

000 001 002 003 004 005 MEAL: A BENCHMARK FOR CONTINUAL MULTI- 006 AGENT REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms, with environment availability strongly impacting research. One particularly underexplored intersection is continual learning (CL) in cooperative multi-agent settings. To remedy this, we introduce **MEAL** (Multi-agent Environments for Adaptive Learning), the first benchmark tailored for continual multi-agent reinforcement learning (CMARL). Existing CL benchmarks run environments on the CPU, leading to computational bottlenecks and limiting the length of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual learning across sequences of 100 tasks on a single GPU in a few hours. We show that naively combining popular CL and MARL methods yields strong performance on simple environments, but fails to scale to more complex settings requiring sustained coordination and adaptation.

1 INTRODUCTION

Continual RL has recently attracted growing interest Hafez & Erekmen (2024); Chen et al. (2024); Chung et al. (2024); Erden et al., yet remains largely unexplored in multi-agent settings Yuan et al. (2023; 2024). Combining the two introduces unique challenges. In cooperative environments, agents ought to establish implicit conventions or roles for coordination Strouse et al. (2021). As tasks or dynamics change, these conventions may fail, and inter-agent dependencies can turn individual forgetting into team-wide breakdowns. Unlike traditional MARL, CMARL faces non-stationarity not only from other learning agents but also from evolving task distributions Yuan et al. (2024). This dual source of change demands agents that can adapt and transfer knowledge without discarding prior coordination strategies. This ability is critical in real-world settings where environments continually evolve. For instance, autonomous vehicles must navigate unseen roads, adapt to new traffic regulations, and interact with unfamiliar human drivers, while coordinating with other AVs. Similarly, warehouse robots deployed in a new facility must quickly adapt to unseen layouts and workflows, while preserving established collaborative behaviors.

To analyze how current methods handle the interplay between CL and MARL, and to drive progress in this domain, we introduce **MEAL**¹, the first benchmark for CMARL. To the best of our knowledge, MEAL is also the first continual RL library to leverage JAX for end-to-end GPU acceleration. Traditional CPU-based benchmarks are limited to short sequences (5–15 tasks) due to low environment throughput and task diversity Sorokin & Burtsev (2019); Powers et al. (2022); Tomilin et al. (2023), making them ill-suited for the computational demands of CL across long task sequences. MEAL’s end-to-end JAX pipeline removes this barrier, enabling training on up to 100 tasks within a few hours on a single desktop GPU. This unlocks new research directions for scalable, cooperative continual learning in resource-constrained settings.

MEAL is built on Overcooked Carroll et al. (2019), a widely used cooperative MARL environment Hu et al. (2020); Wu et al. (2021); Strouse et al. (2021), providing a strong foundation for benchmarking. Prior work has shown that agents tend to exploit spurious correlations in fixed layouts, resulting in poor generalization even under minor modifications Knott et al. (2021). This makes Overcooked particularly well-suited for learning continually: even minor layout variations can present a significant challenge. To succeed across a sequence of such tasks, agents must avoid overfitting to layout-specific behaviors and instead learn coordination strategies that are robust and transferable.

¹The code and environments are accessible on GitHub.

054
055
056
057 Table 1: Comparison of existing Reinforcement Learning benchmarks with MEAL.
058
059
060
061
062
063
064
065
066

Benchmark	PCG	Difficulty Levels	GPU-accelerated	Action Space	Multi-Agent	Continual Learning
CORA	✓/✗	✗	✓	Mixed	✗	✓
MPE	✗	✗	✗	Continuous	✓	✗
SMAC	✗	✓	✗	Discrete	✓	✗
Continual World	✗	✗	✗	Continuous	✗	✓
Melting Pot	✗	✗	✗	Discrete	✓	✗
Google Football	✗	✓	✓	Discrete	✓	✗
JaxMARL	✓/✗	✗	✓	Mixed	✓	✗
COOM	✗	✓	✗	Discrete	✗	✓
MEAL	✓	✓	✓	Discrete	✓	✓

067
068 The **contributions** of our work are three-fold. (1) We release MEAL, the first CMARL benchmark,
069 consisting of procedurally generated Overcooked environments spanning three difficulty levels. (2)
070 We leverage JAX to build the first end-to-end GPU-accelerated task sequences for continual RL,
071 enabling efficient training on low-budget setups. (3) We implement six popular CL methods in JAX
072 and evaluate them in MEAL, revealing key shortcomings in retaining cooperative behaviors and
073 adapting to shifting roles across tasks.

074 2 RELATED WORK

075
076 **Continual Reinforcement Learning (CRL)** CRL studies how agents can learn sequentially from
077 a stream of tasks without forgetting previous knowledge. A wide range of methods have been
078 adapted from the CL literature to facilitate the RL setting, including regularization-based approaches
079 such as EWC Kirkpatrick et al. (2017), SI Zenke et al. (2017), and MAS Aljundi et al. (2018);
080 architectural strategies such as PackNet Mallya & Lazebnik (2018); and replay-based methods like
081 RePR Atkinson et al. (2021). More recent works focus on scalability Hafez & Erekmen (2024),
082 memory efficiency Chung et al. (2024), and stability during training Chen et al. (2024). However,
083 these methods are almost exclusively developed for single-agent settings, and their behavior under
084 multi-agent coordination remains largely unexplored.

085
086 **Multi-Agent Reinforcement Learning (MARL)** In MARL, multiple agents learn to act in a shared
087 environment, often with partial observability and either cooperative or competitive goals Hernandez-
088 Leal et al. (2019); OroojlooyJadid & Hajinezhad (2019). A major focus has been on cooperative
089 settings, where agents share a reward function and must learn to coordinate Lowe et al. (2017);
090 Foerster et al. (2018). Popular algorithms include IPPO De Witt et al. (2020), VDN Sunehag et al.
091 (2017), QMIX Rashid et al. (2020), and MAPPO Yu et al. (2022).

092
093 **Continual MARL** Research on CMARL is sparse. Lifelong Hanabi Nekoei et al. (2021) intro-
094 duces a testbed for evaluating whether agents can coordinate with unseen teammates. The MACPro
095 framework Yuan et al. (2024) proposes a continual coordination approach, using learned task con-
096 textualization and progressive multi-head expansion to handle evolving tasks.

097
098 **Benchmarks** Standard CRL benchmarks include Continual World Wolczyk et al. (2021),
099 COOM Tomilin et al. (2023), and CORA Powers et al. (2022). While effective in single-agent
100 settings, they either lack multi-agent capabilities or suffer from slow CPU-bound environments.
101 SMAC Samvelyan et al. (2019), MPE Mordatch & Abbeel (2018), Google Football Kurach et al.
102 (2020), and Melting Pot Agapiou et al. (2022) are widely used for MARL, but are not designed for
103 continual learning. Overcooked Carroll et al. (2019) has emerged as a useful domain for studying
104 coordination, with recent implementations in JAX Rutherford et al. (2024b). Our benchmark builds on
105 Overcooked and introduces procedural variation to create long task sequences for continual MARL.

106
107 **Overcooked** The Overcooked environment Carroll et al. (2019) is a cooperative multi-agent
108 benchmark inspired by a popular video game, where high performance requires strategic collaborative
109 behaviors. Agents control chefs in a grid-based kitchen to prepare and deliver dishes through

108 sequences of interactions with pots, ingredient dispensers, plate stations, and delivery counters.
 109 Compared to the large state spaces and high agent counts in benchmarks like Melting Pot and SMAC,
 110 Overcooked operates on small grid-based environments with few agents. However, its complexity
 111 arises not from scale but from credit assignment challenges, and the need for precise coordination, as
 112 agents must execute tightly coupled action sequences (Hernandez-Leal et al., 2019).

114 3 PRELIMINARIES

116 **Cooperative Multi-Agent MDP** We formulate the setting as a fully observable cooperative multi-
 117 agent task, modeled as a Markov game defined by the tuple $\langle N, S, A, P, R, \gamma \rangle$, where N is the
 118 number of agents, S is the state space, A^i is the action space of agent i with joint action space
 119 $A = A^1 \times \dots \times A^N$, $P : S \times A \times S \rightarrow [0, 1]$ is the transition function, $R : S \times A \times S \rightarrow \mathbb{R}$ is a
 120 shared reward function, and $\gamma \in [0, 1)$ is the discount factor. In the fully observable setting, each
 121 agent receives the full state $s \in S$ at every time step.

123 **Continual MARL** We consider a continual MARL setting in which a shared policy $\pi_\theta = \pi_{\theta_{i \in N}}^i$ is
 124 learned over a sequence of tasks $\mathcal{T} = \mathcal{M}_1, \dots, \mathcal{M}_N$, where each $\mathcal{M}_i = \langle N, S_i, A, P_i, R_i, \gamma \rangle$ is a
 125 fully observable cooperative Markov game with consistent action and observation spaces. At training
 126 phase i , agents interact exclusively with \mathcal{M}_i for a fixed number of iterations Δ , collecting trajectories
 127 $\tau_{i,1}, \dots, \tau_{i,\Delta}$ to update their policy. Past tasks are inaccessible, and no joint training is allowed. The
 128 objective is to maximize performance on all tasks in the sequence.

130 4 MEAL

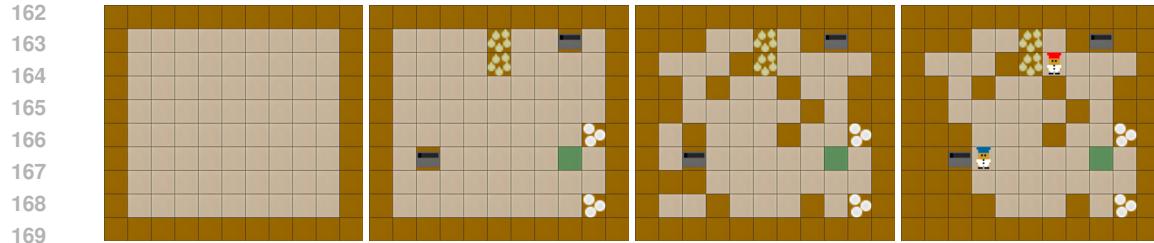
132 We present MEAL, the first CMARL benchmark, built on the JaxMARL Rutherford et al. (2024b)
 133 version of Overcooked. **The goal in Overcooked is for agents to cooperatively prepare and deliver**
 134 **soup. They must collect onions, place them into pots, wait for the soup to cook, plate the dish, and**
 135 **deliver it to a serving station.** We leverage JAX Bradbury et al. (2018) for efficient environment
 136 simulation. JAX provides just-in-time compilation, automatic differentiation, and vectorization
 137 through XLA, enabling high-performance computation. **In the scope of this work, we deliberately**
 138 **focus solely on Overcooked to allow for deeper analysis rather than spread thinly across many**
 139 **domains. We go beyond reporting standard CL performance metrics and analyze the core challenges**
 140 **unique to cooperative CMARL, including coordination under changing layouts, shifts in roles and**
 141 **division of labour, and adaptation to evolving partner behaviour. To demonstrate MEAL’s extensibility,**
 142 **we incorporate JAXNAV Rutherford et al. (2024a) (Appendix K).**

143 4.1 ENVIRONMENT SPECIFICATIONS

145 **Dynamics** Agents act synchronously at each time step. Moves into walls or occupied tiles are
 146 no-ops, and simultaneous swaps are disallowed (both agents remain in place). Agents can interact
 147 with the tile they are facing, which deterministically updates the object’s state (pick/place, add onion,
 148 plate, deliver). Pots initiate a fixed cook timer of $c_{\text{cook}}=20$ steps when the third onion is added, and
 149 the cooked soup can only be plated upon completion.

151 **Observations** Each agent receives a fully observable grid-based observation of shape $(H, W, 26)$,
 152 where H and W are the height and width of the grid, and the 26 channels encode tile types (e.g.,
 153 walls, agents, onions, plates, pots, delivery stations) and states (e.g., cooking progress, held item). To
 154 maintain a consistent observation space for CL, we fix the shape to $(H_{\max}, W_{\max}, 26)$, where H_{\max}
 155 and W_{\max} are the largest grid dimensions in the sequence, and pad all smaller layouts with walls.

157 **Action Space** At each timestep, both agents select one of six discrete actions from a shared action
 158 space $\mathcal{A} = \{\text{up, down, left, right, stay, interact}\}$. Movement actions translate the
 159 agent forward if the target tile is free (i.e., not a wall or occupied), while stay maintains the current
 160 position. The interact action is context-dependent and allows agents to pick up or place items,
 161 add ingredients to pots, serve completed dishes, or deliver them at the goal location. Importantly,
 there is no built-in communication action; all coordination emerges from environment interactions.



(a) Empty grid drawn with outer walls. (b) Interactive stations sampled at random locations. (c) Grid filled with walls to match obstacle density. (d) Agents added and unreachable tiles pruned.

Figure 1: Procedural generation pipeline of a **hard** layout. Starting from an empty grid with outer walls, the generator injects interactive stations, adds walls to match the desired obstacle density, places agents, and finally prunes unreachable tiles.

Rewards Agents receive a shared team reward: $r_t = r_{\text{deliver}} + r_{\text{onion}} \cdot \mathbb{1}_{\{\text{onion_in_pot}\}} + r_{\text{plate}} \cdot \mathbb{1}_{\{\text{plate_pickup}\}} + r_{\text{soup}} \cdot \mathbb{1}_{\{\text{soup_pickup}\}}$, where $r_{\text{deliver}} = 20$ is the reward for delivering soup, and the other terms provide shaped rewards for intermediate progress. We include two reward settings: in the **sparse** setting, $r_{\text{onion}} = r_{\text{plate}} = r_{\text{soup}} = 0$; in the **dense** setting, $r_{\text{onion}} = r_{\text{plate}} = 3$, and $r_{\text{soup}} = 5$.

