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Abstract—In this paper, a novel algorithm based on Multi-
Agent Reinforcement Learning for controlling parallel robots
has been suggested. The dynamic models of parallel robots are
complex and full of uncertainties, and deriving them requires
deep knowledge of the mechanism of the robot. Therefore, the
proposed algorithm is designed model-free to be independent of
prior knowledge about the system from the outset. Moreover, this
algorithm comprises two primary components, making it efficient
in training and convergence. The proposed algorithm takes each
loop or limb in parallel robots as a separate agent. These
agents then learn to collaborate to fulfill the robot’s defined task
by producing appropriate control signals from a decentralized
point of view. For studying the performance of the proposed
algorithm, a 3-DOF parallel robot called Agile Eye is taken
into account as a case study which is simulated in CoppeliaSim
simulation environment for the task of reference tracking. Two
other controllers, including the classic Proportional Integral
Derivative (PID) controller and the single-agent counterpart of
the suggested algorithm, have been implemented for a better
performance comparison of the proposed algorithm. Using the
Root Mean Square Error (RMSE) index, the recommended
algorithm with an RMSE value of 0.0553 is superior to its
single-agent counterpart with an RMSE of 0.1105. On the other
hand, the proposed algorithm is inferior to the PID controller
with an RMSE of 0.0275, mainly due to the fact that the
PID Controller is in velocity control mode, while the proposed
algorithm manipulates the robot in torque control mode, which
is less stable.

Index Terms—Reinforcement Learning, Model-free, Multi-
agent systems, Collaborative systems, Parallel robots, PID con-
troller, Torque control

I. INTRODUCTION

In recent years, the great advent made in artificial intelli-
gence and machine learning approaches has paved the way
to extend such techniques in analyzing robotic mechanical
systems. From both research, industrial and commercial points
of view, robotic manipulators are the most known robots with
a wide range of applications. From a structural perspective,
robots fall into two categories, namely serial robots, and
parallel robots. The location of the actuators, the available
space, and the arrangement of the arms may be seen as
the main distinctions between these two designs. Actuators
in serial manipulators are placed on the joints; in contrast,

parallel robots can be designed in such a way as to have fixed-
frame actuators.

Different methodologies are needed to address the kine-
matics and dynamics of these manipulators since the parallel
robots own many closed kinematic chains as opposed to
the serial kind, which consists of an open kinematic chain,
due to their mechanism structure. Parallel manipulators have
garnered considerably more interest in recent years due to their
wide variety of applications. The most well-known parallel
mechanisms include the Gough-Stewart platform [1], the Delta
robots [2], cable-driven robots [3], the Tripteron [4], and the
Agile Eye [5]. Different approaches to figuring out the gov-
erning equations of parallel robots have been suggested in the
literature. For example, in recent years, analytical techniques
for the kinematics of the Delta robots have been presented
in [6]-[8]. Also, in [9]-[11], the Agile eye parallel robot’s
dynamic and kinematic equations were tried to be derived. In
[12], a 3-DOF spherical parallel robot mimicked the human
head movement using a PID controller. In addition, based on
the robot’s dynamic model, the control of a suspended cable-
driven parallel robot has been experimentally examined for
object-tracking purposes in [13]. Moreover, a 3-DOF Delta
robot is controlled by an online neural network self-tuned
inverse dynamic controller at a fast speed and with excellent
smoothness in [14]. The major challenge with parallel ma-
nipulators is the intricacy of the mathematical model due to
the complex structure of these robots. The correctness and
reliability of the model are crucial in this kind of robots
because of how complicated the equations are.

Various controllers have recently been developed in [15]
and [16] to control parallel manipulators. The fundamental
studies of parallel robots provide problems regarding their
kinematic and dynamic analysis. Due to the parallel robots’
completely linked dynamics and nonlinear kinematics, stan-
dard controllers are unable to control these types of robots
effectively. Moreover, because of the unmodeled dynamics
and imprecise system characteristics of parallel robots, kine-
matic model-based approaches are not accurate. Furthermore,
dynamic model-based solutions are difficult to apply in real-
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time and take a lot of time, preventing them from producing
precise and adaptive performances. The existing uncertainty
in dynamic model equations also makes controlling such
robots using classic controllers a challenging task. For that
reason, using artificial intelligence-based controlling methods
can be regarded as an appropriate alternative for controlling
these dynamically sophisticated robots. These methods can
not only compensate for the uncertainties of the system but
also can reach a high level of accuracy in the control of
parallel robots even without having any knowledge about
the governing equations of the system. That is the main
advantage of intelligent methods like Reinforcement Learning
(RL), where an accurate controller can be designed using such
methods without having prior knowledge about the system.
In [17], the required force for controlling a manipulator has
been computed using RL, and then the desired position has
been achieved using PID admittance control. Also, RL has
been used as a complement to classic control methods for
compensating uncertainties such as frictions and contacts in
the dynamic system [18]. There are various state of the art
RL- based feedback control techniques that use optimal control
as principles for controlling and monitoring single-agent and
multi-agent systems [19]. In another approach, RL is used for
controlling an industrial robot with six axes for complicated
motion planning on continuous trajectories [20].

