: EWC’s performance notably de-
getting results on Level 1 reveals the classic stabil- clines as layout complexity increases. Most
ity—plasticity trade-off in continual learning. high-level tasks remain unsolved.

Table 2: Baseline comparison results across three difficulty levels. The confidence intervals are
omitted for brevity, see Appendix Nfor the full results.

Level 1 Level 2 Level 3

Method

A1 Fl FT1 AT Fl FT71 AT Fl FT1
FT 0.048 0946 0.201 0.041 0944 0.065 0.010 0.903 -0.157
EWC 0.839 0.012 0.055 0.604 0.026 -0.086 0.178 0.082 -0.650
Online EWC 0.769 0.062 0.208 0.585 0.096 0.152 0.306 0.141 -0.149
MAS 0.281 0.286 -0.233 0.155 0.309 -0.355 0.034 0.380 -0.542
L2 0.753 0.018 -0.199 0496 0.058 -0.527 0.127 0.070 -0.827
AGEM 0204 0.678 0.125 0.117 0.801 -0.083 0.037 0.861 -0.169

Figure 3| (top) compares our baselines on Level 1, and Table [2]reports the exact metrics for all levels.
Fine-Tuning (FT) and AGEM show high F7, but exhibit immediate forgetting once a task is left
behind. EWC and L2 show near-perfect retention on all levels, with EWC ranking highest in A
on lower levels. Figure 3] (middle) visualizes EWC’s per-task stability. Refer to Appendix [C| for
a deeper analysis of EWC. MAS performs poorly in all metrics, although outperforming FT and
AGEM. Notably, the simplistic difficulty level design of MEAL presents notable challenges, as
EWC’s score diminishes with increasing difficulty (Figure[3). Figure]illustrates the fundamental
stability-plasticity trade-off in CL. L2 achieves excellent retention but limited forward transfer, while
Fine-Tuning and AGEM demonstrate high plasticity with severe forgetting. EWC and its online
version provide a middle ground, balancing both objectives more effectively than other approaches.

5.2 ABLATION STUDY g
& 0.75
To determine which components are cru- © (.59]: I
cial for CMARL on MEAL, we ablate five %
components in our default IPPO learning £ 0-25 i
setup: multi-head architectures, task iden- S 000 m. T
tity inputs, critic regularization, layer nor- EWC L2
malization, and replacing the MLP with mmm Original === Reg Critic === No Multihead
a CNN encoder. The results in Figure [§] CNN === No Layer Norm === No Task Id

reveal that multi-head outputs are most crit-

ical for MEAL task sequences. Removing Figure 6: Ablation results on Level-1. The multi-head
them consistently devastates performance architecture is the most beneficial component, while the
across all methods, likely due to uncon- task ID and critic regularization have negligible effect.
trolled interference between tasks in the Layer normalization improves L2.

Under review as a conference paper at ICLR 2026

Table 3: Comparison of EWC with PPO/IPPO across 1-3 agent task sequences. Two agents yield the
best results due to parallelism and cooperative potential. Adding a third agent introduces instability,
non-stationarity, and coordination challenges that hurt performance.

Level 1 Level 2 Level 3
AT Fl FT1 AT Fl FT1 AT Fl FT1

1 Agent 0.622 0.046 -0.045 0343 0.071 -0.458 0.285 0.159 -0.531
2 Agents 0.839 0.031 0.055 0.604 0.061 -0.086 0.178 0.053 -0.650
3 Agents 0476 0.125 -0.676 0.277 0.132 -0.896 0.117 0.094 -0.978

Agents

shared output head. In contrast, not providing the model with the one-hot encoded task ID vector
has a negligible effect. Prior continual RL studies |Wotczyk et al.[(2021); Tomilin et al.|(2023) report
that it is beneficial to only regularize the actor and let the critic adapt freely. In our experiments,
however, we find that this has little effect. Layer normalization shows method-specific sensitivity:
while it makes little difference for EWC and MAS, it more than doubles the performance of L2
regularization. This is likely because L2 penalizes absolute weight magnitudes, and layer norm helps
stabilize activations across tasks, mitigating harmful scale drift. Finally, swapping to a CNN encoder
substantially hurts performance for all methods. Given the small layouts in Level 1 tasks (6x6 to
7x7T), CNNs struggle to extract meaningful features and add unnecessary parameter overhead, making
simple MLPs the better fit in this setting.

5.3 N-AGENT MEAL

To better analyze the multi-agent dimension of CMARL, we extend MEAL to support an N-agent
setting, allowing us to systematically study how the number of cooperating agents affects CL. We run
EWC combined with PPO for a single agent, and IPPO for multiple agents. The single agent delivers
fewer soups because it cannot parallelize tasks (Table[3): while one agent delivers soup, the other can
already refill the pot with onions. However, in Level 3, the extra agents and larger grid size increase
the observation space leading to worse performance. IPPO trains independent policies while the
environment remains a joint MDP, where transitions and rewards depend on the combined actions of
all agents. Moving from 2—3 agents expands the joint action space and interaction patterns, amplifies
non-stationarity (as two teammates’ policies change simultaneously), and makes credit assignment
more difficult (since the reward is shared, IPPO does not know which agent made a good action).
Without explicit communication or role allocation, IPPO struggles to learn continually as the team
and layout size grow. These results indicate that CL becomes increasingly challenging as the number
of agents grows. We explore common pitfalls of agent behavior in Appendix

5.4 PARTIAL OBSERVABILITY

Although Overcooked is fully observable by de- 008 E= IPPO (FO)
sign, we introduce a partially observable variant s ; :\'jzgpg?; 0
to better reflect real-world sensing constraints

(limited field of view, occlusions). Follow- — 8°¢

ing popular MARL environments Resnick et al. E

(2018); Mohanty et al.| (2020); |Agapiou et al. 04

(2022); [Ellis et al.|(2023)), each agent receives an %

egocentric, direction-aware observation window € o2

with all outside tiles masked. The specification 2 i_x_‘
and difficulty scaling of this window are detailed 0.0

in Appendix |D} In this setting, MAPPO |Yu et al. Level 1 Level 2 Level 3
(2022)) is known to outperform IPPO, since its
centralized critic can 1) more accurately esti-
mate individual contributions to shared rewards
under partial observability, and 2) reduce non-
stationarity by conditioning value estimates on
the joint actions of all agents, leading to more stable and coordinated policy updates. We investigate
this by running a 20-task sequence under partial observability (PO) with EWC and compare the
results with the fully observable (FO) baseline.

Figure 7: Performance of EWC under full (FO)
and partial (PO) observability on 20-task Level 1
sequences. FO yields better results, while MAPPO
underperforms in the CL setting.

Under review as a conference paper at ICLR 2026

03 i - o Table 4: Averaged plasticity met-
AN o 08 rics on Level-1 task sequences. The
;‘; 0.2 }»L i } g 06 larger drop in performance occurs
2 : i \} 504 Bog-m-u-®-E-a-a-®4 hetween | and 3 repetitions, sug-
01 S o2 gesting that early degradation is
00 00 more severe. AUC-loss increases
2 4 6 8 10 2 4 6 8 10 byroughly 40% when going from

Task index Task index 3510 repetitions.