4.2 MEAL GENERATOR

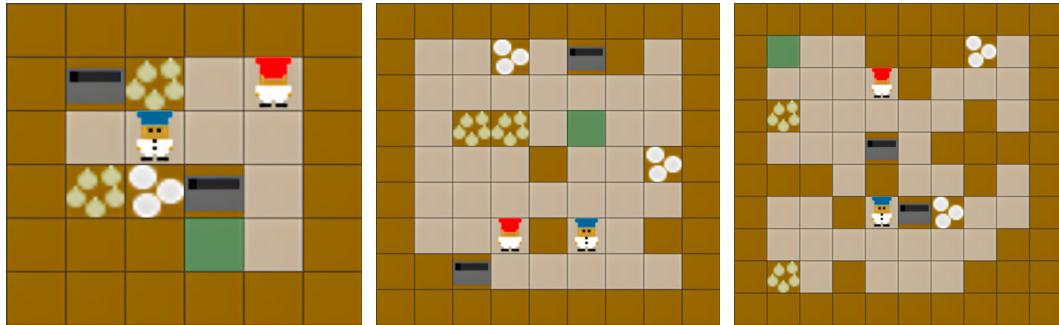
Existing continual RL benchmarks only provide a fixed set of tasks Sorokin & Burtsev (2019); Powers et al. (2022); Tomilin et al. (2023). To avoid over-fitting to a fixed set of environments, we procedurally generate new Overcooked kitchens on the fly. The generator G draws a random width and height from the specified range, places an outer wall, then sequentially injects the interactive tiles (goal, pot, onion pile, plate pile), extra internal walls to match the target obstacle density, and finally, the agents’ starting positions. Figure 1 depicts the steps in the pipeline, and the process is described more in-depth in Appendix A.2. Each candidate grid is accepted only if a built-in validation module confirms that both agents can complete at least one cook–deliver cycle. This yields a continuous space of solvable, variable-sized kitchens that we can learn continually. We bring further details about the validator in Appendix A.3. Our approach offers a virtually infinite supply of tasks and evaluates true lifelong learning under continual exposure to unseen configurations. To ensure reproducibility and a fair comparison between methods, the generation process can be fully controlled via a user-specified random seed.

4.3 LAYOUT DIFFICULTY

We categorize environment difficulty based on procedurally generated layout characteristics. We vary the (1) grid width, (2) grid height, and (3) obstacle density. This approach produces diverse spatial configurations while maintaining consistent difficulty within each level. Figure 2 depicts layouts of each difficulty. As grid size and the number of impassable tiles increase, agents must develop more sophisticated coordination strategies. Higher difficulty layouts feature longer paths between key items, tighter bottlenecks, and greater structural variability, all of which make exploration, retention, and adaptation more challenging. Level 1 tasks are designed to be simple enough for existing methods to achieve reasonably high scores, enabling better comparisons and behavioral analysis. Higher levels are intended to challenge future methods. Although we currently include three difficulty levels, it is straightforward to extend the framework. Although obstacle density has a practical upper bound, the grid size can be increased arbitrarily to scale up environment complexity.

4.4 CONTINUAL LEARNING SEQUENCES

Kitchen Layouts MEAL provides discrete task sequences $\mathcal{T} = (\mathcal{M}_1, \dots, \mathcal{M}_N)$ rather than a continuous domain shift. For a chosen difficulty level $\ell \in \{1, 2, 3\}$, we sample N solvable layouts i.i.d. from the generator G_ℓ with a fixed seed. At task boundaries, we carry over the optimizer state and policy parameters, reset rollout buffers, and advance the RNG. We explore three sequence regimes: (i) **fixed-level**, where all tasks are drawn from the same difficulty level; (ii) **curriculum**, where



(a) **Level 1** (Easy): $6 \leq \text{width/height} \leq 7$, obstacle density $\approx 15\%$. Layouts are compact, making exploration easy. Interactable items are close together, making travel distances short. Agents can often complete the task independently with no coordination.

(b) **Level 2** (Medium): $8 \leq \text{width/height} \leq 9$, obstacle density $\approx 25\%$. Exploration is harder as layouts are more spread out. Layouts often introduce chokepoints, requiring agents to coordinate movement and avoid congestion.

(c) **Level 3** (Hard): $10 \leq \text{width/height} \leq 11$, obstacle density $\approx 35\%$. Layouts are likely to split the map into disjoint regions, forcing agents to specialize. Solving the task requires deliberate cooperation and division of labor.

Figure 2: Overcooked layouts generated at each difficulty level. Increasing grid size and obstacle density lead to longer travel distances, harder exploration, and greater coordination demands.

sequences contain an equal number of tasks in increasing difficulty level (see Appendix E), and (iii) **repetition**, where a sequence is repeated r times to study the loss of network plasticity (section 5.5).

Diverse Partners Ad-Hoc Teamwork (Stone et al., 2010, AHT) is the task of coordinating with unknown partners. AHT algorithms are typically evaluated with diverse partner populations as a proxy for human-AI coordination performance and to test robustness to a diverse set of strategies Yan et al. (2023); Wang et al. (2025); Ruhdorfer et al. (2025b). Following prior work Wang et al. (2025); Ruhdorfer et al. (2025a), we generate diverse evaluation partners by combining (i) hardcoded strategies (random, static), (ii) planning-based agents (onion-only, plate-only, and a human-like planner with stochastic task selection), and (iii) populations trained with best-response diversity (Rahman et al., 2023, BRDiv), which maximizes self-play performance while minimizing cross-play compatibility. Opposed to much prior work on AHT that targets zero-shot human-AI coordination Strouse et al. (2021); Zhao et al. (2023); Yan et al. (2023), MEAL provides the tools to test how agents can continually learn to adapt to novel partners. We evaluate this setting in Appendix J.

4.5 EVALUATION METRICS

We measure task performance by the number of soups delivered per episode. Since MEAL layouts vary greatly in size, structure, number of interactive stations, and distances between them, raw delivery counts are not directly comparable. We therefore normalize the delivery count by the optimal cook-deliver cycle for a single agent on any given task (see Appendix A.1). We account for the cooking time, pickup/drop interactions, shortest paths between onion piles, pots, plate piles, and delivery counters. A score of 1 indicates that the agent(s) achieved the optimal single-agent performance, while values above 1 reflect effective cooperation that exceeds solo efficiency. Let $s_i(t)$ denote this normalized delivery score on task i at timestep t . Suppose that the training sequence consists of N tasks, each lasting Δ steps, resulting in a total of $T = N \cdot \Delta$ timesteps. The i -th task is therefore trained during the interval $t \in [(i-1)\Delta, i\Delta]$. Following prior work on CL Wołczyk et al. (2021); Tomilin et al. (2023), we rely on three metrics.

Average Normalized Score To capture the balance between stability and plasticity, we report the mean score across all tasks at the end of training:

$$\mathcal{A} = \frac{1}{N} \sum_{i=1}^N s_i(T). \quad (1)$$

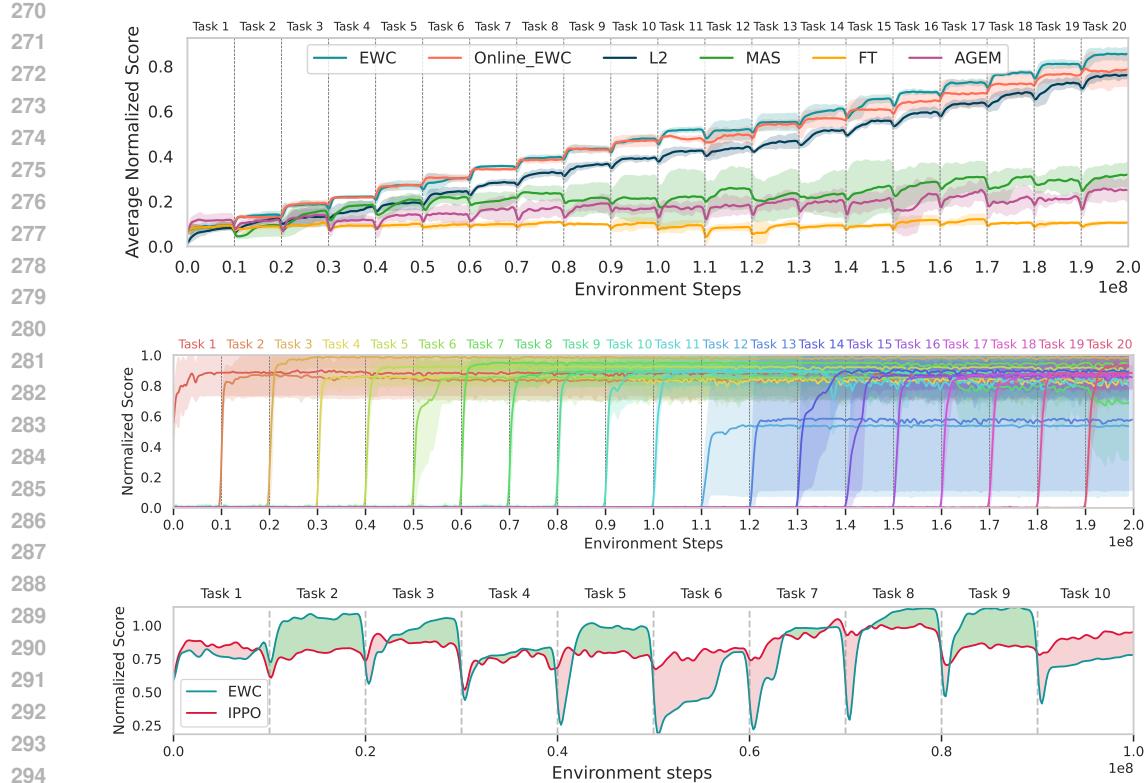


Figure 3: **Top:** The average normalized score evaluation curves on Level 1 tasks show a notable performance gap across baselines. **Middle:** Per-task evaluation scores for EWC on Level 1 indicate near-perfect retention. **Bottom:** EWC manages to outperform the standard IPPO baseline by transferring knowledge forward on most Level 2 tasks, while under-performing in others. The green area between the curves indicates positive forward transfer, while red represents the negative counterpart.

Forgetting Forgetting quantifies the decline in performance on past tasks due to interference from training on later ones. For each task $i < N$, let $\tau_i = i \cdot \Delta$ be the timestep when its training finishes and $s_i^* = s_i(\tau_i)$ the score at that moment. We define the normalized drop $d_i(t)$ for $t > \tau_i$ and assign exponentially decaying weights $w_i(t)$ (with decay factor $\lambda > 0$) to penalize earlier forgetting more strongly. The overall forgetting is the average across tasks:

$$d_i(t) = \max\left(0, \frac{s_i^* - s_i(t)}{s_i^*}\right), \quad w_i(t) = e^{-\lambda \frac{t-\tau_i}{T-\tau_i}}, \quad \mathcal{F} = \frac{1}{N-1} \sum_{i=1}^{N-1} \frac{\sum_{t>\tau_i} w_i(t) d_i(t)}{\sum_{t>\tau_i} w_i(t)}. \quad (2)$$

Forward Transfer Forward transfer measures how prior experience accelerates the learning of new tasks. Rather than evaluating final performance, it captures how quickly each task is learned relative to a single-task baseline. We compute the normalized area under the learning curves (AUC) for both the CL agent and the baseline. The area difference between these curves is positive when prior training helps, and negative when it hinders.

$$\text{AUC}_i = \frac{1}{\Delta} \int_{(i-1)\Delta}^{i\Delta} s_i(t) dt, \quad \text{AUC}_i^b = \frac{1}{\Delta} \int_0^{\Delta} s_i^b(t) dt. \quad \mathcal{FT} = \frac{1}{N} \sum_{i=1}^N \frac{\text{AUC}_i - \text{AUC}_i^b}{1 - \text{AUC}_i^b}. \quad (3)$$

5 EXPERIMENTS

The agent is trained on each task \mathcal{T}_i for $\Delta = 10^7$ environment steps on-policy with the dense reward setting, repeated over five seeds. In our experiments, we adopt the **task-incremental** continual learning paradigm, in which the task identity is known during both training and evaluation. During training, we evaluate the policy after every 100 updates by running 10 evaluation episodes on all

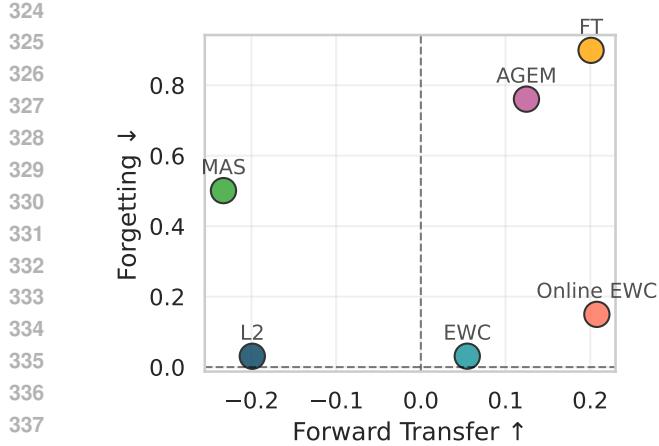


Figure 4: Jointly visualizing forward transfer and forgetting results on Level 1 reveals the classic stability–plasticity trade-off in continual learning.

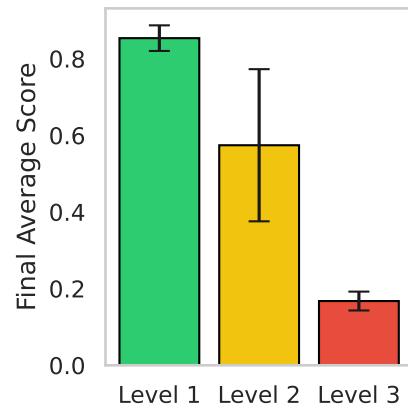


Figure 5: EWC’s performance notably declines as layout complexity increases. Most high-level tasks remain unsolved.

Table 2: Baseline comparison results across three difficulty levels. The confidence intervals are omitted for brevity; see Appendix M for the full results.