The main contribution of this paper consists in proposing a
novel algorithm based on collaborative Multi-Agent Reinforce-
ment Learning (MARL) for controlling parallel robots. Since
parallel robots have multiple dynamic loops in their structure,
in this algorithm each of these loops has been considered
as a separate agent, which then tries to cooperate with each
other to fulfill the defined task for the robot regarding the
essence of the problem. Parallel robots are complicated in
terms of equations of motion. For that reason, the suggested
algorithm is model-free, so there is no need to have knowledge
about the dynamics and governing equations of these robots.
Another feature of the designed algorithm is that it can deal
with dynamic environments and reach a generality in such
environments, which is a prevalent setup in robotics.

The remaining sections of the paper have been set up as
follows. In Section II, some fundamental knowledge about
RL and collaborative MARL has been provided. Examining
the proposed method based on MARL for controlling parallel
robots and different components of the suggested algorithm is
the focus of Section III. The proposed algorithm’s convergence
and performance during training have been investigated first in
Section IV. For that, the designed algorithm has been simulated
on a parallel robot known as the 3-DOF Agile Eye robot,
which is considered as a robot with sophisticated dynamics;
this robot is illustrated in Fig. 1. The algorithm was imple-
mented for the task of End-Effector (EE) reference tracking.
Finally, in this section, the performance of the suggested
algorithm has been compared with two other controllers using
an introduced performance index.

Fig. 1. The case study 3-DOF Agile Eye parallel robot with three limbs.

II. REINFORCEMENT LEARNING

Reinforcement Learning’s primary idea is based on learning
through interaction with the environment. An RL agent en-
gages with its surroundings and, after experiencing the results
of its actions, can evolve to modify its behavior in response
to the returned reward from the environment [21]. In the
RL setup, an agent which is guided by a machine learning
algorithm, observes a state st from its surroundings at time
step t. The agent at state st interacts with the environment by
taking an action at and then due to the selected action, the
agent and environment enter a new state, st+1. The rewards
which the environment offers define the optimum course of
actions. Every time the environment changes states, it also
gives the agent feedback in the form of a scalar reward, rt+1.
The standard RL objective is the expected sum of rewards and
can be represented by following formula:

J =
∑
t

E(st,at)∼ρπ
[r (st,at)] (1)

The agent’s objective is to discover a policy π (at | st) which
maximizes the discounted reward. A policy then provides an
action to take in response to a given state. In Maximum
Entropy Reinforcement Learning [22], the standard objective
is generalized by adding an entropy term, making the optimum
policy also attempt to maximize the entropy during training:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ
[r (st,at) + αH (π (· | st))]

(2)
In the above equation, α is the temperature parameter, which
governs the stochasticity of the ideal policy, and dictates the
weight of the entropy component compared to the reward.

A. Cooperative Multi-Agent Reinforcement Learning

Algorithms for multi-agent reinforcement learning deal with
systems made up of a number of agents like robots, machines,
and automobiles interacting in a single environment. In each
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time step, each agent takes action and collaborates with the
other agents to complete a specific, preset task. The purpose
of cooperative MARL algorithms is to discover a policy for
every agent which will enable them to work together in order
to accomplish the system’s objective. When modeling a multi-
agent system, many characteristics of the system are crucial.
To name a few, some important aspects in designing MARL
systems are centralized or decentralized control, cooperative
or competitive environment, and fully or partially observable
environment. A central unit makes a choice for each agent in
each time step inside a centralized controller. In contrast, each
agent makes a choice for themselves in a decentralized system.
Additionally, the agents might compete with one another to
maximize their personal rewards, or they may work together
to accomplish a shared objective. In any of these scenarios, the
agent may have access to all of the other agents’ information
and sensory observations, or alternatively, each agent may
just be able to view its own local information. The primary
concern with MARL algorithms and multi-agent issues is
the non-stationarity of the environment. Using a completely
observable critic is one of the usual strategies for dealing
with this problem. The environment remains stable even while
other agents’ policies vary because the fully observable critic
takes into account the observations and acts of all agents.
Because the environment always returns an equal future state,
regardless of how other agents’ policies change, one has:

