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SDV-LOAM: Semi-Direct Visual–LiDAR
Odometry and Mapping

Zikang Yuan, Qingjie Wang, Ken Cheng, Tianyu Hao and Xin Yang*, Member, IEEE

Abstract—Visual-LiDAR odometry and mapping (V-LOAM), which fuses complementary information of a camera and a LiDAR, is an
attractive solution for accurate and robust pose estimation and mapping. However, existing systems could suffer nontrivial tracking
errors arising from 1) association between 3D LiDAR points and sparse 2D features (i.e. 3D-2D depth association) and 2) obvious drifts
in the vertical direction in the 6-degree of freedom (DOF) sweep-to-map optimization. In this paper, we present SDV-LOAM which
incorporates a semi-direct visual odometry and an adaptive sweep-to-map LiDAR odometry to effectively avoid the above-mentioned
errors and in turn achieve high tracking accuracy. The visual module of our SDV-LOAM directly extracts high-gradient pixels where 3D
LiDAR points project on for tracking. To avoid the problem of large scale difference between matching frames in the VO, we design a
novel point matching with propagation method to propagate points of a host frame to an intermediate keyframe which is closer to the
current frame to reduce scale differences. To reduce the pose estimation drifts in the vertical direction, our LiDAR module employs an
adaptive sweep-to-map optimization method which automatically choose to optimize 3 horizontal DOF or 6 full DOF pose according to
the richness of geometric constraints in the vertical direction. In addition, we propose a novel sweep reconstruction method which can
increase the input frequency of LiDAR point clouds to the same frequency as the camera images, and in turn yield a high frequency
output of the LiDAR odometry in theory. Experimental results demonstrate that our SDV-LOAM ranks 8th on the KITTI odometry
benchmark which outperforms most LiDAR/visual-LiDAR odometry systems. In addition, our visual module outperforms state-of-the-art
visual odometry and our adaptive sweep-to-map optimization can improve the performance of several existing open-sourced LiDAR
odometry systems. Moreover, we demonstrate our SDV-LOAM on a custom-built hardware platform in large-scale environments which
achieves both a high accuracy and output frequency . We will release the source code of our SDV-LOAM upon publication of the paper.

Index Terms—Visual-LiDAR sensor system, Pose estimation, Mapping.

✦

1 INTRODUCTION

V ISUAL odometry and Light Detection and Ranging (Li-
DAR) odometry, which are two widely-used solutions

for 6-DOF pose estimation and mapping, are fundamental
techniques for many robotics and computer vision applica-
tions, e.g., driverless cars and automatic navigation. Using
a RGB camera or a LiDAR alone as the only input sensor
for an odometry has complementary advantages and draw-
backs. Visual odometry [1], [2], [3], [4], [5], [6], [7] can output
pose and map points at a high frequency (i.e., 30-60 Hz),
but the accuracy is not as good as LiDAR odometry due to
its poor robustness to blurred images and low textures. In
contrast, LiDAR odometry [8], [9], [10], [11] can generally
provide more accurate pose estimation and mapping than
visual odometry, while its output frequency is limited by
the low frequency of input point clouds (e.g., 10 Hz).

Many works have been conducted to combine comple-
mentary advantages of visual and LiDAR sensors in the
literature. State-of-the-art visual-LiDAR odometry methods
can be classified into two categories, i.e., loosely integrated
and tightly integrated. Loosely integrated methods (e.g.,
DEMO [12], LIMO [13], DVL-SLAM [14], [15]) use only
3D points from LiDAR to provide depth measurements for

• Zikang Yuan is with Institute of Artificial Intelligence, Huazhong Uni-
versity of Science and Technology, Wuhan, 430074, China. (E-mail:
yzk2020@hust.edu.cn)

• Qingjie Wang, Ken Cheng, Tianyu Hao and Xin Yang* are with the Elec-
tronic Information and Communications, Huazhong University of Sci-
ence and Technology, Wuhan, 430074, China. (E-mail: wqj@hust.edu.cn;
kencheng@hust.edu.cn; hty@hust.edu.cn; xinyang2014@hust.edu.cn)

• * represents the corresponding author.

the visual odometry, while the advantage of accurate pose
estimation in a LiDAR odometry is completely ignored.
Therefore, these systems are only considered as LiDAR-
assisted depth-enhanced visual odometry. In comparison,
tightly integrated systems [16], [17] provide a more in-depth
combination of the two techniques to take better use of
their complementary advantages. The most notable work
of the tightly integrated method is V-LOAM [16], in which
a LiDAR-assisted depth-enhanced visual odometry runs at
a high frequency, and a LiDAR odometry refines the pose
from the visual module at a low frequency. However, many
camera poses are not refined by the LiDAR module in
V-LOAM. Furthermore, V-LOAM employs a feature-based
method for its visual module which suffers inevitably from
3D-2D depth association errors as few 2D sparse feature
points could have associated 3D depth points and in turn
yields interpolation errors. Utilizing the direct methods for
visual odometry has the potential to avoid the 3D-2D depth
association error, yet methods rely on the photometric error
minimization for pose estimation which are easy to fall into
a local minimum and sensitive to photometric changes and
errors in camera intrinsic parameters compared to feature-
based methods [18].

In this paper, we present SDV-LOAM which combines
a semi-direct LiDAR-assisted depth-enhanced visual odom-
etry and a LiDAR odometry for accurate and robust pose
estimation and mapping. Different from V-LOAM, our vi-
sual module employs a semi-direct method to combine the
success-factors of the feature-based method (re-projection
error minimization for accurate pose estimation) with the
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direct method (eliminating 3D-2D depth association errors).
Our semi-direct visual odometry is significantly enhanced
based on the core idea of SVO [4] to address unique chal-
lenges in visual-LiDAR integration:

1) To ensure that a sufficient amount of 2D pixels have
associated 3D depth points from LiDAR, we propose a new
point extraction method which extracts high-gradient points
that are uniformly distributed on an image and are from the
projections of 3D LiDAR points on an image.

2) Due to the low frequency of 3D point cloud, the
interval between frames with projected 3D LiDAR points
is large which could yield large scale differences between
matching frames. To detect reliable pixel correspondences
between frames, we design a novel point matching method
which propagates points of a host frame to an intermediate
keyframe which is closer to the current frame, and then
obtain the matching points between current frame and host
frame by finding the corresponding pixels of the intermedi-
ate keyframe on current frame, to reduce scale differences.

3) To improve robustness of our visual module in var-
ious scenes, we adaptively add extra high-gradient points
without LiDAR points as a complement when the texture of
current tracking points is limited.

Another major problem of most existing LiDAR and
visual-LiDAR odometry systems (e.g., A-LOAM, LeGO-
LOAM, Fast-LOAM, ISC-LOAM and MULLS) is that LiDAR
points tend to provide weak constraints in the vertical di-
rection as majority of surfaces whose normal vectors point-
ing vertically in the outdoor scenes are the ground. These
surfaces typically distribute on the same plane (i.e., ground
plane) and enforce weak constraints in 3 vertical DOF (i.e.,
roll, pitch, upward) pose optimization via traditional Itera-
tive Closest Point (ICP). Although the latest LiDAR odom-
etry CT-ICP [19] ameliorates this problem by introducing a
weighting strategy to favor planar neighborhoods, that was
originally proposed in IMLS-SLAM [20], into the traditional
ICP algorithm. However, the performance is still not well
when geometric constraint in vertical direction is too lim-
ited. For these cases, optimizing the 3 vertical DOF could
adversely degrade the overall accuracy of pose estimation.
To address this problem, we design an adaptive sweep-to-
map optimization method which automatically chooses to
optimize 6 full DOF pose or only the 3 horizontal DOF
according to the richness of geometric constraints in the
vertical direction of the current input sweep.

In addition, we propose a sweep reconstruction module,
which overlaps and reconstructs the sweep according to
the time stamps of camera images to increase the input
frequency of LiDAR point clouds, and in turn increase
the output frequency of LiDAR odometry. Experimental
results on public datasets [21], [22], [23] demonstrate that:
1) our visual module outperforms state-of-the-art LiDAR-
assisted depth-enhanced VO including DEMO [12], LIMO
[13], Huang et al. [15] and DVL-SLAM [14]; 2) our adaptive
sweep-to-map optimization can improve the performance
of several existing open-sourced LiDAR odometry systems
including A-LOAM, LeGO-LOAM [9], Fast-LOAM, ISC-
LOAM [11], MULLS [24] and CT-ICP [19]; and 3) our SDV-
LOAM achieves 0.47%, 0.46%, 0.038% relative translational
error on the KITTI [21] training set, KITTI-360 [22], KITTI-
CARLA [23] which outperforms A-LOAM, LeGO-LOAM,

Fig. 1. (a) Our camera-LiDAR sensor system for collecting gray images
and 3D point cloud measurements. (b) Exemplar input data collected by
our camera-LiDAR sensor system. (c) The estimated trajectory overlaid
on Google Map for visual illustration. (d) The 3D reconstruction result.

Fast-LOAM, ISC-LOAM, MULLS and CT-ICP, and 0.60%
on the KITTI test set which ranks the 8th place on the
KITTI odometry benchmark (before 2023.01), ranks 6th com-
pared with existing LiDAR-only/monocular visual-LiDAR
systems and ranks 2th compared with all open-sourced sys-
tems. We further build our visual-LiDAR odometry system
with a wide-angle camera FL3-U3-13E4M-C (60 Hz) and
a Velodyne VLP-16E LiDAR (10 Hz) as illustrated in Fig.
1. Live experiments in large-scale outdoor environments
demonstrate that our system with sweep reconstruction can
increase the frequency of input LiDAR point clouds and
output poses from LiDAR module with high accuracy.