Method	Level 1			Level 2			Level 3		
	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$	$\mathcal{FT} \uparrow$	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$	$\mathcal{FT} \uparrow$	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$	$\mathcal{FT} \uparrow$
FT	0.048	0.946	0.201	0.041	0.944	0.065	0.010	0.903	-0.157
EWC	0.839	0.012	0.055	0.604	0.026	-0.086	0.178	0.082	-0.650
Online EWC	0.769	0.062	0.208	0.585	0.096	0.152	0.306	0.141	-0.149
MAS	0.281	0.286	-0.233	0.155	0.309	-0.355	0.034	0.380	-0.542
L2	0.753	0.018	-0.199	0.496	0.058	-0.527	0.127	0.070	-0.827
AGEM	0.204	0.678	0.125	0.117	0.801	-0.083	0.037	0.861	-0.169

tasks in the sequence. The results are displayed with 95% confidence intervals. We leverage JAX to reduce the wall-clock time for training on a single task to around 5 minutes. Our experiments are conducted on a dedicated compute node with a 72-core 3.2 GHz AMD EPYC 7F72 CPU and a single NVIDIA A100 GPU. We adopt many of JaxMARL’s default settings for our network configuration, IPPO setup, and training processes. For exact hyperparameters please refer to Appendix B.2.

5.1 BASELINE COMPARISON

We evaluate popular CL methods. Fine-Tuning (FT) is a naive baseline where the policy is trained sequentially across tasks without any mechanism to prevent forgetting. **L2-Regularization** Kirkpatrick et al. (2017) adds a penalty on parameter changes to promote stability. **EWC (Elastic Weight Consolidation)** Kirkpatrick et al. (2017) penalizes changes to important parameters, with importance measured using the Fisher Information Matrix. **Online EWC** is a variant that maintains a running estimate of parameter importance. **MAS (Memory Aware Synapses)** Aljundi et al. (2018) computes importance based on how parameters influence the policy’s output, rather than gradients. **AGEM (Averaged Gradient Episodic Memory)** Chaudhry et al. (2018) is a replay-based method that projects the current gradient update to avoid interference with past tasks, using a memory buffer of stored experiences. As the default MARL algorithm, we opt for **IPPO** De Witt et al. (2020). It is a natural choice as it can be seamlessly integrated with all model-free CL methods. Moreover, it has been shown to outperform other MARL approaches on SMAC De Witt et al. (2020) and Overcooked Rutherford et al. (2024b), making it a strong candidate for evaluating CMARL in MEAL.

Figure 3 (top) compares our baselines on Level 1, and Table 2 reports the exact metrics for all levels. Fine-Tuning (FT) and AGEM show high \mathcal{FT} , but exhibit immediate forgetting once a task is left behind. EWC and L2 show near-perfect retention on all levels, with EWC ranking highest in \mathcal{A} on lower levels. Figure 3 (middle) visualizes EWC’s per-task stability. Refer to Appendix I.1 for a deeper

378
 379
 380
 381
 382 Table 3: Comparison of EWC with PPO/IPPO across 1–3 agent task sequences. Two agents yield the
 383 best results due to parallelism and cooperative potential. Adding a third agent introduces instability,
 384 non-stationarity, and coordination challenges that hurt performance.
 385
 386
 387
 388

Agents	Level 1			Level 2			Level 3		
	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$	$\mathcal{FT} \uparrow$	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$	$\mathcal{FT} \uparrow$	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$	$\mathcal{FT} \uparrow$
1 Agent	0.622	0.046	-0.045	0.343	0.071	-0.458	0.285	0.159	-0.531
2 Agents	0.839	0.031	0.055	0.604	0.061	-0.086	0.178	0.053	-0.650
3 Agents	0.860	0.197	-0.129	0.647	0.212	-0.295	0.303	0.211	-0.613
4 Agents	0.361	0.143	-0.714	0.336	0.223	-0.574	0.118	0.109	-0.901

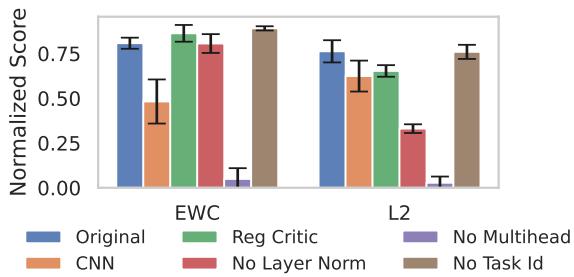
389 analysis of EWC. Per-task evaluation curves of other baselines can be found in Figure 21. These
 390 curves reveal the full forgetting dynamics across tasks: FT and AGEM collapse immediately after
 391 each switch, MAS drifts steadily, and L2 maintains a stable performance throughout the sequence.
 392 MAS performs poorly in all metrics, although outperforming FT and AGEM. Notably, the simplistic
 393 difficulty level design of MEAL presents notable challenges, as EWC’s score diminishes with
 394 increasing difficulty (Figure 5). Figure 4 illustrates the fundamental stability-plasticity trade-off
 395 in CL. L2 achieves excellent retention but limited forward transfer, while Fine-Tuning and AGEM
 396 demonstrate high plasticity with severe forgetting. EWC and its online version provide a middle
 397 ground, balancing both objectives more effectively than other approaches.
 398

399 5.2 ABLATION STUDY

400 To determine which components are crucial for CMARL on MEAL, we ablate five
 401 components in our default IPPO learning
 402 setup: multi-head architectures, task
 403 identity inputs, critic regularization, layer
 404 normalization, and replacing the MLP with
 405 a CNN encoder. The results in Figure 6
 406 reveal that multi-head outputs are most
 407 critical for MEAL task sequences. Removing
 408 them consistently devastates performance
 409 across all methods, likely due to uncontrolled
 410 interference between tasks in the
 411 shared output head. In contrast, not providing
 412 the model with the one-hot encoded task ID vector
 413 has a negligible effect. Prior continual RL
 414 studies Wołczyk et al. (2021); Tomilin et al. (2023)
 415 report that it is beneficial to only regularize
 416 the actor and let the critic adapt freely. In our experiments, however, we find that this has little
 417 effect. Layer normalization shows method-specific sensitivity: while it makes little difference for
 418 EWC and MAS, it more than doubles the performance of L2 regularization. This is likely because
 419 L2 penalizes absolute weight magnitudes, and layer norm helps stabilize activations across tasks,
 420 mitigating harmful scale drift. Finally, swapping to a CNN encoder substantially hurts performance
 421 for all methods. Given the small layouts in Level 1 tasks (6×6 to 7×7), CNNs struggle to extract
 422 meaningful features and add unnecessary parameter overhead, making simple MLPs the better fit in
 423 this setting.
 424

425 5.3 N -AGENT MEAL

426 To better analyze the multi-agent dimension of CMARL, we extend MEAL to support an N -agent
 427 setting, allowing us to systematically study how the number of cooperating agents affects CL. We run
 428 EWC combined with PPO for a single agent, and IPPO for multiple agents. The single agent delivers
 429 fewer soups because it cannot parallelize tasks (Table 3): while one agent delivers soup, the other can
 430 already refill the pot with onions. However, in Level 3, the extra agents and larger grid size increase
 431 the observation space leading to worse performance. IPPO trains independent policies while the
 432 environment remains a joint MDP, where transitions and rewards depend on the combined actions of
 433 all agents. Moving from 2→3 agents expands the joint action space and interaction patterns, amplifies



427 Figure 6: **Ablation results on Level-1.** The multi-head
 428 architecture is the most beneficial component, while the
 429 task ID and critic regularization have negligible effect.
 430 Layer normalization improves L2.
 431

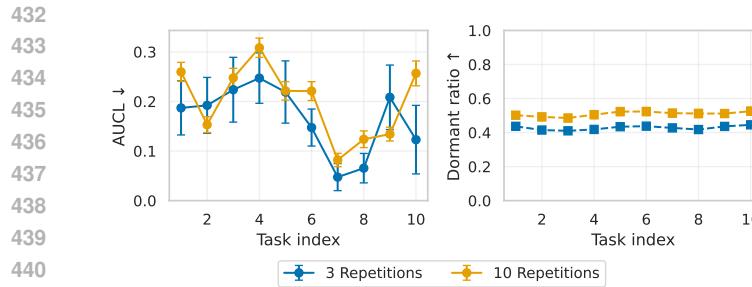


Figure 8: **Loss of plasticity in MEAL.** AUCL (left) captures performance loss, and the Dormancy ratio (right) quantifies the fraction of inactive neurons. Increasing the repetition count leads to lower performance and more dormant neurons.

Table 4: Averaged plasticity metrics on Level-1 task sequences. The larger drop in performance occurs between 1 and 3 repetitions, suggesting that early degradation is more severe. AUC-loss increases by roughly 40% when going from 3→10 repetitions.

Reps	AUCL ↓	Dormancy ↓
1	0.000	0.408
3	0.166	0.428
10	0.201	0.509

non-stationarity (as two teammates’ policies change simultaneously), and makes credit assignment more difficult (since the reward is shared, IPPO does not know which agent made a good action). Without explicit communication or role allocation, IPPO struggles to learn continually as the team and layout size grow. These results indicate that CL becomes increasingly challenging as the number of agents grows. We explore common pitfalls of agent behavior in Appendix H.

5.4 PARTIAL OBSERVABILITY

Although Overcooked is fully observable by design, we introduce a partially observable variant to better reflect real-world sensing constraints (limited field of view, occlusions). Following popular MARL environments Resnick et al. (2018); Mohanty et al. (2020); Agapiou et al. (2022); Ellis et al. (2023), each agent receives an egocentric, direction-aware observation window with all outside tiles masked. The specification and difficulty scaling of this window are detailed in Appendix C. In this setting, MAPPO Yu et al. (2022) is known to outperform IPPO, since its centralized critic can 1) more accurately estimate individual contributions to shared rewards under partial observability, and 2) reduce non-stationarity by conditioning value estimates on the joint actions of all agents, leading to more stable and coordinated policy updates. We investigate this by running a 20-task sequence under partial observability (PO) with EWC and compare the results with the fully observable (FO) baseline.

Across all levels, IPPO (FO) clearly dominates the partial setting (PO) (Figure 7). The gap between IPPO(FO) and IPPO(PO) stems from full state information simplifying credit assignment and stabilizing value targets. Partial observability thus increases task difficulty. Contrary to expectation, MAPPO underperforms IPPO. A plausible cause is a mismatch between MAPPO’s centralized critic and the CL regime. Conditioning on joint observations and actions drifts substantially across tasks, yielding noisier targets and stronger cross-task interference, while IPPO’s independent critics learn simpler task-local value functions that transfer more stably. These results motivate including PO variants in MEAL to stress coordination under incomplete information for more realistic continual MARL benchmarking.

5.5 NETWORK PLASTICITY

A well-documented pitfall in continual RL is the gradual loss of **plasticity**, an agent’s ability to fit new data after many tasks (Abbas et al., 2023; Dohare et al., 2024). To test whether MEAL exhibits the

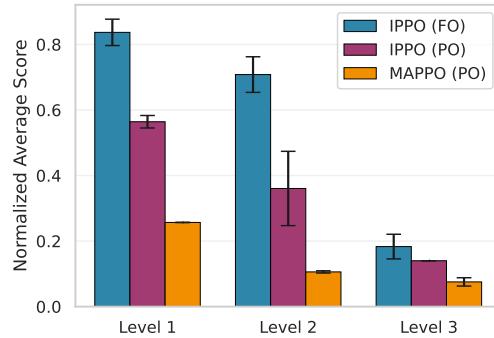


Figure 7: Performance of EWC under full (FO) and partial (PO) observability on 20-task Level 1 sequences. FO yields better results, while MAPPO underperforms in the CL setting.

486 same pathology, we continually train IPPO on a Level 1 10-task sequence across multiple repetitions
 487 and compare performance between them. We track two metrics: (i) **AUC-loss** captures capacity drop,
 488 (ii) **Dormancy ratio** quantifies the fraction of inactive neurons in the policy network. For definitions
 489 of metrics and additional training curves, see Appendix F. We observe that all metrics deteriorate
 490 with longer training (Table 4 and Figure 8), confirming that loss of plasticity also appears in the
 491 multi-agent setting. Despite our setting spanning over 1B environment steps, well beyond the scale
 492 of prior studies (Abbas et al., 2023; Dohare et al., 2024), those works report a much stronger loss of
 493 plasticity than observed in MEAL. We hypothesize that this difference stems from our experiments
 494 using multiple output heads, which isolate task-specific outputs, reduce gradient interference, and
 495 preserve prior policies while allowing the backbone to learn transferable features.

496 6 LIMITATIONS

497 While MEAL provides a scalable and diverse testbed for CMARL, several limitations remain. First,
 498 MEAL is restricted to discrete action spaces, limiting its applicability. Second, while layout diversity
 499 is high, the domain itself is narrow. Overcooked dynamics do not capture the full complexity of
 500 real-world multi-agent interactions involving language, negotiation, or long-horizon planning. Third,
 501 our benchmark only evaluates task-incremental learning by changing layouts, partners, and factors
 502 of non-stationarity. Future work could extend MEAL to other CL settings. Finally, although we
 503 intentionally focused on a single Overcooked domain, other domains and settings remain largely
 504 unexplored.

