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ABSTRACT

Noise injection is applied in Split Learning to address privacy concerns about data
leakage. Previous works protect Split Learning by adding noise to the intermediate
results during the forward pass. Unfortunately, noisy signals significantly degrade
the accuracy of Split Learning training. This paper focuses on improving the
training accuracy of Split Learning over noisy signals while protecting training
data from reconstruction attacks. We propose two denoising techniques, namely
scaling and random masking. Our theoretical results show that both of our denoising
techniques accurately estimate the intermediate variables during the forward pass of
Split Learning. Moreover, our experiments with deep neural networks demonstrate
that the proposed denoising approaches allow Split Learning to tolerate high
noise levels while achieving almost the same accuracy as the noise-free baseline.
Interestingly, we show that after applying our denoising techniques, the resultant
network is more resilient against a state-of-the-art attack compared to the simple
noise injection approach.

1 INTRODUCTION

Privacy concerns in various application domains, including finance, healthcare, and online commerce,
limit the sharing of raw data required to train accurate deep neural networks (DNNs). Split Learning
Gupta & Raskar| (2018); |Vepakomma et al.| (2018a) has emerged as a solution that enables different
parties to collaboratively learn a model, without explicitly sharing raw input data. Typically, in
two-party Split Learning, the Split Neural Network (SplitNN) is divided between the data owner,
a.k.a. the client, and the label owner, a.k.a. the server; see Figure|l| (a). During training, in the
forward pass, the client forwards the intermediate results (IRs) (i.e., the neurons of the cut layer, the
last layer in the client’s part of the DNN) to the server. The server completes the forward pass, and
during the backpropagation, it returns the gradients of the IRs to the client. Consequently, the client
can train the joint model without revealing the private training data to the server.

Unfortunately, sharing only the IRs does not protect the raw data. The shared IRs contain considerable
latent information about the data and can be used to stage powerful attacks, such as model inversion
attack He et al.|(2019a); [Zhang et al.|(2020); Erdogan et al.|(2021)), label inference attack Erdogan
et al.|(2021); Kariyappa & Qureshi| (2021); Li et al.|(2021)), and hijacking attack [Pasquini et al.|(2021)).
Several works [Titcombe et al.| (2021); Abuadbba et al.| (2020); [Mireshghallah et al.| (2020); Wang
et al.| (2018) attempt to mitigate that risk through adding a certain amount of noise to the IRs before
sharing with the other party. However, one of the fundamental issues of adding noise is the trade-off
between the trained model’s quality and its susceptibility to an external attacker. While high levels of
noise are favorable in making the training data private, the noise inevitably impacts the quality of the
trained model |Abuadbba et al.| (2020); |Wang et al.|(2020a;2021), that is, the accuracy; see Figuresﬂ]
(b) and (c) for an example. Thus, a fundamental question is: Can we improve the training accuracy of
Split Learning under noise injection, without making the model vulnerable to data leakage?

We answer the above question affirmatively by applying a post-processing denoising layer on top of
noise-injected IRs in the Split Learning process. Our intuition is that the injected noise introduces an
error during the forward pass, which is dominated by variance when the noise level is high. As long
as we can reduce the variance by using denoising techniques, the training quality should be improved.
Such a post-processing layer will not impose any additional private information leakage as long as it
does not interact with the original private data.

We list our contributions as follows:
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Figure 1: The trade-off between the security and training accuracy in noise-injected private Split Learning.
(a) General schematic representation of two-party split learning, where the neural network is split between the
client (owns the data) and server (owns the labels). Noise is injected at the client’s side output to prevent private
data leakage from the attacker. (b) Noise variance (o) vs. Test accuracy in training a split CNN model on the
MNIST dataset. As the variance of the injected noise level (o) increases, the test accuracy drops. (c) Training
data reconstruction by hijacking attack at different injected noise levels. The reconstruction capacity decreases
as the injected noise level is increased.

Contributions. (i) We propose two denoising techniques (i.e., scaling and masking) to improve the
training accuracy and stability of noise-injected SplitNN; see §3] (ii) Our theoretical investigation on
a classification task in §3.2]shows that denoising can reduce the error caused by noise injection during
the forward pass. (iii) In addition to improving the train model quality, we show that our modification
to Split Learning with noise injection, followed by postprocessing, preserves the security guarantee
in the entire training protocol; see §3.3] Quantifying the privacy aspect in our work is not the primary
focus; it is an additional benefit. (iv) We validate our claims through extensive numerical experiments
on synthetic and real data (i.e., 7 DNN models on 7 different datasets, including large-scale datasets,
ImageNet1K Deng et al|(2009) and Amazon ReviewsMcAuley & Leskovec|(2013)) in §4] Moreover,
(v) we find that our masking technique, in addition to denoising, also enhances the resilience of Split
Learning against the state-of-the-art hijacking attack |Pasquini et al.|(2021); refer to §4.3]

2 RELATED WORK

Federated Learning (FL) with noise injection. Noise injection in vertical FL shares some simi-
larities with noise-injected SplitNN since in both cases, the noise is injected on intermediate results
during the forward pass. Existing works |Wang et al.| (2020b); |Chen et al.| (2020) propose to add
Gaussian/Laplacian noise on participants’ IRs to protect private training data or labels. (Chen et al.
(2020) only demonstrates the impact on training accuracy when some applications have a relatively
low noise scale. The other framework |[Wang et al.|(2020b) proposes a similar noise injection technique
only for linear model collaborative learning, which is not directly applicable to general DNNSs.

Split Learning with noise injection. Due to the vulnerability of SplitNN against model inversion
attacks, |Titcombe et al.| (2021)) proposed to apply differentially private noise injection on IRs during
the inference time to prevent data reconstruction by the attacker. Shredder, proposed by [Mireshghallah
et al.[(2020), adaptively generates a noise mask to minimize mutual information between input and
intermediate data. However, these two methods only introduce noise injection during the inference
time; thus, the privacy of training data is not preserved. |[Abuadbba et al.|(2020) successfully applies
noise to the IRs during the training to defend against model inversion attacks on one-dimensional
ECG data; also, seeWu et al.| (2023) for SpiltNN with differential privacy for integrated terrestrial and
non-terrestrial Networks. It turns out that the noise has dramatically impacted the model’s accuracy.
Unlike previous works that only focus on the attack defense efficacy, we aim to improve the training
accuracy with a significant noise level.

We provide an answer to split learning denoising by proposing two post-processing techniques (i.e.,
scaling and masking) to improve the accuracy and stability of the splitNN training when Gaussian
noise is injected into the IRs. To our knowledge, we are the first to propose denoising techniques on
the Gaussian noise-injected IRs to improve the training accuracy of SplitNN and theoretically show
the privacy guarantee in this setup. In the following, for completeness, we mention some differential
privacy (DP) techniques used in federated learning (FL) and related settings for completeness.

Gaussian noise injections (GNIs) are a family of regularization methods for DNN training through
adding Gaussian noise on the activations or weights during the forward pass. It is similar to the noise
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injection in SplitNN except for the following two aspects: (i) There is no requirement of bounded
sensitivity in injection objects. (ii) The noise scale is usually set small to avoid negative impacts
on training accuracy. The explicit regularization effects of GNIs are well investigated in (Camuto
et al.| (2020); L1 & Liu| (2020); |[Lim et al.| (2021), demonstrating better generalization for trained
models over unseen data. In addition, GNIs can improve the robustness of DNNs against adversarial
attacks or data perturbations Lim et al.| (2021); He et al.[(2019b). However, (Camuto et al.| (2021)) also
found that GNIs can introduce some implicit bias on gradient updates, which inevitably degrades the
training accuracy.

Denoising. Adding the Gaussian noise and the denoising mechanisms in our work shares many
similarities with the differential privacy (DP) and their post-processing that maintains the DP guaran-
tee and often improves accuracy Zhu et al.| (2022} 2021)). Denoising for DP has been well adopted
in the statistical estimation |[Hay et al.| (2009; 2010); INikolov et al.| (2013)); |Bernstein et al.| (2017)),
where they exploit some prior knowledge to design a data release mechanism with better DP utility.
Recently, Balle & Wang|(2018)) proposed an optimal denoising technique for Gaussian mechanism,
where given y ~ N (f(x),0°I) and their target is to find a postprocessing function g such that g(y)
is closer to f(z) than y. This is substantially different from SplitNN as there are subsequent layers on
top of the Gaussian mechanism in the training process. Nasr & Shokri| (2020) has also investigated
using scaling as a denoising technique to improve the DP utility for DP-SGD |Abadi et al.|(2016).
However, the authors scale up/down the noisy gradients based on the “usefulness" of gradients, while
we utilize scaling to minimize the estimation error of the noisy neural network outputs. [Wang et al.
(2020a) showed that adding Laplacian smoothing on Gaussian noise-injected gradients can improve
the utility of DP-SGD. While [Ligett et al.|(2017) proposed a general noise reduction framework,
Lecuyer et al.[(2019) proposed PiXel-DP, an adversarial defense mechanism, scalable to diverse large
networks and datasets.

3 THEORETICAL GUARANTEE

Notations. By [n] we denote the set of n natural numbers {1,2,--- ,n}. By x;, we denote the i‘!
component of vector x, while A;; denote the (i, j)*® component of a matrix, A. We use ||z||2 and
|A||  to denote the ¢5 and the Frobenius norms of a vector z and a matrix A, respectively.

Problem setup. Let D be the training dataset with N elements, {(X;,y?)}Y ,, drawn i.i.d. from
some distribution, P(X,)), where X; € R4 is the input feature vector, and y is the corresponding
ground-truth label. We consider a SplitNN with an output vector in R™. The network is divided
between the client and the server, where the server network consists of several DNN layers and the
output loss function. In our experiments, we show different split configurations; however, in our
theoretical analysis, we have one fully connected (FC) layer after the cut layer as the final layer.

Let X € R™ be the vector from the client-side cut layer, and M € R™*" be the weight matrix of the
FC layer on the server side. At each iteration during training, the original split network processes a
minibatch of training samples to calculate the loss and, during backpropagation, updates the gradients.
We follow this formalization in our theoretical analysis.