To summarize, the main contributions of this work are
five folds:

1) We propose a novel visual-LiDAR odometry and
mapping system, named SDV-LOAM, which achieves com-
petitive accuracy and high output frequency in theory com-
pared with the state-of-the-art works;

2) We propose a semi-direct method for the visual mod-
ule of our SDV-LOAM, which can address unique chal-
lenges in visual-LiDAR integration (i.e., 3D-2D depth asso-
ciation error, long interval induced pixel matching error and
poor robustness in low-textured scenes) and achieves supe-
rior performance to state-of-the-art LiDAR-assisted depth-
enhanced VO [12], [13], [14], [15];

3) We propose an adaptive sweep-to-map optimization
method, which automatically optimize 3 horizontal DOF
pose or 6 full DOF pose according to the geometric con-
straints in the scene. Our adaptive method can improve the
accuracy of several existing open-sourced LiDAR odometry
systems;

4) We propose a sweep reconstruction module, which
can increase the input frequency of LiDAR point clouds
and in turn accelerate the output pose frequency of LiDAR
odometry in theory;
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5) We will release the source code of our SDV-LOAM
upon publication of the paper1.

The rest of this paper is organized as follows. In Sec.
2, we briefly discuss the relevant literature. Sec. 3 provides
preliminaries. Sec. 4 introduces the framework of our sys-
tem. Sec. 5 and Sec. 6 details our visual and LiDAR module
respectively followed by experimental evaluation in Sec. 7.
Sec. 8 concludes the paper.

2 RELATED WORK

RGB camera and LiDAR are two widely-used sensors for
6-DOF pose estimation. In general, vision-based odome-
try/SLAM systems can be categorized into three classes: 1)
feature-based methods [1], [25], [26], [27], [28] which rely
on local image features for pose tracking, 2) direct methods
[2], [3], [6], [7], [29] which directly use raw sensor measure-
ments (e.g., intensity values) for tracking, and 3) semi-direct
method [4], which firstly estimates an initial pose by mini-
mizing the photometric error as direct method, then utilizes
the initial pose to find correspondences between frames via
point matching, and finally refines the pose by minimizing
the re-projection error of matched features as feature-based
method. An obvious advantage of visual odometry(VO) is
its high output frequency for pose estimation. However, its
accuracy could degrade significantly in presence of large
noise in image data and the obtained map is usually sparse.

LiDAR-based odometry systems [8], [9], [10], [30] rely
on geometric information contained in LiDAR points for
tracking, and constantly update the point cloud map with
rich geometric structures. For instance, LOAM [8], [30] ex-
tracts edge and surface points from raw input point cloud,
and then builds point-to-line and point-to-plane residuals
for 6-DOF ICP pose estimation. LOAM performs tracking
and mapping in parallel to ensure a high efficiency of
pose estimation. However, due to huge number of points
to be processed, the output frequency remains low. Based
on LOAM, LeGO-LOAM [9] excludes a large number of
points with weak geometric information from processing
to significantly improve the efficiency. However, how to
effectively exclude irrelevant points, e.g., outliers caused by
moving objects or erroneous measurements, is a nontrivial
task and incorrect removal of useful points would in turn
reduce the robustness of the system. SuMa [10] proposes
to represent the map via a surfel-based representation that
aggregates information from LiDAR points. However, GPU
acceleration is necessary for SuMa to achieve real-time
performance and the pose estimation accuracy is not better
than systems based on the framework of LOAM. Wang et al.
[11] propose Fast-LOAM which excludes the sweep-to-map
optimization module, and only retains sweep-to-sweep pose
estimation. Then an intensity scan context (ISC) is proposed
to improve the performance of loop detection based on
Fast-LOAM. Unlike traditional LiDAR odometry systems
which only extract edge and surface features, MULLS [24]
proposes to utilize more types of features (e.g., facade,
beam, pillar and ground) in LiDAR odometry. However, the
weights of residual terms constructed by different features
are very difficult to set, and using all of these features

1. https://github.com/ZikangYuan/SDV-LOAM

could adversely reduce the accuracy on some sequences
of KITTI [21]. A major drawback commonly exists in most
LIDAR systems [8], [9], [11], [24], [30] is that these methods
perform 6-DOF ICP pose estimation and typically suffer
large cumulative errors in the vertical direction because
the vertical constraints in outdoor scenarios are usually
poor. To alleviate this problem, IMLS-LOAM [20] proposes
an IMLS pose solution algorithm to replace conventional
transport ICP. However, large computational cost of IMLS
makes IMLS-LOAM impossible to run in real time. Based
on IMLS-SLAM, CT-ICP [19] employs an elastic formulation
of the trajectory, with a continuity of poses intra-scan and
discontinuity between scans, to improve the robustness for
fast movement. Despite of higher accuracy and efficiency
of CT-ICP compared with other LiDAR systems, its per-
formance is still not well when running in scenes where
geometric information in the vertical direction is limited
(e.g., KITTI 01 and KITTI 03). LOL [31] applies a place
recognition method to detect geometrically similar locations
between the online 3D point cloud and a priori offline map
via the Segment Matching algorithm. However, the prior
offline map may not be available in practice and Segment
Matching requires powerful GPU for computing. LIO-SAM
[32] formulates LiDAR-inertial odometry as a factor graph
for multi-sensor fusion and global optimization. However,
the computational burden of LIO-SAM [32] has reached
its limitation, therefore other sensors (e.g. camera, wheel
odometer) are difficult to be fused in the existing system.
In addition, they did not test their work on any published
dataset, which makes it difficult to compare with the litera-
ture.

To combine the complementary advantages of visual and
LiDAR systems, some studies explore visual-LiDAR hybrid
odometry/SLAM by integrating the two sensors. Existing
approaches can be generally categorized into two classes,
i.e., loosely integrated and tightly integrated. Loosely inte-
grated methods [12], [13], [14], [15] utilize LiDAR points
to assist depth estimation and mapping, and then rely
on visual tracking based on the improved map for pose
estimation. For instance, DEMO [12] associates extracted
2D features with 3D points to assign depth value to each
feature point (i.e., depth association). To improve the accu-
racy, LIMO [13] adds a loop closure module to DEMO and
utilizes semantic information to identify moving objects. In
addition to point features, Huang et al. [15] proposes to use
line features which are less sensitive to noise [33], large
viewpoint changes [34], and motion blurs [35] in tracking
and mapping. However, the 3D points from LiDAR do not
correspond to 2D feature points and lines one to one. Thus,
interpolation is inevitably demanded in depth association
and in turn introduces errors. To avoid the depth association
errors, DVL-SLAM [14] proposes to use the direct method
for visual tracking. In DVL-SLAM, the LiDAR points are
projected on an image to extract identity values of located
pixels. However, the pose estimation of DVL-SLAM relies
on photometric error minimization which usually performs
worse than re-projection error minimization.

Tightly-integrated methods [16], [17] aim at an in-depth
combination of the strength of visual and LiDAR odom-
etry. One of the most notable examples is V-LOAM [16]
which first uses a LiDAR-assisted depth-enhanced visual
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Fig. 2. Illustration of the coordinate transformation of three coordinate
systems. (·)w, (·)c and (·)l are defined as a 3D point in the world
coordinates, in the camera coordinates and in the LiDAR coordinates
respectively. The world coordinate coincides with (·)l at the starting
position. In all coordinates the x-axis points to the right, the y-axis
points upward, and the z-axis points forward. We assume that the
transformation Tl

c between camera and LiDAR is known and remains
constant during operation.

odometry running at a high frequency (i.e., image frame
rate) to perform coarse frame-to-frame pose estimation, and
then refines the pose by a LiDAR odometry running at a
lower frequency (i.e., LiDAR point cloud rate). Then the
high-frequency camera poses are integrated into the low-
frequency LiDAR poses to obtain the final pose at an image
frame rate. Since many poses from the visual module are not
refined by the LiDAR module, the final pose results consist
of output from two systems (i.e., LiDAR odometry and
LiDAR-assisted depth-enhanced odometry). It is notewor-
thy that this problem is not caused by the limited calculation
of LiDAR odometry, but because the difference between the
acquisition frequency of LiDAR point clouds (10 Hz) and an
RGB camera images (30∼60 Hz).

3 PRELIMINARIES

3.1 Coordinate Systems

As shown in Fig. 2, we denote (·)w, (·)c and (·)l as a 3D
point in the world coordinates, in the camera coordinates
and in the LiDAR coordinates respectively. We define the
world coordinate (·)w coincides with (·)l initially. In all
coordinates, the x-axis points to the right, the y-axis points
upward, and the z-axis points forward. We denote the
camera coordinates for taking the ith image frame at time
ti as ci and the corresponding LiDAR coordinates at ti as
li, then the transformation matrix (i.e., extrinsic parameters)
from the camera coordinates ci to the LiDAR coordinates li
is denoted as Tli

ci ∈ SE(3) of the special Euclidean group,
where Tli

ci consists of a rotation matrix Rli
ci ∈ SO(3) and a

translation vector tlici ∈ R3 as

Tli
ci =

[
Rli

ci tlici
0 1

]
(1)

The external parameters are usually calibrated once offline
and remain constant during online pose estimation; there-
fore, we can represent Tli

ci using Tl
c for simplicity.

3.2 Camera Projection Model

The coordinate of a 3D point in the world coordinate is
denoted as pw = (x, y, z)T ∈ R3 and its projection to a
2D image is denoted as u = (u, v)T ∈ R2, which can
be computed based on the camera projection model π:
R3 → R2:

u = π
(
Tc

lT
l
wp

w
)

(2)

where π is determined by the 3×3 intrinsic camera parame-
ters K. Similarly, the 3D points pc in the camera coordinates
can be recovered from their 2D projections u by the inverse
projection model π−1: π: R2 → R3:

pc = π−1 (u, du) (3)

where du ∈ R represents the depth of 2D point u in the
camera coordinates.