505 7 CONCLUSION

506 We introduced MEAL, a scalable benchmark for CMARL, built on JAX for efficient GPU training.
 507 The on-demand creation of procedurally generated Overcooked layouts enables long-horizon studies
 508 with controlled difficulty, observability, and agents. We evaluated combinations of popular CL
 509 methods and MARL algorithms, revealing that existing techniques struggle to retain cooperative
 510 behaviors while maintaining adaptability to new tasks. The N -agent setting increases coordination
 511 demands and interference, yielding a harder, more variable task distribution. Partial observability
 512 compounds this difficulty, as centralized critics exhibit stronger cross-task drift and interference.
 513 Individual rewards weaken coordination and induce negative transfer. A simple curriculum boosts
 514 performance on complex layouts under an equal data budget. Training on long task sequences
 515 degrades network plasticity in MARL, while multi-head architectures yield the largest structural
 516 gains for performance. Our findings suggest that MEAL exposes the dual challenge of cooperation
 517 and non-stationarity in CMARL. We see immediate headroom for methods that (i) are purpose-built
 518 for CMARL, jointly handling partner and environment-level non-stationarity, (ii) stabilize credit
 519 assignment under partial observability across task sequences, and (iii) drive structured exploration and
 520 robust coordination in diverse, long-horizon settings. We hope MEAL serves as a solid foundation
 521 for pushing this line of work forward.

522 REFERENCES

523 Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
 524 in continual deep reinforcement learning. In *Conference on lifelong learning agents*, pp. 620–636.
 525 PMLR, 2023.

526 John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéñez-Guzmán, Jayd Matyas, Yiran Mao,
 527 Peter Sunehag, Raphael Köster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu, et al.
 528 Melting pot 2.0. *arXiv preprint arXiv:2211.13746*, 2022.

529 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
 530 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European conference
 531 on computer vision (ECCV)*, pp. 139–154, 2018.

532 Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-rehearsal: Achiev-
 533 ing deep reinforcement learning without catastrophic forgetting. *Neurocomputing*, 428:291–307,
 534 2021.

540 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
 541 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.
 542

543 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
 544 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
 545 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
 546 `http://github.com/jax-ml/jax`.

547 Micah Carroll, Rohin Shah, Mark K. Ho, Thomas Griffiths, Sanjit Seshia, Pieter Abbeel,
 548 and Anca Dragan. On the utility of learning about humans for human-ai coordina-
 549 tion. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 32,
 550 2019. URL `https://proceedings.neurips.cc/paper_files/paper/2019/`
 551 `f5b1b89d3db40d65b49f8f9e383ac5dd-Paper.pdf`.

552 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
 553 lifelong learning with a-gem. *arXiv preprint arXiv:1812.00420*, 2018.

554 Feng Chen, Fuguang Han, Cong Guan, Lei Yuan, Zhilong Zhang, Yang Yu, and Zongzhang Zhang.
 555 Stable continual reinforcement learning via diffusion-based trajectory replay. *arXiv preprint*
 556 *arXiv:2411.10809*, 2024.

557 Wesley Chung, Lynn Cherif, Doina Precup, and David Meger. Parseval regularization for continual
 558 reinforcement learning. *Advances in Neural Information Processing Systems*, 37:127937–127967,
 559 2024.

560 Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
 561 Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
 562 multi-agent challenge? *arXiv preprint arXiv:2011.09533*, 2020.

563 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
 564 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
 565 768–774, 2024.

566 Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
 567 Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
 568 agent reinforcement learning. *Advances in Neural Information Processing Systems*, 36:37567–
 569 37593, 2023.

570 Zeki Doruk Erden, Donia Gasmı, and Boi Faltings. Continual reinforcement learning via autoencoder-
 571 driven task and new environment recognition. In *The Seventeenth Workshop on Adaptive and*
 572 *Learning Agents*.

573 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
 574 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI conference on artificial*
 575 *intelligence*, volume 32, 2018.

576 Muhammad Burhan Hafez and Kerim Erekmen. Continual deep reinforcement learning with task-
 577 agnostic policy distillation. *Scientific Reports*, 14(1):31661, 2024.

578 Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
 579 reinforcement learning. *Autonomous Agents and Multi-Agent Systems*, 33(6):750–797, 2019.

580 Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
 581 coordination. In *International Conference on Machine Learning*, pp. 4399–4410. PMLR, 2020.

582 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 583 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 584 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 585 (13):3521–3526, 2017.

586 Paul Knott, Micah Carroll, Sam Devlin, Kamil Ciosek, Katja Hofmann, Anca D Dragan, and Rohin
 587 Shah. Evaluating the robustness of collaborative agents. *arXiv preprint arXiv:2101.05507*, 2021.

594 Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos
 595 Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
 596 A novel reinforcement learning environment. In *Proceedings of the AAAI conference on artificial
 597 intelligence*, volume 34, pp. 4501–4510, 2020.

598 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
 599 actor-critic for mixed cooperative-competitive environments. *Advances in neural information
 600 processing systems*, 30, 2017.

601 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
 602 pruning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp.
 603 7765–7773, 2018.

604 Sharada Mohanty, Erik Nygren, Florian Laurent, Manuel Schneider, Christian Scheller, Nilabha
 605 Bhattacharya, Jeremy Watson, Adrian Egli, Christian Eichenberger, Christian Baumberger, et al.
 606 Flatland-rl: Multi-agent reinforcement learning on trains. *arXiv preprint arXiv:2012.05893*, 2020.

607 Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
 608 populations. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

609 Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
 610 Curriculum learning for reinforcement learning domains: A framework and survey. *Journal of
 611 Machine Learning Research*, 21(181):1–50, 2020.

612 Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous coordina-
 613 tion as a realistic scenario for lifelong learning. In *International Conference on Machine Learning*,
 614 pp. 8016–8024. PMLR, 2021.

615 Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep reinforce-
 616 ment learning. *arXiv preprint arXiv:1908.03963*, 2019.

617 Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
 618 curriculum learning of deep rl in continuously parameterized environments. In *Conference on
 619 Robot Learning*, pp. 835–853. PMLR, 2020.

620 Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. Cora: Benchmarks,
 621 baselines, and metrics as a platform for continual reinforcement learning agents. In *Conference on
 622 Lifelong Learning Agents*, pp. 705–743. PMLR, 2022.

623 Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V. Albrecht. Generating teammates
 624 for training robust ad hoc teamwork agents via best-response diversity. *Trans. Mach. Learn. Res.*,
 625 2023, 2023. URL <https://openreview.net/forum?id=15BzfQhR01>.

626 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 627 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 628 learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020.

629 Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian Togelius, Kyunghyun
 630 Cho, and Joan Bruna. Pommerman: A multi-agent playground. *arXiv preprint arXiv:1809.07124*,
 631 2018.

632 Constantin Ruhdorfer, Matteo Bortolotto, Victor Oei, Anna Penzkofer, and Andreas Bulling. Un-
 633 supervised partner design enables robust ad-hoc teamwork. *arXiv preprint arXiv:2508.06336*,
 634 2025a.

635 Constantin Ruhdorfer, Matteo Bortolotto, Anna Penzkofer, and Andreas Bulling. The overcooked
 636 generalisation challenge: Evaluating cooperation with novel partners in unknown environments
 637 using unsupervised environment design. *Transactions on Machine Learning Research*, 2025b.
 638 ISSN 2835-8856. URL <https://openreview.net/forum?id=K2KtcM1W6j>.

639 Alexander Rutherford, Michael Beukman, Timon Willi, Bruno Lacerda, Nick Hawes, and Jakob
 640 Foerster. No regrets: Investigating and improving regret approximations for curriculum discovery.
 641 *Advances in Neural Information Processing Systems*, 37:16071–16101, 2024a.

648 Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar Ing-
 649 varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
 650 Multi-agent rl environments and algorithms in jax. In *Proceedings of the 23rd International
 651 Conference on Autonomous Agents and Multiagent Systems*, pp. 2444–2446, 2024b.
 652

653 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
 654 Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
 655 starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.

656 Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
 657 nomenon in deep reinforcement learning. In *International Conference on Machine Learning*, pp.
 658 32145–32168. PMLR, 2023.

659 Artyom Y Sorokin and Mikhail S Burtsev. Continual and multi-task reinforcement learning with
 660 shared episodic memory. *arXiv preprint arXiv:1905.02662*, 2019.

661 Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent teams:
 662 Collaboration without pre-coordination. In *Proceedings of the AAAI Conference on Artificial
 663 Intelligence*, volume 24, pp. 1504–1509, 2010.

664 DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
 665 with humans without human data. *Advances in Neural Information Processing Systems*, 34:
 666 14502–14515, 2021.

667 Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
 668 Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
 669 networks for cooperative multi-agent learning. *arXiv preprint arXiv:1706.05296*, 2017.

670 Tristan Tomilin, Meng Fang, Yudi Zhang, and Mykola Pechenizkiy. Coom: a game benchmark for
 671 continual reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 2023.

672 Caroline Wang, Arrasy Rahman, Jiaxun Cui, Yoonchang Sung, and Peter Stone. Rotate: Regret-driven
 673 open-ended training for ad hoc teamwork. *arXiv preprint arXiv:2505.23686*, 2025.

674 Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
 675 world: A robotic benchmark for continual reinforcement learning. *Advances in Neural Information
 676 Processing Systems*, 34:28496–28510, 2021.

677 Sarah A Wu, Rose E Wang, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max
 678 Kleiman-Weiner. Too many cooks: Bayesian inference for coordinating multi-agent collaboration.
 679 *Topics in Cognitive Science*, 13(2):414–432, 2021.

680 Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An effi-
 681 cient end-to-end training approach for zero-shot human-ai coordination. In Alice Oh, Tris-
 682 stan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Ad-
 683 vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 684 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 685 16, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/07a363fd2263091c2063998e0034999c-Abstract-Conference.html.

686 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 687 surprising effectiveness of ppo in cooperative multi-agent games. *Advances in neural information
 688 processing systems*, 35:24611–24624, 2022.

689 Lei Yuan, Ziqian Zhang, Lihe Li, Cong Guan, and Yang Yu. A survey of progress on cooperative
 690 multi-agent reinforcement learning in open environment. *arXiv preprint arXiv:2312.01058*, 2023.

691 Lei Yuan, Lihe Li, Ziqian Zhang, Fuxiang Zhang, Cong Guan, and Yang Yu. Multiagent continual
 692 coordination via progressive task contextualization. *IEEE Transactions on Neural Networks and
 693 Learning Systems*, 2024.

694 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 695 In *International conference on machine learning*, pp. 3987–3995. PMLR, 2017.

702 Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei
703 Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
704 Brian Williams, Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh AAAI Conference on*
705 *Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial*
706 *Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,*
707 *EAAI 2023, Washington, DC, USA, February 7-14, 2023*, pp. 6145–6153. AAAI Press, 2023. doi:
708 10.1609/AAAI.V37I5.25758. URL <https://doi.org/10.1609/aaai.v37i5.25758>.
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A IMPLEMENTATION DETAILS**
757758 **A.1 MAXIMUM SOUP DELIVERY CALCULATOR**
759760 Let a kitchen layout \mathcal{L} be defined by four disjoint sets of tiles (onion piles \mathcal{O} , plate piles \mathcal{P} , pots \mathcal{K} ,
761 delivery counters \mathcal{G}) and a set of walls \mathcal{W} . A tile (x, y) is *walkable* if $(x, y) \notin \mathcal{W}$.
762763 **Neighbourhood of an object family.** We denote the set of walkable tiles adjacent (in the 4-
764 neighbour sense) to any object in \mathcal{S} as:
765

766
$$\mathcal{N}(\mathcal{S}) = \{(x', y') \mid (x, y) \in \mathcal{S}, \| (x', y') - (x, y) \|_1 = 1, (x', y') \notin \mathcal{W}\}$$

767

768 **Shortest obstacle-aware distance.** Given two tile sets $A, B \subseteq \mathbb{Z}^2$, we define
769

770
$$d(A, B) = \min_{a \in A, b \in B} \text{dist}_{\text{manhattan}}^{\mathcal{G}_L}(a, b),$$

771

772 where \mathcal{G}_L is the grid graph induced by walkable tiles. We realize this via a breadth-first search (BFS).
773774 **Single-agent cook-deliver cycle.** A soup requires three onions, one plate pick-up, one soup pick-up,
775 and one delivery. Let
776

777
$$d_{\text{onion}} = d(\mathcal{N}(\mathcal{O}), \mathcal{N}(\mathcal{K})), \quad d_{\text{plate}} = d(\mathcal{N}(\mathcal{P}), \mathcal{N}(\mathcal{K})), \quad d_{\text{goal}} = d(\mathcal{N}(\mathcal{K}), \mathcal{N}(\mathcal{G})).$$

778

779 The optimistic *movement cost* for one cycle is
780

781
$$c_{\text{move}} = 3d_{\text{onion}} + d_{\text{plate}} + 1 + d_{\text{goal}} + 3.$$

782

783 **Interaction overhead.** Every pick-up or drop is assumed to take a constant $c_{\text{act}} = 2$ steps (turn +
784 interact). With $n_{\text{int}} = 3 \times 2 + 1 + 1 + 1 = 9$ interactions per cycle, the overhead is $c_{\text{over}} = n_{\text{int}} c_{\text{act}} = 18$.
785786 **Cycle time and upper bound.** Including the fixed cooking time $c_{\text{cook}} = 20$ steps, the single-agent
787 cycle time is
788

789
$$T_{\text{cycle}} = c_{\text{move}} + c_{\text{cook}} + c_{\text{over}}.$$

790

791 For an episode horizon H , we upper-bound the number of soups by
792

793
$$N_{\text{max}}(\mathcal{L}, H) = \lfloor H/T_{\text{cycle}} \rfloor,$$

794

795 and convert it to reward with $r_{\text{deliver}} = 20$:
796

797
$$R_{\text{max}}(\mathcal{L}, H) = 20 N_{\text{max}}(\mathcal{L}, H).$$

798

799 The bound assumes a *single agent acting optimally*. It ignores multi-agent collaboration and therefore
800 *underestimates* throughput in layouts where multiple agents can parallelize the workflow. Listing 1
801 contains the exact implementation.
802803 **A.2 PROCEDURAL KITCHEN GENERATOR**
804805 **Objective.** Given a random seed and user-selectable parameters (number of agents n_a , layout
806 height range $[h_{\min}, h_{\max}]$, layout width range $[w_{\min}, w_{\max}]$, and wall-density ρ), the goal is to emit
807 a *solvable* grid string G representing the Overcooked environment.
808809 **A.2.1 NOTATION**
810811 Let $h, w \sim \text{UniformInt}(h_{\min}, h_{\max})$, $\text{UniformInt}(w_{\min}, w_{\max})$, and denote by $\mathcal{C} = \{(i, j) \mid 1 \leq$
812 $i \leq h - 2, 1 \leq j \leq w - 2\}$ the set of *internal* cells (outer walls excluded). Its cardinality is
813 $N_{\text{int}} = (h - 2)(w - 2)$. An *unpassable* cell contains either a hard wall (#) or an interactive tile; we
814 write $N_{\text{unpass}}(G)$ for the number of such cells in G .
815