P (s′ | s, a1, . . . , aN , π1, . . . , πN ) =

P (s′ | s, a1, . . . , aN , π′
1, . . . , π

′
N ) (3)

In this paradigm, the critic’s non-stationarity is eliminated
until it is entirely observable, at which point local actors may
employ the critic as a proper leader.

III. MULTI-AGENT REINFORCEMENT LEARNING METHOD
FOR CONTROLLING PARALLEL ROBOTS

In this section, a method based on MARL is introduced
for controlling robots with more than one actuated joint in
dynamic environments. A good example of such robots is
parallel ones that have kinematic loops and multiple limbs. In
the proposed algorithm, each constituting limb of the robot is
assumed as a separate RL agent. The algorithm is designed in
such a way that all agents learn to collaborate with each other
in order to firstly hold the kinematic constraints imposed by
the type synthesis of the robot and secondly to satisfy the task
which has been defined for them to achieve the highest amount
of defined reward based on the essence of the problem. The
introduced algorithm is comprised of two main parts. First, it
has an experience assembling mechanism in its replay buffer
which facilitates the convergence of the algorithm. Second, as
mentioned, it benefits from MARL as the pivotal algorithm to
control the robot by actuating each robot’s motor individually.

A. Experience Assembling

In order to ease the convergence of the algorithm, es-
pecially in dynamic environments, Experience Assembling
(EA) has been embedded in the replay buffer of the Soft

Actor-Critic (SAC) algorithm, which is the backbone of the
MARL algorithm. The idea of experience assembling has
come from [23], in which this method was used for solving
the sparse reward problems, considering that the goal is to deal
with a goal-reaching problem. However, the problem here is
neither specified as a sparse reward problem nor goal-reaching.
The EA method is used to cope with the dynamics of the
environment and is applied to the dynamic states. Emerging
here is the term dynamic states, which stands for the states that
change at every time step and agents are unable to manipulate
them, and they are originally part of the environment. As
common replay buffers, the stored transition in the replay
buffer can be written as the form of (sit, a

i
t, r

i
t, s

i
t+1) where sit,

ait, r
i
t, s

i
t+1 are states, actions, reward value and next states

at time step t of the agent i, respectively. Here for dealing
with dynamic states, three parts are incorporated in each state
which is being stored in the buffer. States for each agent at
time step t can be written as sit =< oit, s

d
t , s

i
ref >, in which

oit is the observation of the agent i at time step t and sdt is
the dynamic states at time step t which are jointed between
all agents, since theses states are uncontrollable by the agents.
siref is the reference signal for agent i at time step t and can
be obtained for example using Inverse Kinematics (IK) of the
robot, this additional states indicate the desired motor angle
for each agent. These states are collected only for computing
the reward value of each agent at time step t and are not given
as inputs to the RL algorithm and the agents are not aware
of them. Also, for assembling experiences and generating new
trajectories, the reference signal states are used in a way to
find two trajectories in which the observation of each agent at
time step t of the first trajectory matches the reference signal
of the agents at time step t′ of the second trajectory. After
finding these two trajectories, similar to the reasoning applied
in [23], the new trajectory is assembled by combining oit of
the first trajectory which is found with the siref of the second
trajectory. Algorithm 1 is called Multi-Agent Soft Actor-Critic
with Experience Assembling (MASAC-EA).

B. Multi-Agent Reinforcement Learning

In the proposed algorithm, the framework of centralized
training with decentralized execution has been used. For the
sake of better understanding, a brief review of the relation
and results of [24] are reviewed in what follows. As afore-
mentioned, agents were trained independently from the model
of the robot. This means the agents were trained without prior
knowledge about the robot’s dynamics. Since here the focus is
on the dynamic control of the robots, meaning that the control
input signals are considered as motor torque input signals,
the model-free approach for addressing the problem could be
regarded as a remedy to several challenges. This is because this
method not only gives the privilege to be free from frictions
and unmodeled dynamics of the system but also would be a
savior from struggling with dynamic equations of the system,
which most of the time are sophisticated and contain a lot of
uncertainty. For using MARL, some assumptions are made.
To the outset, the policy network for each agent only uses
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the observations of that specific agent without having any
information about the states and actions of other agents.
Second, there is no specific communication structure between
agents.