3.3 Data Management

We define a sweep as a full scan completed by a LiDAR at
one time. To build our sensor system, we utilize Velodyne
VLP-16 as our LiDAR sensor which produces a full 360◦

point cloud by rotation of LiDAR diodes (10 Hz), and FL3-
FW-14S3M-C as our camera sensor (60 Hz). As the two sen-
sors run at different frequency, we align their timestamps.
Assume the camera collects an image at time ti, the LiDAR
begins a scan at ti-0.1s and finishes the scan at time ti.
The point cloud collected from a full scan is defined as S
in the following text. For evaluation on the public datasets
[21], [22], [23], the acquisition frequency of the camera and
LiDAR are both 10 Hz, and the providers have aligned the
timestamps and transformations between the two sensors,
and [21] has performed motion distortion compensation for
all sequences.

In the visual module of our system, we define a frame
as a set consisting of an image and the associated LiDAR
points. As the acquisition frequency of the camera (e.g.,
60 Hz) could be higher than that of the LiDAR (e.g., 10 Hz),
only a subset of images has corresponding LiDAR points.
For images without corresponding LiDAR points, the frame
contains only an image and an empty set of LiDAR points.
Only frames with nonempty LiDAR points could be selected
as keyframes (KFs).

For 2D pixels in an image, on which the corresponding
LiDAR points can be directly projected, we define them as
depth point D in the following text. For other 2D pixels
without corresponding 3D points, we define them as non-
depth point. For a depth point whose pixel coordinate is
u = (u, v)T ∈ R2 associated with a LiDAR point pl =
(x, y, z)T ∈ R3, the depth du of u is calculated as:

du =
[
Tc

lp
l
]
z

(4)

where [·]z is the z coordinate of the element. For simplicity,
in Eq. 4 we do not consider motion distortion of LiDAR
points, which can be compensated by the constant velocity
model [8].
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Fig. 3. Overview of our SDV-LOAM which consists of two main modules:
a semi-direct depth-enhanced visual odometry and a LiDAR odometry.
The visual module and LiDAR module are combined by a sweep re-
construction block, which increases the input frequency of LiDAR point
clouds to the same frequency as the camera images. The yellow blocks
highlight our main contributions compared with existing methods. It is
worth explaining that the ”60 Hz visual pose” and the ”60 Hz recon-
structed cloud” are the ideal frequency assuming infinite computing
resources. We use 60 Hz visual pose and reconstructed cloud here
for the convenience of description. In fact, both our vision and LiDAR
module can run at around 20 Hz.

4 SYSTEM OVERVIEW

Fig. 3 illustrates the framework of our system which con-
sists of two main modules: a semi-direct depth-enhanced
visual odometry and a LiDAR odometry. The yellow blocks
highlight our main contributions compared with existing
methods.

Our visual module is implemented based on DSO [6], a
popular monocular direct-based VO, with significant mod-
ifications to extend it to a semi-direct depth-enhanced VO
with LiDAR assistance. Local depth map is the local map
that stores the depth observation of each extracted point
whose host frame is in the sliding window, and the host
frame is the frame from which the high-gradient point is
extracted. The semi-direct depth-enhanced visual odometry
runs at 60 Hz to estimate pose of each camera frame ci.
Firstly, an initial pose of ci is estimated by minimizing the
photometric error between ci and the latest keyframe kn in
the direct pose estimation block. Then the initial pose and
the local depth map is utilized to find pixel correspondences
between frames via point matching with propagation. Fi-
nally, we utilize the pixel correspondences to further refine
the pose by minimizing the re-projection error between ci

and the local depth map in the pose refinement block. If ci
is not selected as a new keyframe, it is sent to the transform
integration block. Otherwise, ci is sent to the new point
extraction block. For every new keyframe kn, the high gradi-
ent depth and non-depth points are extracted. Then, in the
sliding window-based bundle adjustment (BA) block, we
find pixel correspondences between newly extracted points
and pixels on previous keyframes in the sliding window.
The re-projection residuals are computed according to all
existing correspondences in the sliding window and jointly
optimized. After each optimization, the oldest keyframe is
marginalized and then dropped from the sliding window
and points extracted from this keyframe are removed from
the local depth map. Finally, we combine the frame-to-frame
pose from pose refinement block and the frame-to-world
pose from sliding window-based BA block in the transform
integration block to derive the final output pose at the same
frequency with input camera images. The point cloud pre-
processing block is designed to adaptively add extra high-
gradient points without LiDAR depth measurements as a
complement when the texture of current tracking points is
limited.

Our LiDAR module is implemented based on CT-ICP
[19], with two main enhancements to improve the accuracy
and output frequency. First, we propose a sweep recon-
struction method which overlaps and reconstructs a sweep
to match the acquisition frequency of camera images (e.g.,
60 Hz). Second, we present an adaptive sweep-to-map pose
optimization method which adaptively determine to opti-
mize 3 horizontal DOF or 6 full DOF pose according to the
richness of geometric information in the vertical direction.

5 SEMI-DIRECT DEPTH-ENHANCED VO
Existing methods [12], [13], [15] mainly utilize feature-based
method for LiDAR-assisted visual tracking. However, the
projection of a 3D LiDAR point may not coincide exactly
with a 2D feature point. As a result, interpolation of 3D
points is usually required in the process of associating 2D
features with 3D LiDAR points, yielding nontrivial approx-
imation errors. On the other hand, direct method [14] can
effectively avoid this problem as it can directly utilize 2D
pixels where the 3D LiDAR points projected for visual
tracking. However, the pose solution method of photometric
error minimization (utilized in direct methods) is prone
to fall into local minimum and sensitive to photometric
changes and errors in camera intrinsic parameters [18].

In this work, we propose to use semi-direct method
for tracking, which combines the success-factors of feature-
based methods (re-projection error minimization for accu-
rate pose estimation) with direct methods (eliminating the
error in the process of 2D-3D data association caused by
sparse feature extraction module when integrating LiDAR
information into a VO). We also design a series of improve-
ment solutions (i.e., new point extraction, point matching
with propagation and adaptively adding extra non-depth
points) to solve technological difficulties retained in semi-
direct LiDAR-assisted depth-enhanced VO.

Our vision module only stores the local depth map,
which consists of all extracted depth and non-depth points
whose host frames are in the sliding window. Any point p
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in the local map is stored as (u, du), where u is the 2D pixel
coordinate of p on its host frame and du is the depth value
of pixel u. If a frame is removed from the sliding window,
the points extracted from it are also removed from the local
map. As the visual module targets to output high-frequency
pose estimations, it does not store a global map.

5.1 Point Cloud Pre-Processing
Depth values calculated from LiDAR points according to Eq.
4 are of high precision, and remain unchanged throughout
the operation of our system. If majority of LiDAR points
can be projected to regions with rich visual textures, the
extracted high gradient depth points from the new point
extraction block are sufficient for pose tracking. However, it
is common that some regions of a scene are untextured or
highly similar (e.g., ground and leaves). If most depth points
located in these untextured regions, estimating pose only
based on the depth points could become inaccurate. In this
case, we demand high gradient non-depth points in textured
regions as a supplement to assist tracking. Although depth
values of non-depth points are obtained by depth filtering
[6], which are not as precise as that of depth points, they
still contain sample effective visual information and thus are
useful for improving tracking accuracy. We define utilizing
only depth points as mode 1, and utilizing both depth and
non-depth points as mode 2.

The function of point cloud pre-processing is to analyze
the input point cloud and adaptively determine the mode.
The point cloud pre-processing module is executed for every
frame with nonempty LiDAR point clouds. Once the mode
is determined, it stays the same until the point cloud pre-
processing module is performed again.

The point cloud pre-processing module performs as
follows. We first use a ground segmentation method [36]
to roughly detect candidate ground points based on raw
input points, where the ground is usually an untextured
region. Then, we utilize the candidate ground points to fit an
accurate ground by RANSAC based on which we can obtain
refined ground points of the current frame. We calculate
the percentage of ground points in the current sweep. If
the percentage is higher than a threshold (e.g., 0.8 in our
system), we utilize mode 2 for visual module. Otherwise, we
use a fast segmentation method [37] to further distinguish
points with irregular structural information. The projections
of irregular structures in outdoor scenes usually locate on
leaves or grasses, whose intensities are very similar to
surrounding pixels and are indistinctive for visual pose
estimation. If the percentage of irregular points of non-
ground points is higher than a threshold (e.g., 0.5 in our
system), we utilize mode 2 for visual module. Otherwise,
we utilize mode 1.

5.2 Direct Pose Estimation
We track the current frame ci with respect to the newest
keyframe kn by projecting extracted high gradient points of
kn (i.e., Pkn

) to ci, and then calculate the photometric error
between kn and ci as:

Eknci =
∑

u∈Pkn

∑
ũ∈Nu

ωũ

∥∥∥∥Ici [ũ′]− bci −
eaci

eakn
(Ikn [ũ]− bkn)

∥∥∥∥2
γ

(5)

Fig. 4. Illustration of point matching with propagation. We first finds
correspondences between a host keyframe kj and the current frame
ci by minimizing photometric error between 2D patches (black squares)
in ci and kj . For an arbitrary 3D point p1, we project it from its host
frame kj to ci to derive u

ci
1 , then we take p1’s previously matched

correspondence ukn
1 from kn that is closest to ci, and align ukn

1 and
u
ci
1 which have similar scale to refine the position of uci

1 .

where ∥·∥γ is the Huber norm, I(·) represents pixel intensity
and ωu is a weight that down-weights high image gradient
pixels as:

ωu =
con2

con2 + ∥∇Ici(u)∥
2
2

(6)

con is a constant (e.g., 50 in our system), u is the 2D pixel
of an extracted high gradient depth point in Pkn . Even if
mode 2 is used according to the result of point cloud pre-
processing block, the depths of those non-depth points of kn
do not converge. Therefore, only high gradient depth points
in Pkn are used for tracking. u′ is the projection of u in ci
calculated as:

u′ = π
(
Tci

kn
π−1 (u, du)

)
(7)

where du is the depth of u, which is calculated according to
Eq. 4. In Eq. 5, ac· , bc· are the hardware related parameters
affecting the illumination transfer function in the optimiza-
tion process. Nu denotes the 8-point pattern of u, ũ′ is the
projection of the pattern point ũ into Ici . Finally, Tci

kn
, aci

and bci are estimated by minimizing Eknci .

