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CAN VISION-LANGUAGE MODELS ANSWER FACE TO
FACE QUESTIONS IN THE REAL-WORLD?

Anonymous authors
Paper under double-blind review

Q: Was the first clap louder?
A: No, the second clap was louder.

0 t

Q: Is this my eye or my nose?
A: You are pointing to your right eye.

0 t

Q: How many times do I clap my tongue?
A: You clicked your tongue 6 times.

0 t
begin answer

begin answer

begin answerQ: Am I using this right?
A: No, the right way to use the pan would be to put it on the stove [...]

0 t

Q: How many times did I throw and catch this ball?
A: You threw and caught the ball twice.

0 t

Q: What time does the clock say? 
A: It is around 10:05 according to the wall clock.

0 t

begin answer

begin answer

begin answer

Figure 1: We present Interactive Video Dataset (IVD), a dataset collected in an online question-
answering setup, where users pose open-ended questions using their camera and microphone. IVD
offers videos with raw audio, annotated textual transcriptions of the spoken questions, and text
answers with annotated timestamps. These timestamps indicate when a question can be sensibly
answered given the video context. IVD serves as a realistic and challenging dataset for situated visual
reasoning in Large Multi-modal Models.

ABSTRACT

AI models have made significant strides in recent years in their ability to describe
and answer questions about real-world images. They have also made progress in
the ability to converse with users in real-time using audio input. This raises the
question: have we reached the point where AI models, connected to a camera and
microphone, can converse with users in real-time about scenes and events that are
unfolding live in front of the camera? This has been a long-standing goal in AI
and is a prerequisite for real-world AI assistants and humanoid robots to interact
with humans in everyday situations. In this work, we introduce a new dataset and
benchmark, the Interactive Video Dataset (IVD), which allows us to assess the
extent to which existing models can support these abilities, and to what degree
these capabilities can be instilled through fine-tuning. The dataset is based on a
simple question-answering setup, where users ask questions that the system has to
answer, in real-time, based on the camera and audio input. We show that existing
models fall far behind human performance on this task, and we identify the main
sources for the performance gap. However, we also show that for many of the
required perceptual skills, fine-tuning on this form of data can significantly reduce
this gap.

1 INTRODUCTION

Recent advancements in Large Multimodal Models (LMM) have significantly enhanced the ability of
AI systems to interact naturally and fluently with users in real-time. Existing AI agents can process
audio, speech, and visual inputs to engage in conversations about images or videos. However, the
conversational capabilities of state-of-the-art LMMs such as GPT-4o (Hurst et al., 2024) are limited
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to question answering on visual understanding and reasoning tasks, such as describing images or
answering questions that require inferring object positions and relations in the visual input. These
systems often fail to provide truly situated, live, conversational experiences (Figure 1) that we may
expect from humanoid robots or real-time video-call chatbots in the future.

We hypothesize that this limitation stems from the fact that current vision-language datasets and
benchmarks are biased toward offline reasoning about images and videos. That is, the models receive
the entire visual input and the entire question at once before being required to provide an answer. This
is because the training data for such tasks can be easily sourced on the internet or easily generated
through automated pipelines. There is a distinct lack of benchmarks and datasets that test genuine,
real-time, “face-to-face” conversational skills. A separate but related problem is that models are not
trained to respond at the appropriate time in a conversation – knowing “when to say” is crucial for
conducting real-world conversations, yet this timing skill remains underdeveloped and understudied
in current benchmarks.

To address these challenges and assess the limitations of existing models, we introduce the Interactive
Video Dataset (IVD), a new dataset and benchmark designed for end-to-end trained systems aimed at
real-time user interaction. IVD is structured as an online question-answering setup, where users pose
open-ended questions using their camera and microphone, and the system must respond appropriately.
Our work differs fundamentally from other related datasets and benchmarks by introducing an entirely
online question-answering paradigm where both questions and answers evolve in real-time as the
video unfolds, requiring models to maintain contextual awareness while handling inherent ambiguities
in human references to visual elements. We show how this simple type of interaction allows us to
capture a rich set of visual concepts that fall under the umbrella of situated visual understanding,
including deictic (referring) expressions, pointing gestures, object ambiguities, behavior and action
understanding, and counting, as well as audio-visual concepts. An overview of our dataset is shown
in Figure 1. Due to the in-the-wild nature of the recordings, the videos exhibit considerable variation
in lighting conditions, background settings, the range and nature of questions posed, actions performed
by subjects, and other audio-visual characteristics.

To showcase the unique challenges our dataset presents, we conduct a series of experiments where
we evaluate multiple open and closed-source state-of-the-art models, and fine-tuned models on our
dataset. Our experiments reveal that the seemingly simple interaction of answering questions live,
in real-time, is highly challenging for existing AI systems (Hurst et al., 2024), even if they are
otherwise good at performing visual reasoning. Our experiments indicate that the failure modes of
existing systems can be attributed to their: 1. difficulty integrating visual and auditory information in
real-time to disambiguate questions, 2. inability to determine the appropriate time at which to answer,
and 3. inability to answer questions whose answers require situational common sense. Our dataset
supports research on online LMMs capable of situated audio-visual reasoning, and can be leveraged
to build conversational agents that interact with users in real-time.

Our contributions are summarized as follows:

1. We introduce IVD, a novel multi-modal dataset designed to evaluate online situated audio-visual
reasoning and real-time conversational skills.

2. We benchmark existing LMMs and identify critical weaknesses in their ability to handle real-life
conversations.

3. We demonstrate that these limitations can be effectively mitigated by fine-tuning models on
appropriate audio-visual conversational data.

4. We develop a simple yet effective baseline to process streaming audio-visual inputs, departing
from traditional offline paradigms.

2 RELATED WORK

Offline Video Evaluation Benchmarks: Prior work on video understanding benchmarks has primar-
ily focused on offline evaluation paradigms. There have been multiple temporal video understanding
benchmarks for open-domain understanding (Li et al., 2024b; Liu et al., 2024b; Xu et al., 2023;
Patraucean et al., 2023a; Ning et al., 2023; Hu et al., 2025), hand movements (Goyal et al., 2017;
Materzynska et al., 2019), articulated motion (Dagli et al., 2024), full human body motion (Panchal
et al., 2024), robotics (Haresh et al., 2024; Yu et al., 2024; Bao et al., 2023a; Gu et al., 2023; Brohan
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Table 1: Comparison of various benchmarks encompassing several key aspects.

Benchmark #Videos #QA-Pairs Annotation Audio Subtitle Interactive Face-to-Face

AVSD (DSTC7) (Alamri et al., 2018) 11156 ∼111560 Manual ✓ ✗ ✓ ✗
KnowIT VQA (Garcia et al., 2020) 207 24282 Manual ✓ ✓ ✗ ✗
LifeQA (Castro et al., 2020) 275 2326 Manual ✓ ✓ ✗ ✗
How2QA (Li et al., 2020) 9035 44007 Manual ✓ ✓ ✓ ✗
MedVidQA (Gupta et al., 2023) 899 3010 Manual ✓ ✓ ✓ ✗
Social-IQ (Zadeh et al., 2019) 1250 7500 Manual ✓ ✗ ✗ ✓
Video-MME (Fu et al., 2024) 900 2700 Manual ✓ ✓ ✗ ✗
CodeVidQA (Raja et al., 2025) 2104 2104 Automatic ✓ ✓ ✓ ✗
Ego4D Social Interactions (et. al., 2022) 667 task-specific labels Manual ✓ ✗ ✓ ✓
TVQA (Lei et al., 2018) 21793 152545 Manual ✓ ✓ ✗ ✗
NExT-GQA (Xiao et al., 2024) 1557 10531 Manual ✓ ✓ ✓ ✗
STAR (Wu et al., 2024) 22000 60000 Automatic ✓ ✗ ✓ ✗

IVD 2900 2900 Manual ✓ ✓ ✓ ✓

et al., 2023; Jiang et al., 2022), and embodied reasoning (Yang et al., 2025b). These benchmarks
evaluate models’ ability to comprehend temporal relationships but operate in a fully offline manner.
Long-form video understanding has been addressed by datasets such as LVBench (Wang et al.,
2024b), and MoVQA (Zhang et al., 2023b), which extend the context window but fail to simulate
real-time constraints. In contrast, our IVD dataset and benchmark focuses on real-world questions
answering.