We consider the GNIs to protect the vector X. For Laplacian noise, see §B.1} Let the perturbed
vector, X € R follow the model: X = X + Z , where Z; ~ N (0, 02), chosen from a zero mean
Gaussian distribution with standard deviation o € R*. Then, we apply a post-processing function
hp(-) : R™ — R" on X before forwarding it to the server side. To bound the magnitude of X, we
use tanh as the activation function.

If we set the cut layer at an arbitrary i-th layer in an L-layer DNN, along with the final loss
function used for DNN training, the theoretical analysis would become less tractable. Therefore,
in our setup, we set ¢ = L — 1 to illustrate the main ideas. We formalize two possible cases in
the forward pass to the output layer: (i) a linear layer, ® = I,,,, an identity map, and we quantify
E|MX — Mhp(X)||3 against E| M X — MX||2; see §3.1} and (ii) a linear layer with a nonlinear
activation function (Softmax), & = s, nonlinear loss function (negative log), Lr.1,, and we quantify
E|lLpr(y*,s(MX)) — Lr(y*, s(Mhp(X)))| against E[LpL(y*, s(M X)) = Lo (y*, s(MX))],
where y* is the true label vector; see In both cases, hp is a post-processing mechanism that is
used to improve the training quality, resulting in some “denoising" effect; the signal-to-noise ratio is
not the measure of “denoising” in our context.
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Our primary focus is on nonlinear classification tasks, although for a better understanding, denoising
the linear layer is important, which can be viewed as a regression task. Our theorems are proxies
to measure whether the postprocessing would allow better server accuracy. We do not include an
iteration counter on M, X, or X; we are examining the single forward pass. We use a random
masking operator, R, and a scaling operator, Sy, as hp; see for their definitions.

3.1 A LINEAR LAYER

With the above setup, to easily explain our ideas, we start with a neural network performing simple
regression. Although this is not our primary focus, we believe this section provides a better under-
standing in a simple setting. Because for the /5-regression task, no nonlinear activation function is
required, the problem is much simpler. That is, y := M X is the prediction of the output layer, and it
does not involve any non-linearity. Theorem [A.T|describes results for a fully-connected DNN with
an /y-regression task. Additionally, it explains how the scaling and masking parameters, « and p,
respectively, are related to the noise scale o, while denoising the output of a linear layer of a DNN
for a given M and X. We calculate the expected test error, E| M X — Mhp(X)||3, where hp is R,

or Sy, and compare it against E|| M X — M X||3. Due to limited space, we put the result in

3.2 NONLINEAR LOSS FUNCTION FOR CLASSIFICATION TASK

For a vector, z € R™, denote s : R™ — (0, 1)™ as the softmax function, and L1 (y*, s(z)) as the
negative log loss function, where y* is the true label vector; see definition in In what follows,
we show that for both masking and scaling operators, under certain conditions on the noise level, o, it
is possible to find parameters p and «, respectively, such that, by using any of these operations, we
incur a lower deviation in the loss value than using the noise injection alone when compared to the
loss of the original SplitNN.

Masking operation. Quantifying £1,7,(v*, s(M R, (X)) and L1z, (y*, s(M X)) are critical as they in-
volve randomness from the masking operator and the Gaussian noise. We require several intermediate
results to prove the main result in Theorem 3.1} We state and prove them in the § [A.3.1]

We want to show that by using a random mask over a noise-injected layer, we incur a lower deviation
in the loss value than using the noise injection alone when compared to the loss, L1, (y*, s(M X)),
of the original SplitNN under certain conditions. That is, we want to compare the quanti-
ties B|Lpp (y*, s(MX)) — Lrr(y*, s(MRy(X)))| and B|LLr(y*, s(M X)) — Lz (y*, s(MX))|.
The following result formalizes this.

(MX); for
1],

Theorem 3.1. With the notations above, for classification problems, assume that n >
i=1,2,...,m. Then, if o is large enough, there is some ¢ € (0, 1) such that for p € (4,

E|LLr(y*, s(MX)) = Lro(y*, s(MRy(X)))| < E|Lrr(y*, s(MX)) = Lir(y*, s(MX))|.

The assumption, n > (M X); is technical and can be easily satisfied in practice, which requires the
input dimension from the SplitNN to be wide enough. We will pause here and provide a sketch of
proof of Theorem [3.1] Because the original SplitNN always produces the least loss, the expressions
in absolute values in the inequality above are non-positive, and so we need only to verify that for all

X, EBLrr(y*, s(MX)) = Lrr(y*, s(MX)) < ELrr(y*,s(MX)) = Lrr(y*, s(MR,(X))). By
the definitions of softmax and negative log loss, we have

Lrr(y*,s(MRy(X))) = —(MRy(X))s + log <Z €(MR”(X))Z'>, (1
=1

where 7* is the location of true label in y*. For fixed M and X, (1) is a function of p for p € (0, 1]. De-
note F(p) :== ELp1(y*,s(MR,(X))), and consequently, F(1) = ELp1(y*, s(M X)); see Remark
By using Lemmaon , we can approximate F (p) by

) Var (ZZI e(MR:D(X))L)
— - 5.
2 (E(EZZ ) e(MRp(X))i))

F(p) = —p(MX); + log <EZ o(MRy(X))i o

=1
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We want to show that F(p) < F(1) when p € (d,1), for some ¢ > 0. By using Lemma
in and differentiating with respect to p, we can show, F'(1)>0. This would
imply that F(p) is an increasing function of p € (4,1], for some ¢ € (0,1). This gives us
ELrr(y*, s(MR,(X))) <ELrr(y*,s(MX)), and Concludes the proof of Theorem

Scaling operation. Similarly, by using scaling over X, under certain conditions on the noise level, o,

we obtain a lower deviation in the loss than using the noise injection alone when compared to the loss

of the original SplitNN. Let Lg_ := L1 (y*, s(M S, (X)). We state the result in Theorem see

§A.3.2)for a sketch of the proof.

Theorem 3.2. With the notations above, for classification problems, if o >

max; ; Z’“=1§Z“k;;n”")mk , for i = 1,2,...,m, then there exists a &' € (0,1) such that
k=1 “ik

E|Lrr(y*,s(MX)) = Ls,| < E|Lrr(y*, s(MX)) = Lrr(y*, s(MX))|, fora € (L, 5.

For concentration of the errors in Theorem [A.T]and Theorem 3.1} see §A.3.3]

3.3 DIFFERENTIAL PRIVACY (DP) PRESERVATION

Recent works show that Split Learning with Laplacian or Gaussian noise injection at the cut layer is
resilient to attacks Abuadbba et al.|(2020); Wu et al.|(2023). In particular, DP (see Definition in
could be used to describe the privacy guarantee. In this sub-section, we explain how our modification
(scaling or masking) to Split Learning with noise injection (such as GNI) preserves DP. The key
to our argument is to view our modification as a post-processing of a DP mechanism. Then by the
immunity of DP to post-processing, we can conclude that DP will be preserved.

Next, in light of our results in §3.T]and §3.2] we recall some terminologies needed for our discussion.
For more details, see Dwork et al.| (2014)); Xiang et al.[(2019); [Abadi et al.| (2016).

Let D be a collection of databases. D C D and D’ C D be two neighboring training datasets, that
is, D' = D £ {X}. In this case, we write d(D’, D) = 1. For a function V' : D — R™, define a
randomized mechanism, /C : D — O such that, for D € D,

K(D):=V(D)+ Z, 3)
where Z € R™ is a random variable/vector with probability density function, p(z).

To ensure K is (¢, §)- DP, one must require some condition on the density function p(z) of Z. For
example, if p(z) is Laplacian or Gaussian density functions with their variances satisfying some
lower bounds, then K is DP. But, before we recall the result, we need one more important concept.

Define the sensitivity of V as

A= sup V(D) -V (D)2 4)
D,D’.d(D,D")=1

The following Theorem by Dwork et al[(2014) says, in the case when m = 1, if z ~ N(0, 0?), then
the random mechanism /C, as defined in (3)) is DP as long as o is large enough.

Theorem 3.3. (Dwork et al.,|2014} Theorem 3.22) Let € € (0, 1) be arbitrary. For ¢ > 21n(1.25/4),
the mechanism in (E]) with parameter o > cA/e is (€, 0)-differentially private.

In Theorem [3.3] we note that the noise level o is directly proportional to the sensitivity A and
inversely proportional to the privacy bound e.

This result will give us the DP of GNI for Split Learning (Lecuyer et al., 2019, §III.B), which
suggested putting the cut layer early in the network, where bounding the sensitivity is easier. The
next result allows us to see that both scaling and masking proposed in this work will preserve DP.

Theorem 3.4. (Dwork et al| 2014} Proposition 2.1) Let K be a randomized mechanism which is
(6,0)-DP. If g : R™ — R% is a deterministic or randomized mapping, then g o K is also (¢, §)-DP.

Impact on backpropagation. Now, we discuss the induced change during the backpropagation. In
DNN training, backpropagation is used to evaluate the gradients, which will be used to update the
estimation of parameters. As the popular DP procedure applied to DNN is DP-SGD |Abadi et al.
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(2016)), we indicate how our scaling and masking would “alter” the gradients that could be viewed
as an approximate DP-SGD. Let g* be the gradient and g{, denote the clipped version of g* during
the ¢-th iteration. DP-SGD would add Gaussian noise Z ~ N (0,01) to g&,. What happened to
our case is that starting from the beginning of the backpropagation, we will evaluate gradients at
the “perturbed” values (due to the GNI and our modification using scaling or masking from the cut
layer) and these values will be used to propagate backward at each layer to obtained gf., a perturbed
version of ¢* and hence g,. Thus, we can put this into the framework of (3) with K(D) = gk (D),
V(D) = g& (D), and write
go(D) = go(D) + Z,

where Z is a random variable/vector due to the randomness of GNI and masking (using Bernoulli
distribution). Although Z itself may not be Gaussian, it can be shown that Z = g(W') where g is
a sum of products of compositions of affine transformations and activation functions, and W is a
random vector of independent Gaussian and Bernoulli variables. Let p(z) denote the “density” of Z.
Denote the sensitivity of g& () by A,. Define

S ={w:p(w)>eplw+ Ay}
We can establish the following theorem, whose proof is given in the §A.13]

Theorem 3.5. Let § > 0 and recall that Z is a random variable with probability density p(z). Then,
there exists an o > 0 such that, for Ay < a,

Pr(Z e S) <,

where P|[-] refers to the probability associated with the random variable. Furthermore, when Ay < o,
~t .
g¢ is (€,0)-DP.