5.3 Point-Matching with Propagation
Once the initial pose Tci

kn
of current frame ci is estimated,

we transform it to the pose relative to (·)c0 by Tc0
ci =

Tc0
kn
Tci

kn

−1 and then utilize Tc0
ci to find correspondences

between the local depth map and ci, where c0 is the first
frame in the camera coordinate system.

The authors of SVO [4] minimize the photometric error
between patches (denoted by black squares in Fig. 4) to find
2D pixel correspondences between current frame ci and the
closest keyframe kn. Specially, for an arbitrary point p1 =
(u1, du1

) ∈ Pkj
whose host frame is kj(j ∈ [1, n − 1]) in

the sliding window, SVO firstly takes the correspondence
of u1 on kn (i.e., ukn

1 ), which is the closest keyframe to ci.
Then

(
ukn
1 , dukn

1

)
is projected to ci to derive uci

1 via Tci
c0 to

find the initial position of 2D pixel correspondence of p1 on
ci, then optimizes the position of uci

1 by minimizing Eq. 9
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within the neighboring regions of uci
1 and ukn

1 (i.e., point
matching):

uci
1 = π

(
Tci

c0

(
Tc0

kn
π−1

(
ukn
1 , dukn

1

)))
(8)

uci
1 = argmin

u
ci
1

∑
u∈N

u
ci
1

,ũ∈N
u
kn
1

∥Ici [u]−A1Ikn
[ũ]∥2 (9)

where A1 is the affine warping matrix which is detailed in
[4].

Different from semi-direct methods using stereo and
RGB-D cameras, not all extracted points have depth obser-
vations from LiDAR points. This phenomenon causes that
a correspondence found in current frame cannot be used
to find new correspondence in the next frame. As shown
in Fig. 4, u1 is an extracted point from kj and its depth
value du1

is calculated from the 3D LiDAR point projected
on u1 according to Eq. 4. ukn

1 is the correspondence found
by point matching on kn. However, in LiDAR-assisted VO, it
is hard to ensure there is exactly one LiDAR point projected
onto ukn

1 . As a result, we may not be able to provide depth
observation dukn

1
for ukn

1 in kn and in turn cannot find the
correspondence of u1 on ci using the method in SVO even
if kn is close to ci.

A logical solution to the above problem is to perform
point matching between frames with intervals. For instance,
we can directly find the correspondence of u1 on current
frame ci. However, this point matching method has a key
limitation: the accuracy of resulted pixel correspondences
greatly depends on the scale difference of two image frames
Ici and Ikj

. As the interval between two frames increases,
the scale difference could increase greatly, and in turn yield
large matching errors. As shown in Fig. 4, for an exemplar
point p1 = (u1, du1

) whose host frame kj is far from the
current frame ci, the neighborhood of u1 could be quite
different from the neighborhood of uci

1 as some regions
exist in the neighborhood of u1 could disappear (i.e., orange
rectangle in kj) due to reduced resolution of Ici . Conse-
quently, the matching error could be large for uci

1 . We also
quantitatively test the influence of intervals between frames
on the matching error in Sec. 7.1.1. Results show that as the
interval increases from 1 keyframes to 7 keyframes, the error
of pixel correspondences increases from 2.86 pixels to 10.40
pixels.

To address the above problem, we propose our
point matching with propagation which propagates points
with depth observations from LiDAR to an intermediate
keyframe for reducing intervals. Specifically, for the exem-
plar point, e.g., p1 = (u1, du1) whose host frame is kj , we
firstly utilize Eq. 10 to project it to obtain an initial position
uci
1 . Then, we take p1’s previously matched correspondence

ukn
1 from kn that is closest to ci, and optimize the coordinate

of uci
1 by aligning ukn

1 and uci
1 with consideration of the

influence of photometric parameters:

uci
1 = π

(
Tci

c0

(
Tc0

kj
π−1 (u1, du1

)
))

(10)

uci
1 = argmin

u
ci
1

∑
u∈N

u
ci
1

,ũ∈N
u
kn
1∥∥∥∥Ici [u]− bci −

eaci

eakn
(A1Ikn

[ũ]− bkn
)

∥∥∥∥2
(11)

Instead of aligning u1 and uci
1 , we utilize ukn

1 as an inter-
mediate when performing point matching because the host
frame of ukn

1 (i.e., kn) and current frame ci are sufficiently
close so their local resolutions are similar. As shown in Fig.
4, the neighborhood of ukn

1 is more similar as that of uci
1

than that of u1. Therefore, we can obtain more accurate
pixel correspondence of u1 on ci by aligning uci

1 with ukn
1 .

Naturally, after ci has been selected as a new keyframe kn+1,
when the next camera frame ci+1 arrives, we can find the
correspondence of p1 on ci+1 by aligning u

kn+1

1 (i.e., uci
1 )

and u
ci+1

1 .

5.4 Pose Refinement
After obtaining correspondences between the local depth
map and ci, we build the re-projection error to further refine
Tc0

ci :

Tc0
ci = argmin

T
c0
ci

∑
km∈K

∑
ps∈Pkm

∥∥∥π (
Tci

c0T
c0
km

ps

)
− uci

s

∥∥∥2
γ

(12)

where uci
s is the correspondence of ps on ci, K is the set

of all keyframes in the sliding window and Pkm
is the

set of extracted points from km. If ci is selected as the
newest keyframe, it is sent to the new point extraction block,
otherwise the pose of ci is transformed to frame-to-frame
pose by Tkn

ci = Tkn
c0 T

c0
ci and then sent to the transform

integration block.

5.5 New Point Extraction
Our new point extraction module is composed of two parts:
new depth point extraction and new non-depth point ex-
traction.

If mode 1 is selected by the point cloud pre-processing
module, only new depth points are extracted in this module.
In SVO, 2D features are extracted for each newly selected
keyframe. However, approximate interpolation is inevitable
when associating 2D features with sparse 3D LiDAR points
to obtain depth observations. To avoid the depth association
error, we choose to extract high gradient points with depth
observations instead of 2D features. First, we project the
point cloud of kn onto the image according to Eq. 4 to obtain
the corresponding depth point set, which is defined as Dkn

.
Then, we extract a subset Pkn

from Dkn
, which consists of

uniformly distributed high-gradient image points. Pseudo
Code 1 summarizes the process of our new depth point
extraction which is mainly divided into two steps. In the
first step, we divide an image equally into blocks of size
32×32, {T1, T2 · · ·Tq}, then we calculate the corresponding
gradient threshold th(Ti) for each block Ti according to the
intensity histogram of Ti. In the second step, we uniformly
divide the image into n×n blocks {m1,m2 · · ·ml}, where n
is inversely proportional to the expected number of points
extracted on each image. The initial value of n is calculated
by n =

√
w∗h

num expect , where w and h are the width and
height of input image respectively, and num expect is the
number of points we want to extract from each frame.
For each block mi, we extract all points locating in it and
belonging to Dkn to form a subset Si. Next, we calculate
gradients for all points in Si, and we define the point that
corresponds to the maximum gradient as ph = (uh, duh

). If
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the gradient of ph is higher than th(Tp) (Tp is the 32 × 32
block where uh locates), we add ph into Pkn

as a newly
extracted high gradient point. If the number of points in
Pkn

does not meet our requirement, we adjust the value of
n appropriately, and repeat the second step.

Pseudo Code 1: New Depth Point Extraction
Input: the image of the newest keyframe kn and its

depth point set Dkn

Output: the set of extracted points Pkn

Procedure1: Calculate the Intensity Threshold
Divide kn into 32× 32 blocks {T1, T2 · · ·Tq}
for Ti = T1 · · ·Tq

Calculate a gradient threshold th(Ti) based
on the intensity histogram of Ti

Procedure2: Adaptive Point Extraction
Divide kn into n× n blocks {m1,m2 · · ·ml}

corresponding the sub-set of Dkn
: {S1, S2 · · ·Sl}

for mi = m1 · · ·ml

Extract the highest gradient point ph =
(uh, duh

) from Si and find Tp where uh locates
If (grad(ph) > th(Tp))

Add ph into Pkn
, num++

If (num does not meet the requirement)
Clear Pkn

, num = 0
Adjust n and do Procedure2 again

Else
Return Pkn

If mode 2 is selected by the point cloud pre-processing
module, which means most 3D LiDAR points locate on
untextured area. In this case, we extract additional high
gradient but non-depth points and add them into Pkn .
The non-depth points dominate the convergence of sliding
window optimization. Meanwhile, the depth points in Pkn

are mainly used to maintain an accurate metric scale.

5.6 Sliding Window-based BA
The sliding window-based bundle adjustment (BA) per-
forms multi-frame joint optimization by minimizing the re-
projection error to improve accuracy and consistency. For
depth points whose depth values are obtained from LiDAR
measurements, we do not optimize their depth values in BA.
For non-depth points whose depth values are estimated by
the depth filter, we optimized their depth values with the
pose of keyframe.

For an arbitrary point p1 = (u1, du1) ∈ Pkh
whose host

frame is kh (h ∈ [1, n− 1]), we can find the matching point
of p1 (e.g., ukj

1 ) on other keyframe (e.g., kj) in the sliding
window by our point matching with propagation. However,
having matching pairs does not mean that the bidirectional
re-projection errors can be built as the depth observation
of ukj

1 could be unavailable if no LiDAR point is projected
onto u

kj

1 . Specially, the re-projection residual of matching
pair

(
u1,u

kj

1

)
from kj to kh is written as:

rp1

khkj
= π

(
Tkh

c0 T
c0
kj
π−1

(
u
kj

1 , d
kj
u1

))
− u1 (13)

where the depth value d
kj
u1 is necessary for building a

residual yet it is very likely that no LiDAR point is projected

onto u
kj

1 and in turn make d
kj
u1 unavailable. Generating d

kj
u1

via interpolation could yield nontrivial errors. Therefore, we
can always build the re-projection error for the matching
pair

(
ui,u

kj

i

)
from kh to kj , but may not have the re-

projection error for the pair kj to kh. This limitation makes
the re-projection error can only be built from old keyframes
to new keyframes, and in turn leads to non-equal status of
keyframes in the sliding window and degrades the effec-
tiveness of multi-frame joint optimization.