810 **Listing 1** Heuristic upper bound (calculate_max_soup).

```

811
812 # overcooked_upper_bound.py      (excerpt)
813 COOK_TIME = 20
814 ACTION_OVERHEAD = 2
815 INTERACTIONS_PER_CYCLE = 3 * 2 + 1 + 1 + 1
816 OVERHEAD_PER_CYCLE = INTERACTIONS_PER_CYCLE * ACTION_OVERHEAD
817
818 def calculate_cycle_time(layout, n_agents=2):
819     ...
820     move_cost = 3 * d_onion + d_plate + 1 + d_goal + 3
821     return move_cost + COOK_TIME + OVERHEAD_PER_CYCLE
822
823 def calculate_max_soup(layout, episode_len, n_agents=2):
824     cyc = calculate_cycle_time(layout, n_agents)
825     soups = episode_len // cyc
826     return int(soups)

```

827 A.2.2 ALGORITHM

829 The generator performs the following loop until a valid grid is produced (Listing 2):

830

1. **Draw size.** Sample h, w and create an $h \times w$ matrix initialised to FLOOR tiles, then overwrite the border with WALL.
2. **Place interactive tiles.** For each symbol in {GOAL, POT, ONIONPILE, PLATEPILE} choose a random multiplicity $m \in \{1, 2\}$ and stamp the symbol onto m uniformly chosen floor cells.
3. **Inject extra walls.** Let $n_{\text{target}} = \lceil \rho N_{\text{int}} \rceil$ and $n_{\text{add}} = \max(0, n_{\text{target}} - N_{\text{unpass}}(G))$. Place n_{add} additional walls on random floor cells.
4. **Place agents.** Stamp n_a AGENT symbols on random remaining floor cells.
5. **Validate.** Run the deterministic evaluate_grid solver; if it returns True, terminate and return (G) , otherwise restart.
6. **Cleanup.** Remove any interactive elements and tiles that are unreachable from all agent positions.
7. **Return.** Output the final grid.

831 **Solvability criterion.** The validator (Appendix A.3) checks (i) path connectivity between every agent and each interactive tile family, (ii) at least one pot reachable from an onion pile and a plate pile, and (iii) at least one goal reachable from a pot. This is implemented via multiple breadth-first searches. Appendix A.3 further details the evaluator logic.

832 **Wall-density effect.** Because interactive tiles themselves count as obstacles, the algorithm first places them, then *only as many extra walls as needed* to reach the prescribed obstacle ratio ρ . This keeps difficulty roughly constant even when two copies of every station are spawned.

833 **Failure handling.** If any placement stage exhausts the pool of empty cells, or the validator rejects the grid, the attempt is aborted and restarted with a fresh h, w sample. We cap retries at `max_attempts` (default 2000); empirically fewer than five attempts suffice for $\rho \leq 0.3$.

834 **Complexity.** All placement operations are $O(hw)$ in the worst case (linear scans to collect empty cells), while validation runs a constant number of BFS passes, each $O(hw)$. Hence one successful attempt is $O(hw)$.

859 A.3 LAYOUT VALIDATOR

860 We guarantee that every procedurally generated kitchen is *playable* by running a deterministic validator before training begins. The validator implements ten checks, ranging from basic grid sanity to cooperative reachability. A grid is accepted only if **all** checks pass.

864 **Listing 2** Overcooked Layout Generator

```

865
866     def generate_random_layout(seed, params):
867         rng = random.Random(seed)
868         for attempt in range(params.max_attempts):
869             h = rng.randint(*params.h_range)
870             w = rng.randint(*params.w_range)
871             grid = init_floor_with_border(h, w)
872
873             # 1. Interactive tiles
874             for sym in [GOAL, POT, ONION_PILE, PLATE_PILE]:
875                 if not place_random(grid, sym, rng.randint(1, 2), rng):
876                     break # restart
877
878             # 2. Extra walls to hit density
879             n_target = round(params.wall_density * (h-2) * (w-2))
880             n_add = n_target - count_unpassable(grid)
881             if not place_random(grid, WALL, n_add, rng):
882                 continue # restart
883
884             # 3. Agents
885             if not place_random(grid, AGENT, params.n_agents, rng):
886                 continue
887
888             # 4. Validate
889             if evaluate_grid(to_string(grid)):
890                 return to_string(grid)

```

889 **Notation.** Let G be an $h \times w$ character matrix with symbols $\{\mathbb{W}, \mathbb{X}, \mathbb{O}, \mathbb{B}, \mathbb{P}, \mathbb{A}\}$ for walls, delivery, onion pile, plate pile, pot, agent, and floor. Interactive tiles are $\mathcal{I} = \{\mathbb{X}, \mathbb{O}, \mathbb{B}, \mathbb{P}\}$, and unpassable tiles $\mathcal{U} = \mathcal{I} \cup \{\mathbb{W}\}$.

893 **Validation rules.**

894 **R1** *Rectangularity* – all rows have equal length.

895 **R2** *Required symbols* – each of $\mathbb{W}, \mathbb{X}, \mathbb{O}, \mathbb{B}, \mathbb{P}, \mathbb{A}$ appears at least once.

896 **R3** *Border integrity* – every outer-row/column tile is in $\{\mathbb{W}\} \cup \mathcal{I}$.

897 **R4** *Interactivity access* – every tile in $\mathcal{I} \cup \{\mathbb{A}\}$ has at least one 4-neighbour that is \mathbb{A} or floor.

898 **R5** *Reachable onions* – at least one onion pile is reachable by some agent.

899 **R6** *Usable pots* – at least one pot is reachable *and* lies in the same connected component as a reachable onion.

900 **R7** *Usable delivery* – at least one delivery tile is reachable *and* lies in a component with a usable pot.

901 **R8** *Agent usefulness* – each agent can either interact with an object directly or participate in a hand-off (adjacent wall shared with the other agent’s region).

902 **R9** *Coverage* – the union of agents’ reachable regions touches every object family in \mathcal{I} .

903 **R10** *Handoff counter* – if one agent cannot reach all families, a wall tile adjacent to *both* regions exists, enabling item transfer.

904 Rules R5–R10 rely on two depth-first searches (DFS) from the agent positions. The DFS explores floor and agent tiles only; whenever it touches an interactive tile, that family is marked as “found.” Let $\text{Reach}_k \subseteq [h] \times [w]$ denote tiles reached from agent k ($k \in \{1, 2\}$).

905 **Algorithmic outline.** Listing 3 shows a condensed version of the validator.

906 **Complexity.** All checks are $O(hw)$ and require only two DFS traversals, thus one validation runs in time linear to the grid area and is negligible compared with policy learning.

918 **Listing 3** Condensed Layout Validator.

```

919
920 def validate(grid_str):
921     g = [list(r) for r in grid_str.splitlines()]
922     h, w = len(g), len(g[0])
923
924     # R1-R3 omitted for brevity ...
925
926     # Depth-first search from a start cell
927     def dfs(i, j, seen):
928         if (i, j) in seen or g[i][j] in UNPASSABLE_TILES - {AGENT}:
929             return
930         seen.add((i, j))
931         for di, dj in ((1,0), (-1,0), (0,1), (0,-1)):
932             dfs(i+di, j+dj, seen)
933
934         # Agents and family reachability
935         a1, a2 = [(i, j) for i, r in enumerate(g)
936                     for j, c in enumerate(r) if c == AGENT]
937         reach1, reach2 = set(), set()
938         dfs(*a1, reach1); dfs(*a2, reach2)
939
940         # Helper: reachable(\mathcal{S}, reach)
941         def any_reach(symbols, reach):
942             return any(g[i][j] in symbols for i, j in reach)
943
944         # R5-R7
945         if not any_reach({ONION_PILE}, reach1|reach2): return False
946         if not any_reach({POT}, reach1|reach2): return False
947         if not any_reach({GOAL}, reach1|reach2): return False
948
949         # R8-R10 (usefulness & hand-off)
950         def useful(reach_me, reach_other):
951             # direct or shared-wall hand-off
952             for i, j in reach_me:
953                 if g[i][j] in INTERACTIVE_TILES: return True
954                 if g[i][j] == FLOOR and any(
955                     (abs(i-i2)+abs(j-j2) == 1 and g[i2][j2] == WALL)
956                     for i2, j2 in reach_other):
957                         return True
958             return False
959
960             if not useful(reach1, reach2): return False
961             if not useful(reach2, reach1): return False
962             return True

```

956
957
958 **Practical impact.** In practice, fewer than 1% of generator attempts fail validation when wall-density
959 $\rho \leq 0.15$ and kitchen size $\geq 8 \times 8$. We therefore cap retries at 2000 without noticeable overhead.

960
961 **B EXPERIMENTAL SETUP**

962
963 **B.1 NETWORK ARCHITECTURE**

964 All agents share the same actor–critic backbone, implemented in Flax. Two encoder variants are
965 provided:

966
967 • **MLP** (default): observation tensor is flattened to a vector and passed through 2 fully-connected
968 layers of width 128.
969 • **CNN**: three 32-channel convolutions with kernel sizes 5×5 , 3×3 , 3×3 feed a 64-unit projection,
970 followed by a single 128-unit dense layer.

971 Common design knobs (controlled from the CLI) are:

972 • **Activation** (`relu` vs. `tanh`).

973 • **LayerNorm**: applied after every hidden layer when `use_layer_norm` is enabled.

974 • **Shared vs. Separate encoder**: with `shared_backbone` the two heads operate on a common

975 representation; otherwise actor and critic keep independent trunks.

976 • **Multi-head outputs**: if `use_multihead` is set, each head holds a distinct slice of logits/values

977 for every task (`num_tasks` = $|\mathcal{T}|$). The correct slice is selected with a cheap tensor reshape.

978 • **Task-one-hot conditioning**: setting `use_task_id` concatenates a one-hot vector of length $|\mathcal{T}|$

979 before the actor/critic heads, mimicking “oracle” task identifiers used in many CL papers.

980 All linear/conv layers use orthogonal weight initialisation with gain $\sqrt{2}$ (or 0.01 for policy logits)

981 and zero biases. The policy outputs a `distrax.Categorical`; the critic outputs a scalar.

985 B.2 HYPERPARAMETERS

987 Table 5 lists settings that are *constant* across every experiment unless stated otherwise. Values match

988 the `Config` dataclass in the training script.

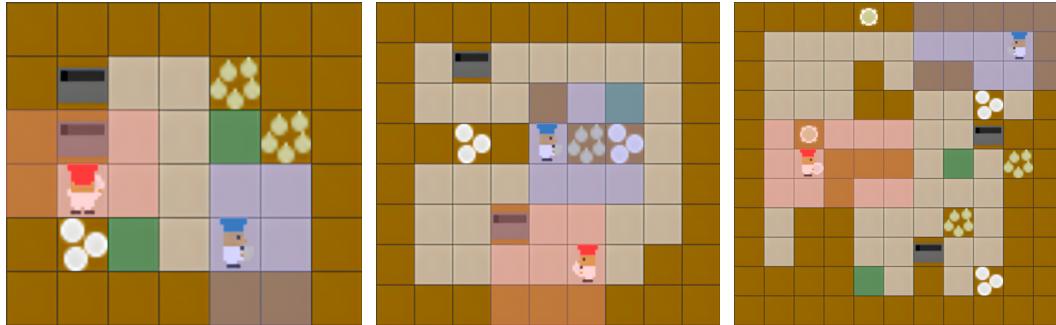
990 Table 5: Fixed hyper-parameters. All experiments use dense reward shaping, two agents, and IPPO

991 unless noted. CL coefficients λ refer to the regularization strength passed to each method.

993	994	Parameter	Value
<i>Optimization (PPO)</i>			
996	997	Activation	ReLU
998	999	Optimizer	Adam (Optax)
1000	1001	Adam (β_1, β_2)	$(0.9, 0.999)$
1002	1003	Adam ϵ	10^{-5}
1004	1005	Weight decay	none
1006	1007	Learning rate η	10^{-3}
1008	1009	LR annealing	$\text{linear}(10^{-3} \rightarrow 10^{-4})$
1010	1011	Env. steps per task Δ	10^8
1012	1013	Parallel envs	2048
<i>Continual-learning specifics</i>			
1014	1015	Sequence length $ \mathcal{T} $	20 (base sequence), repeated r times
1016	1017	Reg. coefficient λ	10^{11} (EWC), 10^9 (MAS), 10^7 (L2)
1018	1019	Online EWC/MAS decay	0.9
1020	1021	Importance episodes / steps	5 / 500
1022	1023	Regularize critic / heads	No / No
1024	1025	AGEM Memory size	100 000 transitions
<i>Miscellaneous</i>			
1023	1024	Reward shaping horizon	2.5×10^6 steps (linear to 0)
1024	1025	Evaluation interval	every 5 policy updates
1025		Evaluation episodes	10
		Random seeds	{1 .. 5}

1026 Table 6: Field-of-view specification for the partially observable MEAL variant. Window size and
 1027 directional extents scale with difficulty.

Difficulty	Grid Size	Forward View	Side View	Rear View	Obs Window (H×W)
Easy	6–7	1	1	0	2×3
Medium	8–9	2	1	0	3×3
Hard	10–11	3	2	1	3×5

(a) **Level 1:** 2×3 window.(b) **Level 2:** 3×3 window.(c) **Level 3:** 3×5 window.