—&— 3 Repetitions 10 Repetitions

. .. Reps AUCL| Dormancy |
Figure 8: Loss of plasticity in MEAL. AUCL (left) captures

performance loss, and the Dormancy ratio (right) quantifies the 1 0.000 0.408
fraction of inactive neurons. Increasing the repetition count leads 0.166 0.428
to lower performance and more dormant neurons. 10 0.201 0.509

Across all levels, IPPO (FO) clearly dominates the partial setting (PO) (Figure[7). The gap between
IPPO(FO) and IPPO(PO) stems from full state information simplifying credit assignment and
stabilizing value targets. Partial observability thus increases task difficulty. Contrary to expectation,
MAPPO underperforms IPPO. A plausible cause is a mismatch between MAPPO’s centralized critic
and the CL regime. Conditioning on joint observations and actions drifts substantially across tasks,
yielding noisier targets and stronger cross-task interference, while IPPO’s independent critics learn
simpler task-local value functions that transfer more stably. These results motivate including PO
variants in MEAL to stress coordination under incomplete information for more realistic continual
MARL benchmarking.

5.5 NETWORK PLASTICITY

A well-documented pitfall in continual RL is the gradual loss of plasticity, an agent’s ability to fit new
data after many tasks (Abbas et al.,[2023; Dohare et al.,2024). To test whether MEAL exhibits the
same pathology, we continually train IPPO on a Level 1 10-task sequence across multiple repetitions
and compare performance between them. We track two metrics: (i) AUC-loss | captures capacity
drop, (ii) Dormancy ratio quantifies the fraction of inactive neurons in the policy network. For
definitions of metrics and additional training curves, see Appendix [G] We observe that all metrics
deteriorate with longer training (Table @ and Figure[§)), confirming that loss of plasticity also appears
in the multi-agent setting. Despite our setting spanning over 1B environment steps, well beyond the
scale of prior studies (Abbas et al.,|2023; |Dohare et al.,[2024), those works report a much stronger loss
of plasticity than observed in MEAL. We hypothesize that this difference stems from our experiments
using multiple output heads, which isolate task-specific outputs, reduce gradient interference, and
preserve prior policies while allowing the backbone to learn transferable features.

6 CONCLUSION

We introduced MEAL, a scalable benchmark for CMARL, built on JAX for efficient GPU training.
The on-demand creation of procedurally generated Overcooked layouts enables long-horizon studies
with controlled difficulty, observability, and agents. We evaluated combinations of popular CL
methods and MARL algorithms, revealing that existing techniques struggle to retain cooperative
behaviors while maintaining adaptability to new tasks. The [NV-agent setting increases coordination
demands and interference, yielding a harder, more variable task distribution. Partial observability
compounds this difficulty, as centralized critics exhibit stronger cross-task drift and interference.
Individual rewards weaken coordination and induce negative transfer. A simple curriculum boosts
performance on complex layouts under an equal data budget. Training on long task sequences
degrades network plasticity in MARL, while multi-head architectures yield the largest structural
gains for performance. Our findings suggest that MEAL exposes the dual challenge of cooperation
and non-stationarity in CMARL. We see immediate headroom for methods that (i) are purpose-built
for CMARL, jointly handling partner and environment-level non-stationarity, (ii) stabilize credit
assignment under partial observability across task sequences, and (iii) drive structured exploration
and robust coordination in diverse, long-horizon settings. The limitations of our work are discussed
in Appendix|L{ We hope MEAL serves as a solid foundation for pushing this line of work forward.

Under review as a conference paper at ICLR 2026

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on lifelong learning agents, pp. 620-636.
PMLR, 2023.

John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéiiez-Guzman, Jayd Matyas, Yiran Mao,
Peter Sunehag, Raphael Koster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu, et al.
Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139-154, 2018.

Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-rehearsal: Achiev-
ing deep reinforcement learning without catastrophic forgetting. Neurocomputing, 428:291-307,
2021.

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41-48, 2009.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jaxl

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas Griffiths, Sanjit Seshia, Pieter Abbeel,
and Anca Dragan. On the utility of learning about humans for human-ai coordina-
tion. In Advances in Neural Information Processing Systems (NeurIPS), volume 32,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/£5b1b89d3db40d65b49£8f9e383ac5dd-Paper.pdfl

Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Feng Chen, Fuguang Han, Cong Guan, Lei Yuan, Zhilong Zhang, Yang Yu, and Zongzhang Zhang.
Stable continual reinforcement learning via diffusion-based trajectory replay. arXiv preprint
arXiv:2411.10809, 2024.

Wesley Chung, Lynn Cherif, Doina Precup, and David Meger. Parseval regularization for continual
reinforcement learning. Advances in Neural Information Processing Systems, 37:127937-127967,
2024.

Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768774, 2024.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36:37567—
37593, 2023.

Zeki Doruk Erden, Donia Gasmi, and Boi Faltings. Continual reinforcement learning via autoencoder-
driven task and new environment recognition. In The Seventeenth Workshop on Adaptive and
Learning Agents.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

10

http://github.com/jax-ml/jax
https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d3db40d65b49f8f9e383ac5dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d3db40d65b49f8f9e383ac5dd-Paper.pdf

Under review as a conference paper at ICLR 2026

Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326, 2017.

Muhammad Burhan Hafez and Kerim Erekmen. Continual deep reinforcement learning with task-
agnostic policy distillation. Scientific Reports, 14(1):31661, 2024.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750-797, 2019.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399-4410. PMLR, 2020.

Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Duefiez-Guzman, Antonio
Garcia Castafieda, [ain Dunning, Tina Zhu, Kevin McKee, Raphael Koster, et al. Inequity aversion
improves cooperation in intertemporal social dilemmas. Advances in neural information processing
systems, 31, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

Paul Knott, Micah Carroll, Sam Devlin, Kamil Ciosek, Katja Hofmann, Anca D Dragan, and Rohin
Shah. Evaluating the robustness of collaborative agents. arXiv preprint arXiv:2101.05507, 2021.

Karol Kurach, Anton Raichuk, Piotr Staniczyk, Michat Zajac, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 4501-4510, 2020.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765-7773, 2018.

Sharada Mohanty, Erik Nygren, Florian Laurent, Manuel Schneider, Christian Scheller, Nilabha
Bhattacharya, Jeremy Watson, Adrian Egli, Christian Eichenberger, Christian Baumberger, et al.
Flatland-rl: Multi-agent reinforcement learning on trains. arXiv preprint arXiv:2012.05893, 2020.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1-50, 2020.

Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep reinforce-
ment learning. arXiv preprint arXiv:1908.03963, 2019.