Note that A, is small for large dataset (that is, when | D| is large). So, we can make the sensitivity
small by requiring large training datasets.

The above explains DP in one iteration of the training data. If we consider a total of 7 training
iterations, we can use the advanced composition theorem, Theorem to guarantee, the mechanism

is (e4/2T1In(1/8") + Te(e* — 1), T6 + ¢')-DP for all 6" > 0.

We can give a similar guarantee when the noise mechanism is Laplace. Also, note that, if in each
training iteration, gtcﬁ 5 represents the clipped gradient calculated over a minibatch of size B taken
from large enough databases, then for sensitivity, A, p small enough, the DP guarantee for gtc_’ B
holds following the same argument as above; see |Xiang et al.|(2019)), and our discussion in @

In our experiments, we use the regular backpropagation formula for our noisy split network training;
see Proposition[A.T1] Noise injection and postprocessing in the forward pass perturb the gradients
during the backward pass, but without adding any explicit noise to them in each iteration. However,
this is not the same as GNIs to the gradient as in DP-SGD |Abadi et al.| (2016)—The noise, in our
case, (i) is a more general, data-adapted random variable than Gaussian, and that (i) it is generated
over the DNN architecture, not a user-specified Gaussian noise.

4 EXPERIMENTAL EVALUATION

In §4.1] we validate our theoretical claims through simulation on synthetic data, §4.2]shows results
on DNNs performing machine learning tasks, Section §4.3|shows improved data privacy results.

4.1 SIMULATION

Setup. The following numerical simulations verify the results of Theorem and [3.1] Since
X € [—1,1] is the output of tanh function, and M is usually randomly initialized around O in the
actual training, we sample the entries of X and M from a uniform distribution on [—1, 1] in our
simulation. The MSE of masking corresponds to E|| f(X) — f(R,(X))|]3 for all different functions
(f1, f2, f% in Figure , where R, can be replaced by S,, for scaling. Moreover, when p = 1 and
A= é = 1, masking and scaling are ineffective thus the respective MSEs are considered baseline
MSEs. In Figure [2] for each plot, we draw a line parallel to the X-axis from these baseline MSEs.
The expectations are calculated by taking the average on k simulation results, where k£ = 1000.
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Figure 2: Simulation of how scaling factor (A = é) and masking ratio (p) influence the estimation error (MSE)
under different noise levels () for linear (f1) and nonlinear functions (f2, f3).

1.0 N
0.8 /W / 0.8 (dl
e —— NI + scaling (A=0.1) o /= NI+ scaling (A=0.2) G 0.7 | G 07 j — Ni+scaling (A=0.1)
B o6 —— NI + masking (p=0.2) ®07{ | —— NI+ masking (p=0.2) ® 0.6 Il % / —— Ni+masking (p=0.2)
3 ‘ —— NI (0=0.7) g | H— NI (0=0.7) Fos AT UkEcaling (A=0.1) §06 —— NI(0=0.7)
=04 —— Baseline Fos| | [ — Baseline Foa W Nl+masking (p=0.2) | @ ' — Baseline
02 | ol 1" NI (0=0.7) o051 ¥
L ,,,,,,,,,,,,,,,,,,,,,, ~ T | AY  —— Baseline r
0.0 0.5 D — — — — 02 /7 0.4
"0 500 100015002000 2500 3000 3500 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 120 140 160 "0 20 40 60 80 100 120 140
Epoch Epoch
(a) CNN - MNIST (b) MLP - IMDB (C) ResNet - CIFAR10 (d) RNN - Names

Figure 3: Test accuracy of SplitNN training with noise injection (NI) only and noise injection (NI) plus
denoising (i.e. masking or scaling) in different training tasks. All models are split with one FC layer on the
server side. (o: noise level, p: masking ratio, A: scaling factor é)

Scaling simulation. In Figure [2] (a), each curve corresponds to a different noise scale, 0. By
decreasing the scaling factor, A for each o, the MSE first decreases from the baseline to a minimum
then increases, indicating an optimal \ for each 0. The NASC condition in Theorem [A-T] (ii) also
infers that. For fixed M, X, this condition implies it is possible to find a smaller A when o is large.
‘We make similar observations for the nonlinear case; see Figure|2| (c).

Masking simulation. Figure 2] (b) shows that by decreasing the masking ratio, p, the MSE does not
necessarily become smaller unless o is large enough. This verifies the claim of Theorem [A:T|i). More
importantly, there is an almost linear relationship between MSE and the masking ratio as p — 1.
This coincides with the expression of MSE with masking given in equation [0} see Appendix. We
hypothesize that while both X, M are drawn from Uniform distribution, the coefficient of p? might
become negligible. Hence, the coefficient of the linear term, p, which can be positive or negative
depending on the noise scale o, dominates the MSE. Results from Figure 2d), with the nonlinear
loss, reflect Theorem o2 must be large for the improvement to be possible. If o is too small
(MSE curve for o = 0.3), the masking does not work; the larger the o, the more improvements one
can expect by using masking. Moreover, when o is large enough, there exists an p € (d, 1), for some
0 > 0 such that masking incurs a lower MSE than the baseline. This indicates that optimal denoising
is possible by using masking for large noise. Nevertheless, for the same noise level, the MSE of the
optimal denoising of masking is always larger than that of scaling. We provide the backward pass
simulations in Figure[6]in §B] Figure[7]shows the simulation results for the Laplace mechanism, and
they are discussed in detail in §B.T|along with experimental results in Table 3]

Takeaway message. Figures|2| (a), (¢), and|§| (a) indicate that regardless of the noise scale, o, it is
possible to find a scaling factor such that using scaling over a noise-injected SplitNN incurs a lower
MSE than the baseline. However, this is not always the case for the masking operator—o must be
significant for rendering the improvement. In practice, we witness masking performs better than
scaling in terms of improved accuracy, parameter-tuning, and attack defense; see §4.2]and[4.3]

4.2 DNN EXPERIMENTS

Datasets and models. We adopt the benchmarks from the popular Pytorch library Opacus
Yousefpour et al.|(2021) with the Split Learning paradigm. It contains image classification tasks
(on MNIST LeCun et al.|(1998), CIFAR-10, CIFAR-100 [Krizhevsky et al.|(2009), and ImageNet1K
Deng et al.[(2009))), recommendation task (movie review prediction on IMDB Maas et al.|(2011)),
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Figure 4: Test accuracy of SplitNN training with noise injection (NI) only and noise injection (NI) plus
denoising (i.e. masking or scaling); (a) CNN on MNIST, (b) MLP on IMDB, (c) ResNet50 on ImageNet1K.

language modeling task (name classification Robertson| (2023)), and sentiment analysis (Amazon
reviews [McAuley & Leskovec|(2013)). All training hyperparameters are configured as default to
maintain a fair comparison; see Table[2]in §B]

Setup and implementation. We split the models before fully connected (FC) layers, with a variety
in the number of FC layers allocated at the server side; see Table|l} The size of the split layer varies
from 16 to 12544. We use tanh activation function to bound the client’s output in [—1, 1]. Then
Gaussian noise is injected on the tanh layer, with noise scale, o, the standard deviation of the
Gaussian distribution. We implement both denoising techniques as a post-processing layer on top
of the noise injection process. The ratio p € (0, 1) describes the percentage of the elements kept
through masking. The scaling factor A = é € (0,1) is used to scale down the tensor values. The
overall computation paradigm is outlined in Table [9]in

Denoising performance. We demonstrate the effectiveness of the denoising techniques in various
SplitNN training tasks. In Figure [3|and[d] we compare baseline SplitNN, noise-injected SplitNN, and
noise-injected SplitNN with the scaling or masking denoising in 2 different split settings. The noise
level, o is calibrated to a relatively high such that the training accuracy of SplitNN suffers from the
noise injection. Both scaling and masking are optimized by parameter tuning on the scaling factor, A,
and masking ratio, p; see Table[I0]in §B] When models are split at the last FC layer, e.g., in Figure[3]
(a)(b)(d), once we inject a large noise (o = 0.7), the overall training convergence is severely impacted
so that the test accuracy is barely increased during the training. In Figure ] the training is more
robust under high noise injection because the size of the splitting layer is much larger than the one in
previous settings. Usually, high-dimensional data can better tolerate noise perturbation since it carries
more information. After applying the scaling or masking and fine-tuning some hyperparameters, the
training convergence vastly improves. In most cases, e.g., Figure [3(a)(b)(d), the improved accuracy
due to masking is comparable with the baseline. However, in Figure [} with scaling and masking,
the test accuracy can not achieve the baseline level. This is possible because, by allocating more
layers on the server side, the client’s noisy IRs will also impact more layers during the forward
computation. We also notice that in Figure 3] (c) the noise injected training on CIFAR-10 performs
much better than other tasks even the split layer size is relatively small. This is due to its unique
default parameter setup such as weight decay and learning rate, which we will explain next.