Situated Video Evaluation Benchmarks: Situated question answering has also been studied by
(Das et al., 2018; Ma et al., 2023) and follow-up works (e.g. (Wang et al., 2023; 2025; Wu et al.,
2023)). A separate line of work has studied “common sense” situational understanding for AI models,
albeit not a VQA format. This includes the work by (Goyal et al., 2017; et. al., 2022; Patraucean
et al., 2023b) and recent work on situated live dialogue (Bao et al., 2023b; Panchal et al., 2024). Our
work is similar in that it involves real-world interaction. In contrast to the existing work, questions in
our dataset are free-form and open-ended rather than task-specific and oriented towards a specific
goal.

In contrast to existing question-answering tasks, the task introduced in our work involves real-world
interaction with a user, and as such the input is not confined to only visual information. Moreover,
we place the task into a truly situated context, where correct answers require a true understanding of
the scene unfolding in the real world. In contrast to that line of work, in this paper, we study situated
questions answering in a real-world not synthetic environment, by interacting “live” with a human
subject, and by using audio and video input.

Online Models: Recent work on online video processing includes VideoLLM-online (Chen et al.,
2024) and FlashVStream (Zhang et al., 2024), which attempt to address real-time processing con-
straints but remain limited in their ability to handle deictic references and situated understanding and
also do not include audio. The StreamVLM (Panchal et al., 2024) supports situated understanding
but is limited to the fitness domain and also lacks audio. Furthermore, existing benchmarks typi-
cally evaluate general visual understanding rather than modeling the situated, interactive nature of
real-world human-AI conversations about visual content.

3 IVD

The purpose of the IVD is to train and evaluate AI models on situated visual understanding. Each
data instance comprises a video sequence annotated with temporally synchronized question-answer
pairs. Furthermore, the dataset also includes the ground-truth answer to the question, making it
possible to probe a model’s understanding of the situation depicted in a given clip. Structuring the
data as a simple question-answering task allows us to separate situated understanding from multi-hop
conversational capabilities. The latter is a similarly difficult, but largely orthogonal, challenge for
existing models. A side-by-side comparison of the features offered by IVD and other related datasets
is presented in Table 1.
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3.1 DATA COLLECTION

Recording: Crowd workers were instructed to record short videos using the camera and microphone
of their mobile phone or laptop. They were free to choose the content of their videos but were
shown examples featuring various gestures, actions, and objects to help them understand the dataset’s
purpose. The participants received written instructions explaining that these videos would be used to
train and evaluate AI systems in understanding visual scenes. The instructions clarified that the AI
system’s purpose would be to correctly answer a single question rather than engage in a multi-step
conversation. While recording their videos, crowd workers posed a question related to what was being
shown. They were encouraged to be creative with their questions while ensuring they referenced
the action or scene being recorded. After collection, all videos were inspected for audio and video
quality, and their suitability for inclusion in the dataset.

Annotation Methodology: Each video in the IVD dataset has three annotations. First, it includes
a human-generated transcript of the question asked during the recording. Second, we provide a
human-generated answer to that question. Third, we added a timestamp that marks the specific
moment when it would be appropriate to answer the question. The timestamp does not always
coincide with the end of the spoken question–in many cases, additional video context is required after
the question was asked. For example, if a participant asked "What action is this?" before performing
the action, the appropriate moment to answer would be after the action was visible in the video.
This approach ensures that annotations also reflect when sufficient information becomes available to
answer the question correctly, if required, rather than simply when the question ends. Finally, all of
our submissions were reviewed by humans to verify their accuracy.

Unlike datasets constructed from pre-recorded videos with post-hoc annotations, our contempo-
raneous question-asking approach places a strong demand on situational context understanding.
Our videos capture authentic uncertainty about future events in the video, including questions that
genuinely test temporal reasoning, and require situational awareness to answer at the appropriate
time. The annotations for answer timing are particularly valuable as they acknowledge that certain
queries require monitoring the audio or visual stream over time to aggregate relevant information,
and ascertaining when to respond. Through our collection approach, we provide a robust benchmark
for evaluating a model’s proficiency in understanding and responding to situated audio-visual stimuli.
We show a few examples from our dataset in Figure 1 using four frames per video.

3.2 POST-PROCESSING WORKFLOW

Following the initial data collection phase, we perform comprehensive post-processing to enhance
dataset utility by adding structured metadata and further ensure dataset quality. This section details
our approach to quality assurance and taxonomic categorization of the dataset.

Quality Checks: To ensure data quality and ethical standards, we used a multi-stage quality control
process. Each video underwent automated evaluation followed by manual inspection by trained
evaluators who assessed the content according to predefined exclusion criteria. Specifically, we
examined all videos for the presence of 3rd persons, private data, and protected intellectual property;
for the presence of inappropriate content, such as hate speech, and other potentially harmful elements;
for linguistic compliance (clearly intelligible, English audio content); and for technical quality
(absence of severe motion blur, compression artifacts, etc.).

After inspection, 2900 videos were deemed suitable and included in the dataset.

Semantic Categorization: To facilitate fine-grained analysis of model performance across different
visual reasoning tasks, we developed a taxonomy of question types. The taxonomic structure allows
for systematic evaluation of model performance across diverse visual reasoning tasks, allowing us to
identify specific strengths and weaknesses in situated understanding capabilities. Each video-question
pair was assigned to one or more of 13 predefined semantic categories representing distinct visual
reasoning capabilities. The categorization process uses a semi-automated approach: first, a large
language model (LLM) is used to perform preliminary classification based on question content and
transcribed answers; next, human annotators verify and refine the categories. Our semantic taxonomy
encompasses the categories listed in Appendix B.2.
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Table 2: Dataset size metrics (total videos, vocabulary size), video characteristics (total frames,
average length, frame rate, resolution), and linguistic properties of questions and answers. Average
answer timestamps are represented by the average time in the video when the question should
optimally be answered as a percentage of the video duration. The token statistics are calculated with
the Llama-3 tokenizer. Standard deviations are shown in parentheses.

Statistic Value

Total Videos 2900
Vocabulary Size (words) 3624

(tokens) 3072
Total Frames 443350
Avg. Video Length (s) 5.10 (±0.44)
Avg. Question Length (words) 6.09 (±1.94)

(tokens) 7.60 (±2.28)
Avg. Answer Length (words) 7.23 (±4.31)

(tokens) 9.73 (±5.61)
Avg. Short Answer Length (words) 1.38 (±0.82)

(tokens) 1.98 (±1.27)
Avg. Resolution (width) 640.00 (±0.00)

(height) 382.29 (±46.01)

Statistic Value

Avg. Answer Timestamp 81.47% (±13.89)
Avg. FPS 30 (±0.00)

Question Types (Total)
Questions with “where” 47
Questions with “how” 512
Questions with “what” 1102

Deictic References (Total)
Questions with “here” 32
Questions with “these” 39
Questions with “that” 45
Questions with “there” 105
Questions with “this” 568

Table 3: Distribution of samples across the 13 semantic categories in our dataset, with the answer
timestamp as a percentage of video duration for each category. Percentages in the Samples column
show the relative distribution of categories within the dataset.

Category Answer Timestamp Samples

Action Attributes 84.31% (±13.56) 155 (5.34%)
Action Counting 92.22% (±8.73) 225 (7.76%)
Action Detection 85.46% (±13.22) 440 (15.17%)
Action Understanding 81.47% (±15.07) 110 (3.79%)
Object Attributes 79.52% (±13.41) 562 (19.38%)
Object Counting 78.41% (±12.75) 286 (9.86%)
Object Detection 76.95% (±15.65) 211 (7.28%)

Category Answer Timestamp Samples

Object Referencing 79.18% (±13.61) 706 (24.34%)
Object Understanding 80.63% (±14.07) 79 (2.72%)
Scene Understanding 79.91% (±13.58) 38 (1.31%)
Audio-Visual 90.09% (±11.49) 22 (0.76%)
OCR 83.04% (±13.08) 23 (0.79%)
Subjective 77.39% (±15.15) 43 (1.48%)
Total 81.47% (±13.89) 2900 (100%)

Answer Normalization: To facilitate better quantitative evaluation and reduce ambiguity in model
assessment, we implemented an answer normalization process. For each original free-form response,
we generated a condensed “short-answer” version that retained only the essential information re-
quired to correctly address the question. We follow a similar semi-automated method as semantic
categorization for generating short answers. During evaluation, we use both the short answer and the
original ground truth to evaluate models.