1045 Figure 9: Egocentric observation windows by difficulty. Visibility grows with difficulty but remains
 1046 partial, preserving the need for exploration and memory.

1050 C PARTIALLY OBSERVABLE MEALS

1053 To more closely mimic the constraints faced by real-world agents, we introduce a *direction-aware*
 1054 egocentric observation setting. Each agent perceives a rectangular window centered on itself, with
 1055 tiles outside this window masked. The window is anisotropic with respect to the agent’s heading:
 1056 we separate forward, side, and rear extents, which increase with difficulty (Table 6). This scaling
 1057 is intentionally balanced with the overall environment design: as the grid size grows with diffi-
 1058 culty, the perceptual window also expands to maintain a comparable challenge-to-information ratio.
 1059 Consequently, the tasks become POMDPs, where exploration, memory (e.g., recurrent state), and
 1060 implicit/explicit coordination provide tangible benefits. In particular, Level 1 removes rear context
 1061 entirely, Level 2 extends the look-ahead by one tile, and Level 3 adds both longer look-ahead and
 1062 rear visibility, reducing blind spots while preserving partial observability (Figure 9).

1063 D DIFFICULTY LEVELS

1065 Higher levels of difficulty in MEAL pose greater challenges for both learning and retention. As
 1066 the grid size and obstacle density increase, the environment becomes more complex: interactable
 1067 items are farther apart, and navigation paths are longer and more convoluted. This increases the
 1068 number of steps required to complete a recipe. Not only does this make learning each task harder,
 1069 but it also forces the agent to retain and execute longer action sequences to successfully complete a
 1070 recipe. Higher-level layouts also add demands for plasticity and transfer. The larger layout space
 1071 introduces greater variability between tasks, making it harder to reuse learned behavior. These factors
 1072 collectively lead to lower performance as difficulty increases, as shown in Figure 10. Online EWC
 1073 has a steady upward trend on Level 1, while on higher levels, the performance gap becomes more
 1074 evident as the number of tasks increases.

1076 E CURRICULUM LEARNING

1078 In all training settings, agents consistently struggle on Level 3 tasks with large grids. Curriculum
 1079 learning has been shown to improve final performance on difficult tasks by gradually increasing task
 complexity (Bengio et al., 2009; Narvekar et al., 2020; Portelas et al., 2020). We investigate whether

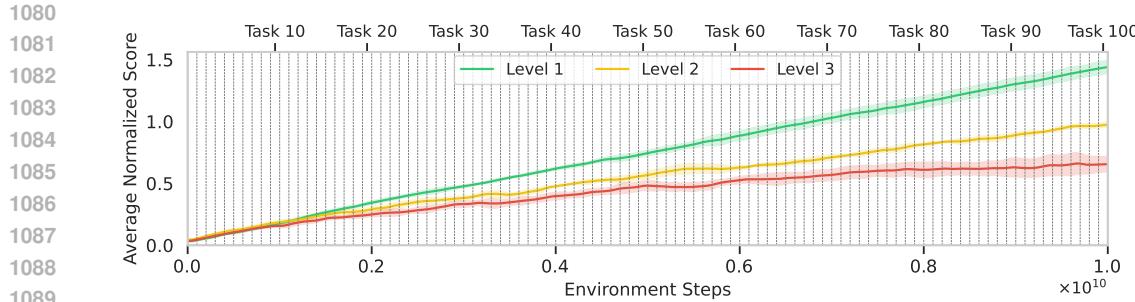


Figure 10: **Average Normalized Score** over the course of training Online EWC on a sequence of 100 generated tasks per difficulty level. Shaded regions indicate 95% confidence intervals across 5 seeds. The clear gap between levels shows the effectiveness of MEAL’s naïve difficulty level design.

a simple difficulty-based curriculum can help agents better learn harder MEAL tasks under the same data budget. To this end, we design a curriculum sequence where each difficulty level contributes an equal number of tasks. Specifically, we sample 5 layouts each from Level 1 (easy), Level 2 (medium), and Level 3 (hard), and present them in ascending order of difficulty (layouts 1–5, then 6–10, then 11–15). As a baseline, we compare with a default sequence that trains on 15 hard (Level 3) layouts without any prior exposure to easier tasks. Performance is evaluated based on the normalized average score over the 5 tasks in the sequence of the respective difficulty.

The results in Table 7 show no statistically significant difference between the two strategies on Level 2, given the high variance. However, on Level 3, the curriculum strategy nearly doubles performance. A plausible explanation is that, under curriculum training, the agent first experiences 5 easy and 5 medium tasks, where it receives denser reward signals and more frequent successes. This exposure likely builds useful priors and stabilizes learning, improving adaptation to harder tasks later. In contrast, the default strategy trains only on hard tasks throughout the sequence, where exploration is more challenging and initial rewards are more difficult to obtain, leading to weaker performance overall.

Table 7: Curriculum vs. default training under an equal data budget. We report the average score over the task windows of the respective difficulty.

Strategy	Medium (6–10)	Hard (11–15)
Default	0.693 ± 0.147	0.328 ± 0.238
Curriculum	0.668 ± 0.152	0.653 ± 0.181

F NETWORK PLASTICITY

Loss of neural network plasticity is a well-studied phenomenon in continual RL, where agents gradually become less able to adapt to new tasks as training progresses. A number of metrics have been proposed to characterize this effect, typically measuring how updates propagate through the network or how parameter sensitivity changes over time.

F.1 METRICS

We follow Abbas et al. (2023); Dohare et al. (2024) and quantify **plasticity**, the ability to fit fresh data after many tasks, by three complementary metrics computed from the training reward.

Notation. For a single task let r_t be the online reward at step $t \leq T$. A repetition experiment presents the same task R times, so the trace splits into R contiguous segments of equal length $L = T/R$. We smooth r_t with a Gaussian kernel (bandwidth σ) and define the cumulative average

$$\bar{r}(t) = \frac{1}{t} \sum_{i=1}^t r_i, \quad t = 1, \dots, L.$$

All metrics compare a later repetition $j > 0$ with the *baseline* repetition $j = 0$.

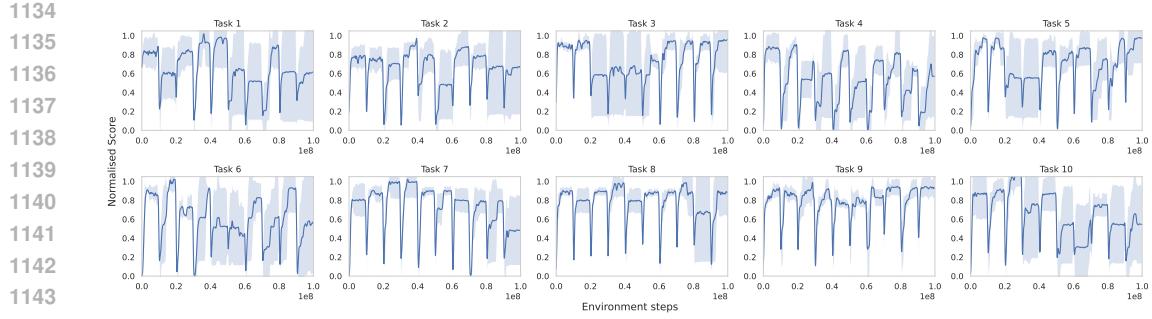


Figure 11: Training curves of FT across a Level 1 10-task sequence repeated ten times over 5 seeds.

Table 8: All sequence-averaged metrics for FT with 95% confidence intervals.

Repeats	AUC-loss ↓	Dormant Ratio ↓	FPR ↑	RAUC ↑
1	0.000 ± 0.000	0.408 ± 0.003	1.000 ± 0.000	1.000 ± 0.000
3	0.166 ± 0.052	0.428 ± 0.006	0.926 ± 0.111	0.901 ± 0.114
10	0.201 ± 0.018	0.509 ± 0.022	0.891 ± 0.066	0.872 ± 0.070

AUC-loss. Let $\text{AUC}_j = \int_0^L \bar{r}_j(t) dt$. The capacity drop for repetition j is

$$\text{loss}_j = 1 - \frac{\text{AUC}_j}{\text{AUC}_0}, \quad j = 1, \dots, R-1, \quad (4)$$

where 0 indicates perfect retention. We report the mean of Eq. (4) over repetitions and seeds.

Dormant Neuron Ratio. Following Sokar et al. (2023), we also measure *dormancy*, the fraction of units that remain effectively inactive during training. Given hidden activations $h \in \mathbb{R}^{B \times H}$ for batch size B and layer width H , we compute the mean absolute activation per unit $m = \frac{1}{B} \sum_{b=1}^B |h_{b,:}|$. Normalizing by the global mean $\bar{m} = \frac{1}{H} \sum_{j=1}^H m_j$, we obtain scores $s_j = m_j / (\bar{m} + \epsilon)$. A unit is considered *dormant* if $s_j \leq \tau$ for some threshold τ (we use $\tau = 0.01$). The Dormant Neuron Ratio is the fraction of dormant units, averaged across layers and seeds. Higher values indicate more inactive capacity, and hence reduced plasticity.

Final-Performance Ratio (FPR). With $p_j = \bar{r}_j(L-1)$ the plateau reward of repetition j ,

$$\text{FPR}_j = \frac{p_j}{p_0}, \quad j = 1, \dots, R-1, \quad (5)$$

so $\text{FPR}_j > 1$ implies no loss, $\text{FPR}_j < 1$ indicates degraded plateau performance.

Raw-AUC Ratio (RAUC). Using the *unsmoothed* running reward,

$$\text{RAUC}_j = \frac{\text{AUC}_j^{\text{raw}}}{\text{AUC}_0^{\text{raw}}}, \quad j = 1, \dots, R-1, \quad (6)$$

which captures the total reward accumulated during learning. Higher values in Eq. (5)–Eq. (6) are better.

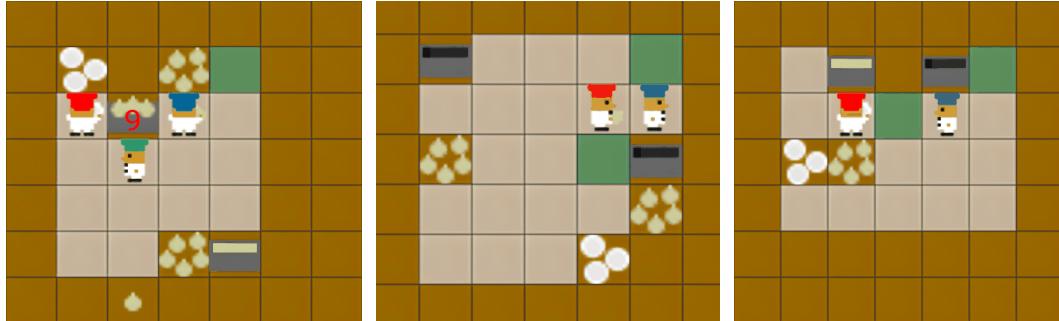
Sequence-level aggregation. For a task sequence of length $|\mathcal{T}|$ we compute the per-task means of (4)–(6) and average across tasks, yielding a single global score per repetition count R .

F.2 TRAINING CURVES

Figure 11 plots the mean normalized score of the fine-tuning (FT) baseline over ten repetitions. Performance on Tasks 8 and 9 remains virtually unchanged, indicating little to no plasticity loss. In contrast, Tasks 1, 2, 6, and 10 show a clear degradation: the agent fails to recover the score achieved during the first repetition, illustrating a pronounced loss of plasticity.

1188 Table 9: Homogeneous vs. heterogeneous (designated roles) 2-agent training results over Level 1
 1189 20-task generated sequences using shared rewards and IPPO in combination with EWC.

Setting	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$	$\mathcal{FT} \uparrow$
Homogeneous	0.90 ± 0.04	0.01 ± 0.01	0.20 ± 0.08
Heterogeneous	0.68 ± 0.09	0.03 ± 0.02	-0.05 ± 0.09



1206 (a) **Single-pot fixation.** All agents are 1207 clustered around a single pot, waiting 1208 for it to finish cooking, while ignoring 1209 a ready soup in the bottom pot. (b) **Deadlock.** The red agent tries 1210 to place an onion into the pot, but 1211 is blocked by the blue agent, who 1212 cannot move aside. (c) **Role collapse.** One agent completes the pipeline solo while the other wanders or idles. The policy 1213 settles on a local minimum.

1210 Figure 12: Qualitative failure modes observed in Overcooked. All behaviors stem from inadequate 1211 coordination, limited exploration, or insufficient role allocation.

G DESIGNATED ROLES

1216 In Overcooked, agents are identical in their capabilities and attributes. However, in many real-world 1217 scenarios, autonomous agents either 1) possess different physical properties or 2) are functionally 1218 identical but are expected to fulfill distinct, complementary roles to cooperate effectively for a 1219 common goal. To capture this dimension in MEAL, we design a heterogeneous agent setting with 1220 **designated roles**.

1221 In this variant, two agents are randomly assigned one of the two predefined roles at the start of each 1222 task: **chef** and **waiter**. The chef is responsible for preparing the soup by loading onions into the pot, 1223 but cannot pick up plates. The waiter handles dish delivery but cannot pick up onions. This enforces 1224 complementary capabilities, meaning neither agent can complete the full recipe alone, meaning 1225 that successful catering requires coordinated role execution and adaptation. Note that the roles are 1226 sampled per task and may switch across tasks, making continual learning essential.

1227 We evaluate this setting over 20-task Level 1 sequences using EWC with IPPO under shared rewards. 1228 Table 9 compares the heterogeneous setup to the default homogeneous setting. We observe a clear 1229 performance drop in the role-restricted setting, as throughput decreases when agents are limited to 1230 certain actions and cannot flexibly switch between tasks. Another factor is asymmetric step costs: 1231 in many layouts, loading the pot with 3 onions takes more steps than a single plate-and-deliver trip, 1232 making the chef the throughput bottleneck. Generalization also suffers as agents struggle to transfer 1233 knowledge when their roles change across tasks, since skills learned in one role do not apply to 1234 the other. This role-switching dynamic further exacerbates forward transfer challenges in continual 1235 learning.