Our proposed back-projection approach can effectively
address the above problem without incurring any depth
interpolation errors. Specifically, when the newest keyframe
kn arrives, we find 2D correspondences of Pkn

on k1 ∼ kn−1

by the method mentioned in Sec. 5.3. To avoid the long
interval between matched points, we first find 2D corre-
spondence of pi ∈ Pkn

on kn−1. Then we match u
kn−2

i

with u
kn−1

i when finding the 2D correspondence of pi on
kn−2. The entire process is executed recursively until the
correspondence of pi is found on k1. After point back-
matching for each keyframe kn we find the correspondence
of its extracted points (i.e., Pkn

) on other keyframes (i.e.,
kj ∈ K) in the sliding window. Then we perform the sliding
window-based BA to optimize χ =

{
Tc0

k1
,Tc0

k2
. . .Tc0

kn

}
and

ϕ = {du1 , du2 · · · dum}, where ϕ is the set of depth value of
all non-depth points in sliding window:

χ,ϕ = argmin
χ,ϕ

∑
kh∈K

∑
pi∈Pkh

∑
kj∈K

∥∥∥rpi

kjkh

∥∥∥2
γ

(j ̸= h) (14)

rpi

kjkh
is a single re-projection residual determined by three

elements: the host frame kh, the point pi = (ui, dui) and the
2D correspondence of pi on the target frame kj (i.e., ukj

i ).
Eq. 14 aims to jointly minimize all re-projection residuals in
the sliding window.

Similar as [6], we utilize marginalization to alleviate
the computational burden of windowed optimization while
retaining previous information.

5.7 Transform Integration

For a keyframe kj , we directly use the Tc0
kj

output by
the sliding window-based BA module as its final pose.
However, for a non-keyframe ci, we integrate the frame-
to-keyframe pose between two frames from the pose refine-
ment block and the keyframe-to-map pose from the sliding
window-based BA block to obtain its final output pose Tc0

ci
by Tc0

ci = Tc0
kn
Tkn

ci , where Tc0
kn

is the pose of the closest
keyframe kn before ci. Then Tc0

ci is converted to Tw
li

by
Tw

li
= Tl

cT
c0
ciT

c
l before being sent to LiDAR odometry

module.

6 LIDAR ODOMETRY

One problem of combining output poses from the visual and
the LiDAR modules is that the input frequency of image
and LiDAR points are different. Existing methods [16], [17]
integrates the high-frequency camera poses with the low-
frequency LiDAR poses to obtain the final output poses.
In this paper we choose to overlap and reconstruct sweeps
according to the time stamps of camera images to ensure
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every output pose from visual module can be refined by the
LiDAR odometry.

In addition, directly utilizing LiDAR points for tracking
could suffer large drifts in the vertical direction in scenarios
with limited vertical geometric constraints. To alleviate this
problem, we propose an adaptive sweep-to-map optimiza-
tion, which can automatically judge whether to optimize
the 3 vertical DOF (i.e., roll, pitch, upward) or to optimize 6-
DOF poses according to the amount of geometric constraints
in the vertical direction of the current input sweep.

The LiDAR module contains both the local map and the
global map. The global map is stored as a voxel map, and
the local map is part of the whole voxel map. Every time
we register the point cloud into the local map, the global
map is updated accordingly. We adopt the same sampling
strategy as CT-ICP to sample the point cloud of the current
sweep before registering point cloud to the local map. When
registering the sampled point cloud of the current sweep
into the local map, we utilize the refined pose of the current
sweep to transform each point to the world coordinates, and
find the voxel it belongs to. To update the global/local voxel
grid, we adopt the procedure of CT-ICP. That is, if there are
already 20 points in a voxel, the point would not be added
to the voxel. Otherwise, the point is added to the voxel.

6.1 Sweep Reconstruction
Sweep reconstruction aims to derive 60 Hz reconstructed
point cloud Si from the 10 Hz original input point cloud
S. Fig. 5 illustrates the process of our sweep reconstruc-
tion. Assuming for a LiDAR sweep Sj : [tj−1, tj ], which
begins at tj−1 and finishes at tj , there are 6 camera im-
ages captured during [tj−1, tj ]. The 6 camera images are
captured at ti+1, ti+2, ti+3, ti+4, ti+5 and ti+6 respectively
(ti = tj−1, ti+6 = tj). Only the camera image captured at
ti+6 has the corresponding LiDAR points.

Based on the characteristics of continuous acquisition
over a period of time of LiDAR, we denote the points
captured from ti+1 to ti+7 as a reconstructed sweep Si+7 :
[ti+1, ti+7], which corresponds to the image captured at ti+7.
Similarly, we can also obtain reconstructed sweep Si+8 :
[ti+2, ti+8], Si+9 : [ti+3, ti+9], · · · , Si+17 : [ti+11, ti+17],
which correspond to camera image captured at ti+8, ti+9,
· · · , ti+17 respectively. By this way, we obtain reconstructed
sweeps which have the same frequency as the input camera
images.

It is worth mentioning that we would not register each
reconstructed sweep Si in the mapping process, but only
added points to the final output map at 10 Hz to avoid
adding points repeatedly.

Compared with transform intergration (utilized in V-
LOAM) which also aims to obtain the high-frequency final
output pose, our sweep reconstruction can better maintain
the consistency of estimated trajectory. In the following, we
provide detailed explanation of the inconsistency problem
in transform integration.

For a camera frame captured at ti, we denote the nearest
sweep before ti is finished at tn and the sweep-to-map pose
at tn is Tw

ln
. Transform integration estimates the final pose

at ti (e.g., Tw
li

) as

Tw
li = Tw

lnT
c−1
l Tcn

ci T
c
l (15)

where Tcn
ci is the pose from VO, Tc

l is the external pa-
rameters between the LiDAR and the camera. In practice,
Tc

l is usually calibrated once offline and remain constant
during online pose estimation. However, accurate calibra-
tion of external parameters is nontrivial, and the widely-
used calibration method [38] still contain obvious errors. In
addition, the external parameters usually change online due
to vibration during the movement of the vehicle platform.
Once the Tw

li
is calculated by Eq. 15, transformation integra-

tion does not perform any optimization for Tw
li

, but directly
output it as the final pose at time ti. As a result, the above-
mentioned errors in Tc

l are not reduced and in turn result in
the inconsistency of estimated trajectory, which is illustrated
in Sec. 7.2.3.

Compared with transform integration, our sweep recon-
struction can increase the frequency of input LiDAR sweeps
and thus every output pose from VO can be optimized
by the LiDAR module. Specially, for an exemplar camera
pose at ti (e.g., Tc0

ci ), we first transform it from the camera
coordinates to the LiDAR coordinates as:

Tw
li = Tc−1

l Tc0
ciT

c
l (16)

Then Tw
li

is sent to the adaptive sweep-to-map optimization
module and the error from Tc

l can be eliminated dur-
ing optimization. Therefore, our sweep reconstruction can
achieve a high accuracy and efficiency for pose estimation
and meanwhile maintain a good local consistency of the
estimated trajectory.

6.2 Adaptive Sweep-to-Map Optimization

We design our pose solution in our LiDAR module based on
the method in CT-ICP [19] with an enhancement of adap-
tive sweep-to-map optimization. That is, we automatically
determine whether to optimize the 3 horizontal DOF (i.e.,
yaw, forward, right) or 6 full DOF poses according to the
amount of geometric constraints in the vertical direction of
a reconstructed sweep Si. Specifically, we examine whether
or not the surfaces pointing to the vertical direction are
evenly distributed on the same plane. If almost all point-
to-vertical surfaces are on the same plane (i.e., usually is
ground plane), the residuals provided by them are hard to
constrain the vertical direction well and in this case we only
optimize 3 horizontal DOF poses. The evaluation of pose
error in vertical direction is detailed in Sec. 7.1.1.

When each reconstructed sweep Si arrives, we utilized
the method introduced in Sec. 5.1 to detect the ground and
calculate the normal vector of ground nG. When building
the point-to-plane residuals for pose estimation, we find
the surface ε around each target point p and calculate the
normal n of ε. If the direction of n and nG are very similar,
we consider p as a ground candidate point. We count the
number of candidate points N in Si, and the number of
points M which locate on the ground. We calculate the
percentage of ground surfaces to vertical surfaces by M/N .
If M/N is higher than a preset threshold (0.8 in our system),
the vertical geometric constraint is regarded as poor. In this
case, we only optimize 3 horizontal DOF (i.e., yaw, forward,
right) for the current reconstructed sweep Si. Otherwise, we
optimize 6 full DOF as processed in CT-ICP.
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Fig. 5. Illustration of our sweep reconstruction algorithm. 10 Hz input raw point cloud Sj , Sj+1 and Sj+2 are overlapped and reconstructed to obtain
60 Hz reconstructed point clouds Si+7, Si+8, · · · , Si+17.

We define Si as the point cloud of the currently recon-
structed sweep in the coordinate system (·)li , tb and te as the
begin time and end time of Si respectively. For each Si, we
first extract a set of points Pi from Si via the down-sampling
strategy in CT-ICP. For an arbitrary point pl ∈ Pi which is
collected at time tp, we project pl from (·)li to (·)w via the
initial pose of Si obtained from the vision module to obtain
pw. Then, we find the 20 nearest points around pw from the
local map to fit a plane and calculate the normal vector n
of the plane. Accordingly, we can build the point-to-plane
residual rp

l

for pl as follow:

rp
l

= ωpn
T (pw − q) (17)

pw = Rw
tpp

l + twtp (18)

Rw
tp = slerp (Rb,Re, αp) (19)

twtp = (1− αp) tb + αpte (20)

αp =
tp − tb
te − tb

(21)

where q is the closest point to pw, ωp is defined by [20], Rb,
Re are the rotation matrices with respect to (·)w at tb and
te respectively, tb and te are the translation vectors with
respect to (·)w at tb and te respectively. Both Rb, Re, tb,
te are variables to be refined in our adaptive sweep-to-map
module, and the initial value of Re, te are obtained from the
vision module.