3.3 DATASET STATISTICS

Dataset Composition: The IVD dataset consists of 2900 video clips and thus 2900 unique question-
answer pairs. Table 2 summarizes the statistics of the dataset. The majority of clips have a length
between 4 and 8 seconds. This range captures the natural timeframe in which a situated question
about the visual scene can be posed and answered. We show the breakdown by the semantic taxonomy
(Section 3.2) of the question-answer pairs in Table 3.

Temporal Characteristics: A distinctive feature of the IVD dataset is the temporal relationship
between the point in time when a question is posed and the point in time when sufficient information
is available to answer it. We analyze the temporal characteristics by category in Table 3, which shows
the distribution of optimal answer timestamps relative to video duration for each category. As we
observe from Table 3, action-related categories generally require observing a larger portion of the
video before answering, with Action Counting showing the highest optimal time (92.25% of video
duration). This reflects the natural temporal dependency in action-related questions, where the answer
often depends on observing the completion of an action sequence. In contrast, Object Detection
(76.97% of video duration) and Subjective questions (77.39% of video duration) can typically be
answered earlier in the video, often right after the question is asked.

4 BASELINE STREAMING APPROACH

Two critical features of IVD include:
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Table 4: ASR performance comparison. Evaluation of Automatic Speech Recognition (ASR)
systems on the IVD dataset using standard text similarity metrics. The value ∆t represents the mean
absolute error in the optimal time to answer.

Model METEOR ↑ BLEU ↑ ROUGE-L ↑ ∆t ↓ ∆t (−) ↓ ∆t (+) ↓

Whisper (Radford et al., 2022) 90.01 80.95 90.32 - - -
Whisper-Streaming (Machácek et al., 2023) 92.34 74.57 91.82 0.83 -0.94 0.61

Self-Contained Videos: The videos are self-contained, with the question embedded in the audio
channel. An optimal model should be capable of answering these questions directly from the videos
without the need for transcription.

When-to-Answer Desiderata: The videos are sufficiently long to include a scenario, a question,
and any additional frames. An effective streaming model should identify the ideal moment to start
answering the question, which is when both the question and any information necessary to answer it
are present.

Current state-of-the-art LMMs do not integrate streaming and concurrent processing of audio and
video information for situational interaction. To address this gap, we propose a novel streaming
approach that combines a streaming automatic speech recognition (ASR) system to transcribe
questions and detect answer moments, paired with a Video-LMM to analyze video content and
provide answers.

In detail, our streaming approach relies on the Streaming-Whisper model (Machácek et al., 2023)
to identify “when to answer”. The Streaming-Whisper model (Machácek et al., 2023) uses the
LocalAgreement algorithm (Liu et al., 2020) to transcribe text in a streaming setup. The LocalAgree-
ment algorithm transcribes the input audio in chunks and a subset of previous chunks are used to
condition the transcription of the next chunk. In practice, we found that a chunk size of 0.25 seconds
is sufficient for accurate streaming transcription for this data. Processing the input audio in chunks
allows us to detect the end of the question asked by the participant in the video. It is important to
note that, as mentioned above, the end of a question does not necessarily capture the optimal moment
for an answer, as some necessary information may arise later in the video. Thus, we consider this
approach as a reasonable compromise given the current limitations of ASR solutions and LMMs.
After the end of the question is detected, the input video and audio up to that timestamp, along with
the transcribed question, are provided as input to the LMM backbone. The LMM backbone can then
process the multi-modal video and audio inputs along with the transcribed question to provide an
answer. We explore different LMM backbones as outlined in Section 5.1.

5 EXPERIMENTS

We conduct comprehensive experiments to evaluate various open- and closed-source models on IVD.

5.1 EXPERIMENTS SETUP

Configurations: The experiments are performed within four distinct setups:

1. Streaming setup: Under this setup, we evaluate the baseline streaming approach introduced in
Section 4.

2. Offline setup: In the baseline streaming approach, evaluating LMMs can be challenging due
to potential inaccuracies in the questions extracted by the streaming ASR system, leading to
accumulated errors. Therefore, in the offline setting, we use ground-truth questions to evaluate
the models. This approach ensures that the evaluation is based on perfectly transcribed questions,
allowing for an effective assessment of merely a model’s answering performance. As a result, the
resulting performance is an optimistic estimate of overall real-world performance.

3. Impact of audio: Among existing LMMs, the VideoLLaMA family of models (Zhang et al.,
2023a) are state-of-the-art models capable of simultaneously processing both audio and video
content. Although these models cannot transcribe speech, they can utilize audio content as a
complementary source of information, thereby potentially enhancing accuracy. We evaluate these
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Table 5: Evaluation of baseline LMMs on the IVD dataset using (a) questions and estimated when-to-
answer timestamps by Whisper (Radford et al., 2022) and (b) ground-truth questions and timestamps.
Corr. represents correctness by LLM judge.

ASR Questions and Timestamps Human Questions and Timestamps
Model Corr. ↑ BERT ↑ METEOR ↑ BLEU ↑ ROUGE-L ↑ Corr. ↑ BERT ↑ METEOR ↑ BLEU ↑ ROUGE-L ↑
Chat-UniVi (Jin et al., 2024) 34.66 89.94 37.47 6.08 28.45 40.79 90.50 40.02 7.24 31.22
InstructBLIP (Dai et al., 2023) 35.03 82.19 4.35 0.02 10.00 39.14 82.03 4.54 0.07 10.72
LLaMA-VID (Li et al., 2024c) 39.41 90.51 37.19 5.84 29.80 43.0 90.78 37.55 5.42 29.82
LLaVA-NeXT (Liu et al., 2024a) 19.45 85.29 22.85 1.38 11.64 22.66 85.78 24.50 1.67 13.22
Video-ChatGPT (Maaz et al., 2024) 32.45 90.53 38.13 7.58 31.08 36.59 91.01 40.59 9.07 33.58
VideoChat (Li et al., 2024a) 3.69 85.05 23.48 1.08 12.22 3.52 85.20 24.39 1.03 12.54
VideoChat2 (Li et al., 2024b) 44.66 91.13 45.49 11.35 41.38 50.35 91.52 47.93 12.43 43.87
Video-LLaVA (Zhu et al., 2023; Lin et al., 2023) 20.28 87.77 27.15 1.98 19.31 15.0 83.38 2.90 0.00 15.66
VideoLLaMA (Zhang et al., 2023a) 30.76 89.50 39.06 7.62 30.84 35.93 90.45 43.88 9.86 34.93
VideoLLaMA2-7B (Cheng et al., 2024) 43.34 91.18 47.20 13.93 40.63 50.07 91.71 51.08 16.41 43.97
VideoLLaMA2-72B (Cheng et al., 2024) 46.52 91.42 46.58 14.03 41.70 50.83 92.29 51.13 16.12 45.76
VideoLLaMA3-7B (Zhang et al., 2025) 50.59 90.92 45.20 11.21 40.54 56.38 91.63 48.56 12.72 43.84
VideoLLM-online (Chen et al., 2024) – – – – – 23.76 88.67 33.73 4.16 26.27
Qwen2.5-VL-7B (Wang et al., 2024a) 44.90 87.17 34.95 3.88 26.52 50.62 87.58 37.37 4.66 29.44
Qwen2.5-Omni-7B (Xu et al., 2025) 43.97 86.65 33.45 2.77 20.57 45.90 86.73 33.98 2.87 20.98
GPT-4o (Hurst et al., 2024) – – – – – 58.76 89.36 51.18 15.72 42.55

Human (subset) – – – – – 87.33 93.01 53.21 17.40 49.76

models by examining the impact of additional audio on the accuracy of their question-answering
capabilities.

4. Impact of when-to-answer: This experiment investigates how the timing of the when-to-answer
moment affects model performance. We utilize the Qwen2.5-Omni model (Xu et al., 2025), the
only publicly available model capable of concurrently processing both audio and video modalities
while also transcribing speech. The model is provided with both the ground-truth and ASR-
derived when-to-answer timestamps. It then transcribes the question and generates an answer,
allowing us to compare the outputs and assess the influence of timing on response quality.

Baseline Models: We experiment with various open-source and closed-source LMMs.