Consider a robot with N dynamic loops. For each of
these loops an agent with Q-function and policy network
parameterized by θ = {θ1, ..., θN} and ϕ = {ϕ1, ..., ϕN} can
be considered, respectively. The soft Q-function for each of
the agents is trained in a way that minimizes the loss function
below which is known as the soft Bellman residual [25]:

JQ(θi) = E(sit,ai
t)∼D

[
1

2

(
Qθi (x,at)− Q̂θi (x,at)

)2
]

(4)

Where one has [25]:

Q̂θi (x,at) = r
(
sit,a

i
t

)
+ γEsit+1∼p

[
Vθ̄i

(
sit+1

)]
(5)

in which Q̂θi (x,at) is the centralized action-value function
for that it gets actions of all agents along with states of each
of them. Therefore at can be written as at = {a1t , ..., aNt }
and moreover, x is comprised of observations of all agents
and the dynamic systems, so x can be expressed as x =
{o1t , ..., oNt , sdt }. Using Eqs. (4) and (5) , the stochastic gradi-
ents of Eq. (4) can be written as following [25]:

∇̂θiJQ(θi) = ∇θiQθi (x,at)
(
Qθi (x,at)− Q̂θi (x,at)

)
(6)

It should be noted that the soft Q-function for any policy can
be written as following [25]:

V (st) = Eat∼π [Q (st,at)− α log π (at | st)] (7)

By combining Eqs. (5) and (7), the term Q̂θi (x,at) in Eq. (6)
can be written as:

Q̂θi (x,at) = r
(
sit,a

i
t

)
+ γ

(
Qθ̄i

(
o1
t+1, ...,o

N
t+1, s

d
t ,at+1

)
− α log

(
πϕi

(
ait+1 | sit+1

)))
(8)

In the above equation, θ̄i represents the weights of the target
Q-function for the ith agent and stabilizes the training and γ is
the discount factor. For updating the policy network weights,
the loss function is derived from KL-divergence [26]. The loss
function for policy networks is as follows [25]:

Jπ(ϕi) = Esit∼D

[
Eai

t∼πϕi

[
α log

(
πϕi

(
ait | sit

))
−Qθi (x,at)

]]
(9)

The policy for each agent can be represented using a neural
network like below [25]:

ait = fϕi

(
ϵt; s

i
t

)
(10)

In Eq. (10), ϵt is a noise vector which is added to the actions
produced by the actor network. By substituting this equation
into Eq. (9), the following equation is obtained for agent i:

Jπ(ϕi) = Esit∼D,ϵt∼N [α log πϕi

(
fϕi

(
ϵt; s

i
t

)
| sit

)
−Qθi

(
sit, fϕi

(
ϵt; s

i
t

))
] (11)

Algorithm 1 MASAC-EA for N -DOF Robot
1: D ← ∅ ▷ Initialize an empty replay buffer
2: for i← 1, N do
3: Input: θ1i , θ2i , ϕi ▷ Initial network parameters
4: θ̄1i ← θ1i , θ̄

2
i ← θ2i ▷ Initialize target networks

5: end for
6: for each iteration do
7: for each environment step do
8: for i← 1, N do
9: ait ∼ πϕi

(
ait | sit

)
▷ Select action for agents

10: end for
11: at ← (a1t , ...,a

N
t ) ▷ Concatenate agent actions

12: st+1 ∼ p (st+1 | st,at) ▷ Sample transition
13: D ← D ∪ {(st,at, r (st,at) , st+1)}
14: end for
15: for Ei ∈ D do ▷ Experience Assembling
16: Search another Ej ∈ D where oi,p

t = sj,qref

17: if Ej ̸= ∅ then
18: Considering s′tref = sj,q−m+t

ref in Ej

19: Clone trajectory
{
s′0ref , · · · , s′mref

}
m=min{p,q}

20: for t = {0, · · · ,m− 1} do
21: r′t := r (si,p−m+t,ai,p−m+t)
22: Store (si,p−m+t,ai,p−m+t, r

′
t, si,p−m+t+1)