Denoising vs. Hyperparameter tuning. To better understand the difference between denoising and
traditional hyperparameter tuning, we evaluate the MNIST image classification task by fine-tuning
the learning rate (Ir), weight decay, dropout, masking ratio, and scaling factor under high-level noise
injection. We present the accuracy results in in Table @] Full training curves are available in
§B|in Figure[8] We change the Ir from 0.1 to 0.001 and find that a smaller Ir indeed improves the
training stability under a large noise injection. Weight decay, as a popular regularization method in
DNN training, can be used to avoid over-fitting on noisy signals. We find that only a heavy weight
decay (v = 0.2, 0.4) can help stabilize the training convergence till the end. However, a heavy weight
decay sacrifices the convergence speed and fails to reach the baseline accuracy. Scaling can only
improve the convergence at the beginning of the training, and none of them manage to maintain
the convergence till the end. This implies an inherent training stability issue with noise injection,
which cannot be alleviated by pure denoising. Therefore, we combine scaling with weight decay and
find that a small weight decay (v = 0.01) is sufficient to stabilize the training. On the contrary, the
optimization of masking does not need weight decay. It can almost achieve the baseline convergence
rate once the ratio p is properly tuned. Although there is a similarity between random masking and
the dropout technique [Srivastava et al.|(2014), simply using dropout does not provide enough stability
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Figure 5: Private training data reconstruction by FSHA attack in Split Learning on MNIST and ImageNet.
In all cases, Xpriv: the original training data, i.e. ground truth; X,..: FSHA on plain-text SplitNN; X,.cc(n):
FSHA on SplitNN with noise injection (NI) (¢ = 0.7); X,c(s): FSHA on SplitNN with NI and scaling
(0 =0.7,A = 0.2); X,.cc(rr): FSHA on SplitNN with NI and masking (¢ = 0.7, p = 0.2). Models are split
with one FC layer on the server side.

for the training, regardless of the dropout ratio. Both denoising techniques achieve significantly better
training quality than standalone hyperparameter tuning. In §B.2] Table[5] we provide initial results
of ResNet-18 on the CIFAR-100; our denoising techniques achieve higher accuracy than simple
learning rate tuning. In Table[6]in §B.3] we demonstrate that the scaling postprocessing performs well
even when Adam’s updating rule eliminates gradient scale impact. See limitations of the proposed
approach in §C| In Table[7} we show the performance on the large-scale datasets. In addition, we
discuss the different layers of the networks to split in §B.5|along with results in Table[§]

4.3 ATTACK DEFENSE

Setup. We demonstrate how the random masking technique can improve data privacy in defense
against the recent feature-space hijacking attack (FSHA) [Pasquini et al.[(2021) in Split Learning.
FSHA hijacks the client’s learning process from the server side during the training and performs the
data reconstruction once the client’s output feature is learned; see details of threat model in @ We
evaluate the attack performance with 2 models and 4 publicly available datasets—CNN for MNIST
and Fashion-MNIST, ResNet for CIFAR-10 and ImageNet. See the model configuration in Table
[T} We compare the attack performance by visualizing the reconstructed private data between FSHA
attacks on plain-text SplitNN, noise-injected SplitNN, and noise-injected SplitNN with masking or
scaling. We focus on the case where only one FC layer is on the server because it is more resilient
against data reconstruction attacks, see discussion in Figure[9]in §B]

Results. Figure [3] shows that the original FSHA can reconstruct the private data with very high
accuracy for MNIST but only keeps the original images’ appearance for ImageNet. This is consistent
with the attack performance in |Pasquini et al.| (2021)—attack on low-entropy images usually requires
less effort and can produce a high-quality reconstruction. Next, we apply noise injection to the
intermediate results and conduct data reconstruction on the perturbed data by FSHA. We observe
that for MNIST, the digits on the reconstructed image are recognizable. For more complex and
color image datasets (i.e. ImageNet), although noise can hide the details in the images, we can still
relate the constructed image with the original one by looking at the outline or the background color.
Lastly, when we combine noise injection with masking, the reconstructed images are fully damaged,
and thus, the data security is greatly enhanced. While the scaling technique has almost no effect
during the reconstruction attack, no matter how we set the scaling factor. See Figures [IOJ12]in §B|for
results with different o, p, A and other datasets. Improving the privacy accounting for split learning
is not the primary focus of this work, instead, we want to show how denoising can improve noisy
SplitNN accuracy. Nevertheless, we provide the privacy bounds for one single forward pass during
the SplitNN training in Table[TT]

5 CONCLUSION

We propose scaling and masking as denoising techniques to achieve accurate Split Learning on
noisy signals. We show theoretically and empirically that denoising helps achieve more accurate
intermediate outputs in DNN training under noise injection that significantly improves the stability
and accuracy of Split Learning. Additionally, we show that the masking technique can provide better
security enhancement than scaling against powerful attacks. Although in theory, scaling has better
denoising efficacy, masking is likely to show better accuracy improvement due to its easier parameter
tuning. Finally, we demonstrate the possibility of co-optimization of denoising and attack defense.
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A THEORETICAL GUARANTEE

First, we will start with the definition of softmax and negative log loss functions used for nonlinear
classification.

A.1 DEFINITIONS

Random masking operator. Let R, be a random matrix of 1’s and 0’s with identical and indepen-
dently distributed entries, (R,);; ~ Bernoulli(p). Denote the support set, 2, C [m] x [n] of R, as
Qp, == {(¢,J)|(Rp):; = 1}. Based on this, for a matrix, A € R™*",

_ Aij 11 € Qp,
(Rp [A])ij - { 0 : otherwise.

From the definition, R, is linear and is a projection operator, that is, Rf, = R,.

Scaling operator. For a matrix A € R”*" and « > 1, denote the element-wise scaling operator,
Sa(:) : R™*m — R™M*" a5 S, (A) = L A. Unlike the random masking, the scaling operator, S,, has
no randomness.

Softmax and negative log loss. Let m be the number of classes. For a vector, z € R™, the softmax
function, s : R™ — (0,1)™, is defined as

s(z); =

Zi

e
Dy es

Let y be a binary indicator (0 or 1) of the class label, and c is the correct classification of the
observation, o. Denote p, . as the predicted probability of observation o that belongs to class c. Then
the negative log-loss function is defined as

m

‘cLL(yap) = - Z Yo,c 1Og(po,c)-
c=1

What loss functions and tasks do we cover? In general, for classification problems such as
image classification by CNN, movie review prediction by RNN, and many more, the output layer is
configured with a softmax function for prediction, and the negative log function is used as the loss
function to train the DNN model. For binary classification, this loss is known as binary cross-entropy;
for multi-class classification, it is called categorical cross-entropy. MSE is a consequence of Theorem
[A.T] with some modifications. Therefore, our analyses cover almost all the existing loss functions
used for DNN training. We refrain from using some rarely used loss functions, e.g., sparse categorical
Cross-entropy.

A.2 /{5 REGRESSION TASK

Next, we will prove Theorem [A.T] for ¢5-regression task. For Theore the irediction of the

DNN model does not involve any nonlinearity. Throughout Sections |A.2{and |A.3| Ep-|)~( denotes
expectation conditioned on the randomness in R, given X, and E- denotes expectation taken on the
randomness in X

Theorem A.1. With the notations above, we have (i) E|MX — MR,(X)|3 < E|MX — MX |}
ifand only if p||M ® X ||% + (1 — p)||M X|3 < o?||M||%, where X € R™*™ is a matrix obtained
by stacking X T € R'" in each row, and ® denotes the elementwise product. (ii) Let o > 1.

% T2 L IMX |2
EJ|MX — MSo(X)|3 < E[MX — MX|3 if and only if {7 < (%) o2,

Remark A.2. Theorem [A.] considers the most commonly used mean square error
(MSE), E|MX — MR,(X)|3 and E|MX — MS,(X)||3, respectively, to compare against
E|MX — MX||3. We use the MSE because it has nice mathematical properties; one can use
other loss functions. This MSE is agnostic of the nature of the loss function used in DNN training.
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Remark A.3. Since the expected MSE can be decomposed into bias and variance, by showing the
relation between the expected MSEs as in Theorem [A-T] the bias-variance trade-off between different
processes can be explained.

Proof of Theorem[A.1l

Proof. (i) We are required to show, E|MX — MX||3 — E||MX — MR,(X)||? > 0. There are
two types of randomness involved—one is due to randomness in I2;,, and the second is due to the

randomness in X . First, we start by writing

IMX — MX|3
= HMX”% <MX MX + szm j + 22 Z mljmlk$]$k7 (5)
=1 j=1 i=11<j<k<n
which after taking expectation becomes
E[|MX — MX|]3]
:—||MXH§+ZZm?j(x§+02)+2Z Z MMk T T (6)
i=1 j=1 i=11<j<k<n

Next, we have as in (§)

IMX — MR,(X)|I3

= [MX[3 = 2MX MRy(K)) + 30 D mE(Ro(@) +23° D mumacBy(i) Byl

i=11<j<k<n

(N
which after taking expectation conditioned on the randomness in 2, given X becomes

E,[[|MX — MR, (X)|[3|X]

= |MX|} - 2p(M X, MX) +pZZmU i+ 2p22 Z mijmin®;Zr.  (8)
i=1 j=1 i=1 1<j<k<n
Finally, taking the expectation on the randomness in X we obtain
EzE,[|MX — MR,(X)|3X]]
=(1-2p)|MX|3 —l—pz Zm?j(mf +0?) +2p? Z Z MM T T, 9)
i=1j=1 i=11<j<k<n

In view of equation [6]and equation 0] we have

E[|MX — MX]|3] - [llMX—MR (X)I13)
=(2p-2)|MX|* + ZZm x +0%)+2(1—p )Z Z M MikT T
=1 j=1 i=1 1<j<k<n

Y DS ST TS S IR PRTEY) o pUry R REe:
=1 j=1 i=1 1<j<k<n i=1 j=1

+2(1—P2)Z Z MM LT
i=11<j<k<n

—p)ZZm?j(UQ—x?)—Z(l—p)QZ Z MMk T T (10)
i=1 j=1 i=11<j<k<n
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Therefore, _ -
E|MX — MX|2 - E[|[MX — MR,(X)|2>0

if and only if the expression in equation[I0]is non-negative, that is,

m n m n
D) DUTLED 9) HTETEIE) Db sy
i=1j=1 i=1 j=1

=1 1<j<k<n

The left hand side of the above expression is 02| M ||% (which is lower bounded by no?c2; (M),
where o, (M) is the smallest singular value of M). For the right-hand side, we have

m n

Zmejxf-i-Q 1- )Z Z MM T Tk,

=1 j=1 i=1 1<j<k<n
Y Y e (1 -p) Y w4203 Y mymar,
i=1j=1 i=1j=1 =1 1<j<k<n
_pzzmm j —p)HMX”%
i=1 j=1
=pllM o X|E+ (1 -p)|MX]3, (1)
Tl €2 €3 LTn
where X = xl .3?2 Ty x" € R™*"™ Therefore,
X1 X9 T3 In
E[|MX — MX|3 - E[MX — MR,(X)|3 >0
if and only if

o?||M||% > p|M © X||% + (1 - p) | MX]]5.
Hence the result.