H COMMON PITFALLS

1238 Despite shared rewards and simple layouts, learned policies frequently fall into recurring failure 1239 modes that throttle throughput and coordination. Figure 12 illustrates three such patterns we observe 1240 consistently across layouts and levels.

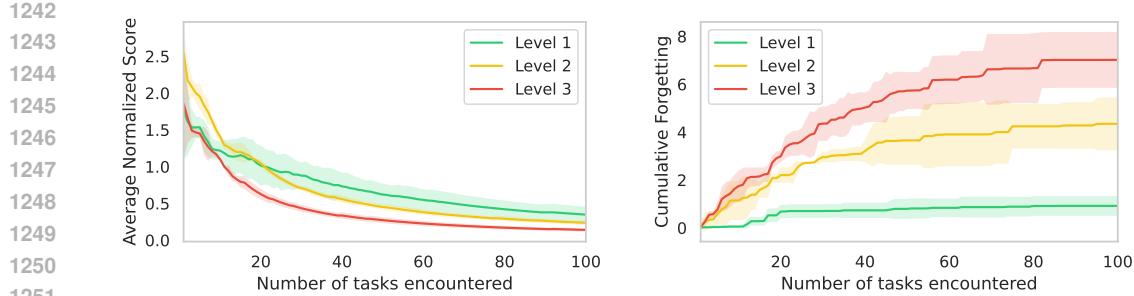


Figure 13: EWC over 100 tasks. **Left:** gradual decline in average score as more tasks are encountered. **Right:** on higher levels, forgetting increases more rapidly.

I 100-TASK SEQUENCES

For the extensive analysis in this paper (e.g., partial observability, model component ablations, different numbers of agents), we use 20-task sequences to maintain a fast evaluation loop. However, a core aspect of MEAL is its ability to support continual learning at scale. To demonstrate this capability, we evaluate *100-task* sequences. To the best of our knowledge, such an extensive continual RL task sequence has not previously been reported in the literature.

For these runs, we reduce the evaluation frequency to once every 25 policy updates, yielding fewer data points. We evaluate EWC using the same training configuration as in our main experiments. Figure 13 shows that performance gradually declines as the number of tasks grows. The performance gap across difficulty levels is especially pronounced for forgetting. Executing 10 billion environment steps (plus policy updates) for 100 tasks required ~ 4 hours on a single GPU.

I.1 A CASE STUDY: EWC vs. ONLINE EWC

EWC accumulates importance over *all* past tasks and penalizes drift along high-Fisher directions with a fixed quadratic. Online EWC maintains a *running*, exponentially decayed Fisher, emphasizing recent tasks and relaxing old constraints. Both use the same heads, meaning that the penalty acts on the shared trunk. When layouts are small, not only are the tasks easier to learn, but the same features are more likely to work across tasks. Strong anchoring preserves those features, curbing forgetting and yielding a higher average score. The stability–plasticity trade-off is favorable because plasticity demands are modest. This trade-off is visualized in Figure 14, where Online EWC demonstrates higher plasticity at the cost of increased forgetting, while EWC excels in stability but struggles to adapt on Level 3. The cumulative Fisher penalty pays off on small Level 1–2 layouts, but underfits on Level 3 since harder layouts demand larger representation shifts. By contrast, Online EWC uses a decayed Fisher that down-weights older tasks and manages to keep enough plasticity to learn the new layouts. Level 3 forces longer paths, bottlenecks, and role specialization, which require larger representational updates. EWC’s cumulative constraints over-tighten the trunk and slow adaptation, while Online EWC’s decay frees capacity for those shifts, so it learns the hard tasks more effectively. The multiple output heads alone are not enough. They isolate outputs, but the penalty sits on the shared backbone. When the trunk needs to be rewired for new Level 3 tasks, EWC resists too much, while Online EWC allows it more. Moreover, credit assignment is noisier on Level 3 due to sparser effective signals and longer horizons. A single, stale Fisher snapshot can misdirect EWC’s penalty. The rolling estimate in Online EWC smooths that noise and tracks the current regime more closely.

Scaling up the number of tasks from 20 to 100 amplifies the behavioral difference between these methods. As shown in Figure 15, standard EWC quickly saturates: its performance plateaus around 20 tasks, while Online EWC continues to improve throughout the sequence. The difference arises from how the two methods accumulate and apply their regularization terms. EWC optimizes the loss

$$\mathcal{L}_{\text{EWC}} = \mathcal{L}_{\text{task}} + \frac{\lambda}{2} \sum_{t=1}^{k-1} \sum_i F_{t,i} (\theta_i - \theta_{t,i}^*)^2, \quad (7)$$

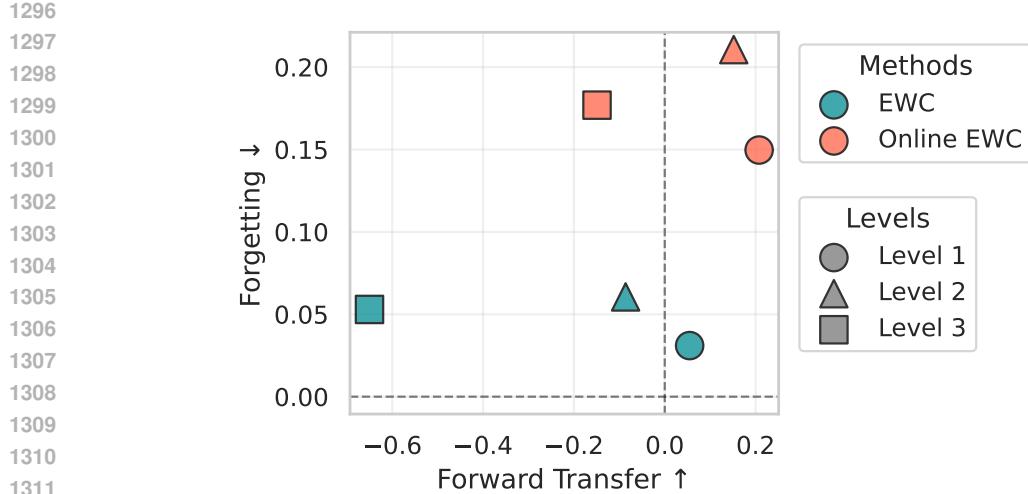


Figure 14: Comparison of EWC and Online EWC across all difficulty levels on 20-task sequences, evaluated in terms of forward transfer and forgetting. Each point denotes a method’s performance at a given level. Online EWC consistently exhibits higher plasticity (less-negative or positive, particularly at Level 3), while EWC achieves notably lower forgetting on all levels.

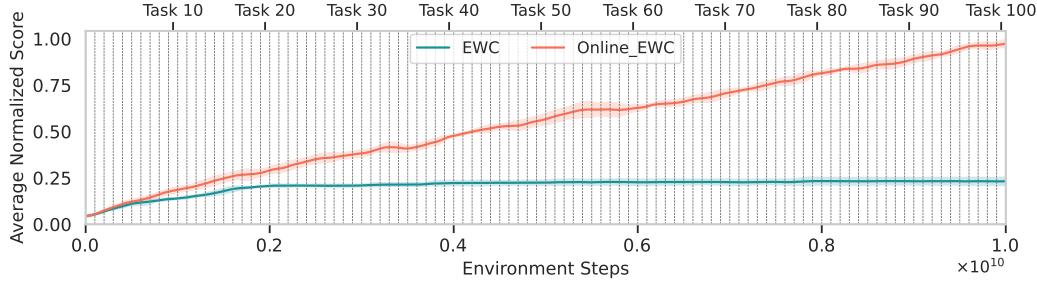


Figure 15: Average normalized performance of EWC and Online EWC over a 100-task sequence (Level 2). The standard EWC variant continuously accumulates regularization terms from all previous tasks, leading to excessive constraint and early performance saturation around 20 tasks. In contrast, Online EWC compresses past information with a decay factor, maintaining plasticity and achieving sustained learning throughout the sequence.

where each Fisher matrix F_t captures parameter importance after task t . The regularizer grows with every task, anchoring the network more tightly to older solutions. Consequently, plasticity decays over time, and adaptation to new tasks becomes progressively harder. Online EWC instead compresses past information through an exponentially decayed Fisher:

$$F_{\text{online}}^{(k)} = \gamma F_{\text{online}}^{(k-1)} + F_k, \quad (8)$$

where the decay factor $\gamma \in (0, 1)$ controls how quickly the influence of older tasks fades to restore the capacity for new ones. This running Fisher approximation is then used to define a single consolidated quadratic penalty:

$$\mathcal{L}_{\text{Online EWC}} = \mathcal{L}_{\text{task}} + \frac{\lambda}{2} \sum_i F_{\text{online},i}^{(k)} (\theta_i - \theta_{k,i}^*)^2. \quad (9)$$

Over long sequences, these mechanisms diverge sharply: standard EWC eventually over-regularizes, effectively freezing the shared backbone. The model retains early knowledge but cannot repurpose

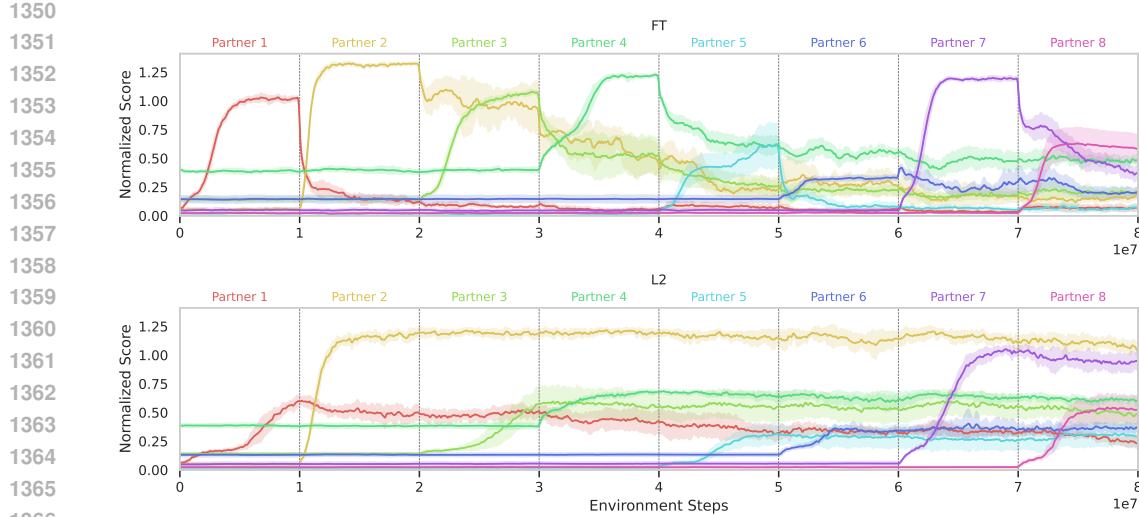


Figure 16: Evaluation curves of adapting to 8 diverse partners.

features as the environment shifts. Online EWC’s decayed Fisher avoids this over-constraining and sustains meaningful adaptation even after dozens of tasks. The continued improvement across 100 tasks illustrates that certain dynamics in continual reinforcement learning only emerge over *long horizons*, where saturation and drift become clear.

This case study reinforces one of the core motivations behind **MEAL**: short sequences often fail to reveal such discrepancies. We therefore urge the continual RL community to focus on longer streams of tasks, where stability–plasticity trade-offs are more likely to truly emerge.

J CONTINUAL PARTNER ADAPTION

MEAL enables the generation of diverse partner policies, allowing continual learning methods to be evaluated not only across layouts but also across sequences of partners, e.g., $\mathcal{T} = (\pi_p^0, \dots, \pi_p^L)$, where L is the sequence length. To this end, we aim to generate partner policy sequences that are maximally diverse in their behaviour.

As described in Section 4.4, we use (i) hardcoded strategies (random, static), (ii) planning-based agents (onion-only, plate-only, and a human-like planner with stochastic task selection), and (iii) populations trained with best-response diversity (Rahman et al., 2023, BRDiv), which maximizes self-play performance while minimizing cross-play compatibility.

BRDiv populations in particular yield highly incompatible strategies. Coordinating with a new BRDiv partner typically requires learning behaviours that differ substantially from those seen before, making them a strong testbed for continual adaptation. In our experiments, we train BRDiv populations with a size of three, a cross-play weight of 1.0, in 64 parallel environments, using simple MLP policies.

Planning-based agents follow fixed strategies that learned policies rarely adopt. The onion-only agent collects onions and, with probability $p_{\text{onion-counter}} = 0.1$, places them on counters instead of pots. The plate-only agent collects plates and delivers dishes. With probability $p_{\text{plate-counter}} = 0.1$ it places the plate on a counter instead of plating a soup. The human-like planner follows simple heuristics: it prioritizes filling pots, but if no pot is free, it collects a plate and delivers a soup. With probability 0.1, it may place either onions or plates on counters instead.

For the partner-adaptation experiments, we fix the schedule as follows: the ego agent first encounters the three BRDiv partners, followed by the human-like planner, then the onion-only, plate-only, random, and static agents. Unlike the layout-adaptation experiments, we keep the environment fixed to the `cramped_room` layout from the original Overcooked repository (Carroll et al., 2019), which is particularly sensitive to variations in partner behaviour.