Julien Perolat, Joel Z Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls, and Thore Graepel. A
multi-agent reinforcement learning model of common-pool resource appropriation. Advances in
neural information processing systems, 30, 2017.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, pp. 835-853. PMLR, 2020.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. Cora: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In Conference on
Lifelong Learning Agents, pp. 705-743. PMLR, 2022.

11

Under review as a conference paper at ICLR 2026

Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V. Albrecht. Generating teammates
for training robust ad hoc teamwork agents via best-response diversity. Trans. Mach. Learn. Res.,
2023, 2023. URL https://openreview.net/forum?id=15BzfQhRO1.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1-51, 2020.

Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian Togelius, Kyunghyun
Cho, and Joan Bruna. Pommerman: A multi-agent playground. arXiv preprint arXiv:1809.07124,
2018.

Constantin Ruhdorfer, Matteo Bortoletto, Victor Oei, Anna Penzkofer, and Andreas Bulling. Un-
supervised partner design enables robust ad-hoc teamwork. arXiv preprint arXiv:2508.06336,
2025a.

Constantin Ruhdorfer, Matteo Bortoletto, Anna Penzkofer, and Andreas Bulling. The overcooked
generalisation challenge: Evaluating cooperation with novel partners in unknown environments
using unsupervised environment design. Transactions on Machine Learning Research, 2025b.
ISSN 2835-8856. URL https://openreview.net/forum?id=K2KtcM1W6 j.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments and algorithms in jax. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, pp. 2444-2446, 2024.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145-32168. PMLR, 2023.

Artyom Y Sorokin and Mikhail S Burtsev. Continual and multi-task reinforcement learning with
shared episodic memory. arXiv preprint arXiv:1905.02662, 2019.

Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 24, pp. 1504-1509, 2010.

DIJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502-14515, 2021.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Tristan Tomilin, Meng Fang, Yudi Zhang, and Mykola Pechenizkiy. Coom: a game benchmark for
continual reinforcement learning. Advances in Neural Information Processing Systems, 36, 2023.

Caroline Wang, Arrasy Rahman, Jiaxun Cui, Yoonchang Sung, and Peter Stone. Rotate: Regret-driven
open-ended training for ad hoc teamwork. arXiv preprint arXiv:2505.23686, 2025.

Maciej Wolczyk, Michal Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Mitos. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Information
Processing Systems, 34:28496-28510, 2021.

Sarah A Wu, Rose E Wang, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max
Kleiman-Weiner. Too many cooks: Bayesian inference for coordinating multi-agent collaboration.
Topics in Cognitive Science, 13(2):414-432, 2021.

12

https://openreview.net/forum?id=l5BzfQhROl
https://openreview.net/forum?id=K2KtcMlW6j

Under review as a conference paper at ICLR 2026

Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An effi-
cient end-to-end training approach for zero-shot human-ai coordination. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
07a363£d2263091c2063998e0034999c—-Abstract-Conference.html.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611-24624, 2022.

Lei Yuan, Zigian Zhang, Lihe Li, Cong Guan, and Yang Yu. A survey of progress on cooperative
multi-agent reinforcement learning in open environment. arXiv preprint arXiv:2312.01058, 2023.

Lei Yuan, Lihe Li, Zigian Zhang, Fuxiang Zhang, Cong Guan, and Yang Yu. Multiagent continual
coordination via progressive task contextualization. I[EEE Transactions on Neural Networks and
Learning Systems, 2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987-3995. PMLR, 2017.

Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqgian Sun, and Wei
Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 6145-6153. AAAI Press, 2023. doi:
10.1609/AAALV3715.25758. URL https://doi.org/10.1609/aaai.v3715.25758.

13

http://papers.nips.cc/paper_files/paper/2023/hash/07a363fd2263091c2063998e0034999c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/07a363fd2263091c2063998e0034999c-Abstract-Conference.html
https://doi.org/10.1609/aaai.v37i5.25758

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 MAXIMUM SOUP DELIVERY CALCULATOR

Let a kitchen layout £ be defined by four disjoint sets of tiles (onion piles O, plate piles P, pots /C,
delivery counters G) and a set of walls W. A tile (x, y) is walkable if (z,y) ¢ W.

Neighbourhood of an object family. We denote the set of walkable tiles adjacent (in the 4-
neighbour sense) to any object in S as:

N(©S) = {@)| (x,y) €S, (&,y) — (@)l =1, (@',y) ¢ W}

Shortest obstacle-aware distance. Given two tile sets A, B C Z?2, we define

d(Av B) = aerﬁigleB diStiﬁnhattan(a’ b)v

where G is the grid graph induced by walkable tiles. We realize this via a breadth-first search (BFS).

Single-agent cook—deliver cycle. A soup requires three onions, one plate pick-up, one soup pick-up,
and one delivery. Let

donion = A(N(O),N(K)), dpiaee = d(N'(P),N(K)), dgoar = d(N(K),N(G)).
The optimistic movement cost for one cycle is
Cmove = 3 donion + dplale +1+ dgoal +3.

Interaction overhead. Every pick-up or drop is assumed to take a constant ¢, = 2 steps (turn +
interact). With n;, = 3x2+141+1 = 9 interactions per cycle, the overhead is coyer = Nint Cact = 18.

Cycle time and upper bound. Including the fixed cooking time c.ook = 20 steps, the single-agent
cycle time is

Tcycle = Cmove T Ccook 1 Cover-
For an episode horizon H, we upper-bound the number of soups by

Nmax(£7 H) = LH/TcycleJ)
and convert it to reward with rgejiver = 20:

Runax (L, H) = 20 Ny (L, H).

The bound assumes a single agent acting optimally. It ignores multi—agent collaboration and therefore
underestimates throughput in layouts where multiple agents can parallelize the workflow. Listing|T]
contains the exact implementation.

A.2 PROCEDURAL KITCHEN GENERATOR

Objective. Given a random seed and user-selectable parameters (number of agents n,, layout
height range [Amin, hmax), layout width range [wmin, Wmax|, and wall-density p), the goal is to emit
a solvable grid string G representing the Overcooked environment.

A.2.1 NOTATION

Let h, w ~ UniformInt(Amin, Pmax), UniformInt(wmin, Wmax), and denote by C = {(4,7) | 1 <
1 < h—-2 1< j < w-— 2} the set of internal cells (outer walls excluded). Its cardinality is
Nint = (h — 2)(w — 2). An unpassable cell contains either a hard wall (#) or an interactive tile; we
write Nynpass(G) for the number of such cells in G.

14

Under review as a conference paper at ICLR 2026

Listing 1 Heuristic upper bound (calculate_max_soup).

overcooked_ upper_bound.py (excerpt)

COOK_TIME = 20

ACTION_OVERHEAD = 2

INTERACTIONS_PER CYCLE = 3 % 2 + 1 + 1 + 1
OVERHEAD_PER_CYCLE = INTERACTIONS_PER_CYCLE % ACTION_OVERHEAD

def calculate_cycle_time(layout, n_agents=2):

move_cost = 3 % d_onion + d_plate + 1 + d_goal + 3
return move_cost + COOK_TIME + OVERHEAD_PER_CYCLE

def calculate_max_soup (layout, episode_len, n_agents=2):
cyc = calculate_cycle_time (layout, n_agents)
soups = episode_len // cyc
return int (soups)

A.2.2 ALGORITHM

The generator performs the following loop until a valid grid is produced (Listing [2):

1. Draw size. Sample h, w and create an h X w matrix initialised to FLOOR tiles, then overwrite
the border with WALL.

2. Place interactive tiles. For each symbol in { GOAL, POT, ONION_PILE, PLATE_PILE}
choose a random multiplicity m € {1, 2} and stamp the symbol onto m uniformly chosen
floor cells.