(ii) We are required to show, E||[MX — M X |2 — E|MX — MS,(X)||3 > 0. Note that, the only
randomness involved in this case is due to the randomness in X . First, we start by expanding

IMX — MSa(X)|3
2 2 % o\ 2 i? - - TjTh,
= IMX3 — > (MX, MX) + szijg +23° Y migma=5E(12)
i=1j=1 i=11<j<k<n
which after taking expectation gives

E[|MX — MSa(X)3]

(17—||MX||2+ZZm 22 Z m”mlkka

i=1j=1 i=11<j<k<n
= - Ly + ann%. (13)
In view of equation [6and equation [I3] we have
BN — M[E] - FIMX — 215D
= (1 - —)o?I M3 — (1= 27 M3

Therefore, B -
E|MX — MX|? - E|MX — MS,(X)|2>0

if and only if (1 + L)o?||M||3. — (1 — 1)[[M X3 > 0. This completes our proof. O
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A.3 NONLINEAR LOSS FUNCTION FOR CLASSIFICATION TASK

Now, we will prove the results for the nonlinear loss function as given in Section[3.2] First, we quote
the following Lemma about the moment generating function of a random variable, without proof.
The readers can find the proof of Lemmal[A.4]in any standard graduate statistics textbook.

Lemma A.4. Let Z be a random varlable Z ~ N(u,0?). Then the moment generating function,

() is given by ®z(t) = Eet? = — et

MRy (X)) ang

Calculating EL 1, (y*, s(M R, (X)) requires some auxiliary results on the E3""™"

SN2
]E(E:L e(MRP(X))i) . The following Lemma gives the details, which are necessary for

calculating the expectation and the variance of 3. | e(M£»(X)):,

Lemma A.5. We have, (i) EY." eMB(X): — s T (pemlk“* +(1 —p)); and

.. m <)), n M +ma )z ("”ik*""jk) o’
(II)E(Zizl e(MRP(X))z) = Zl7j |:Hk—1 (pe( ikt Jk) kTt > + (1 _p)):| .

Proof. (i) We have
Z e(MRp(X))i _ Z k=1 mw'kRp(ﬂ?fzc)7 (14)

where 7, be the k™ element of the vector X. Note that, each m;, R, (%) is independent (based on
the definition of the random masking operator), and after taking expectation on the above expression
with respect to the randomness in 1,,, we have

m m n
EPZ e(MEp(X)): _ Z H ]Epemme(fck). (15)
i=1 i=1 k=1
For p € (0, 1], equation[15]becomes
Epz e(]V[R (X): _ Z HE e™Mik Ry (Zk) Z H pemzkl‘k + p)emik'o) , (16)
i=1 i=1 k=1 i1 k=1

which further taking expectation on the randomenss in X reduces to

S ¥ (e

i=1 1 k=1

<.

m n

temne Iy T <pemikwk+
i=1 k=1

+(1- P)) : a7

After taking total expectation on equation [17|and by using the tower property of expectation, we
obtain the result.

(if) We have

m 2
(Z e(MRp(X))f) — Z e2n=1(Mik+m k) Bp(Zk) (18)
%,

i=1

16
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Proceeding similarly as above, first, taking expectation on the above expression with respect to the
randomness in 17, and then taking expectation with respect to the randomness in X, we have

m 2
E4E, (Z e(MRp(X))z) — EZEPZ (SZZ'Zl(mthrmjk)Rp(i’k))
i=1 ,J
— EZZ H Epe(mikerjk)Rp(i’k)

1,7 k=1
m n
= Boy I (pemetm 4 (1-p)
1,7 k=1
Lemma [A4] o (my+mjp)?o?
= Z H (pe(mik+mjk)zk+2 +(1- p)) )
4,7 k=1

19)

After taking total expectation on equation [I9]and by using the tower property of expectation, we
obtain the result.

O

Remark A.6. Setting p = 1, in the loss function, we find the expected loss value, EL 1, (y*, s(M X))

due to noise injection (without random masking). Additionally, for p = 1, in LemmalA.5| we recover
2

X m2, o
EST, €M = T [T (emeest 550),

The following Lemmeﬂ is the next intermediate result and instrumental in proving our main result
as it approximates the expected logarithmic term in the log loss. In Lemmal[A.7} we approximate
E[log(x)] by using Taylor’s Theorem.

Lemma A.7. (Khuri, 2003, p. 117) Let x be a positive random variable. Then Ellog(x)] =

log[E(x)] — % + higher order terms, where Var(z) = E(2?) — (E(z))%.

Remark A.8. We assume that x have small higher order moments, m, = E|z — E(z)[?, for
p= 2, 37 -

Note that, setting x = Z:’;l e(MBy(X))i jp Lemmais the first step to quantify the expected loss
value of SplitNN with random masking, EL 1. (y*, s(M R, (X)).

A.3.1 PROOF OF THEOREM[3.1]

To prove Theorem recall that F(p) := ELp1(y*, s(MR,(X))), and consequently, F(1) =

ELLL(y*, s(MX)). By using Lemma and assuming the higher order terms are negligible, we
write

> Var (Zlil e(MRpu?))i)

F(p) = —p(MX); +log < 3 MR () A (20)
o i=1 2 (B, MO
:=B(p)
W =D (p)

Differentiating equation [20] with respect to p gives us:
F'(p) = B'(p) +C'(p) - D'(p).
Note that,
a (EZ o(MR,(X)); )
EY", eMBp(X): 7

B'(p) = —(MX),C'(p) =

!See similar expression inTeh et al.|(2006) with a restrictive assumption; assumption in Lemma is more
general.

17
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but the derivative of D(p) becomes very messy. So, we take the following indirect route: we first
show that (i) B'(1) + C’(1) > 0 and hence B(p) + C(p) are increasing in a neighborhood to the left
of p = 1; then we verify that (i) —D(p) < —D(1). We see that once we accomplish (i) and (ii), we
will have F(p) < F(1), which completes the proof of Theorem

Proof of (i).

By Lemme[A.5]and a straightforward computation, we have

d UL < mon m2 o2 n m2, o
_ <]EZ e(MRZ’(X))7> ZZ m”rcr+ L; — 1) H e™ Lka-i-L
dp i=1 p=1 i=1r=1 k#r,k=1

So,

m2 o2

2 52
Z?;l Z::1 |:(emwxr+ 75 1) HZgéT’k:l(emikszrmqga ):|
Z"L (Hk 1( MikTr+ ’Lk} )> I

which is bigger than or equal to 0 if and only if

B'(1)+C'(1) = =(MX); +

o2

m2 o? 2
Z;’il Zle |:(emq‘,r96r+ T — 1) HZ#T,k:](emikszr”L k

m2 o2
2t (Hz_l(emmrw A >>

)
} > (MX)i-, 2D

or equivalently,

mon 2 n 2 o m n
5 [lm 2 ) T om0 s 5 (i)
k

i=1r=1 k#r k=1 i=1

Let f(0?) denote the difference of the two sides, we have f(o?) :=

m n 2 2 n 2 2 m n P Py
miTzTerirU mikmk+m%ka mikkarM
PREPIIC o) TT (et ) | = (X)) S T (et 547
i=1 | r=1 k#r,k=1 i=1 k=1
. o " 2,02
= Z MipTy+ ““ —(MX)s + Z(l — e~ MirTr——% )
i=1 r=1

I
NERD
zﬁ H :3

k n m2 o2

’L — . — ar
MikTk g (1 —myepz, — e MirTr= T2 )|,
1 \k=1 r=1

m2 0'2

Now, note that _""_, (1—m;«,z, —e~ ™"~ =% ) is an increasing function of % and as % — +o0,
it approaches >_""_, (1 — m,x,) = n — Y ._, m;,x,, which is positive by assumption. Thus,
when o is large enough, f(c?) > 0. This verifies (21)) and hence (i).

Proof of (ii).
We need to verify that D(p) > D(1), that is, by the definition of D(p),

<.
I

Var (ZZL e(MRp(X»i) Var (Z;ﬂ e(MRpu%))i)
>

2 (EXL, e(MRpo?))i) 2 (BT, eMAn (R )

p=1

18
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By the formula Var(x) = Ex2 — (Ex)2, it suffices to verify
~ 2 R 9
E(ZZI e(MRp(X))i) _ (EZZL e(MRp(X))i)
-~ 2
2 (E (Z;”;l e<MRp<X>>i))
E(Z:il e(]V[Rp(X))i>2 o (EZ:’;l 6(1\/[Rp()2))i)2
~ 2
2 (B(S, cR () )

p=1

which can be simplified to
E(ZL e(MRp(X))i)2 E(ZZL e(Mf—‘cp(f(m)2
2 2 ~ 2
(E (Z (M By (X)); )) (E(ZZL e(MRMX))i))

Using Lemmal[A.5] the above is the same as

ST

p=1

(11L1k+17L]k) o2
s (mytmp)2o?
P

+(1—p)] mOT (masmg) Tt
S D | o 22

m2 o2 2 = m2 o2\ 2
{Ei"lnzl (p’" +<1—p>)] (E?‘lnzle"““‘”“+ )

We now verify for o2 large enough. Note that is true if and only if the following function
g(p) > 0 where
) 2