23: end for
24: end if
25: end for
26: for each gradient step do ▷ Update networks
27: Sample from buffer D
28: for i← 1, N do
29: θji ← θji − λQ∇̂θj

i
JQ

(
θji

)
for j ∈ {1, 2}

30: ϕi ← ϕi − λπ∇̂ϕi
Jπ(ϕi)

31: α← α− λ∇̂αJ(α)
32: θ̄ji ← τθji + (1− τ)θ̄ji for j ∈ {1, 2}
33: end for
34: end for
35: end for

For updating the actor parameters, the gradient of the Eq. (11)
can be derived as follows [25]:

∇̂ϕi
Jπ(ϕi) = ∇ϕi

α log
(
πϕi

(
ait | sit

))
+

(
∇ai

t
α log

(
πϕi

(
ait | sit

))
−∇ai

t
Q
(
sit,a

i
t

))
∇ϕifϕi

(
ϵt; s

i
t

)
(12)

C. Method Summary

Algorithm 1 represents the proposed method for control-
ling parallel robots using MARL in detail. The algorithm is
comprised of two main components. First, it uses Experience
Assembling in the replay buffer to alleviate the convergence of
the algorithm. Second, it benefits from Multi-Agent Reinforce-
ment Learning for controlling each of the dynamic loops or
each of the degrees of freedom of the robot in a collaborative
way. The underlying Deep RL algorithm is the so-called SAC,
which is robust and data efficient.
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Fig. 2. The schematic of multi agent definition in the proposed algorithm for
controlling parallel robots, considering each limb as a separate agent.

IV. SIMULATIONS AND RESULTS

The proposed method has been evaluated on a type of
parallel robot called the Agile Eye, a 3-DOF robot performing
a spherical motion pattern with three dynamic loops and
motors and complex dynamics with lots of uncertainty. For
dynamically controlling the robot, each of the limbs of the
robot has been considered as a separate agent like Fig. 2. In
order to specify each of these limbs, states should be defined
in a way to give complete information about each agent and
because of that one can simply take the position and angular
velocity of a motor as states of each agent. This is because
motors are robot’s actuated joints, and orientation and position
of all other joints can be obtained using forward kinematics
from knowing the states of actuated joints.

A. Simulation Setup

As a case study, the 3-DOF Agile Eye parallel robot
has been simulated in the CoppeliaSim simulator along with
Robotics Operation System (ROS). The proposed method has
been utilized for the robot’s EE reference tracking under
disturbances, which makes it a challenging problem due to the
random nature of disturbances. The disturbance is exerted on
the system using a disturbance bed under the robot which has
random movements. The objective of the proposed algorithm,
i.e., Algorithm 1, consists in generating control input signals,
which are torques here, in a way that leads to tracking the
reference signal for the EE of the robot and makes the EE
follow the prescribed orientation. In the defined problem, each
component of the state of each agent can be determined. oit
is comprised of position and velocity of the motor i, sdt is
the euler angles of the disturbance bed which is random and
dynamic at each time step and is common between all agents,
and lastly, siref is the reference motor position for agent i at
time step t and indicates the motor positions for all agents in
a way that if all agents reach their specified motor position,

Fig. 3. Training reward for three different methods. All of the algorithms
are trained for the robot’s End-Effector reference tracking. For training these
methods, all the hyper parameters are the same, also the same reward functions
has been used for training.

then the required reference trajectory will be tracked by the
EE of the Agile Eye robot. This reference signal is obtained
using the IK at each time step and as mentioned in Section
III, agents are not aware of them. Furthermore, for achieving
more realistic results, some noise was added into the values
obtained from IK equations.

Moreover, the reward function which is used for agent i is
the L1 norm of subtraction between observation and reference
signal of the agent i:

rit =
∣∣∣∣oit − siref

∣∣∣∣
1

(13)

B. Experiment Overview

Upon implementing the proposed algorithm, several ques-
tions may arise as follows:

1) Is MARL an appropriate approach for controlling par-
allel robots?

2) Is MARL performance better than a single agent for
controlling robots with complex dynamics?

3) What is the effect of Experience Assembling which is
being used in the proposed method?

4) Can the proposed method outperform classic controllers,
such as PID?

In order to answer and clarify the above questions, in whats
follows the obtained results are fully discussed.