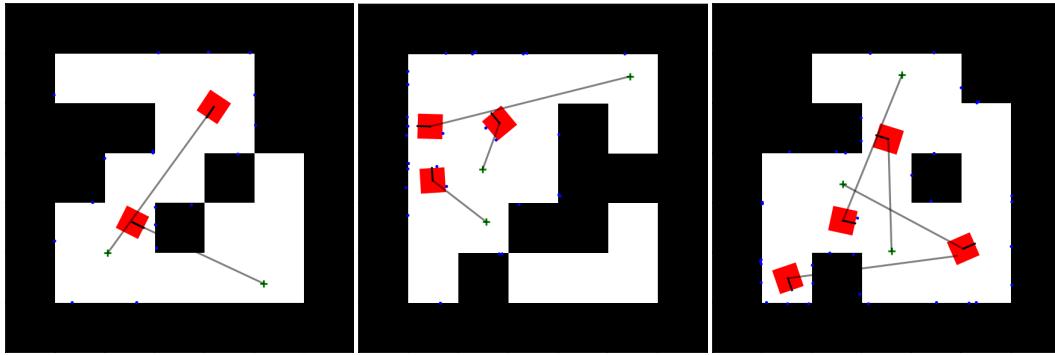


Figure 17: Example **JAXNAV** environments on a 7×7 grid with 2–4 agents. Dark cells denote walls/obstacles, and light cells denote free space. Agents are depicted as red squares with orientation markers. Goal locations are marked with crosses. Thin lines show the direct vector from each agent to its goal. Blue dots visualize lidar sensor returns.

In our partner-adaptation experiments, we use a fixed schedule: the ego agent is first exposed to the three BRDiv policies, followed by the human-like planner, then the onion-only, plate-only, random, and static agents. Instead of using the *Meal Generator* (Section 4.2) to generate an array of different layouts, we adopt the `cramped_room` layout from the original Overcooked repository Carroll et al. (2019). In this layout, the ego agent has been shown to be susceptible to variations in partner behaviour Ruhdorfer et al. (2025b).

Table 10 compares the performance between naive fine-tuning(FT) and L2-regularization. FT manages to forget less in this setting and obtains a higher average score than when adapting to different layouts (Table 2). The continual evaluation curves in Figure 16 show that when the ego agent is exposed to a new fixed partner policy, it can still coordinate to some extent with previous partners, although rapidly adapting its policy to align with the new partner. In contrast, such transfer is largely absent when the challenge comes from adapting to a new layout. Contrary to FT, L2 performs worse in this setting compared to layout adaptation, forgetting more and delivering fewer soups on average. Improved retention comes at the cost of adapting less freely and achieving less total soup deliveries during training.

K JAXNAV

While in the scope of this paper, MEAL is centered around Overcooked, we wish to demonstrate that the continual learning framework is not restricted to a single domain. To this end, we incorporate JAXNAV Rutherford et al. (2024a), a navigation-based continuous multi-agent environment. JAXNAV introduces different challenges: agents must reach their assigned goal locations relying on local lidar observations while avoiding collisions with walls and each other. Some layouts contain narrow bottlenecks where two agents can not pass simultaneously, requiring one to explicitly give way to the other(s).

To create continual learning task sequences, we rely on JAXNAV’s built-in randomized layout generator. For our experiments, we use 7×7 grids with an obstacle fill ratio of 0.3. Unlike Overcooked, where we derive continual learning metrics from the normalized soup delivery score, JAXNAV allows

Table 10: Continual learning metrics for partner adaptation across 8 diverse partners in the `cramped_room` layout.

Method	$\mathcal{A} \uparrow$	$\mathcal{F} \downarrow$
FT	0.272 ± 0.03	0.707 ± 0.02
L2	0.563 ± 0.04	0.172 ± 0.02

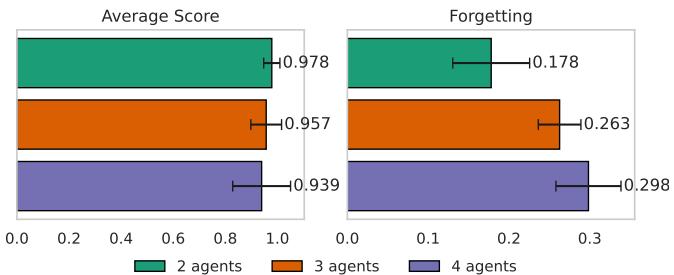


Figure 18: Online EWC performance on JAXNAV over 20-task sequences. Forgetting increases steadily with additional agents, while average score degrades more mildly.

1458 us to compute these metrics directly from the environment’s raw returns. We keep all training
 1459 settings identical to OverCooked, including the MLP encoder, PPO algorithm, Adam optimizer,
 1460 hyperparameters, and evaluation schedule. We run 20-task sequences over 5 seeds and evaluate
 1461 Online EWC with 2–4 agents. Figure 17 depicts example environments used in our experiments.

1462 We can observe a slight downward trend in performance in Figure 18 when increasing the number
 1463 of agents. Importantly, the increase of forgetting is more notable, meaning that tasks with more
 1464 agents are harder both to learn and to remember. This once again reflects a key point of our work:
 1465 continual learning gets more difficult as the number of interacting agents increases. The addition of
 1466 JAXNAV shows that MEAL naturally extends to other JAX-based environments while preserving its
 1467 high-throughput training pipeline.

1468

1469 L USE OF LLMS

1470 We used large language models (LLMs) exclusively to aid in polishing the language and improving
 1471 the clarity of presentation. No part of the research design, experiments, or analysis was generated or
 1472 influenced by LLMs.

1473

1474

1475 M EXTENDED RESULTS

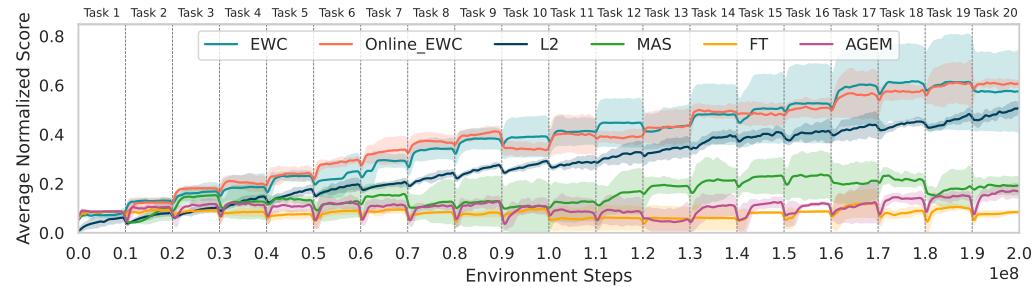
1476 In this section, we provide additional experimental results. Tables 11, 12, 13 add 95% confidence
 1477 intervals to the main baseline results. Figures 19 and 20 show performance curves of higher levels.
 1478 Figure 21 depicts the per-task evaluation curves of Level 1. Figure 22 illustrates forward transfer.

1479

1480

1481

1482



1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

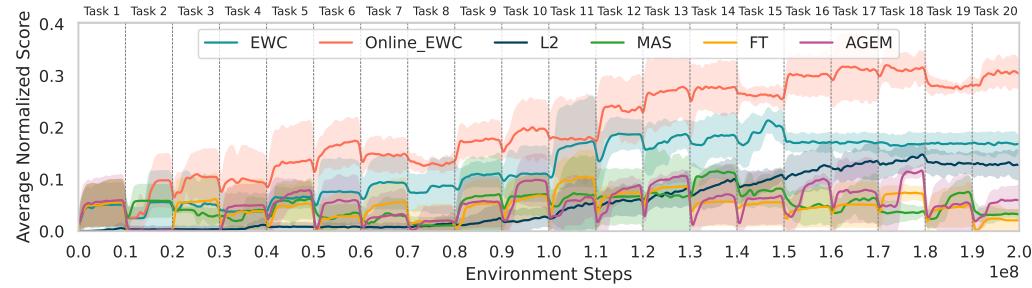
1508

1509

1510

1511

Figure 19: **Average Normalized Score** curves on Level 2.



1506

1507

1508

1509

1510

1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Table 11: Level 1 baseline results with confidence intervals.

Method	$\mathcal{A}\uparrow$	$\mathcal{F}\downarrow$	$\mathcal{FT}\uparrow$
FT	0.048 ± 0.00	0.946 ± 0.00	0.201 ± 0.03
EWC	0.839 ± 0.03	0.012 ± 0.01	0.055 ± 0.06
Online EWC	0.769 ± 0.09	0.062 ± 0.05	0.208 ± 0.03
MAS	0.281 ± 0.07	0.302 ± 0.08	-0.233 ± 0.03
L2	0.753 ± 0.02	0.018 ± 0.00	-0.199 ± 0.09
AGEM	0.204 ± 0.05	0.678 ± 0.04	0.125 ± 0.10

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Table 12: Level 2 baseline results with confidence intervals.

Method	$\mathcal{A}\uparrow$	$\mathcal{F}\downarrow$	$\mathcal{FT}\uparrow$
FT	0.041 ± 0.01	0.944 ± 0.00	0.065 ± 0.02
EWC	0.604 ± 0.21	0.027 ± 0.01	-0.086 ± 0.34
Online EWC	0.585 ± 0.03	0.100 ± 0.04	0.152 ± 0.05
MAS	0.155 ± 0.09	0.356 ± 0.06	-0.355 ± 0.06
L2	0.496 ± 0.02	0.059 ± 0.00	-0.527 ± 0.04
AGEM	0.117 ± 0.01	0.801 ± 0.02	-0.083 ± 0.07

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Table 13: Level 3 baseline results with confidence intervals.

Method	$\mathcal{A}\uparrow$	$\mathcal{F}\downarrow$	$\mathcal{FT}\uparrow$
FT	0.010 ± 0.02	0.947 ± 0.05	-0.157 ± 0.20
EWC	0.178 ± 0.02	0.091 ± 0.08	-0.650 ± 0.13
Online EWC	0.306 ± 0.00	0.144 ± 0.01	-0.149 ± 0.15
MAS	0.034 ± 0.01	0.450 ± 0.09	-0.542 ± 0.20
L2	0.127 ± 0.03	0.096 ± 0.00	-0.827 ± 0.04
AGEM	0.037 ± 0.02	0.861 ± 0.01	-0.169 ± 0.18

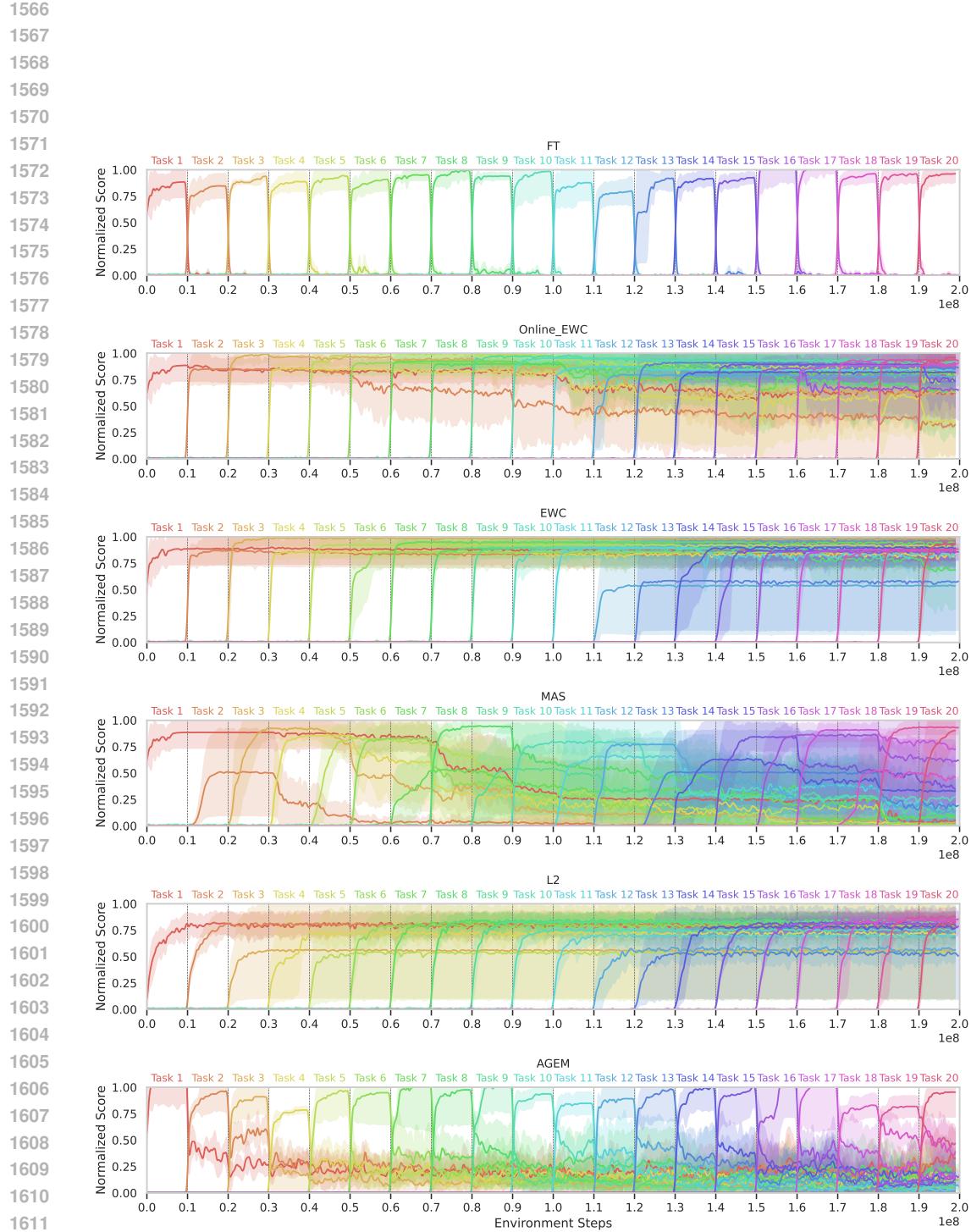


Figure 21: The **evaluation curves** of Level 1 illustrate the extent of forgetting across tasks. FT suffers from clear catastrophic forgetting: once the agent transitions to a new task, performance on the previous task collapses immediately. EWC and L2 display near-perfect retention.



Figure 22: **Forward transfer** on Level 1. The green shaded areas depict positive transfer compared to the IPPO baseline, and the red shaded areas show negative transfer.