3. Inject extra walls. Let narger = [p Ning | and ngaa = max (0, narger — Nunpass(G)). Place
Nadd additional walls on random floor cells.

4. Place agents. Stamp n, AGENT symbols on random remaining floor cells.

5. Validate. Run the deterministic evaluate_grid solver; if it returns True, terminate
and return (G), otherwise restart.

6. Cleanup. Remove any interactive elements and tiles that are unreachable from all agent
positions.

7. Return. Output the final grid.

Solvability criterion. The validator (Appendix checks (i) path connectivity between every
agent and each interactive tile family, (ii) at least one pot reachable from an onion pile and a plate
pile, and (iii) at least one goal reachable from a pot. This is implemented via multiple breadth-first
searches. Appendix [A.3]further details the evaluator logic.

Wall-density effect. Because interactive tiles themselves count as obstacles, the algorithm first
places them, then only as many extra walls as needed to reach the prescribed obstacle ratio p. This
keeps difficulty roughly constant even when two copies of every station are spawned.

Failure handling. If any placement stage exhausts the pool of empty cells, or the validator rejects the
grid, the attempt is aborted and restarted with a fresh , w sample. We cap retries atmax_attempts
(default 2000); empirically fewer than five attempts suffice for p <0.3.

Complexity. All placement operations are O(hw) in the worst case (linear scans to collect empty
cells), while validation runs a constant number of BFS passes, each O(hw). Hence one successful
attempt is O (hw).

15

Under review as a conference paper at ICLR 2026

Listing 2 Overcooked Layout Generator

def generate_random_layout (seed, params) :
rng = random.Random (seed)
for attempt in range (params.max_attempts) :
h = rng.randint (sparams.h_range)
w = rng.randint (xparams.w_range)
grid = init_floor_with_border (h, w)

1. Interactive tiles
for sym in [GOAL, POT, ONION_PILE, PLATE_PILE]:
if not place_random(grid, sym, rng.randint(l, 2), rng):
break # restart

2. Extra walls to hit density

n_target = round(params.wall_density % (h-2)*(w-2))

n_add = n_target - count_unpassable (grid)

if not place_random(grid, WALL, n_add, rng):
continue # restart

3. Agents
if not place_random(grid, AGENT, params.n_agents, rng):
continue

4. Validate
if evaluate_grid(to_string(grid)):
return to_string(grid)

A.3 LAYOUT VALIDATOR

We guarantee that every procedurally generated kitchen is playable by running a deterministic
validator before training begins. The validator implements ten checks, ranging from basic grid sanity
to cooperative reachability. A grid is accepted only if all checks pass.

Notation. Let G be an h x w character matrix with symbols {W, X, 0, B, P, A, } for walls, delivery,
onion pile, plate pile, pot, agent, and floor. Interactive tiles are Z = {X, 0, B, P}, and unpassable tiles
U=1Tu{w}.

Validation rules.

R1 Rectangularity — all rows have equal length.

R2 Required symbols — each of W,X,0,B,P,A appears at least once.

R3 Border integrity — every outer-row/column tile is in {W} U Z.

R4 Interactivity access — every tile in Z U {A} has at least one 4-neighbour that is A or floor.
RS Reachable onions — at least one onion pile is reachable by some agent.

R6 Usable pots — at least one pot is reachable and lies in the same connected component as a
reachable onion.

R7 Usable delivery — at least one delivery tile is reachable and lies in a component with a usable pot.

R8 Agent usefulness — each agent can either interact with an object directly or participate in a
hand-off (adjacent wall shared with the other agent’s region).

R9 Coverage — the union of agents’ reachable regions touches every object family in Z.

R10 Handoff counter — if one agent cannot reach all families, a wall tile adjacent to both regions
exists, enabling item transfer.

Rules R5-R10 rely on two depth-first searches (DFS) from the agent positions. The DFS explores
floor and agent tiles only; whenever it touches an interactive tile, that family is marked as “found.”
Let Reachy, C [h] x [w] denote tiles reached from agent k (k € {1, 2}).

16

Under review as a conference paper at ICLR 2026

Algorithmic outline. Listing[3|shows a condensed version of the validator.

Listing 3 Condensed Layout Validator.

def validate (grid_str):
g = [list(r) for r in grid_str.splitlines{()]
h, w = len(g), len(g[0])

RI-R3 omitted for brevity

Depth—-first search from a start cell
def dfs (i, j, seen):

if (i, Jj) in seen or g[i][j] in UNPASSABLE_TILES - {AGENT}:

return

seen.add ((i, J))

for di, dj in ((1,0), (-1,0), (0,1), (0,-1)):
dfs (i+di, j+dj, seen)

Agents and family reachability

al, a2 = [(i, J) for i,r in enumerate(qg)
for j,c in enumerate(r) if c == AGENT]
reachl, reach2 = set (), set()

dfs (xal, reachl); dfs(xa2, reach2)

Helper: reachable (\mathcal{S}, reach)
def any_reach (symbols, reach):
return any(g[i] [Jj] in symbols for i, j in reach)

R5-R7

if not any_reach ({ONION_PILE}, reachl|reach?2): return False
if not any_reach ({POT}, reachl|reach2): return False
if not any_reach ({GOAL}, reachl|reach2): return False

R8-R10 (usefulness & hand-off)
def useful (reach_me, reach_other):
direct or shared-wall hand-off
for i,j in reach_me:
if g[i][j] in INTERACTIVE_TILES: return True
if g[i][3j] == FLOOR and any (

(abs (i-i2)+abs (§-32) == 1 and g[i2][j2] == WALL)

for i2,32 in reach_other):
return True
return False

if not useful (reachl, reach2): return False
if not useful (reach2, reachl): return False
return True

Complexity. All checks are O(hw) and require only two DFS traversals, thus one validation runs

in time linear to the grid area and is negligible compared with policy learning.

Practical impact. In practice, fewer than 1% of generator attempts fail validation when wall-density
p <0.15 and kitchen size > 8 x 8. We therefore cap retries at 2000 without noticeable overhead.

B EXPERIMENTAL SETUP

B.1 NETWORK ARCHITECTURE

All agents share the same actor—critic backbone, implemented in F1ax. Two encoder variants are

provided:

17

Under review as a conference paper at ICLR 2026

* MLP (default) : observation tensor is flattened to a vector and passed through 2 fully-connected
layers of width 128.