= N (mik+n7/jk)2(7 m n
) :ZH |:p€(mik+mjk)ibk+ 2 :| He et ™
i=1 k=1
2
(mi+m ) m n
(o > £ ) e )

ij k=1
1,7 k=1

Note that g(1) = 0. So, it suffices to show that g(p) is non-increasing on a small neighborhood to the
left-hand side of 1. Differentiate g to get

m n 2 o n 2 2
(mp+m p)o (myp+m;,)%c
! 1) = E | I (e(mik+mjk)zk+ S ) E <1 — e_(mir+m.jr)f”r— — 1 ) x I?
r=1

i,j k=1
02 n m2 o2
— . — 27
—J><21><§ H< Mkt )§ <1—e MharBr— =4 )
=1 k=1 r=1
2 2 2_2
m noomiat kT m n (mnbm ) kTR 7o
where I := 3" [[,_,e™ and J =" [[_y elmintmak)en 2 . We have
m n 2,2 n 2,2
(mp+m;ip)<o (mipt+m . )<o
! 1) =7 E H (e(mm+mjk)wk+"2”“) § (1 _ e—(mm—&-mjr)xr—;) N

i,j k=1 r=1

mon m2, 02 m2 o2

—J x2x Z H eMikTh+t ik E (1 _ e Mir@r——1% >

i=1 k=1 r=1

m o n 2,2 n 2,2
(mig+mjp)<o (mir+m;.)%o
-7 § H e(mi}c"!‘mjk)xk'i‘%(n _ E e—(mm~+mm~)xr—+) N

i,j k=1 r=1

m n 2 2 n 2 2

) mik? s _ Mg
_‘]X2X§ Hemmmk+ 5 (n_E:e M@y ——15 )}
1=1 k=1 r=1
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m.on 2 2 2 N 2_2
((migtm )2 +m? e (miptmi)o
—IdnxIxJ— E | I e(Mmiktmptmsk ).+ kT ik sk § e~ (Mirtm )z, — —r———
4,5, k=1 r=1
m n Py Py 2 N 2 o
((mp+mip)<+ )
“onx I x IT4+2 Y T etmatmatmanit Tkt k) $ap) S e =
i,j,s=1 k=1 r=1

m n 2 2 ,,2 1 2,2
(Mg +m )2 +m?3 o (mip+mjp)~o
_ I —n X I % J _ E H e(mz‘k"!‘mjk"l‘msk)lﬂk"‘ k Jk2 k E e_(mrn*ﬂ‘mjr)zr_%

i3, k=1 r=1
m n . 32 2 2 N 2 .2
((mp+m)2+m2 o
) § He(mik+mjk+msk)wk+ AR L =k e_msrmr‘_"LS;U )
i,j,s=1 k=1 r=1

m n 2 2 2
((mggtm )2 +m2, )0
-7 § I I Mkt jtma) @+~ k

,J,s k=1

<.

- 252 2 2
(mipt+m )0 2
3 (amermemn gt
1

r=

The last sum above clearly goes to —n as 02 — +o0. Thus, for o2 large enough, we have ¢'(1) < 0
which implies g(p) > g(1) = 0 for p close to 1 from the left hand side. This completes the proof.

A.3.2 SKETCH OF PROOF OF THEOREM [3.2]

The proof follows a similar line of arguments in the proof of Theorem 2 and thus, we point out only
the main differences. We need to verify EL 1 (y*, s(M S, (X))) < ELpL(y*, s(MX)) for « close
to and larger than 1. With A = 1/a, one can show (as in Lemma 2) that

m m
]EZ eMSa(X) _ Z PR mikzE+A0? S0 m3, /2
i=1 i=1

and

m 2 m m
E (Z GN[SQ(X)) — Z Z e)\ Zz’zl(mik+mjk)mk+)\202 Zzlzl(mik+mjk)2/2'
i=1

i=1 j=1

Next, one can establish similar steps of (20), (ZI), and (22) for the current case and eventually
complete the proof.

A.3.3 CONCENTRATION OF THE ERRORS

Linear layer. Both conditions in Theorem 1 are necessary and sufficient conditions and indicate
implicit relations between the input, X, the denoising parameters, p, «, the weight of the split layer,
W, and the added noise magnitude «. For the masking case, the coefficient of the linear term, p,
which can be positive or negative depending on the noise scale o, dominates MSE; see Figure 2 (b).
However, for Theorem 1 (ii), from (11), we observe the MSE depends quadratically on the scaling
factor é, where o« > 1. Therefore, one can observe a quadratic relation between the scaling factor é,
and MSE in Figure 2(a).

Nonlinear layer. For nonlinear loss functions, this relation is more complicated to observe. For
Theorem 2, the loss is L1z (y*, s(M R,(X))), which is given in equation (2) in the main paper
(also, see equation (18) in the Appendix). In this scope, we show how the bound on the error,
E[LLL(y*, s(MX)) — L1 (y*,s(MR,(X)))], depends on o and (1 — p). Based on equation (18),
the first term will be —(1 — p)(M X);, which is linear in (1 — p). The next term we need to consider
is log (E[Z:;l e(MRP(X))i]) —log (E[}_1", e(™X)i]). By directly manipulating the expression in
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(15) for p and p = 1 we find this quantity approximately is

Z eXi=t MR T (0 1) 4 g2pn k=L ik D= 1 mi + Higher order terms} + O(1 — p).

When the noise is not too large, say, o2 k=g Mix 5 i < 1, we can observe that the bound is approximately
linear in the variance of noise, o2. One can obtain a similar observation for Theorem 3 as well.

A.4 DIFFERENTIAL PRIVACY (DP)

We start by defining differential privacy.

Definition A.9. Dwork et al.| (2014) A random mechanism, K : D — R™ is ( 9)-differentially
private if for all adjacent inputs, D, D’ € D, with Hamming distance, d(D, D') = 1, and all possible
output, O € R™ € B(R™) such that

PIK(D) € O] < e P[K(D') € O] + 6,

where P[] refers to the probability associated with the random mechanism K and B(R™) is Borel
sets in R™.

We also need the general theorem that says, any differentially private mechanism, C : D — O is
further differentially private if it is transformed by an arbitrary postprocessing function, deterministic
or random; see Theorem [3.4]in the main paper.

Finally, if perform multiple computations of the random mechanism, K on the same dataset, D,
that is, we make 7" such passes on D, then the privacy guarantee degrades. We quote the advanced
composition theorem from [Dwork et al.|(2010) for such mechanisms.

Theorem A.10. [Dwork et al.|(2010) Let IC : D — O x O - - - O be an T-fold adaptive composition
—_———
T —times

of (€,8)-DP mechanisms. Then K is (¢/,T6 + 0')-DP for € = e/2T In(6'~1) 4+ Te(e — 1), for all
6" > 0.

A.4.1 DP OF THE GRADIENT DURING BACKPROPAGATION

Setup. Let {(X;, y?)}}Y, be training data points. Let the k*® layer of an L layer DNN be X, let ®
be a differentiable activation function, and let M}, be the weight matrix for the &*® layer at iteration ¢.
By this convention, X; = X?. Att = 0, we have

X/ =®;M)X]™Y), yl =MIX]™Y, j=1,---L. (23)

For the noisy split neural network with post-processing, let the split happen at the (I — 1)*® layer (so,
the cut layer is the (I — 1)t" layer). With the notations above, we have:

X =®,(M)X]7Y), yl = MIX]T!, j=1,0—1,
X =xt A, Xl @l(MOhD(Xl)) gt MOhD( b, (24)
and XF = @k(MOXk D, gk = M)XF k= I+ 1,---L.

In our experiments, we use the regular backpropagation formula in our noisy split network training,
which we formalize in the next Proposition.

Proposition A.11. With the notations above, for a noisy split network with post-processing, during
training, one can use the regular backpropagation algorithm by substituting: (i) y¥ = g%, XF = Xf
for all subsequentk = L —1+1,--- ,Land (i) y; =vy;,X] = X[ forallr =1,2,--- 1 -1,
before the split, and y* = ¥ fork = L — 1+ 1,--- , L after the split.

Define the sets, S C R™ and S¢ as follows:

{S = {21 p(2) > ep(z + V(D) - V(D))
)

S¢ = {2 p(2) < ep(z + V(D) — V(D) @5)
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Proposition A.12. Ler €,0 > 0, and let a random mechanism K : D — R™ be defined as in (3).
Then for any two adjacent datasets, D and D', large enough, we have that the random variable 7
will satisfy Plw : p(Z(w)) > e‘p(Z(w) + V(D) — V(D"))] < 6.

The above Proposition can be verified as follows. Because, for two large enough datasets, D and D’,
we can make A := ||V(D) — V(D’)|| small. Using Taylor expansion, we have
(

p(z) — ep(z + V(D) = V(D"))
=p(2) = e(p(2) + Vp(2) " (V(D) = V(D)) + 0o(A?)
~ (1 —e)p(z) +0(A) <0

Theorem A.13. Let a random mechanism, K : D — R™ as defined in equation [3|obey Proposition

Then for some (e, 9), K is (¢,0)-DP.

Proof. Notethat, PIK(D) € O] = P[V(D)+= € 0] = Plz ¢ 0-v(D)] ©~E"? pL. ¢ 0,

where O’ is a shifted output set. We split the set O’ into two disjoint sets, O’ NS and O’ N S°.
Therefore,

PK(D) € O] = Plz € O] = Plz € (O'NnS)u (0'nSY))
= Plz € (O'NS)|+ Pz € (0'NS°)]

0'nscs
< Plz € S] + Pz € (O'n S9)]

Pro Obltlon - 1A.12]
’ 5+ Plz € (0' 1 5. (26)
‘We also have

By equation |25
Pl c (0' NS = / ey B
z€0/nse

e / p(z+ V(D) — V(D'))d=
zeO’'NSse

o'nscco’
< ee/ p(z + V(D) —V(D"))dz
zeQ’

=u

= ee/ p(u)du
weO—V (D)

= e / p(2)dz
z+V(D")eO
= ePlV(D")+ 2z € O]
‘PIK(D') € O]. 27)
Combining equation 26]and equation 27] we get the result. O

Let g5 (D) and g4 (D) be two gradient vectors computed on the training dataset D over a minibatch
B at iteration ¢ without and with noise injected. Based on Proposition [A.TT|we have:

{g%(D) = 9(wh(D),yp (D), y5 (D), ,yp(D)).
gtB(D) :g(ﬂé(D)7 7ng(D)7le_1(D)7 7le(D))

Define Z := g3 (D) — g% (D) be a random vector. Hence,
Kpp(D) = gp(D) = gp(D) + Z, (28)

where Z = G(&, 8) is a random variable with probability density function p(z € O) = p((&,8) €
G~1(0)). In our case, we use masking and scaling as a postprocessing function, hp(-) after the
Gaussian noise injection. The random variable, £ ~ N (0,01) is continuous. The mask, R, is aran-
dom matrix of 1 and 0 with identical and independently distributed entries, (R,);; ~ Bernoulli(p),
a discrete distribution. For scaling, S, is an elementwise scaling operator. Therefore, for masking,