The open-source models we evaluate include InstructBLIP (7B) (Dai et al., 2023), Video-ChatGPT
(7B) (Maaz et al., 2024), VideoChat (7B) (Li et al., 2024a), VideoChat2 (7B) (Li et al., 2024b), LLaVA-
NeXT (7B) (Liu et al., 2024a), LLaMA-VID (13B) (Li et al., 2024c), Video-LLaMA (13B) (Zhang
et al., 2023a), VideoLLaMA2 (7B/72B) (Cheng et al., 2024), VideoLLaMA2.1 (7B) (Cheng et al.,
2024), VideoLLaMA3 (7B) (Zhang et al., 2025), Video-LLaVA (7B) (Zhu et al., 2023; Lin et al.,
2023), Chat-UniVi (13B) (Jin et al., 2024), Qwen2.5-VL (7B) (Wang et al., 2024a), and Qwen2.5-
Omni (7B) (Xu et al., 2025) The model sizes range from 7B to 13B parameters for the language
backbone, with the exception of VideoLLaMA2-72B (Cheng et al., 2024). All models are evaluated
in a zero-shot setting. We utilize the vision and audio heads provided with the checkpoints to process
the input. For InstructBLIP (Dai et al., 2023), an image model, we sample 4 frames from each video,
process these frames with the image encoder and a Q-Former (Zhang et al., 2023c) as individual
images, and then treat all features as a long sequence of image tokens for the language model.

Additionally, we evaluate a closed-source model, GPT-4o (Hurst et al., 2024), in a zero-shot fashion.
Videos are preprocessed by uniformly selecting 4 frames from each video and down-scaling the
resolution to half. The query used to prompt GPT-4o is provided in the appendix.

Evaluation Metrics: Since the answers in IVD are in free-form, we determine the correctness of
an answer using an LLM judge that receives a question, the ground-truth answer, and the predicted
answer, alongside the short answer and the category of the question, and determines if the predicted
answer is correct. We used a pre-trained Qwen-32B model (Yang et al., 2024) as the LLM judge
(see Appendix C.5 for comparisions with other LLM judges). The prompts that were used are
provided in the appendix. In addition, we report Bert (Zhang* et al., 2020), METEOR (Lavie
& Agarwal, 2007), BLEU (Papineni et al., 2002), and ROUGE (Lin, 2004) scores between the
ground-truth answers and the predicted answers.

5.2 RESULTS

We now present the results obtained from the three settings described in Section 5.1.

Streaming setup: Table 4 presents the transcription results obtained from Whisper-
Streaming (Machácek et al., 2023), where the transcription quality is quantified using BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and METEOR (Lavie & Agarwal, 2007) scores, by comparing
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Figure 2: Evaluations of the public and finetuned VideoLLaMA2.1-7B-AV (Cheng et al., 2024) in
vision + audio and vision-only settings.

the transcribed questions to the ground-truth questions. The when-to-answer metric, denoted by
∆t in the table, is measured as the Mean Absolute Error between the time-to-answer extracted by
Whisper-Streaming and the ground-truth value. In addition to the overall MAE, we also report the
mean values of both negative and positive ∆t instances. Notably, the average negative ∆t is larger
in magnitude, suggesting that models which initiate responses immediately after detecting the end
of a question tend to answer prematurely—often before sufficient contextual information has been
received. We also report the results obtained from the standard Whisper model (Radford et al., 2022)
as an additional baseline. It is worth noting that this model does not return any timestamps alongside
the transcriptions.

The baseline LMMs are evaluated using a video trimmed at the when-to-answer timestamp and the
question, both extracted via Whisper-Streaming (Machácek et al., 2023). Table 5 summarizes the
baseline results.

Offline setup: For the evaluation in the offline setup, we provide the baseline LMMs with a video
that is trimmed at the ground-truth when-to-answer timestamp alongside a ground-truth question.
We summarize these results in Table 5. Additionally, we engage a non-expert human annotator to
re-annotate a random subset of the dataset containing 300 samples, establishing a human baseline.

Impact of audio: The only publicly available checkpoint from the VideoLLaMA (Cheng et al., 2024)
family that supports concurrent audio and video processing is VideoLLaMA2.1-7B-AV (Cheng et al.,
2024). We evaluate this model using ground-truth transcribed questions in two distinct settings. In
the first setting, we provide the model with both audio and visual information, while in the second
setting, we supply only visual information. The results, depicted in Figure 2 show setting (1) in
red and setting (2) in blue . Interestingly, and contrary to expectations, the model’s performance

degrades with the addition of audio information.

We fine-tune this model on IVD using both audio and video modalities. Due to the dataset’s small
size, we apply 5-fold cross-validation. The vision encoder remains frozen, while the LLM backbone
and audio pathway are fine-tuned for two epochs per fold. We repeat the initial experiments with
the fine-tuned model. Results in Figure 2 show setting (1) in purple and setting (2) in green . The
fine-tuned model performs best when both modalities are available but underperforms the pretrained
model in some video-only cases, likely due to its adaptation to multimodal inputs. Since IVD relies
heavily on audio cues, missing audio during inference significantly impairs performance.

Impact of when-to-answer: In this experiment, we evaluate the Qwen2.5-Omni (7B) (Xu et al., 2025)
model to assess the impact of accurately identifying the when-to-answer moment. The model is tested
using timestamps derived from both ground-truth (GT) annotations and ASR-Stream predictions. As
illustrated in Figure 3, the results demonstrate that precise estimation of the when-to-answer moment
can lead to substantial improvements in model performance.

5.3 DISCUSSIONS

To facilitate a more comprehensive analysis of the strengths and weaknesses of the baseline LMMs,
we compare the correctness of selected baseline LMMs across individual categories of IVD, as
illustrated in Figure 4. The human baseline is derived from a small subset of the data, as detailed in
Section 5.2. As demonstrated in Table 5 and Figure 4, there is a significant performance gap between
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a non-expert human and all the models, including state-of-the-art systems, across all evaluation
categories. Humans demonstrate near-perfect performance in categories where AI systems struggle
significantly, particularly in action counting, audio-visual integration, and object referencing. This
disparity is most pronounced in tasks requiring temporal reasoning and deictic reference resolution,
where humans outperform the best AI system by a large margin.

Furthermore, as shown in Figure 4, the baseline models exhibit inconsistent capabilities when faced
with various types of situated visual reasoning. While these models perform reasonably well on
basic object detection tasks, their performance declines markedly on tasks involving action counting,
temporal sequencing, and audio-visual integration. This capability gap indicates that current models
are optimized for static scene understanding rather than the dynamic temporal reasoning required for
real-time interaction scenarios.

The most common failure modes include: (1) misinterpreting deictic references, (2) incorrect action
counting, (3) temporal sequencing confusion, and (4) audio-visual misalignment. Many of these
failures occur regardless of model size or architecture type, suggesting fundamental limitations in
current approaches to multi-modal integration rather than just capacity constraints.

Our fine-tuning experiments show that the performance improvements from fine-tuning are not
distributed uniformly across task categories. As shown in Figure 2, fine-tuning produces the most
dramatic gains in action counting (+16.96%), action understanding (+10.00%), subjective (+23.26%),
and audio-visual (+17.39%) tasks, while yielding minimal improvements in object attributes (+1.24%)
and scene understanding (+2.63%). This asymmetric benefit pattern suggests that certain situated
understanding capabilities are more amenable to data-driven adaptation than others. Particularly, even
after fine-tuning, performance on action counting remains very low (29.91%), indicating that these
temporal reasoning capabilities may require more sophisticated architectural inductive biases.

As shown in Figure 2, the integration of audio and visual modalities results in substantial performance
gains across nearly all task categories. The VideoLLaMA2.1-7B-AV model shows a significant
improvement over its vision-only counterpart in audio-visual tasks as we would expect. However,
this improvement extends beyond explicitly audio-related tasks, with notable gains in subjective
(+37.61%), object detection (+9.48%), and object counting (+10.14%). These findings empirically
confirm our hypothesis that existing vision-language systems are fundamentally limited by their
modular pipelines that process visual and audio information separately. We show end-to-end multi-
modal training creates emergent capabilities that transcend simple feature concatenation, enabling
more sophisticated situated understanding in real-time interactions.

6 CONCLUSION

We introduce IVD, a comprehensive benchmark, and dataset designed to assess and train LMMs
(video, audio, and language) on a wide variety of tasks requiring responding to humans in real time.
Through extensive experiments, we identify key challenges with existing models for situated visual
understanding. Our dataset follows a simple question-answering paradigm and thereby tests for
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situated understanding capabilities without being confounded by the need for multi-hop conversational
capabilities. The dataset also does not require any domain-specific knowledge or complex reasoning
skills. Yet we show that the task is still highly challenging for LMMs. Based on these insights, we
hope that IVD will inspire and guide future research, driving the development of AI systems that can
interact with humans in realistic scenarios in an online fashion.
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Appendix

A SOCIAL IMPACTS OF IVD

A.1 DATA RELEASE

Our data set and code will be publicly released upon acceptance.