* CNN:: three 32-channel convolutions with kernel sizes 5x5, 3x 3, 3x3 feed a 64-unit projection,
followed by a single 128-unit dense layer.

Common design knobs (controlled from the CLI) are:

e Activation (relu vs. tanh).

* LayerNorm : applied after every hidden layer when use_layer_normis enabled.

* Shared vs. Separate encoder : with shared_backbone the two heads operate on a common
representation; otherwise actor and critic keep independent trunks.

* Multi-head outputs : if use_multihead is set, each head holds a distinct slice of logits/values
for every task (num_tasks = |T|). The correct slice is selected with a cheap tensor reshape.

* Task-one-hot conditioning : setting use_task_1id concatenates a one-hot vector of length |7 |
before the actor/critic heads, mimicking “oracle” task identifiers used in many CL papers.

All linear/conv layers use orthogonal weight initialisation with gain /2 (or 0.01 for policy logits)
and zero biases. The policy outputs a distrax.Categorical; the critic outputs a scalar.

B.2 HYPERPARAMETERS

Table [3]lists settings that are constant across every experiment unless stated otherwise. Values match
the Config dataclass in the training script.

Table 5: Fixed hyper-parameters. All experiments use dense reward shaping, two agents, and IPPO
unless noted. CL coefficients \ refer to the regularization strength passed to each method.

Parameter Value
Optimization (IPPO)

Activation ReLU

Optimizer Adam (Optax)

Adam (B1, B2) (0.9, 0.999)

Adam € 107°

Weight decay none

Learning rate n 3x107*

LR annealing linear (3 x 1074 — 0)

Env. steps per task A 107

Parallel envs 16

Rollout length T° 128

Update epochs 8

Minibatches / update 8

Effective batch size 16 x 128 = 2048

Discount y 0.99

GAE)\ 0.957

PPO clip € 0.2

Entropy coef. cent 0.01

Value-loss coef. ayr 0.5

Max grad-norm 0.5

Continual-learning specifics

Sequence length |T|
Reg. coefficient A

20 (base sequence), repeated r times
101 (EWC), 10° (MAS), 107 (L2)

EWC decay 0.9

Importance episodes / steps 5/500

Regularize critic / heads No/No

AGEM Memory size 100 000 transitions

AGEM Sample size (per proj.) 1024
Miscellaneous

Reward shaping horizon 2.5 x 10 steps (linear to 0)
Evaluation interval every 100 updates (10 episodes)
Random seeds {1..5}

18

Under review as a conference paper at ICLR 2026

A Methods
@ EWC
0 © Online EWC

0.20

- 0.15 |
> i
= i Levels
o : Q@ Levell
[e) 1
L A ! A Level 2
0.05 M .
! Level 3
@ =
0.00 ~--==m-mmmmmmmeooooooo L ——

-0.6 -04 -0.2 0.0 0.2
Forward Transfer 1

Figure 9: Comparison of EWC and Online EWC across all difficulty levels in terms of forward
transfer and forgetting. Each point denotes a method’s performance at a given level. Online EWC
consistently exhibits higher plasticity (Iess-negative or positive, particularly at Level 3, while EWC
achieves notably lower forgetting on all levels.

C EWC vs. ONLINE EWC

EWC accumulates importance over all past tasks and penalizes drift along high-Fisher directions
with a fixed quadratic. Online EWC maintains a running, exponentially decayed Fisher, emphasizing
recent tasks and relaxing old constraints. Both use the same heads, meaning that the penalty acts on
the shared trunk. When layouts are small, not only are the tasks easier to learn, but the same features
are more likely to work across tasks. Strong anchoring preserves those features, curbing forgetting
and yielding a higher average score. The stability—plasticity trade-off is favorable because plasticity
demands are modest. This trade-off is visualized in Figure[0] where Online EWC demonstrates higher
plasticity at the cost of increased forgetting, while EWC excels in stability but struggles to adapt on
Level 3. The cumulative Fisher penalty pays off on small Level 1-2 layouts, but underfits on Level 3
since harder layouts demand larger representation shifts. By contrast, Online EWC uses a decayed
Fisher that down-weights older tasks and manages to keep enough plasticity to learn the new layouts.
Level 3 forces longer paths, bottlenecks, and role specialization, which require larger representational
updates. EWC’s cumulative constraints over-tighten the trunk and slow adaptation, while Online
EWC’s decay frees capacity for those shifts, so it learns the hard tasks more effectively. The multiple
output heads alone are not enough. They isolate outputs, but the penalty sits on the shared backbone.
‘When the trunk needs to be to rewired for new Level 3 tasks, EWC resists too much, while Online
EWC allows it more. Moreover, credit assignment is noisier on Level 3 due to sparser effective
signals and longer horizons. A single, stale Fisher snapshot can misdirect EWC’s penalty. The rolling
estimate in Online EWC smooths that noise and tracks the current regime more closely.

D PARTIALLY OBSERVABLE MEALS

To more closely mimic the constraints faced by real-world agents, we introduce a direction-aware
egocentric observation setting. Each agent perceives a rectangular window centered on itself, with
tiles outside this window masked. The window is anisotropic with respect to the agent’s heading:
we separate forward, side, and rear extents, which increase with difficulty (Table @ This scaling
is intentionally balanced with the overall environment design: as the grid size grows with diffi-
culty, the perceptual window also expands to maintain a comparable challenge-to-information ratio.
Consequently, the tasks become POMDPs, where exploration, memory (e.g., recurrent state), and
implicit/explicit coordination provide tangible benefits. In particular, Level 1 removes rear context

19

Under review as a conference paper at ICLR 2026

Table 6: Field-of-view specification for the partially observable MEAL variant. Window size and
directional extents scale with difficulty.

Difficulty Grid Size Forward View Side View Rear View Obs Window (Hx W)

Easy 6-7 1 1 0 2x3
Medium 8-9 2 1 0 3x3
Hard 10-11 3 2 1 3x5

(a) Level 1: 2x3 window. (b) Level 2: 3x3 window. (c) Level 3: 3x5 window.

Figure 10: Egocentric observation windows by difficulty. Visibility grows with difficulty but remains
partial, preserving the need for exploration and memory.

entirely, Level 2 extends the look-ahead by one tile, and Level 3 adds both longer look-ahead and
rear visibility, reducing blind spots while preserving partial observability (Figure[10).

E CURRICULUM LEARNING

In all training settings, agents consistently struggle on Level 3 tasks with large grids. Curriculum
learning has been shown to improve final performance on difficult tasks by gradually increasing task
complexity (Bengio et al.| 2009; Narvekar et al.,[2020; [Portelas et al.,2020). We investigate whether
a simple difficulty-based curriculum can help agents better learn harder MEAL tasks under the same
data budget. To this end, we design a curriculum sequence where each difficulty level contributes an
equal number of tasks. Specifically, we sample 5 layouts each from Level 1 (easy), Level 2 (medium),
and Level 3 (hard), and present them in ascending order of difficulty (layouts 1-5, then 610, then
11-15). As a baseline, we compare with a default sequence that trains on 15 hard (Level 3) layouts
without any prior exposure to easier tasks. Performance is evaluated based on the normalized average
score over the 5 tasks in the sequence of the respective difficulty.