C. Results and Discussion

In this section, the first thing which is being investigated
is the effect of each of the components in the convergence
and training procedure of the algorithm. As mentioned in
Section III, Experience Assembling and Multi-Agent RL are
the principal elements of the introduced algorithm. In order
to study the effect of each of these elements in the algorithm,
three different models were trained for the task of reference
tracking for the EE of the Agile Eye parallel robot. The first
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TABLE I
RMSE VALUE COMPARISON FOR THREE CONTROLLING METHODS

Table Controllers
RMSE Dynamic MASAC-EA Dynamic SAC-EA Velocity PID
Motor1 0.0208 0.0669 0.0095
Motor2 0.0173 0.0245 0.0090
Motor3 0.0171 0.0191 0.0090

Sum 0.0553 0.1105 0.0275

model is the proposed algorithm in this paper, i.e., MASAC-
EA, the second one is only a single-agent SAC along with
EA, and the last one is a vanilla single-agent SAC algorithm.
By comparing the proposed algorithm with the second and
the third abovementioned algorithms, the effect of each of the
components of the suggested method can be evaluated. This
comparison is depicted in Fig. 3. It is obvious that the proposed
algorithm converges faster than two other algorithms and has
a higher cumulative reward at the end, which demonstrates
that the MARL approach is an appropriate approach for
controlling parallel robots and answers to the first question
from the Experiment Overview section. Moreover, by visual
inspection of the third algorithm and comparing it with two
other methods, the importance of the EA in the proposed
method can be perceived which is the answer to the question
number 3 from the Experiment Overview section. In overall,
Fig. 3 illustrates the importance of each of the components
of the suggested algorithm in its performance at training and
convergence.

After investigating the effect of each of the MASAC-
EA algorithm components in the convergence and training
procedure, the performance of the recommended method with
regard to other methods should be studied. For this purpose,
two other controllers, one based on RL, the SAC-EA, and
the other based on classic control, PID, have been taken into
account. The represented Fig. 4 shows the Euler angles of the
EE of the robot while it is being controlled dynamically using
the MASAC-EA algorithm for reference tracking in a dynamic
environment. These angles are measured with respect to the
local reference coordinate of the robot in a way that if EE
Euler angles follow the desired value represented with respect
to the local robot’s coordinate, then the desired trajectory for
the robot’s EE will be followed. In turn, Fig. 5 depicts the
robot’s EE Euler angles controlled by SAC-EA in a dynamic
environment, considering torque value as the input control
signal, similar to MASAC-EA. The reference trajectory for the
robot is as same as the reference trajectory represented in Fig.
4 for better comparison between the algorithms. Finally, Fig.
6 illustrates the EE Euler angles of the robot being controlled
by means of a PID controller in velocity mode. Moreover, for
better illustration, Fig. 7 shows the error sum of all three Euler
angles of the robot’s EE at each time step in the trajectory,
which has been depicted in Figs. 4, 5, and 6. For a better
comparison between the three mentioned algorithms for the
defined task, the Root-Mean-Squared Error (RMSE) between
the desired position value and the actual position value of the

Fig. 4. EE Euler angles represented in local reference coordinate being
dynamically controlled by MASAC-EA algorithm for reference tracking in
dynamic environment.

motors has been utilized as an index. The RMSE formula is
as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(xact − xdes)
2 (14)

The comparison between the performance of the algorithms
has been shown in the Table I for each of the three motors.
As shown in this table, it can be observed that dynamic
MASAC-EA has a superior performance to the dynamic SAC-
EA algorithm. It indicates that not only multi-agent control
of parallel robots is better in convergence, but it also has a
surpassing performance compared to a single agent; this is the
answer to question number 2 from the Experiment Overview
section. On the other hand, dynamic MASAC-EA performance
is inferior to classic velocity PID controller, which answers
question number 4 from the Experiment Overview section. It
should be noticed that controllers in velocity mode are more
stable in comparison with torque controllers, and that is one of
the reasons that make PID controller performance better than
the two other controllers, which control the robot dynamically.
Moreover, it should be recognized that implementing a PID
controller in torque mode for models with complex dynamics
like the Agile Eye robot is challenging owing to the existing
uncertainties in dynamic models, and it is not practically
straightforward to apply torque PID in such systems. RL
methods can compensate these uncertainties when it comes
to torque control.

The final issue that should be discussed here is the com-
plexity arising from using MARL and whether it is worth
using it. In cases where precise torque control is required
for parallel robots with complex uncertain equations, this

72

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on September 04,2025 at 18:52:53 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. EE Euler angles represented in local reference coordinate being
dynamically controlled by SAC-EA algorithm for reference tracking in
dynamic environment.