A.2 LIMITATIONS OF IVD

While our experiments with IVD indicate that it presents a significant challenge for current multimodal
models—and despite the dataset being human-validated for annotation accuracy—there are several
potential limitations and sources of bias to consider:

1. Relatively small class sizes, which may limit the diversity of questions and answers; 2. Recordings
conducted in controlled environments, potentially reducing variability in lighting, background, and
camera angles, which may affect model generalization; 3. Possible demographic biases in terms of
gender, age, and ethnicity, which could impact model performance across diverse user groups.

A.3 PRIVACY AND ETHICS IN IVD

The data was collected under direct agreements with crowd workers, permitting both research and
commercial use ensuring compliance with applicable privacy regulations, including GDPR-equivalent
standards. All videos were manually reviewed to identify and exclude any content containing
issues such as the presence of individuals in the background. Personally identifiable information,
including metadata, was removed to the extent possible to ensure participant privacy. Additionally,
all contributors received fair and appropriate compensation in accordance with the standards of their
respective regions. All contributors signed a consent form that explicitly permits both research and
commercial use of their video and audio data, including use in training AI models. We will provide a
contact email on the dataset release page, allowing participants to request data removal at any time.

A.4 BROADER IMPACT OF IVD

In addition to the aforementioned sources of bias, language models trained on IVD may generate
harmful or biased content, propagate misinformation, or offer inappropriate advice. These risks must
be carefully considered when interacting with, deploying, or building upon such models.

B ADDITIONAL DATASET DETAILS

B.1 ADDITIONAL EXAMPLES

We show additional video examples from our dataset in Figure B.1 to demonstrate the diversity of
examples in IVD.

B.2 SEMANTIC TAXONOMY

A detailed definition of the categories used in IVD is provided here.

Action Attribute: Inquiries regarding the manner in which an action was performed, such as
Which hand did I use to wave? or How fast did I jump?—tests ability to recognize fine-grained
characteristics of dynamic events.

Action Counting: Questions about the frequency of an action’s repetition, such as How many
times did I clap?—evaluates temporal reasoning and event segmentation capabilities.

Action Detection: Identifying the specific action that was performed, such as What am I doing
right now?—assesses basic activity recognition in dynamic scenes.
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Figure B.1: Each image showcases a different video from our collection, demonstrating the substantial
variation in visual scenarios captured within the dataset. These examples highlight the diversity of
environments (indoor and outdoor settings), participants, objects, actions, lighting conditions, camera
angles, and compositional elements present across the dataset.

Action Understanding: Questions about the purpose or outcome of an action, such as What does
this gesture mean? or Why am I moving the chair?—tests higher-level action interpretation and
intention recognition.

Object Attributes: Inquiries about the characteristics of an object, such as What color is this
book? or Is this cup empty or full?—evaluates fine-grained visual perception of static properties.

Object Counting: Determining the number of objects present, such as How many pens are on the
table?—tests quantitative reasoning and object individuation.

Object Detection: Identifying an object within the scene, such as Is there a lamp in this room?—
assesses basic object recognition capabilities.

Object Referencing: Indirectly pointing to an object within the scene, such as What am I pointing
at? or What is behind me?—evaluates spatial reasoning and deictic reference resolution.

Object Understanding: Questions about the nature or function of an object, such as What is this
tool used for?—tests semantic knowledge about objects beyond mere recognition.

Scene Understanding: Inquiries about the environment, such as What room am I in? or Is it
daytime or nighttime?—evaluates holistic scene interpretation.

Audio-Visual: Questions that require audio information for a complete answer, such as What
sound am I making? or Am I speaking loudly or softly?—tests cross-modal integration capabilities.

OCR: Extracting text from an object, such as What does this sign say?—evaluates the capability
to recognize text in the real world and within the context of the conversation.

Subjective: Soliciting general opinions about an object or scene, such as Does this outfit look
good?—tests a model’s ability to respond sensibly to subjective questions.

B.3 COMPARING IVD WITH OTHER DATASETS

We examine whether IVD overlaps visually or semantically with prior video–QA corpora by em-
bedding every clip with the Cosmos-CV8×8×8 tokenizer (NVIDIA, 2025; NVIDIA et al., 2025)
and measuring distances to clips from the closest public datasets: AVSD (DSTC7) (Alamri et al.,
2018), and Social-IQ (Zadeh et al., 2019).For each video, we first normalise the frame-rate to 8 FPS
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Table B.1: Nearest–neighbour L2 distances between IVD clips and each dataset.

Comparison Mean Median Min Max 5th Percentile

QIVD vs. QIVD 0.0157 0.0148 0.0031 0.1124 0.0062
QIVD vs. AVSD 0.0386 0.0369 0.0125 0.1238 0.0173
QIVD vs. Social-IQ 0.0894 0.0871 0.0257 0.2156 0.0458

100 75 50 25 0 25 50 75 100
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t-SNE Visualization of Video Datasets

QIVD
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Social-IQ

Figure B.2: Two-dimensional t-SNE projection of the 1024-dimensional embeddings for IVD (blue),
AVSD (red), and Social-IQ (green). IVD clips form a tight, coherent cluster that is clearly separated
from those of AVSD and Social-IQ, illustrating their distinct distributions in latent space.

and truncate (or zero-pad) to a maximum of 64 frames (8 seconds). The input frames are resized
to 224× 224 pixels. The resulting tensor, after batching and permuting to a V ∈ R1×3×64×224×224

(Batch × Channels × Time × Height × Width) format, is passed through the tokeniser’s encode
method. This yields a continuous latent representation. We average these latent features across the
temporal and spatial dimensions (dimensions 2, 3, and 4), obtaining a single embedding vector e per
clip.

Table B.1 reports, for each clip in IVD, the L2 distance to its nearest neighbour within IVD itself as
well as to AVSD (Alamri et al., 2018) and Social-IQ (Zadeh et al., 2019). The intra-IVD distances
(mean 0.0157, 5th percentile 0.0062) are smaller than the inter-dataset distances: AVSD (mean
0.0386, 5th percentile 0.0173) and Social-IQ (mean 0.0894, 5th percentile 0.0458). Only a small
fraction of IVD clips find their closest counterpart outside the test split indicating minimal overlap
with prior benchmarks and underscoring that IVD brings substantially novel visual–semantic content.

Figure B.2 further illustrates this separation in a two-dimensional t-SNE projection of the
1024-dimensional embeddings: IVD points form a tight cluster on the right, clearly distinct from
AVSD (red) and Social-IQ (green), which occupy disjoint regions. We demonstrate that IVD is
significiantly different than other closet datasets.

B.4 WHEN-TO-ANSWER STATISTICS

Figure B.3 plots, for every clip, the temporal offset between the moment an answer becomes valid and
the end of the video. Most questions are answerable within the last quarter of the clip, yet the long,
asymmetric tail indicates that a non-trivial fraction require substantially earlier or later responses,
confirming the need for models to reason over the full temporal span rather than assume a fixed
“answer now” point.

We also quantify how often the correct answer becomes valid only after the question has finished.
Because ground-truth end-of-question timestamps are unavailable, we use the end-of-question de-
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Figure B.3: Distribution of optimal answer time relative to the end of each clip. A value of x on the
horizontal axis means the ground-truth “answer now” moment occurs x seconds before the video
finishes.

Table B.2: Time difference statistics between ASR end-of-question and ground-truth when-to-answer.

Time Threshold Count Percentage

≥ 0.0 s after 2054 100.0%
≥ 0.5 s after 1351 65.8%
≥ 1.0 s after 745 36.3%
≥ 1.5 s after 375 18.3%
≥ 2.0 s after 186 9.1%
≥ 2.5 s after 90 4.4%
≥ 3.0 s after 34 1.7%
≥ 4.0 s after 5 0.2%

tected by Streaming-Whisper as a proxy. Table B.2 reports the count and fraction of clips whose
ground-truth when-to-answer time occurs at least a given threshold after the ASR end-of-question
time.