The results in Table[7]show no statistically sig- Table 7: Curriculum vs. default training under an
nificant difference between the two strategies equal data budget. We report the average score over
on Level 2, given the high variance. However, the task windows of the respective difficulty.

on Level 3, the curriculum strategy nearly dou-

bles performance. A plausible explanation is Strategy Medium (6-10) Hard (11-15)
that, under curriculum training, the agent first

experiences 5 easy and 5 medium tasks, where Default 0.693+0.147 0328 £ 0.238

it receives denser reward signals and more fre- Curriculum 0.668 +0.152 0.653 + 0.181
quent successes. This exposure likely builds
useful priors and stabilizes learning, improving adaptation to harder tasks later. In contrast, the default
strategy trains only on hard tasks throughout the sequence, where exploration is more challenging
and initial rewards are more difficult to obtain, leading to weaker performance overall.

20

Under review as a conference paper at ICLR 2026

[0} Task 1 Task2 Task3 Task4 Task5 Task6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
3 Level 1 Level2 —— Level 3
w»n 0.8
(9]
No.6
@
E
504
=
[
o 0.2
o
(] —
Z 0.0 = ' : ' ' ' ' ' ' '
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 1.7 18 19 20

Environment Steps le8

Figure 11: Average Normalized Score over the course of training EWC on a sequence of 20
randomly generated tasks per difficulty level. Shaded regions indicate 95% confidence intervals
across 5 seeds.

F DIFFICULTY LEVELS

Higher difficulty levels pose greater challenges for both learning and retention. As the grid size and
obstacle density increase, the environment becomes more complex: interactable items are farther
apart, and navigation paths are longer and more convoluted. This increases the number of steps
required to complete a recipe, making the overall task harder to memorize and reproduce. Higher-
level layouts also add demands for plasticity and transfer. The larger layout space introduces greater
variability between tasks, making it harder to reuse learned behavior. These factors collectively lead
to lower performance as difficulty increases, as shown in Figure[TT] EWC performs reliably on Level
1, successfully learning new tasks while retaining performance on learned ones. On Level 2, learning
remains effective up to around the midpoint of the sequence, after which progress slows and variance
across runs increases markedly. In Level 3, EWC struggles from the outset, as performance is poor
even on early tasks, and learning new tasks stalls entirely after the 15th task in the sequence.

G NETWORK PLASTICITY

G.1 METRICS

We follow |Abbas et al.|(2023); Dohare et al.|(2024) and quantify plasticity, the ability to fit fresh
data after many tasks, by three complementary metrics computed from the training reward.

Notation. For a single task let r; be the online reward at step ¢t < 7. A repetition experiment
presents the same task R times, so the trace splits into R contiguous segments of equal length
L = T/R. We smooth r; with a Gaussian kernel (bandwidth o) and define the cumulative average

t
_ 1
r(t)z;Zri, t=1,...,L.
=1
All metrics compare a later repetition j > 0 with the baseline repetition 7 = 0.

AUC-loss. Let AUC; = ["7;(t) dt. The capacity drop for repetition j is

_AUG,
AUC,’

where 0 indicates perfect retention. We report the mean of Eq. (4)) over repetitions and seeds.

loss; = 1 j=1...,R—1, @)

Dormant Neuron Ratio. Following Sokar et al.| (2023), we also measure dormancy, the fraction of
units that remain effectively inactive during training. Given hidden activations h € RZ*# for batch

size B and layer width H, we compute the mean absolute activation per unit m = % Zszl |h,: |-
Normalizing by the global mean m = Efrzl m;, we obtain scores s; = m; /(7 + €). A unit is

21

Under review as a conference paper at ICLR 2026

10 10

Task 2 as|
08 08 08 0.8 08
06 06 06 0.6 06
0.4 04 04 0.4 0.4
02 02 02 02 02

0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1e8 1e8 1le8 1e8 1e8

Task 6 Task 7 Task 8 Task 9 Task 10
10 10 10

10
08 08 08 0.8 08
06 06 06 0.6 06
0.4 04 04 0.4 0.4
02 02 02 02 02

0.0 0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1e8 1e8 1e8 1e8

Normalised Score

Environment steps

Figure 12: Training curves of FT across a Level 1 10-task sequence repeated ten times over 5 seeds.

Table 8: All sequence-averaged metrics for FT with 95% confidence intervals.

Repeats AUC-loss | Dormant Ratio | FPR 1t RAUC 1

1 0.000 £ 0.000 0.408 £0.003 1.000 £ 0.000 1.000 =+ 0.000
3 0.166 = 0.052 0428 £0.006 0926 £0.111 0.901 +0.114
10 0.201 £0.018 0.509 £0.022 0.891 £ 0.066 0.872 + 0.070

considered dormant if s; < 7 for some threshold 7 (we use 7 = 0.01). The Dormant Neuron Ratio is
the fraction of dormant units, averaged across layers and seeds. Higher values indicate more inactive
capacity, and hence reduced plasticity.

Final-Performance Ratio (FPR). With p; = 7;(L — 1) the plateau reward of repetition j,
bj

FPR; =
Po

ji=1,...,R—1, 5)
so FPR; > 1 implies no loss, FPR; < 1 indicates degraded plateau performance.

Raw-AUC Ratio (RAUC). Using the unsmoothed running reward,

RAUC; = AUC™ =1 R—-1 6

j—m7 J=4..., =L (6)

which captures the total reward accumulated during learning. Higher values in Eq. (3)-Eq. (6) are
better.

Sequence-level aggregation. For a task sequence of length | 7| we compute the per-task means of
(@)—(6) and average across tasks, yielding a single global score per repetition count R.

G.2 TRAINING CURVES

Figure [12] plots the mean normalized score of the fine-tuning (FT) baseline over ten repetitions.
Performance on Tasks 8 and 9 remains virtually unchanged, indicating little to no plasticity loss. In
contrast, Tasks 1, 2, 6, and 10 show a clear degradation: the agent fails to recover the score achieved
during the first repetition, illustrating a pronounced loss of plasticity.

H DESIGNATED ROLES

In Overcooked, agents are identical in their capabilities and attributes. However, in many real-world
scenarios, autonomous agents either 1) possess different physical properties or 2) are functionally
identical but are expected to fulfill distinct, complementary roles to cooperate effectively for a
common goal. To capture this dimension in MEAL, we design a heterogeneous agent setting with
designated roles.

22

Under review as a conference paper at ICLR 2026

Table 9: Homogeneous vs. heterogeneous (designated roles) 2-agent training results over Level 1
20-task generated sequences using shared rewards and IPPO in combination with EWC.