In order to better maintain the consistency of the tra-
jectory, we additionally optimize the poses within the time
interval (tb, te). We assume there are k reconstructed sweeps
acquired at time tj(0 ≤ j ≤ k−1) and tj ∈ (tb, te). For point
pl which is being processed and obtained in the sub time
interval (tj , tj+1), we optimize the corresponding poses
(i.e., Rj , Rj+1, tj , tj+1) in the current optimization round.
Specially, we build an additional point-to-plane residual rp

l

a

which is similar as rp
l

in Eq. 17:

rp
l

a = ωpn
T (pw − q) (22)

pw = Rw
tpp

l + twtp (23)

Rw
tp = slerp (Rj ,Rj+1, αp) (24)

twtp = (1− αp) tj + αptj+1 (25)

αp =
tp − tj
tj+1 − tj

(26)

where rp
l

a is an additional residual which is related to
variables Rj , Rj+1, tj , tj+1. By this way, for an arbitrary
point pl, we can build two residuals (e.g., rp

l

and rp
l

a ) to
optimize eight variables, i.e., Rb, Re, Rj , Rj+1, tb, te, tj ,
tj+1.

To facilitate 3 horizontal DOF optimization, we represent
rotation as:

R = RyRxRz (27)

where Rx, Ry , Rz are reconstructed from the Euler angles
rx, ry , rz in the Y-X-Z sequence rule. Accordingly, the final
variables that need to be solved are:

x = [rx, ry, rz, tx, ty, tz]
T (28)

χ =
[
xb,xe,x0 · · · ,xk−1

]
(29)

where t = [tx, ty, tz]
T . Integrating all the point-to-plane

residuals into one optimization function, we can obtain:

χ = argmin
χ

∑
pl∈Pi

ρ
(
rp

l

+ rp
l

a

)
(30)

where ρ(·) is a robust loss function to minimize the influence
of outlier residuals. If the vertical geometric constraint is
regarded as poor, we only optimize 3 horizontal DOF (i.e.,
yaw, forward, right) for the currently reconstructed sweep,
while the variables that need to be solved are:

x3 = [ry, tx, tz]
T (31)

χ3−DOF =
[
xb
3,x

e
3,x

0
3, · · · ,xk−1

3

]
(32)
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and the optimization function is:

χ3−DOF = argmin
χ3−DOF

∑
pl∈Pi

ρ
(
rp

l

+ rp
l

a

)
(33)

If the vertical geometric constraint is sufficient, we set Eq. 29
as the variables and perform 6 full DOF according to Eq. 30,
which is same as CT-ICP [19]. For both 3-DOF and 6-DOF
optimization, we utilize the local consistency constraint and
the constant velocity constraint as CT-ICP in our system.

After the pose of the currently reconstructed sweep has
been estimated, we register the points in Pi into the local
map based on the methods described in Sec. 6.

7 EXPERIMENTS

We evaluated our SDV-LOAM on both the public datasets
[21], [22], [23] and our own camera-LiDAR sensor hardware
system. A consumer-level laptop equipped with an Intel
Core i7-11700 and 16 GB RAM is used for all experiments.

7.1 Evaluation on Public Datasets
We evaluate our SDV-LOAM on three public datasets: KITTI
[21], KITTI-360 [22], and KITTI-CARLA [23]. Both KITTI
and KITTI-360 are logged with sensors mounted on top
of a passenger vehicle in road driving scenarios. The ve-
hicle of KITTI is equipped with a color stereo camera,
a monochrome stereo camera, a Velodyne HDL-64E laser
scanner, and a high accuracy GPS/INS for collecting the
ground truth. The vehicle of KITTI-360 is equipped with
a perspective stereo camera, two fisheye cameras, a Velo-
dyne HDL-64E laser scanner and a high accuracy GPS/INS
for collecting the ground truth. KITTI-CARLA is a virtual
dataset generated by the CARLA simulator [39], where
the data is generated by a simulated 64-channel spinning
LiDAR sensor and a simulated stereo camera. For those
three datasets, we only take the LiDAR point cloud and the
left image of the stereo camera as input. Both LiDAR point
clouds and camera images of KITTI, KITTI-360 and KITTI-
CARLA are collected at 10 Hz. Motion distortions of the
point cloud data provided by KITTI have been eliminated,
and the motion distortions of the point cloud in KITTI-
CARLA are compensated by us using the high-frequency
ground truth. Therefore, we did not handle the distortion
problem when evaluating on KITTI and KITTI-CARLA.

The KITTI Odometry benchmark contains 11 sequences
with the GPS/INS ground truth provided (i.e., training set)
and 11 sequences without the ground truth (i.e., testing set).
The maximum driving speed in the training set reaches 85
km/h (23.6 m/s). The data covers mainly three types of
environments: “urban” with buildings around, “country”
on small roads with vegetations in the scene, and “highway”
where roads are wide and the vehicle speed is fast. We
evaluate each module of our system on the KITTI training
set. For the testing set, we publish the results on the official
website2. KITTI-360 [22] contains 8 sequences that have
similar scenes as KITTI yet are much longer than KITTI
in length. KITTI-CARLA [23] consists of 7 sequences and
each sequence contains 5000 stereo images and sweeps. We
only test sequence 01, 02 and 07 of KITTI-CARLA in this

2. http://www.cvlibs.net/datasets/kitti/eval odometry.php

TABLE 1
Ablation Study of our Visual Odometry

Dataset Seq no. Ours w/o
Pro

Ours w/o
Bi-Dir

Ours w/o
Ada

Our VO
module

KITTI

00 0.69 0.70 0.81 0.67
01 0.98 1.09 2.92 0.96
02 0.80 0.76 0.90 0.75
03 0.86 0.84 0.80 0.86
04 0.75 0.75 1.30 0.77
05 0.68 0.67 0.86 0.66
06 0.46 0.58 0.48 0.44
07 0.82 0.81 0.88 0.74
08 1.11 1.10 1.19 1.07
09 0.55 0.60 0.55 0.53
10 0.50 0.60 0.57 0.51

00-10
avg 0.75 0.77 1.02 0.72

11-21
mean - - - 0.88

KITTI-
360

00 1.03 1.11 1.32 0.81
02 0.93 0.81 1.11 0.79
03 0.83 1.41 1.22 0.90
04 1.29 1.69 1.60 1.14
05 4.95 2.40 2.94 1.86
06 1.22 1.05 1.47 0.94
07 1.33 10.26 1.72 1.31
09 1.21 1.15 1.43 1.03
10 2.26 4.00 3.07 1.89

avg 1.67 2.65 1.76 1.18

KITTI-
CARLA

01 2.59 0.45 0.64 0.32
02 2.63 1.27 1.01 0.61
07 1.88 0.69 0.97 0.38

avg 2.37 0.80 0.87 0.44
Denotations: All errors are represented as RTE[%] (the smaller
the better). Bold fonts denote the first place. w/o: without, Pro:
propagation, Bi-Dir: bi-directional point matching, Ada: adaptive
tracking module selection, -: not available.

TABLE 2
Pixel Error of Correspondences at Different Frame Intervals on KITTI

00-10

Interval
(keyframe) 1 2 3 4 5 6 7

w/p Pro
(pixel) 2.86 4.87 6.55 7.93 8.86 9.04 10.40

w Pro
(pixel) 1.85 3.15 4.28 5.26 6.04 6.39 6.77

work because all other sequences are untextured scenes on
which our VO fails. For all three datasets, we utilize the
universal evaluation metrics - KITTI Relative Translational
Error (RTE) as the evaluation metrics. As our SDV-LOAM
consists of a visual odometry and a LiDAR odometry, we
perform the ablation study for each odometry in Sec. 7.1.1,
followed by comparison of our VO and SDV-LOAM with
the state-of-the-art methods in Secs. 7.1.2 and 7.1.3.

7.1.1 Ablation Study
Ablation Study of Our Visual Odometry. We examine
the effectiveness of the three proposed components in our
VO by excluding one of them from our visual module.
In Table 1, Ours w/o Pro, Our w/o Bi-Dir and Ours
w/o Ada denotes our VO without point matching with
propagation, bi-directional point matching and adaptive
tracking respectively. First, comparing Ours w/o Pro and

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3262817

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 14,2023 at 07:26:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 3
Relative Translational Error of Fast-LOAM and Fast-LOAM++ in X-Y-Z

Direction [%]

Seq no. Fast-LOAM Fast-LOAM++
X Y Z X Y Z

00 0.77 29.41 0.50 0.83 9.74 0.69
01 0.88 138.10 0.56 0.77 19.20 1.28
02 0.95 46.96 0.31 1.29 11.66 0.58
03 0.51 10.77 1.16 0.71 2.56 2.64
04 28.59 70.87 0.11 39.05 10.51 0.52
05 0.60 25.79 0.78 1.23 7.04 1.40
06 4.64 31.81 0.18 8.38 7.99 0.32
07 0.41 23.43 0.36 0.74 10.37 1.15
08 1.27 21.24 1.41 1.88 13.58 1.73
09 0.52 32.05 0.36 0.81 10.26 0.39
10 0.76 28.77 0.66 0.38 4.43 0.49