Figure B.4 shows the empirical distribution of ∆t, the error of our streaming-ASR estimate relative
to the human “when-to-answer” annotation. The skew toward negative values reveals a systematic
tendency of the ASR system to answer questions prematurey often before sufficient visual context is
available. Together, the figures highlight both the variability of optimal answer timing in real-world
interactions and the practical challenge of detecting that moment reliably in a streaming setting.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DEVELOPMENT ENVIRONMENT

All experiments were conducted in PyTorch. Every open-source LMM checkpoint was loaded in
half-precision (FP16), except for the 72B parameter VideoLLaMA2 (Zhang et al., 2023a) model,
which was run with post-training INT8 quantization to satisfy memory limits. Inference code for
each baseline was taken unmodified from the authors’ public repositories and executed with the
best-performing hyper-parameter settings provided by the authors. All of our experiments were run
on a single A100-80 GB GPU.

C.2 FINETUNING DETAILS

We initialize from the publicly released VideoLLaMA 2.1-7B-AV (Zhang et al., 2023a) checkpoint
and reuse the authors’ training recipe with minimal modifications. The 2900 clips in IVD are
partitioned into 5 non-overlapping folds via a deterministic hash of the video filename.Each fold in
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Figure B.4: Histogram of the signed error ∆t = tASR − tGT between the streaming-ASR trigger and
the human “answer now” annotation.

Table C.1: Trainable versus frozen modules during fine-tuning.

Module Status

Vision encoder (SigLIP-SO400M/16F (Zhai et al., 2023)) Frozen
Audio tower (BEATs iter-3 (Chen et al., 2022) + AS-2M) Trainable
Multimodal projector (A) Trainable
Multimodal projector (V) Frozen
LLM backbone (Qwen2-7B-Instruct (Yang et al., 2024)) Trainable

turn serves as validation, while the remaining four constitute the training split (∼2.32K clips). The
architecture components updated during fine-tuning are summarized in Table C.1. We present all the
hyperparameters in Table C.2.

C.3 LMM EVALUATION

The prompts supplied to the LLM-based judge are reproduced in Table C.3 and Table C.4. Since
subjective questions require a qualitatively different notion of correctness, we evaluate those cases
with a dedicated prompt that deems responses acceptable provided they are contextually appropriate,
friendly, and affirmatively phrased.

Table C.2: Hyper-parameters and optimisation settings for each cross-validation fold.

Hyper-parameter Value

Training precision bf16
Global batch size 8 videos (1 × 8)
Frames per clip 8
Epochs 2
Optimizer AdamW (Loshchilov & Hutter, 2019)
Adam (β1, β2, ε) (0.9, 0.999, 10−8)
Weight decay 0
Learning rate schedule 2× 10−5→0 (cosine), 3% warm-up
Gradient accumulation steps 8
Gradient clip-norm 1.0
Distributed strategy Deepspeed ZeRO-2 (parameter off-load) (Rajbhandari et al., 2020)
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General Correctness Evaluation

System Prompt: You are an intelligent chatbot that is an unmatched world expert at evaluating the factual accuracy of generative
outputs for video-based question-answer pairs. You are tasked with evaluating the correctness of a predicted answer by comparing it
to a reference answer. The answers are to the same question. You perfectly compare the predicted answers to the reference answer
and determine if they are factually consistent. As needed, you expertly consider the short version of the reference answer which
contains only relevant details, and the question category.
You are a perfectionist at adhering to these criteria for correctness: Follow these steps:

• You are given the Question, the Category, the Reference Answer (short), the Reference Answer, and the Predicted
Answer.

• Read the Question: Carefully read and understand the question provided.
• Read the Category: Take note of the category of the question to understand the context.
• Read the Reference Answer (short): Carefully read and understand the reference short answer that contains the key

point.

– If the short answer is ’NA’, IGNORE the short answer.

• Read the Reference Answer: Carefully read and understand the reference answer provided.
• Read the Predicted Answer: Carefully read and understand the predicted answer that needs to be evaluated.
• Compare the Statements: Compare the predicted answer to the reference answer, focusing on the accuracy of the

information and the presence of key details. Pay VERY CLOSE attention to the following notes:

– Ensure the predicted answer directly addresses the question and aligns with the reference answer’s key informa-
tion.

– Verify that the predicted answer does not contradict the reference answer.
– Check for logical consistency between the question and the predicted answer.
– The reference answer or the predicted answer may include extra details that are not requested in the question.

Only consider the answer details relevant to the question.
– The predicted answer MUST be factually accurate and consistent with the reference answer.
– Consider synonyms or paraphrases as valid matches.
– If the predicted answer is a refusal to answer, treat it as INCORRECT.

• Provide a Judgment: Based on your comparison make a decision if the predicted answer is CORRECT or INCORRECT.

User Prompt: Please evaluate the following video-based question-answer pair:
Question: {Question}
Question category: {Question category}
Reference Answer: {Reference Answer}
Reference Answer (short): {Reference Answer (short)}
Predicted Answer: {Predicted Answer}

• Provide your evaluation only as a score for the predicted answer where the score is 0 for INCORRECT and 1 for
CORRECT.

• Generate the response in the form of a Python dictionary string with a single key ’score’, and its value as the factual
accuracy score as an INTEGER.

• DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION AND DO NOT RETURN INVALID
DICTIONARIES. Only provide the Python dictionary string.

• For example, your response should look like this: {’score’: int(score)}.

Table C.3: We use these prompts to evaluate the correctness of LMM-generated answers.

C.4 USING DIFFERENT VIDEO SAMPLING STRATEGIES

We study how restricting visual evidence to a short temporal window around the moment the question
is spoken affects performance. For a given clip, we consider the segment spanning ±0.5, ±1.0, ±2.0,
±3.0, ±4.0, or ±5.0 seconds around the question timestamp and uniformly sample frames from that
segment. We evaluate Qwen2.5-VL-7B under these settings as well as the full-video baseline. Results
are reported in Table C.5. Consistent with the intuition that many questions require context before
and after the utterance, very short windows harm performance. Wider windows recover accuracy,
with ±3–±4 seconds yielding the best results; beyond ±5 seconds, inputs effectively cover the full
clip and performance plateaus.

C.5 LLM JUDGE ACCURACY

To evaluate the accuracy of the LLM judge, we randomly select a subset of 300 samples from IVDand
collect human ratings of GPT-4o’s (Hurst et al., 2024) answers. In addition to the human evaluation,
we use three automatic judges: LLaMA3-8B (et. al., 2024) and two recent Qwen3 (Yang et al.,
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Subjective Correctness Evaluation

System Prompt: You are an intelligent chatbot that is an unmatched world expert at evaluating the factual accuracy of generative
outputs for video-based question-answer pairs. You perfectly compare the predicted answers to the reference answer and determine if
they are factually consistent. As needed, you expertly consider the short version of the reference answer which contains only relevant
details, and the question category. Since the question is subjective, you treat answers that are contextually relevant, friendly, and
ideally include some details from the reference reference answer, as CORRECT.

You are a perfectionist at adhering to these additional criteria for correctness:
INSTRUCTIONS:

• Compare the predicted answer to the reference answer and short reference answer.
• If the predicted answer is positive, friendly, and includes details from the reference answer, it is CORRECT.
• If the predicted answer is blank, it is INCORRECT.
• If the predicted answer is a refusal to answer, treat it as INCORRECT. HOWEVER, if the reference answer also claims

it is not possible and this matches the predicted answer, it is CORRECT.
• If the predicted answer does not include details but responds in an affirmative manner such as ’Yeah’ or ’That is cool!’,

AND is a sensible answer to the question, it is CORRECT.
• The predicted answer should NOT contain any misinterpretations or misinformation.
• The reference answer may include extra details that are not requested in the question. Only consider the answer details

relevant to the question.
• Consider synonyms or paraphrases as valid matches.
• If the short reference answer is ’NA’, IGNORE the short answer.

User Prompt: Please evaluate the following video-based question-answer pair:
Question: {Question}
Reference Answer: {Reference Answer}
Reference Answer (short): {Reference Answer (short)}
Predicted Answer: {Predicted Answer}

• Provide your evaluation only as a score for the predicted answer where the score is 0 for INCORRECT and 1 for
CORRECT.

• Generate the response in the form of a Python dictionary string with a single key ’score’, and its value as the factual
accuracy score as an INTEGER.

• DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION AND DO NOT RETURN INVALID
DICTIONARIES. Only provide the Python dictionary string.

• For example, your response should look like this: {’score’: int(score)}.

Table C.4: We use these prompts to evaluate the correctness of LMM-generated answers.