Setting At Fl FT1

Homogeneous 0.90 + 0.04 0.01 = 0.01 0.20 = 0.08
Heterogeneous 0.68 £0.09 0.03 £0.02 —0.05 4 0.09

(a) Single-pot fixation. All agents are (b) Deadlock. The red agent tries (c) Role collapse. One agent com-
clustered around a single pot, waiting to place an onion into the pot, but pletes the pipeline solo while the
for it to finish cooking, while ignoring is blocked by the blue agent, who other wanders or idles. The policy
aready soup in the bottom pot. cannot move aside. settles on a local minimum.

Figure 13: Qualitative failure modes observed in Overcooked. All behaviors stem from inadequate
coordination, limited exploration, or insufficient role allocation.

In this variant, two agents are randomly assigned one of the two predefined roles at the start of each
task: chef and waiter. The chef is responsible for preparing the soup by loading onions into the pot,
but cannot pick up plates. The waiter handles dish delivery but cannot pick up onions. This enforces
complementary capabilities, meaning neither agent can complete the full recipe alone, meaning
that successful catering requires coordinated role execution and adaptation. Note that the roles are
sampled per task and may switch across tasks, making continual learning essential.

We evaluate this setting over 20-task Level 1 sequences using EWC with IPPO under shared rewards.
Table 0] compares the heterogeneous setup to the default homogeneous setting. We observe a clear
performance drop in the role-restricted setting, as throughput decreases when agents are limited to
certain actions and cannot flexibly switch between tasks. Another factor is asymmetric step costs:
in many layouts, loading the pot with 3 onions takes more steps than a single plate-and-deliver trip,
making the chef the throughput bottleneck. Generalization also suffers as agents struggle to transfer
knowledge when their roles change across tasks, since skills learned in one role do not apply to
the other. This role-switching dynamic further exacerbates forward transfer challenges in continual
learning.

I CoOMMON PITFALLS

Despite shared rewards and simple layouts, learned policies frequently fall into recurring failure
modes that throttle throughput and coordination. Figure[T3]illustrates three such patterns we observe
consistently across layouts and levels.

J CONTINUAL PARTNER ADAPTION

MEAL enables the generation of diverse partner policies, allowing continual learning methods to
be evaluated not only across layouts but also across sequences of partners, e.g., 7 = (7r2, ey 7r£),
where L is the sequence length. To this end, we aim to generate partner policy sequences that are

maximally diverse in their behaviour.

23

Under review as a conference paper at ICLR 2026

As described in Section #.4] we use (i) hardcoded strategies (random, static), (ii) planning-based
agents (onion-only, plate-only, and a human-like planner with stochastic task selection), and (iii)
populations trained with best-response diversity (Rahman et al., 2023, BRDiv), which maximizes
self-play performance while minimizing cross-play compatibility.

BRDiv populations in particular yield highly incompatible strategies. Coordinating with a new BRDiv
partner typically requires learning behaviours that differ substantially from those seen before, making
them a strong testbed for continual adaptation. In our experiments, we train BRDiv populations with
a size of three, a cross-play weight of 1.0, in 64 parallel environments, using simple MLP policies.

Planning-based agents follow fixed strategies that learned policies rarely adopt. The onion-only agent
collects onions and, with probability Ponion-counter = 0.1, places them on counters instead of pots. The
plate-only agent collects plates and delivers dishes. With probability ppiae-couner = 0.1 it places the
plate on a counter instead of plating a soup. The human-like planner follows simple heuristics: it
prioritizes filling pots, but if no pot is free, it collects a plate and delivers a soup. With probability
0.1, it may place either onions or plates on counters instead.

For the partner-adaptation experiments, we fix the schedule as follows: the ego agent first encounters
the three BRDiv partners, followed by the human-like planner, then the onion-only, plate-only,
random, and static agents. Unlike the layout-adaptation experiments, we keep the environment fixed
to the cramped_room layout from the original Overcooked repository (Carroll et al.|[2019), which
is particularly sensitive to variations in partner behaviour.

In our partner-adaptation experiments, we use a fixed schedule: the ego agent is first exposed to the
three BRDiv policies, followed by the human-like planner, then the onion-only, plate-only, random,
and static agents. Instead of using the Meal Generator (Section to generate an array of different
layouts, we adopt the cramped_room layout from the original Overcooked repository |Carroll
et al|(2019). In this layout, the ego agent has been shown to be susceptible to variations in partner
behaviour Ruhdorfer et al.| (2025b).

Table [I0] compares the performance between naive fine- Table 10: Continual learning metrics for
tuning(FT) and L2-regularization. FT manages to forget partner adaptation across 8 diverse part-
less in this setting and obtains a higher average score than ners in the cramped_room layout.
when adapting to different layouts (Table[2] The continual

evaluation curves in Figure [14] show that when the g0 Nfethod At Fl
agent is exposed to a new fixed partner policy, it can still

coordinate to some extent with previous partners, although ~ FT 0.272+0.03 0.707=0.02
rapidly adapting its policy to align with the new partner. In L2 0.563+0.04 0.172:0.02

contrast, such transfer is largely absent when the challenge

comes from adapting to a new layout. Contrary to FT, L2 performs worse in this setting compared to
layout adaptation, forgetting more and delivering fewer soups on average. Improved retention comes
at the cost of adapting less freely and achieving less total soup deliveries during training.

K REWARD DESIGN

By default, Overcooked agents receive shared rewards. We compare this with an individual reward
mode, where each agent is rewarded solely for its own actions, often leading to greedier behavior
and weaker coordination [Perolat et al.| (2017); [Foerster et al.| (2017); Hughes et al.| (2018]). We also
evaluate the sparse shared reward setting described in Section 4. 1] assessing all three using EWC on
20-task Level 1 sequences.

As shown in Table shared rewards Table 11: Effect of reward design on EWC over 20-task
lead to the best performance, although on Level-1 sequences.
some tasks, the individual reward setting

allows the agents to find a better gl‘o'bal Rewards At Fl FT1
solution due to the inherent competitive-

ness. Agents are motivated to use different ~ Shared 0.90 004 0.01 001 0.20 +0.08
onion piles and pots to maximize their own ~ Individual ~ 0.84 008 0.08 £007 0.12 =006
rewards, which often leads to a more effi- ~ Sparse 0.19 +004 0.02+001 —0.79 £0.10

cient solution. However, this competitive
drive occasionally prevents them from converging on a stable solution. The sparse reward setting

24

Under review as a conference paper at ICLR 2026

FT
Partner 1 Partner 6 Partner 7 Partner 8

o 1.25
4

5
& 1.00

o

go7s

] |
g 050 :
So025 / |

0.00 | : £ ;
0

1 2 3 4 5
L2
Partner 1 Partner 6 Partner 7 Partner 8

o 1.25
S
& 1.00
°
@ 0.75
© R :

B I SR it
£ 00 7 af e
o
= 0.25 _'_‘/

0.00

0 1 2 3 4 5 6

Environment Steps

Figure 14: Evaluation curves of adapting to 8 diverse partners.

grants rewards only for successful deliveries. Without a targeted exploration mechanism, agents are
unlikely to discover a full delivery sequence through random actions even on Level 1 layouts, leading
to worse performance.