Our VO module we observe that our point matching with
propagation can reduce the RTE of most sequences. We
further show the matching errors (i.e., distance between a
true matching pixel and the matched one) at different frame
intervals. Results in Table 2 show that without our point
matching method, the matching error increases sharply as
the interval between frames increases. In comparison, our
point matching method can greatly decrease matching error
for different frame intervals. Second, comparing Ours w/o
Bi-Dir and Our VO module in Table 1, we observe that our
bi-directional point matching method can reduce the RTE by
2.47∼87.23% and 28.89∼51.97% for all sequences of KITTI-
360 and KITTI-CARLA respectively, and 1.32∼24.14% for
the KITTI sequences 00-10 except for the sequence 04. Third,
from the results of Ours w/o Ada and Our VO module we
observe that our adaptive tracking mode selection method
can reduce the tracking error by 23.84∼38.64% for KITTI-
360, 39.60∼60.82% for KITTI-CARLA and 3.64∼67.12% for
the training sequences 00-10 of KITTI except for sequence
03.
Ablation Study of Our LiDAR Odometry. We analyze
the effectiveness of our adaptive sweep-to-map optimiza-
tion in the LiDAR odometry. To this end, we propose
the directional pose error which is calculated by aver-
aging the relative errors using segmented trajectories at
100 m, 200 m, · · · , 800 m, based on 3D coordinates in each
direction, i.e., X (right), Y (upward) and Z (forward). Spe-
cially, for each length ∆ ∈ {100 m, 200 m, · · · , 800 m}, we
define the estimated pose at the beginning of ∆ as T̂b

and the estimated pose at the end of ∆ as T̂e. Similarly,
we define the ground truth pose at the beginning of ∆
as Tb and at the end of ∆ as Te. Then, the relative pose
from the end of ∆ to the beginning of ∆ is calculated by:
∆T̂ = T̂−1

b T̂e and ∆T = Tb
−1Te. Accordingly, the pose

error is computed as ∆T̂−1∆T. We also count the total
distance traveled in X-Y-Z during ∆ to obtain sx, sy and
sz . Finally, the error in X-Y-Z during ∆ is calculated by:

ex =
[
∆T̂−1∆T

]
x
/sx ∗ 100%

ey =
[
∆T̂−1∆T

]
y
/sy ∗ 100%

ez =
[
∆T̂−1∆T

]
z
/sz ∗ 100%

(34)

where [·]x, [·]y and [·]z denote the translation in direction

X, Y and Z of the element. Table 3 shows the translation
errors of Fast-LOAM and Fast-LOAM++ in the X, Y and
Z directions respectively on the KITTI sequences 00-10,
where ”++” means the result with our adaptive sweep-to-
map optimization and with the initial pose from our visual
module. Obviously, the translational error in the Y direction
is obviously higher than that in X and Z.

We further apply our adaptive sweep-to-map optimiza-
tion to six state-of-the-art open-sourced methods, including
A-LOAM, LeGO-LOAM [9], Fast-LOAM, ISC-LOAM [11],
MULLS [24] and CT-ICP [19]. A-LOAM is an engineering
optimized version based on LOAM. Both Fast-LOAM and
LeGO-LOAM are accelerated versions of LOAM. Based on
Fast-LOAM, ISC-LOAM proposes a novel global descriptor,
intensity scan context (ISC), that explores both geometry
and intensity characteristics, to improve the efficiency for
loop closure detection. MULLS proposes to utilize more
types of features (e.g., facade, beam, pillar and ground) in
LiDAR odometry instead of traditional edge and surface
features. CT-ICP uses an elastic formulation of the trajectory,
with a continuity of poses intra-scan and discontinuity
between scans, to be more robust to high frequency in the
movements of the sensor.

For each method, we test three results on each sequence
of KITTI, KITTI-360 and KITTI-CARLA, i.e., the estimated
poses by the pure LiDAR system, by the LiDAR system
without adaptive sweep-to-map optimization and with the
assistance of our visual module (denoted using the suffix
”+” in Table 4), and by the LiDAR system with adaptive
sweep-to-map optimization and with the assistance of our
visual module (denoted using the suffix ”++” in Table 4).
Almost all systems do not release the final version of the
source code that could reproduce the accuracy recorded in
their papers. For a fair comparison, in the ablation study we
obtain the results based on the source code provided by the
authors.

Results in Tables 4 show that our proposed adaptive
sweep-to-map optimization can significantly improve the
accuracy of all six LiDAR odometry on almost all sequences
of the KITTI, KITTI-360 and KITTI-CARLA, demonstrating
the effectiveness of our proposed method. It is noteworthy
that we did not provide the results of ISC-LOAM on KITTI-
360 and KITTI-CARLA because the sequences of KITTI-360
and KITTI-CARLA are too long for ISC-LOAM to perform
global graph optimization properly.

7.1.2 Performance of our Visual Odometry
We compare our visual odometry with four state-of-the-art
LiDAR-assisted depth-enhanced visual odometry systems,
i.e., DEMO [12], LIMO [13], Huang et al. [15] and DVL-
SLAM [14]. The former two are popular feature-based VO
systems and LIMO utilizes semantic information to identify
moving objects and includes loop closure. Huang et al. uti-
lizes both point and line features and DVL-SLAM employs
the direct based method. The average RTE of DEMO, Huang
et al. and DVL-SLAM on sequence 00-10 are directly referred
from [12], [15] and [14] respectively, and the results of LIMO
on sequence 00-10 are referred from the results tested in [15].
Since the semantic label data required by LIMO is available
for sequences 00,01,04, only results of these sequences are
recorded. The mean RTE on sequence 11-21 are recorded
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TABLE 4
Ablation Study of our LiDAR Odometry

Dataset Seq no. A-LOAM A-
LOAM+

A-
LOAM++

LeGO-
LOAM

LeGO-
LOAM+

LeGO-
LOAM++

Fast-
LOAM

Fast-
LOAM+

Fast-
LOAM++

KITTI

00 0.96 0.88 0.77 5.03 1.25 0.92 0.96 0.76 0.62
01 2.68 2.65 1.91 21.02 3.35 1.27 2.80 1.11 1.00
02 5.04 1.52 1.47 2.80 1.74 0.83 1.57 1.09 0.84
03 1.16 1.15 1.03 1.32 1.12 0.85 1.09 1.67 0.94
04 1.39 1.36 0.77 1.63 1.73 0.61 1.43 0.77 0.61
05 0.71 0.68 0.65 0.93 0.87 0.51 0.80 0.70 0.57
06 0.72 0.72 0.55 0.84 0.85 0.44 0.72 0.48 0.47
07 0.54 0.53 0.49 0.77 0.66 0.48 0.55 1.04 0.76
08 1.18 1.18 0.98 1.58 1.35 0.94 1.16 1.17 1.08
09 1.21 1.19 0.88 1.48 1.75 0.61 1.29 0.74 0.69
10 1.61 1.57 1.43 1.86 1.96 1.09 1.77 0.86 0.49

00-10
avg 1.56 1.22 0.99 3.57 1.51 0.78 1.34 0.94 0.76

11-21
mean - - - - - - - - -

KITTI-
360

00 1.03 1.00 0.95 1.60 1.64 1.25 1.17 0.74 0.60
02 1.66 0.83 0.76 1.89 1.42 1.19 0.93 0.89 0.79
03 1.86 1.81 1.78 2.44 2.50 1.29 1.88 0.79 0.62
04 1.60 1.33 1.27 1.86 1.68 1.61 1.38 1.16 1.03
05 1.01 1.00 1.01 1.60 1.36 1.33 1.00 1.17 1.08
06 1.11 1.13 1.02 1.76 1.45 1.36 1.23 1.12 0.94
07 4.09 1.72 1.68 3.24 3.08 2.47 1.69 1.38 1.20
09 1.13 1.05 0.97 1.63 1.68 1.44 1.21 0.81 0.68
10 1.74 2.03 1.88 2.94 2.40 1.28 1.84 1.37 1.31

avg 1.69 1.32 1.25 2.10 1.91 1.47 1.37 1.05 0.91

KITTI-
CARLA

01 4.15 0.17 0.13 0.45 0.78 0.41 0.12 0.11 0.10
02 0.12 0.10 0.10 2.07 0.88 0.63 0.08 0.09 0.07
07 3.23 0.62 0.20 2.49 1.25 0.90 1.64 0.40 0.38

avg 2.50 0.30 0.14 1.67 0.97 0.65 0.61 0.20 0.18

Dataset Seq no. ISC-
LOAM

ISC-
LOAM+

ISC-
LOAM++ MULLS MULLS

+
MULLS

++ CT-ICP Ct-ICP+ CT-
ICP++

KITTI

00 1.21 1.03 0.84 0.53 0.52 0.52 0.49 0.49 0.50
01 2.80 1.11 1.00 0.72 0.67 0.58 0.73 0.69 0.62
02 1.72 1.23 0.84 0.59 0.59 0.57 0.52 0.52 0.51
03 1.09 1.67 0.94 0.60 0.62 0.60 0.71 0.70 0.56
04 1.43 0.77 0.61 0.48 0.46 0.42 0.37 0.36 0.37
05 0.84 0.98 0.62 0.31 0.31 0.31 0.26 0.25 0.27
06 0.69 0.48 0.47 0.29 0.29 0.26 0.28 0.28 0.28
07 0.55 1.04 0.76 0.33 0.34 0.33 0.32 0.32 0.32
08 1.16 1.17 1.08 0.82 0.81 0.81 0.81 0.81 0.79
09 1.29 0.74 0.69 0.55 0.51 0.47 0.49 0.48 0.47
10 1.77 0.86 0.49 0.64 0.64 0.52 0.49 0.49 0.47

00-10
avg 1.32 1.01 0.76 0.53 0.52 0.49 0.50 0.49 0.47

11-21
mean - - - 0.92 - - 0.62 - 0.60

KITTI-
360

00 - - - 1.62 1.58 1.14 0.42 0.40 0.40
02 - - - 1.31 1.33 1.26 0.32 0.32 0.31
03 - - - 1.04 1.02 0.74 0.37 0.37 0.35
04 - - - 1.69 1.65 1.52 0.68 0.67 0.66
05 - - - 1.31 1.29 1.21 0.39 0.38 0.37
06 - - - 1.81 1.80 1.41 0.43 0.42 0.40
07 - - - 5.72 5.24 1.31 0.54 0.53 0.52
09 - - - 1.28 1.28 1.16 0.43 0.43 0.42
10 - - - 0.93 0.92 0.83 0.73 0.71 0.70

avg - - - 1.85 1.79 1.17 0.48 0.47 0.46

KITTI-
CARLA

01 - - - 0.56 0.54 0.53 0.038 0.038 0.035
02 - - - 0.20 0.23 0.15 0.040 0.039 0.038
07 - - - 1.04 1.01 0.39 0.044 0.045 0.040

avg - - - 0.60 0.59 0.36 0.041 0.041 0.038
Denotations: All errors are represented as RTE[%] (the smaller the better). Bold fonts denote the first place. +: using the estimated pose
of our visual module as initial value of LiDAR module, ++: using the adaptive sweep-to-map optimization strategy on the basis of ”+”,
-: not available, the data on the right of ”/” are results recorded in the original paper, and the data on the left of ”/” are the results we
measured using the open source code provided by the authors.
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TABLE 5
Relative Translational Error Comparison of LiDAR-Assisted

Depth-Enhanced VO on KITTI Odometry

Seq no. DEMO LIMO* Huang
et al.