Fig. 6. EE Euler angles represented in local reference coordinate being
controlled by PID algorithm in velocity control mode for reference tracking
in dynamic environment.

method is effective. It should be noted that the computational
complexity of such intelligent methods is the cost of the
accuracy that these methods bring. In addition, it should be
considered that in many robots and because of the disability of
motors in actuating accurate torque, it is somehow impossible
to apply traditional torque control methods.

Fig. 7. EE Euler angles cumulative error for the same trajectory expressed in
Figs. 4, 5 and 6, represented in local reference coordinate being controlled by
three different algorithms, including dynamic MASAC-EA, dynamic SAC-EA
and velocity PID controller for reference tracking purpose.

D. Simulation Details

All the hyper-parameters for training both MASAC-EA and
SAC-EA algorithms were chosen the same. For training these
algorithms, each epoch consists of 100 episodes with 2000
time steps. Learning rate for both critic and actor networks
were chosen equal to 0.0003 and discount factor was equal
to 0.98. The structure of actor and critic networks in both
methods were almost the same except in the output layer.
Actor and critic in both algorithms are 4 layer networks
with 256 neurons in each of the hidden layers. Moreover, the
actor network returns the probabilistic action from a gaussian
distribution. For more stability, target critic networks were also
utilized for training the agents. About the PID controller, Kp

was chosen as 30 and Ki equal to 5 for all motors.

V. CONCLUSION

In this paper, a new method called MASAC-EA based on
Multi-Agent RL has been suggested for controlling paral-
lel robots which have multiple dynamic loops and actuated
motors. The proposed algorithm is comprised of two main
components, first Experience Assembling and second Multi-
Agent RL, for controlling each of the dynamic loops of the
robot separately but in a collaborative way. The underlying
deep RL algorithm which is used in this algorithm is Soft
Actor-Critic which can be regarded as a robust algorithm.
The 3-DOF Agile Eye parallel robot was used as a case
study to evaluate the introduced method. For that, firstly, the
convergence and training process aspects of the mentioned
algorithm have been studied by comparing the cumulative
training reward of MASAC-EA with SAC-EA and vanilla SAC
for the task of reference tracking of EE under random distur-
bance. This comparison has shown that the proposed algorithm
is superior to two others in the training process by reaching a
higher ultimate reward and faster convergence. Secondly, the
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performance of the MASAC-EA was investigated by compar-
ing its performance with SAC-EA and velocity PID controller,
and due to the results, MASAC-EA with RMSE index value
of 0.0553 has better performance than its similar single agent
algorithm, SAC-EA with RMSE index value of 0.1105. On
the other hand, velocity PID controller performance with an
RMSE index value of 0.0275 exceeds MASAC-EA in torque
mode control, and the reason is that velocity controllers are
more robust than torque controllers. Moreover, it should be
noticed that because of the existing uncertainties in complex
dynamic models, especially in parallel robots, it is challenging
to practically implement classic torque controllers in such
robots, so that a better choice could be utilizing intelligent
methods such as RL-based controllers for torque control of
sophisticated dynamic systems. As an ongoing work, the
designed algorithm can be refined in a way that outperforms
classic controllers even in velocity mode. Also, the practical
implementation of the proposed algorithm on a real robot can
be considered for future work.
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busch, M., ... and Meisen, T. (2017). Motion planning for industrial
robots using reinforcement learning. Procedia CIRP, 63, 107-112.

[21] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[22] Ziebart, B. D. Modeling purposeful adaptive behavior with the principle
of maximum causal entropy. Carnegie Mellon University, 2010.

[23] Fang, M., Zhou, C., Shi, B., Gong, B., Xu, J.,and Zhang, T. (2018,
September). DHER: Hindsight experience replay for dynamic goals. In
International Conference on Learning Representations.

[24] Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O.,and Mordatch,
I. (2017). Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems, 30.

[25] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Ku-
mar, V., Zhu, H., Gupta, A., Abbeel, P. and Levine, S., 2018. Soft actor-
critic algorithms and applications. arXiv preprint arXiv:1812.05905.

[26] Haarnoja, T., Zhou, A., Abbeel, P.,and Levine, S. (2018, July). Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In International conference on machine learning
(pp. 1861-1870). PMLR.

74

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on September 04,2025 at 18:52:53 UTC from IEEE Xplore.  Restrictions apply. 