L. LIMITATIONS

While MEAL provides a scalable and diverse testbed for CMARL, several limitations remain. First,
MEAL is restricted to discrete action spaces, limiting its applicability. Second, while layout diversity
is high, the domain itself is narrow. Overcooked dynamics do not capture the full complexity of
real-world multi-agent interactions involving language, negotiation, or long-horizon planning. Third,
our benchmark only evaluates task-incremental learning by changing layouts. Future work could
extend MEAL to other CL settings. Finally, we only consider CL in settings where the environment
layout changes across tasks, but not the environment dynamics or different recipes.

M USE OF LLMS

We used large language models (LLMs) exclusively to aid in polishing the language and improving
the clarity of presentation. No part of the research design, experiments, or analysis was generated or
influenced by LLMs.

N EXTENDED RESULTS

In this section, we provide additional experimental results. Tables[T2} [I3] [T4add 95% confidence
intervals to the main baseline results. Figures[I5]and[T6show performance curves of higher levels.
Figure [I7] depicts the per-task evaluation curves of Level 1. Figure [I§]illustrates forward transfer.

25

Under review as a conference paper at ICLR 2026

o
0

o
o

<
[N

Average Normalized Score
o
Sy

Oa

°

Environment Steps

Task 1 Task 2 Task 3 Task4 Task5 Task6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

— EWC —— Online EWC —— L2 —— MAS

FT —— AGEM

00 01 02 03 04 05 06 07 08 09 10 11 12 1.3 14 15 16 1.7 18 19 20

le8

Figure 15: Average Normalized Score curves on Level 2.

N
N

o
[

°
i

.

Average Normalized Score
o
N

o

.0

Environment Steps

— EWC —— Online EWC —— L2 —— MAS

Task 1 Task 2 Task 3 Task4 Task5 Task6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20

FT —— AGEM

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 1.7 18 19 20

le8

Figure 16: Average Normalized Score curves on Level 3.

Table 12: Level 1 baseline results with confidence intervals.

Method AT Fl FT1

FT 0.048+0.00 0.946+0.00 0.201+0.03
EWC 0.839+0.03 0.012+0.01 0.055+0.06
Online EWC 0.769+0.09 0.062+0.05 0.208+0.03
MAS 0.281+0.07 0.302+0.08 -0.233+0.03
L2 0.753+0.02 0.018+0.00 -0.199+0.09
AGEM 0.204+0.05 0.678+0.04 0.125+0.10

Table 13: Level 2 baseline results with confidence intervals.

Method AT Fl FT71

FT 0.041+0.01 0.944+0.00 0.065+0.02
EWC 0.604+0.21 0.027+0.01 -0.086+0.34
Online EWC 0.585+0.03 0.100+0.04 0.152+0.05
MAS 0.155+0.09 0.356+0.06 -0.355+0.06
L2 0.496+0.02 0.059+0.00 -0.527+0.04
AGEM 0.117+0.01 0.801+0.02 -0.083+0.07

Table 14: Level 3 baseline results with confidence intervals.

Method AT Fl FT1

FT 0.010+0.02 0.947+0.05 -0.157+0.20
EWC 0.178+0.02 0.091+0.08 -0.650+0.13
Online EWC 0.306+0.00 0.144+0.01 -0.149+0.15
MAS 0.034+0.01 0.450+0.09 -0.542+0.20
L2 0.127+0.03 0.096+0.00 -0.827+0.04
AGEM 0.037+0.02 0.861+0.01 -0.169+0.18

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Normalized Score Normalized Score Normalized Score Normalized Score Normalized Score

Normalized Score

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

FT
Task 1 Task 2 Task 3 Task 4 Task5 Task 6 Task 7 Task 8 Task 9 Task 10Task 11Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
o s n \
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
le8
Online_EWC
Task 1 Task 2 Task 3 Task 4 Task5 Task 6 Task 7 Task 8 Task 9 Task 10Task 11Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
i L A
i i i i i i i 1 T i 1 1 1 1 1 1
00 01 02 03 04 05 06 07 08 09 10 1.1 1.2 13 14 15 16 1.7 18 19 20
le8
EWC
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10Task 11Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
v
1 1 1 1 1 1 1 1
00 01 02 03 04 05 06 07 08 09 10 1.1 1.2 13 14 15 16 17 18 19 20
le8
MAS
Task 1 Task 2 Task 3 Task 4 Task5 Task 6 Task 7 Task 8 Task 9 Task 10Task 11Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
— Ann N] PO S doacao i | A 5
/ 1 1
00 01 02 03 04 05 06 07 08 09 10 11 1.2 13 14 15 16 1.7 1.8 19 2.0
le8
L2
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10Task 11Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
T T T I T 7
iy nddMal/ 0 A
Vi
/ |
4 - —
T 1 1 1
00 01 02 03 04 05 06 07 08 09 10 1.1 1.2 13 14 15 16 1.7 18 19 20
le8
AGEM
Task 1 Task 2 Task 3 Task 4 Task5 Task 6 Task 7 Task 8 Task 9 Task 10Task 11Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
] T 1 7 T T p T T 7
bk
- : 1
; . .
0.0 . 2 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Environment Steps

Figure 17: The evaluation curves of Level 1 illustrate the extent of forgetting across tasks. FT
suffers from clear catastrophic forgetting: once the agent transitions to a new task, performance on
the previous task collapses immediately. EWC and L2 display near-perfect retention.

27

Under review as a conference paper at ICLR 2026

FT
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

. | o~
1.0 ~ . ‘ =/
/\/\/\ \‘,\/\ y = 1 \p \) \'
i !
1
0.5

0.0

Normalized Score

0.5

Normalized Score

0.0
EWC

1.0

0.5

Normalized Score

0.0
MAS

1.0

0.5

Normalized Score

0.0
L2

1.0

0.5

Normalized Score

0.0
AGEM

1.0

0.5

Normalized Score

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Environment steps 1e8

Figure 18: Forward transfer on Level 1. The green shaded areas depict positive transfer compared
to the IPPO baseline, and the red shaded areas show negative transfer.

28

	Introduction
	Related Work
	Preliminaries
	MEAL
	Environment Specifications
	MEAL Generator
	Layout Difficulty
	Continual Learning Sequences
	Evaluation Metrics

	Experiments
	Baseline Comparison
	Ablation Study
	N-Agent MEAL
	Partial Observability
	Network Plasticity

	Conclusion
	Implementation Details
	Maximum Soup Delivery Calculator
	Procedural Kitchen Generator
	Notation
	Algorithm

	Layout Validator

	Experimental Setup
	Network Architecture
	Hyperparameters

	EWC vs. Online EWC
	Partially Observable MEALs
	Curriculum Learning
	Difficulty Levels
	Network Plasticity
	Metrics
	Training Curves

	Designated Roles
	Common Pitfalls
	Continual Partner Adaption
	Reward Design
	Limitations
	Use of LLMS
	Extended Results