= MPR,(X!), and the entries of R,,(X}) = X!7'(D)+ A or 0, based on (R, )” ~ Bernoulli(p).
On the other hand, for scaling, yZ MOS (X!) and the entries of S, (X!) = L(X!7'(D) + A).
Therefore, based on Theorem [A.13] this mechamsm is also differentially pnvate
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Model & Dataset Split Config. (denoted by | ) Layer Size
CNN on MNIST 2xConv2d - FC | FC - Loss 256
2xConv2d || FC - FC - Loss 12544
MLP on IMDB Embedding - FC || FC - Loss 16
Embedding || FC - FC - Loss 4096
ResNet-20 on CIFAR10 Conv2d - 3xResBlock || FC - Loss 256
ResNet-18 on CIFAR100 Conv2d - 4xResBlock || FC - Loss 512
RNN on Names Embedding - RNN || FC - Loss 256
ResNet-50 on ImageNet1 K Conv2d - 4xResBlock || FC - Loss 512
ALBERT-base-v2 on Amazon Reviews 12 xEncoder || FC - Loss 768

Table 1: Model split configurations and split layer sizes.
Table 2: SplitNN setup and training hyper-parameters

Model Dataset Optimizer Batchsize Epoch Ir  Weight decay
CNN MNIST SGD 64 4 0.1 0
ResNet-20 CIFAR-10 SGD-M 128 160 0.1 le-4
ResNet-18 CIFAR-100 SGD-M 128 200 0.1 Se-4
MLP IMDB Adam 64 2 0.01 0
LSTM Names SGD 800 150 2 0
ALBERT-base-v2 Amazon Reviews AdamW 256 10 5e-5 le-2
ResNet-50 ImageNet1K SGD 256 90 0.1 le-4

B ADDENDUM TO THE NUMERICAL RESULTS

Due to limited space, we were unable to discuss many experimental details as well as many results in
Section 4] of the main paper. We discuss them here in detail.

B.1 LAPLACE MECHANISM

The Laplace Distribution (centered at 0) with scale b is the distribution with probability density
function:
1 ||
L b)=— ——
ap(z | b) QbeXp< b)

Here, we consider the Laplace mechanism to protect the input vector X. Simulation results (Figure /)
show that our denoising methods can also decrease the estimation error caused by Laplace mechanism
during forward and backward pass. However, in the real split learning task (see Table[3), our denoising
methods are less effective for large Laplacian noise b = 0.7, compared with ¢ = 0.7 in Gaussian
mechanism. More detailed investigation is left for future work.

B.2 SPLIT LEARNING RESULT ON CIFAR-100

We provide results on the CIFAR-100 dataset with ResNet-18 in Table[5] As shown in the table, both
our denoising techniques achieve higher accuracy than simple learning rate tuning.

Table 3: Denoising performance by using Laplacian noise in split learning for MNIST classification
task (same experiment setting as Figure [3a). We fine-tune hyperparameters A and p for different
Laplacian noise scales b = 0.3,0.5,0.7. Compared withthe Gaussian mechanism, split learning
suffers more from Laplacian noise injection.

Best acc. (%) 2=0.1 A=0.2 A=0.4 A=0.6 p=0.1 p=0.2 p=0.4 =0.6
98.96 (+0.13) - - - - - - - -
0.3 | 92.64 (x0.11) | 95.66 (£0.25) 94.49 (£0.31) 92.16 (x0.38) 90.93 (£0.49) | 98.19 (x0.67) 98.55 (+0.62) 98.32 (x0.17) 95.54 (x0.21)
0.5 | 38.30(x0.27) | 94.58 (£0.18) 93.44 (x0.27) 89.11 (0.53) 85.10 (£0.35) | 96.98 (x0.39) 97.48 (x0.84) 95.17 (x0.31) 89.01 (x0.37)
0.7 | 16.62 (0.10) | 21.44 (£0.13) 23.49 (x0.58) 20.52 (£0.34) 14.71 (¥0.52) | 12.85 (x0.27) 23.62 (¥0.45) 18.42 (x0.49) 15.58 (¥0.19)

(=1
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Figure 6: Backward simulation. Simulation of how scaling factor (A = é) and masking ratio (p) influence
the estimation error (MSE) under different noise levels (o) for linear (f1) and nonlinear functions ( f2, f3). The
backpropagation errors are essential during the training as we use them together with forward IRs to directly
compute the gradients. By taking the derivative of the loss function w.r.t the IRs, we obtain the simulation of the
MSE:s for the backpropagation errors. Similar to the forward pass, scaling and masking, can lower the estimation
error during the backward pass, especially when the noise level is relatively high.
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Figure 7: Simulation of how scaling factor (A = i) and masking ratio (p) influence the estimation error
(MSE) under different Laplacian noise levels (b) for linear and nonlinear cases. Plots (a)—(d) are the linear layer
and nonlinear layer during the forward pass, while (e)-(f) are the derivatives of the nonlinear layer during the
backward pass.

B.3 UNDERSTANDING THE SCALING OPERATION WHEN GRADIENT SCALE IMPACT IS
ELIMINATED

To further understand the scaling operations, we run the same MNIST experiment with two Adam
optimizers separately for the client and server. The results in Table [6] demonstrate that the efficacy of
scaling operation still exists even when gradient scale impact is eliminated by Adam’s updating rule.
If we compare our scaling method against learning rate tuning, the accuracy gain should be from
92.80% to 98.14%.

B.4 SPLIT LEARNING ON LARGE DATASETS

We use two large-scale datasets, Amazon Reviews|McAuley & Leskovec|(2013) for sentiment analysis
and ImageNet1K Deng et al.| (2009) for image classification tasks, and investigate how the proposed
denoising strategies perform in large-scale, challenging datasets. For the experiments on the Amazon
Reviews dataset, we use a pre-trained ALBERT-base-v2 |Lan et al.| (2020); for the ImageNet1K
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Learning rate 0.001 0.005 0.01 0.05 0.1
Top-1 Acc. (%) | 87.68 92.67 81.21 diverge diverge
Weight decay 0.01 0.05 0.1 0.2 0.4
Top-1 Acc. (%) | diverge diverge diverge 87.15 77.78
Dropout 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) | diverge diverge diverge diverge diverge
Masking 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) | 98.31 98.62 diverge diverge diverge
Scaling* 0.1 0.2 04 0.6 0.8
Top-1 Acc. (%) | 98.10 96.06 90.25 diverge diverge

Table 4: Comparison of tuning various hyper-parameters in noise injected SplitNN training at a fixed noise
level (o = 0.7) for MNIST classification. * means co-optimization with weight decay.

Table 5: Top-1 Accuracy (%) of split learning using ResNet-18 on CIFAR-100 dataset with noise
injection level (o = 0.7). The baseline achieves 75.60% Top-1 accuracy using SGD-Momentum
(m=0.9) with an initial learning rate of 0.1, and weight decay 5e~*.

Learning rate 0.001 0.005 0.01 0.05 0.1
Top-1 Acc. (%) 53.11 6893 61.54 diverge diverge

Masking (Ir=0.1) | 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) | 60.49 7238 63.31 5297 diverge
Scaling (Ir=0.1) | 0.1 0.2 0.4 0.6 0.8

Top-1 Acc. (%) | 7221 71.68 68.14 57.54 diverge

experiments, we use ResNet50; see Table[/|for the results. We provide the split configurations and
the training hyperparameters for these experiments in Tables[T|and 2] respectively. As the ALBERT-
base-v2 was a pre-trained model, we fine-tuned it on the Amazon Reviews dataset, and observed that
noise injections or denoising strategies, such as masking and scaling, had an insignificant effect on
the baseline performance. Noise injections do not degrade the performance, and denoising strategies
do not improve them either. On the other hand, the performance of ResNet50 on ImageNet1K was
heavily impacted by the noise injection. E.g., a noise injection of ¢ = 0.5 renders a test accuracy of
1.92, which is 97% lower than the baseline accuracy. When we apply the denoising strategies to the
noise-injected IRs, at the same noise level 0 = 0.5, the scaling strategy with A = 0.1 and masking
strategy with p = 0.2 recover performance comparable to the baseline.

B.5 EXPERIMENTS ON SPLITTING THE NETWORK

We investigated the network behavior in the split setup and experimented with different layers to split
the network. For this, we selected the configurations of MLP on the IMDB dataset and ResNet20 on
the CIFAR10 dataset with the highest noise-level, o = 0.7; see Table @] for the results. We observe
that splitting the networks at the initial layers causes a performance degradation compared to when
the networks are split towards the end. We also observe that for MLP architectures, the scaling
strategy is more effective for denoising, while the masking strategy is more effective for ResNet
architectures.

Table 6: Top-1 Accuracy(%) of split learning on MNIST dataset with noise injection level (¢ = 0.7).
Use two Adam optimizers separately for the client and server. The Adam baseline (Ir=1e-3) achieves
98.95% top-1 accuracy.

Learning rate le-6  le-5 le-4  le-3 0.1
Top-1 Acc. (%) 83.96 92.80 90.13 diverge diverge
Scaling ratio (Ir=1e-4) | 0.1 0.2 0.4 0.6 0.8
Top-1 Acc. (%) 97.19 9794 98.14 96.03 91.75
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Table 7: Performance of scaling (\) and masking (p) at different noise levels (o) for large-scale
datasets, ImageNet and Amazon Reviews Full.

Task Noise level (0) Bestacce. (%) M=0.1 p=0.2
0 74.85 - -
ResNet50-ImageNet 0.3 31.18 7426 7379
0.5 1.92 7293  73.07
0 65.19 - -
ALBERT-base-v2-Amazon Reviews 0.3 65.15 65.12  65.15
0.5 65.18 65.16  65.13

Table 8: Performance of scaling ()\) and masking (p) for different splits of the networks.

Task Splits o Best acc. (%) A=0.1 X=0.2 p=0.1 p=0.2

- 0 85.53 - -
MLP-IMDB Embedding - FC || FC - Loss 0.7 76.28 8325 8235 82.82 8341
Embedding || FC - FC - Loss 0.7 69.08 73.61 7291 6495 66.12

_ 0 91.76 - -
ResNet20-CIFAR10  Conv2d - 3xResBlock || FC - Loss 0.7 80.69 86.69 87.16 89.07 89.48
Conv2d - 2xResBlock || 1xResBlock - FC - Loss 0.7 66.16 3553 3822 8501 86.95

B.6 COMPUTATIONAL OVERHEAD OF THE POSTPROCESSING FUNCTIONS

We measured the computational overhead introduced by the denoising techniques on both CPU and
GPU. The results are shown in Table [0} The computational overhead of scaling and masking is
negligible compared to the training computation.