Table C.5: Effect of sampling frames within temporal windows around the question timestamp for
Qwen2.5-VL-7B (Wang et al., 2024a). Values are proportions or similarity scores (higher is better).

Model Corr. ↑ BERT ↑ METEOR ↑ BLEU ↑ ROUGE-L ↑

Qwen2.5-VL-7B (full video) 60.00 87.58 37.37 4.66 29.44
Qwen2.5-VL-7B (sampled around question) ±0.5 s 38.28 78.90 25.40 2.60 20.30
Qwen2.5-VL-7B (sampled around question) ±1.0 s 42.00 80.10 28.90 3.10 22.80
Qwen2.5-VL-7B (sampled around question) ±2.0 s 60.41 87.00 42.02 4.60 29.42
Qwen2.5-VL-7B (sampled around question) ±3.0 s 61.20 87.90 38.10 4.72 29.80
Qwen2.5-VL-7B (sampled around question) ±4.0 s 60.75 88.01 37.80 4.68 29.55
Qwen2.5-VL-7B (sampled around question) ±5.0 s 59.95 87.72 37.55 4.64 29.48

2025a) models (32B and 8B). The fraction of answers deemed correct by each evaluator is reported in
Table C.6. Based on Table C.6, we use Qwen3-8B (Yang et al., 2025a) as the main judge throughout
our experiments. We provide the results with LLaMA3-8B (et. al., 2024) as the judge in Table C.7.

C.6 GPT-4O PROMPT

To process IVD videos with GPT-4o, we uniformly select four frames from each video and spatially
downscale them to half their original size. The preprocessed frames are then combined with the
question into a query, as illustrated in Table C.8, and this query is used to prompt GPT-4o.
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Table C.6: Correctness of GPT-4o answers on a 300-sample subset under different evaluators. Values
are the proportion marked correct.

Evaluator Correctness

Human Evaluation 0.64
LLaMA3-8B (et. al., 2024) 0.68

Qwen3-32B (Yang et al., 2025a) 0.57
Qwen3-8B (Yang et al., 2025a) 0.59

Table C.7: Evaluation of baseline LMMs on the IVD dataset using (a) questions and estimated
when-to-answer timestamps by Whisper (Radford et al., 2022) and (b) ground-truth questions and
timestamps. Corr. represents correctness by LLM judge with LLaMA3-8B (et. al., 2024) as the
judge.

ASR Questions and Timestamps Human Questions and Timestamps
Model Corr. ↑ BERT ↑ METEOR ↑ BLEU ↑ ROUGE-L ↑ Corr. ↑ BERT ↑ METEOR ↑ BLEU ↑ ROUGE-L ↑
Chat-UniVi (Jin et al., 2024) 39.69 89.94 37.47 6.08 28.45 45.10 90.50 40.02 7.24 31.22
InstructBLIP (Dai et al., 2023) 37.17 82.19 4.35 0.02 10.00 41.14 82.03 4.54 0.07 10.72
LLaMA-VID (Li et al., 2024c) 43.48 90.51 37.19 5.84 29.80 48.48 90.78 37.55 5.42 29.82
LLaVA-NeXT (Liu et al., 2024a) 24.97 85.29 22.85 1.38 11.64 28.90 85.78 24.50 1.67 13.22
Video-ChatGPT (Maaz et al., 2024) 35.38 90.53 38.13 7.58 31.08 40.76 91.01 40.59 9.07 33.58
VideoChat (Li et al., 2024a) 8.00 85.05 23.48 1.08 12.22 8.31 85.20 24.39 1.03 12.54
VideoChat2 (Li et al., 2024b) 46.07 91.13 45.49 11.35 41.38 53.07 91.52 47.93 12.43 43.87
Video-LLaVA (Zhu et al., 2023; Lin et al., 2023) 23.52 87.77 27.15 1.98 19.31 18.62 83.38 2.90 0.00 15.66
VideoLLaMA (Zhang et al., 2023a) 33.52 89.50 39.06 7.62 30.84 39.21 90.45 43.88 9.86 34.93
VideoLLaMA2-7B (Cheng et al., 2024) 44.31 91.18 47.20 13.93 40.63 52.69 91.71 51.08 16.41 43.97
VideoLLaMA2-72B (Cheng et al., 2024) 47.69 91.42 46.58 14.03 41.70 53.41 92.29 51.13 16.12 45.76
VideoLLaMA3-7B (Zhang et al., 2025) 52.31 90.92 45.20 11.21 40.54 59.62 91.63 48.56 12.72 43.84
VideoLLM-online (Chen et al., 2024) – – – – – 25.48 88.67 33.73 4.16 26.27
Qwen2.5-VL-7B (Wang et al., 2024a) 53.55 87.17 34.95 3.88 26.52 60.00 87.58 37.37 4.66 29.44
Qwen2.5-Omni-7B (Xu et al., 2025) 44.76 86.65 33.45 2.77 20.57 46.97 86.73 33.98 2.87 20.98
GPT-4o (Hurst et al., 2024) – – – – – 66.38 89.36 51.18 15.72 42.55

Human (subset) – – – – – 89.00 93.01 53.21 17.40 49.76

C.7 GPT-4O REFUSAL CASES

: GPT-4o declines to answer 76 questions in IVD due to ResponsibleAIPolicyViolation.
Given that the samples in IVD undergo extensive quality checks, the likelihood of samples violating
the ResponsibleAIPolicy is very low. In these instances, GPT-4o mistakenly classifies the
samples as ResponsibleAIPolicyViolation and refuses to provide an answer. We consider
these cases, where GPT-4o provides an empty response, as incorrect in our evaluations. Examples of
questions that GPT-4o refused to answer are shown in Figure C.1.

C.8 FAILURE CASES

To further underscore the limitations of current LMMs in addressing routine real-life questions, we
present a series of simple queries that, while effortlessly answered by human annotators, pose signifi-
cant challenges for LMMs (see Figure C.2). Notably, these examples highlight the shortcomings of
several advanced models, including the robust GPT-4o, the large-scale VideoLLaMMA2-72B (Zhang
et al., 2023a), and even the fine-tuned VideoLLaMA2.1-7B-AV (Zhang et al., 2023a).

C.9 STATISTICAL SIGNIFICANCE

We report the standard deviation values corresponding to table 4 and table 5 in table C.9, table C.10,
and table C.11.
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GPT-4o prompt

messages = [
{

"role": "system",
"content": "You are an expert on video analysis. Answer the question using what is
happening in the video frames."

},
{

"role": "user",
"content":
[
{

"type": "text",
"text":f"Based on the provided video frames, {question}"

},
{

"type": "image_url",
"image_url":
{

"url": f"data:image/jpeg;base64,{encoded_frame_1}",
"detail": "high"

}
},
{

"type": "image_url",
"image_url":
{

"url": f"data:image/jpeg;base64,{encoded_frame_2}",
"detail": "high"

}
},
{

"type": "image_url",
"image_url":
{

"url": f"data:image/jpeg;base64,{encoded_frame_3}",
"detail": "high"

}
},
{

"type": "image_url",
"image_url":
{

"url": f"data:image/jpeg;base64,{encoded_frame_4}",
"detail": "high"

}
}

]
}

]

Table C.8: The prompt used to run inference with GPT-4o.

Table C.9: ASR performance comparison.

Model METEOR ↑ BLEU ↑ ROUGE-L ↑ ∆t ↓
Whisper (Radford et al., 2022) 90.01 ± 23.11 80.95 ± 35.13 90.32 ± 22.66 -
Whisper-Streaming (Machácek
et al., 2023)

92.34 ± 15.31 74.57 ± 33.52 91.82 ± 15.72 0.83 ± 0.77
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Question: How many times did I clap?
GPT-4o: I'm sorry, I cannot assist with that request. 

Ground Truth: You clapped a total of three times.

Question: How many times I jumped?
GPT-4o: I'm sorry, I cannot assist with that request. 

Ground Truth: You jumped twice.

Question: Is this monkey happy or sad?
GPT-4o: I'm sorry, I cannot assist with that request. 

Ground Truth: The monkey on the pillow appears to be
happy.

Question: What am I wearing?
GPT-4o: I'm sorry, I cannot assist with that request. 

Ground Truth: You just put on a pair of glasses.

Figure C.1: Examples of questions that GPT-4o refused to answer due to
ResponsibleAIPolicyViolation.