Table 9: Run time profiling for one mini-batch training of CNN on MNIST dataset. GPU: NVIDIA
A100-80GB GPU. CPU: Intel Xeon Platinum 8260 CPU @ 2.40GHz.

Hardware Baseline Noise injection only ~ Noise injection w. masking Noise injection w. scaling
GPU 1.54 ms 1.88 ms 1.91 ms 1.92 ms
CPU 22.16 ms 22.27 ms 23.40 ms 23.19 ms

B.7 FEATURE-SPACE HIJACKING ATTACK (FSHA) AND OUR POST-PROCESSING TECHNIQUES

Threat model. We assume that the attacker has no information on the architecture of the client’s
model and its weights. However, the attacker knows a public dataset that captures the same domain of
the clients’ training sets. For example, if the model is trained on face images, then the public dataset
is composed of face images as well. This assumption is more realistic and less restrictive than the
ones adopted in other works|Vepakomma et al.| (2019) Vepakomma et al.| (2018b)), where the attacker
is assumed to have direct access to leaked pairs of intermediate results and private training data.

In the FSHA |Pasquini et al.|(2021)) attack, the attacker (e.g. the server) can hijack the client’s learning
process and learn an inverse version of the client’s model. During the inference, the attacker can
recover the client’s raw data by using the output of the client. In this work, we showed that the
masking operator simultaneously improves the SplitNN training and in the meantime, decreases
the efficacy of the FSHA attack. Our intuition is that the denoising effect depends on the specific
application, which is a function applied to the noisy input, X + A. If the function’s goal is to identify
each value of X, such as reconstructing an image in an FSHA attack, then denoising cannot help
too much. However, if the goal is to get a more accurate estimation on some statistical metrics of X,
such as the mean, norm of X, then it is possible to have an evident denoising improvement.

B.8 DP BUDGET

We provide the privacy bounds for one single forward pass during the SplitNN training in Table
By using the general composition Theorem, Theorem|[A.10]in the Appendix, we can calculate
the total privacy budget for the entire training process. Although Theorem|[A.T0|gives a theoretical
formalization, in practice, if we use Theorem [A.T0]directly, it will result in a large privacy bound,
which may not be practical. As argued in the paper DP-SGD, Abadi et al. found that even for
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Figure 8: Comparison of tuning various hyper-parameters in noise-injected split learning at a fixed noise level
(o0 = 0.7) for MNIST classification task.

Table 10: Hyper-parameter tuning for scaling (\) and masking (p) at different noise level (o). Results
are obtained by running the experiment for 3 times with different random seeds. We record the best
test accuracy during the training instead of the final accuracy.

Task o[ Bestacc. (%) | A=0.1 3=0.2 =04 1=0.6 p=0.1 =02 =04 7=0.6
0 | 98.96 (20.13) | - B B
CNN-MNIST 0.3 | 98.46 (£0.07) | 97.63 (:0.27) 97.13 (20.23) 96.07 (+0.10) 95.42 (0.17) | 98.93 (20.14) 98.88 (+0.19) 98.86 (20.11) 98.77 (x0.09)
0.5 | 90.99 (0.38) | 97.59 (£0.20) 97.07 (20.63) 95.87 (0.09) 94.62 (£0.94) | 98.78 (20.15) 98.84 (+0.16) 98.74 (20.30) 94.36 (x1.13)
0.7 | 81.85 (£0.77) | 97.11 (20.15) 96.30 (20.36) 90.95 (+0.22) 88.88 (+0.28) | 98.31 (£0.38) 98.62 (+0.23) 96.67 (20.14) 90.51 (£1.09)
0 | 91.76 (0.28) | - B B B B B B B
0.3 | 90.98 (+0.23) | 89.15 (x0.51) 90.13 (£0.95) 90.67 (:0.49) 90.84 (+0.43) | 88.69 (£0.80) 89.54 (+0.57) 90.30 (x0.26) 90.15 (x0.31)
0.5 | 89.72 (+0.49) | 89.93 (x0.52) 90.50 (£0.74) 90.33 (0.72) 89.97 (+0.62) | 88.21 (£0.50) 89.55 (+0.73) 89.98 (£0.98) 89.65 (x1.10)
0.7 | 82.03 (x0.76) | 88.88 (x0.74) 87.95 (x0.13) 87.21 (x0.79) 85.80 (+0.88) | 88.45 (£0.90) 89.15 (£1.16) 88.52 (+1.29) 87.60 (x1.41)
0 | 8553 (20.18) | - B B B B B B B
MLP-IMDB 0.3 | 85.42 (0.30) | 85.85 (+0.63) 85.49 (£0.17) 84.72 (+0.58) 85.47 (£0.03) | 85.49 (£0.33) 85.54 (£0.55) 85.64 (x0.51) 8521 (x0.74)
0.5 | 84.85 (+0.63) | 85.44 (x0.68) 85.35 (£0.84) 84.06 (+0.58) 84.55 (£0.72) | 85.55 (£0.69) 86.00 (+0.36) 85.18 (£0.62) 85.92 (x1.22)
0.7 | 64.91 (£1.71) | 84.00 (x0.38) 84.24 (x0.94) 82.83 (+0.36) 80.90 (x0.71) | 85.11 (x0.40) 85.08 (+0.30) 83.27 (x1.38) 84.88 (x1.03)
0 | 81.24 (20.25) | - B B B B B B B
0.3 | 8231 (0.81) | 83.76 (x0.58) 82.35(x0.27) 81.17 (x0.31) 80.51 (£0.59) | 80.52 (£0.36) 82.05 (+0.40) 81.63 (x0.08) 82.23 (x0.83)
0.5 | 56.91 (£1.42) | 82.17 (x0.64) 81.70 (20.78) 81.56 (+0.45) 81.43 (£0.95) | 80.13 (£0.52) 82.54 (+1.03) 82.04 (x1.21) 82.57 (x0.06)
0.7 | 47.65 (£1.97) | 81.56 (:0.34) 80.87 (20.58) 81.07 (+0.81) 66.68 (+0.57) | 79.35 (£0.35) 8115 (0.75) 80.40 (x0.75) 46.59 (x1.33)

ResNet20-CIFAR10

LSTM-Names
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Xrec

(a) 2 FC layers on server side, split layer size = 12544 (b) 1 FC layer on server side, split layer size =256

Figure 9: Private data recovery by FSHA in split learning on MNIST. X,,,;,.: the original private data, X .:
obtained by FSHA attack. We compare two different split learning settings: (a) split 2 FC layers on the server
side (b) split 1 FC layer on the server side. The dimension of the split layer are also different. We can see that by
splitting more layers on the server side, it is more likely to reconstruct private training even when the noise level
is relatively high (o = 1.0, 2.0).
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Figure 10: Private data recovery by FSHA in split learning on MNIST. X ,i,: the original private data, X e.:
obtained by FSHA attack in various settings: (a) noise injection only (b) noise injection + masking (c) noise
injection + scaling.
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Figure 11: Private data recovery by FSHA in split learning on Fashion-MNIST. X,,,;,,: the original private
data, X,..: obtained by FSHA attack in various settings: (a) noise injection only (b) noise injection + masking
(c) noise injection + scaling.
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Table 11: We provide the privacy bounds for one single forward pass during the SplitNN training, for
various noise levels used in our work, without denoising. We compare it with two state-of-the-art
results for private split learning.

Method Model & Dataset DP mechanism Inference Training Noise scale DP bounds
Titcombe et al. 2021 2D CNN on MNIST Laplace v 0.1,0.5,1.0 N/A
Abuadbba et al. 2020 1D CNN on medical data  Laplace v N/A e=1,35,7,10
Our work (w/o sampling amplification) 2D CNN on MNIST Gaussian v 0.3,0.5,0.7 €=1(260, 150, 110)*2, § = le—5
ResNet on CIFAR10 Gaussian v 0.3,0.5,0.7 €=(264,152, 112)*2,6 = le—5
MLP on IMDB Gaussian v 0.3,0.5,0.7 €=(168,96,72)*2,§ = le—5
LSTM on Names Gaussian v 0.3,0.5,0.7 €=(9.2,5.3,3.9)%2,6 = le—5
Our work (w/o sampling amplification) 2D CNN on MNIST Laplace v 0.3,0.5,0.7 €=(53.3,32,22.8)*2
ResNet on CIFAR10 Laplace v 0.3,0.5,0.7 €=(53.3,32,22.8)*2
MLP on IMDB Laplace v 0.3,0.5,0.7 €=(13.3,8,5.7)*2
LSTM on Names Laplace v 0.3,0.5,0.7 €=(53.3,32,22.8)*2

local SGD training using Theorem [A.T0] would result in a large privacy bound and proposed a new
accounting for local noisy SGD training. However, noisy SplitNN is a more complicated architecture,
and DP-SGD analysis cannot be adopted here. Currently, privacy accounting for noisy SplitNN
training remains an open problem. Improving the privacy accounting for split learning is not the
primary focus of this work, instead, we want to show how denoising can improve noisy SplitNN
accuracy.

C LIMITATIONS

Our denoising techniques work empirically on diverse datasets (MNIST, FMNIST, CIFAR-10, CIFAR-
100, ImageNet1K, IMDB, Amazon Reviews, and Names) and across different network architectures
(CNN, RNN, Transformer, and MLP). One of the potential drawbacks or limitations of the denoising
techniques empirically is finding a good scaling or masking ratio. Another potential limitation
could be that our proposed denoising techniques may not work for other loss functions. However,
theoretically, we covered almost all the existing loss functions used for common DNN training;
please see our discussion in the Appendix. Generalizing our theoretical claims to a broader class
of nonlinear loss functions, such as sparse categorical cross-entropy, which is also rarely used in
practice, requires further non-trivial investigation and is a scope for future research. Our present
theoretical analyses are in Section 3.1. and 3.2 consider the split layer at the pre-final layer of an L
layer DNN; analysis of the split at an arbitrary ¢-th layer, along with the final loss function used for
DNN training, requires much more mathematical rigor.
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