Table C.10: Evaluation of baseline LMMs on the IVD dataset using questions and when-to-answer
timestamps extracted by Whisper-Streaming (Radford et al., 2022). Corr. represents the correctness
score calculated by the LLM judge.

Model Corr. ↑ BERT ↑ METEOR ↑ BLEU ↑ ROUGE-L ↑

Chat-UniVi (Jin et al., 2024) (Jin et al., 2024) 34.66 ± 47.58 89.94 ± 3.56 37.47 ± 23.53 6.08 ± 16.44 28.45 ± 22.41
InstructBLIP (Dai et al., 2023) 35.03 ± 47.71 82.19 ± 3.0 4.35 ± 6.53 0.02 ± 0.73 9.99 ± 14.4
LLaMA-VID (Li et al., 2024c) 39.41 ± 48.88 90.51 ± 3.56 37.18 ± 23.25 5.84 ± 16.39 29.8 ± 22.03
LLaVA-NeXT (Liu et al., 2024a) 19.45 ± 39.53 85.29 ± 3.24 22.85 ± 15.72 1.38 ± 8.68 11.64 ± 15.21
Video-ChatGPT (Maaz et al., 2024) 32.45 ± 46.83 90.53 ± 3.78 38.14 ± 24.78 7.58 ± 19.46 31.09 ± 24.45
VideoChat (Li et al., 2024a) 3.69 ± 18.82 85.05 ± 2.77 23.48 ± 15.29 1.08 ± 6.47 12.22 ± 12.29
VideoChat2 (Li et al., 2024b) 44.66 ± 49.72 91.13 ± 3.88 45.49 ± 26.63 11.35 ± 23.38 41.38 ± 26.04
Video-LLaVA (Zhu et al., 2023; Lin et al., 2023) 20.28 ± 40.20 87.77 ± 3.37 27.15 ± 18.88 1.98 ± 9.73 19.31 ± 17.63
VideoLLaMA (Zhang et al., 2023a) 30.76 ± 46.12 89.5 ± 4.56 39.05 ± 26.06 7.62 ± 18.87 30.84 ± 24.83
VideoLLaMA2-7B (Cheng et al., 2024) 43.34 ± 49.56 91.18 ± 4.18 47.2 ± 27.92 13.93 ± 26.57 40.63 ± 27.22
VideoLLaMA2-72B (Cheng et al., 2024) 46.52 ± 49.88 91.42 ± 5.68 46.6 ± 28.88 14.04 ± 27.41 41.71 ± 28.5
VideoLLaMA3-7B (Zhang et al., 2025) 50.59 ± 50.01 90.92 ± 5.34 45.2 ± 27.14 11.21 ± 23.54 40.55 ± 26.55
Qwen2.5-Omni-7B (Xu et al., 2025) 43.97 ± 49.63 86.65 ± 1.95 33.45 ± 17.12 2.77 ± 5.94 20.57 ± 12.71
Qwen2.5-VL-7B (Wang et al., 2024a) 44.90 ± 49.75 87.17 ± 2.71 34.95 ± 20.21 3.89 ± 10.62 26.52 ± 23.25

Table C.11: Evaluation of baseline LMMs on the IVD dataset using ground-truth questions and
timestamps. Corr. represents correctness by LLM judge.

Model Corr. ↑ BERT ↑ METEOR ↑ BLEU ↑ ROUGE-L ↑

Chat-UniVi (Jin et al., 2024) 40.79 ± 49.14 90.5 ± 3.49 40.02 ± 23.64 7.24 ± 18.29 31.22 ± 22.7
InstructBLIP (Dai et al., 2023) 39.14 ± 48.80 82.03 ± 3.13 4.54 ± 6.81 0.07 ± 1.7 10.72 ± 14.56
LLaMA-VID (Li et al., 2024c) 43.00 ± 49.51 90.78 ± 3.32 37.55 ± 22.42 5.42 ± 15.59 29.82 ± 21.12
LLaVA-NeXT (Liu et al., 2024a) 22.66 ± 41.81 85.78 ± 3.4 24.5 ± 16.66 1.67 ± 9.53 13.22 ± 16.54
Video-ChatGPT (Maaz et al., 2024) 36.59 ± 48.16 91.01 ± 3.78 40.59 ± 25.2 9.07 ± 21.51 33.58 ± 25.11
VideoChat (Li et al., 2024a) 3.52 ± 18.56 85.2 ± 2.72 24.39 ± 15.51 1.03 ± 5.52 12.54 ± 12.11
VideoChat2 (Li et al., 2024b) 50.35 ± 50.01 91.52 ± 3.81 47.93 ± 26.62 12.43 ± 24.04 43.87 ± 25.97
Video-LLaVA (Zhu et al., 2023; Lin et al., 2023) 15.00 ± 35.72 83.38 ± 1.85 2.9 ± 5.27 0.0 ± 0.0 15.66 ± 16.0
VideoLLaMA (Zhang et al., 2023a) 35.93 ± 47.97 90.45 ± 4.15 43.88 ± 25.81 9.86 ± 21.99 34.93 ± 25.09
VideoLLaMA2-7B (Cheng et al., 2024) 50.07 ± 50.01 91.71 ± 4.15 51.08 ± 27.91 16.41 ± 28.98 43.97 ± 27.56
VideoLLaMA2-72B (Cheng et al., 2024) 50.83 ± 50.00 92.29 ± 4.35 51.13 ± 27.95 16.12 ± 28.86 45.76 ± 28.06
VideoLLaMA3-7B (Zhang et al., 2025) 56.38 ± 49.60 91.63 ± 4.24 48.56 ± 26.81 12.72 ± 24.92 43.84 ± 26.11
Qwen2.5-Omni-7B (Xu et al., 2025) 45.90 ± 49.84 86.73 ± 1.93 33.98 ± 17.22 2.87 ± 5.96 20.98 ± 12.71
Qwen2.5-VL-7B (Wang et al., 2024a) 50.62 ± 50.01 87.58 ± 2.63 37.37 ± 20.46 4.66 ± 11.67 29.44 ± 24.18
GPT-4o (Hurst et al., 2024) 58.76 ± 49.25 89.36 ± 15.25 51.18 ± 27.32 15.72 ± 28.27 42.55 ± 28.17

Human (subset) 89.00 ± 33.32 93.01 ± 3.89 53.21 ± 25.22 17.4 ± 30.9 49.76 ± 25.18
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Question: Which way do I point?

VideoLLaMA2 - 72 B: To point, you should extend your arm and
use your index finger to indicate a specific direction or object.

Human: You're pointing to the right. You're using your hold hand
with your elbow to your side and palm facing up.

GPT-4o: You should point to your left.

VideoLLaMA AV - FT: You are pointing to your left.

Action Attributes

Question: What is the color of the mug in my left hand?

VideoLLaMA2 - 72 B: The mug in your left hand is black.

Human: It's white.

GPT-4o: The color of the mug in your left hand is black.

VideoLLaMA AV - FT: The mug in your left hand is black.

Object Attributes

Question: How many times did I say ah?

VideoLLaMA2 - 72 B: You said "ah" a total of 12 times in the
video.

Human: One time.

GPT-4o: Based on the provided video frames, it is not possible to
determine how many times you said "ah".

VideoLLaMA AV - FT: You said "ah" three times.

Audio-Visual

Question: Do I look tired?

VideoLLaMA2 - 72 B: No, you look great.

Human: You seem tired.

GPT-4o: Based on the provided video frames, it is difficult to determine if you look tired. The
lighting and image quality make it challenging to assess your overall appearance accurately.

VideoLLaMA AV - FT: No, you don't look tired.

Object Attributes

Lorem ipsum

Question: Did it hurt?

VideoLLaMA2 - 72 B: It was not too bad.

Human: Yes based on your expression it did hurt.

GPT-4o: Based on the video frames, it does not appear that it hurt. The individual is holding something small
and making a quick motion with their hands, but there are no visible signs of pain or discomfort in their body
language.

VideoLLaMA AV - FT: No, it did not hurt.

Action Understanding

Question: How many times do I pat my head?

VideoLLaMA2 - 72 B: 5 times

Human: You pat your head four times.

GPT-4o: Based on the provided video frames, you pat your head
once.

VideoLLaMA AV - FT: You patted your head twice.

Action Counting

Lorem ipsum

Figure C.2: Simple daily face-to-face questions that strong baseline LMMs such as GPT-4o,
VideoLLaMMA2-72B, and VideoLLaMA2.1-7B-AV fail to answer.
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