DVL-
SLAM

Our VO
module

00 1.05 1.12 0.99 0.93 0.67
01 1.87 0.91 1.87 1.47 0.96
02 0.93 - 1.38 1.11 0.75
03 0.99 - 0.65 0.92 0.86
04 1.23 0.53 0.42 0.67 0.77
05 1.04 - 0.72 0.82 0.66
06 0.96 - 0.61 0.92 0.44
07 1.16 - 0.56 1.26 0.74
08 1.24 - 1.27 1.32 1.07
09 1.17 - 1.06 0.66 0.53
10 1.14 - 0.83 0.70 0.51

00-10 avg 1.16 0.85 0.94 1.98 0.72
11-21 mean 1.14 0.93 - - 0.88
Denotations: All errors are represented as RTE[%] (the smaller
the better). Bold fonts denote the first place. U: urban road, H:
highway, C: country road, *: with semantic information, -: not
available.

from the original DEMO [12] and LIMO paper [13], while
the other methods do not evaluate on sequence 11-21. In
addition, we utilize a unified parameter configuration for
all sequences in the entire test process.

Results in Table 5 demonstrate that our visual mod-
ule outperforms DEMO for all sequences and outperform
LIMO, Huang et al. and DVL-SLAM for most sequences on
KITTI, where the RTE of our method is 37.9% lower than
DEMO, 15.3% lower than LIMO, 23.4% lower than Huang
et al., 26.5% lower than DVL-SLAM on the average results
of sequence 00-10, and 22.8% lower than DEMO, 5.4% lower
than LIMO on the mean results of sequence 11-21. For
sequence 03, 04, 07 the accuracy of our system is lower than
Huang et al. because there are rich line features in these
three sequences, where the accuracy of Huang et al. achieves
improvements. The runtime of our VO is 0.06s/frame on
an Intel Core i7-11700 CPU. In comparison, LIMO needs
semantic label information to identify moving objects and
reject outliers and thus GPU is demanded for speedup.
Meanwhile, both LIMO and Huang et al. cannot run in real
time. In contrast, our approach, DEMO and DVL-SLAM, are
much more lightweight and can efficiently run in real time
on a CPU-only platform. The testing results on sequence 11-
21 of our visual odometry are also published on the official
website with the name abbreviation as ”SD-DEVO”. It is
worth mentioning that DEMO is the visual module utilized
in V-LOAM. Therefore, the comparison result with DEMO
can also demonstrate superiority of our VO to that of V-
LOAM.

We validate the effectiveness of our depth-enhanced VO
on KITTI-360 and KITTI-CARLA and show the results in
Table 1. We did not evaluate the state-of-the-art depth-
enhanced visual odometry systems on these two datasets
as they either did not release their source code (DEMO [12]
and Huang et al. [15]) or the provided source code (DVL-
SLAM [14] and LIMO [13]) are unable to compiled and run
successfully. In addition, these methods are not evaluated
on the two datasets.

Fig. 6. Sensor configuration for experiments on our own platform. The
sensor system is mounted on a car-like vehicle for outdoor experiments.

7.1.3 Performance of SDV-LOAM
To provide fair comparisons with the state-of-the-art meth-
ods, we modified several open-sourced LiDAR odometry
systems (i.e., A-LOAM, LeGO-LOAM [9], Fast-LOAM, ISC-
LOAM [11], MULLS [24] and CT-ICP [19]) in which we con-
catenate our visual module before the LiDAR odometry to
provide motion prior estimations. The corresponding mod-
ified visual-LiDAR odometers are denoted as A-LOAM+,
LeGO-LOAM+, Fast-LOAM+, ISC-LOAM+, MULLS+ and
CT-ICP+. In addition, we also compare our method with
the state-of-the-art tightly integrated visual-LiDAR system
V-LOAM [16].

Results in Table 6 show that our SDV-LOAM out-
performs A-LOAM+, LeGO-LOAM+, Fast-LOAM+, ISC-
LOAM+ and MULLS+ on almost all sequences of the KITTI
benchmark, KITTI-360 and KITTI-CARLA, demonstrating
the effectiveness of our proposed system. Even on the
most advanced visual-LiDAR system CT-ICP+, our system
still gets great improvement on KITTI 01 and KITTI 03.
Although our system cannot achieve more accurate pose
estimation than V-LOAM on KITTI, our system can improve
the frequency of input LiDAR point clouds (details are in
Sec. 7.2.2). In addition, we will release the source code of
SDV-LOAM while V-LOAM neither release source code nor
publish the literature for the latest version of their system.

In the testing set, according to the results evaluated
by the KITTI official website, we achieve 0.60% drift in
translation, which ranks the 8th place on the testing set of
the KITTI odometry benchmark (before 2023.01), ranks 6th
compared with all LiDAR-only/monocular visual-LiDAR
systems and ranks 2nd compared with all open-sourced
systems. Although the CT-ICP achieves 0.59% relative trans-
lational error, which ranks higher than us, however, the re-
leased code provided by them only achieves 0.62% relative
translational error, while our system achieves 0.60%.

7.2 Evaluation on custom-built sensor system

To evaluate the performance of our system in live environ-
ment and verify the effectiveness of our proposed sweep
reconstruction block, we built our own camera-LiDAR sen-
sor system (see Fig. 6) to acquire visual and LiDAR data,
and run the data on a laptop offline. Our camera-LiDAR
sensor consists of a FL3-U3-13E4M-C industrial camera and
a Velodyne VLP-16 LiDAR. The FLIR camera provides a
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TABLE 6
Relative Translational Error Comparison of Visual-LiDAR Odometry

Dataset Seq no. A-
LOAM+

LeGO-
LOAM+

Fast-
LOAM+

ISC-
LOAM+ MULLS+ CT-ICP+ V-LOAM Ours

KITTI

00 0.88 1.25 0.76 1.03 0.52 0.49 - 0.50
01 2.65 3.35 1.11 1.11 0.67 0.69 - 0.62
02 1.52 1.74 1.09 1.23 0.59 0.52 - 0.51
03 1.15 1.12 1.67 1.67 0.62 0.70 - 0.56
04 1.36 1.73 0.77 0.77 0.46 0.36 - 0.37
05 0.68 0.87 0.70 0.98 0.31 0.25 - 0.27
06 0.72 0.85 0.48 0.48 0.29 0.28 - 0.28
07 0.53 0.66 1.04 1.04 0.34 0.32 - 0.32
08 1.18 1.35 1.17 1.17 0.81 0.81 - 0.79
09 1.19 1.75 0.74 0.74 0.51 0.48 - 0.47
10 1.57 1.96 0.86 0.86 0.64 0.49 - 0.47

00-10
avg 1.22 1.51 0.94 1.01 0.52 0.49 - 0.47

11-21
mean - - - - - - 0.54 0.60

KITTI-
360

00 1.00 1.64 0.74 - 1.58 0.40 - 0.40
02 0.83 1.42 0.89 - 1.33 0.32 - 0.31
03 1.81 2.50 0.79 - 1.02 0.37 - 0.35
04 1.33 1.68 1.16 - 1.65 0.67 - 0.66
05 1.00 1.36 1.17 - 1.29 0.38 - 0.37
06 1.13 1.45 1.12 - 1.80 0.42 - 0.40
07 1.72 3.08 1.38 - 5.24 0.53 - 0.52
09 1.05 1.68 0.81 - 1.28 0.43 - 0.42
10 2.03 2.40 1.37 - 0.92 0.71 - 0.70

avg 1.32 1.91 1.05 - 1.79 0.47 - 0.46

KITTI-
CARLA

01 0.17 0.78 0.11 - 0.54 0.038 - 0.035
02 0.10 0.88 0.09 - 0.23 0.039 - 0.038
07 0.62 1.25 0.40 - 1.01 0.045 - 0.040

avg 0.30 0.97 0.20 - 0.59 0.041 - 0.038
Denotations: All errors are represented as RTE[%] (the smaller the better). Bold fonts denote the first place. -: not available.

Fig. 7. The results of our outdoor experiments. (a) and (c) are the
trajectory estimated by our system on two different vehicle routes. We
overlaid (a) and (c) with Google Map to obtain (b) and (d) for better
evaluation.

Fig. 8. The resulting global point cloud map of trajectory Fig. 7 (a) and
(c).

gray image with a resolution of 1280× 1040 running at the
frame rate of 60 Hz. The VLP-16 provides a relatively sparse
point cloud over 16 laser beams at 10 Hz.

In order to achieve the optimal performance of the
sensor system, we perform offline calibration between the
heterogeneous sensors. Specifically, we utilized the tool Au-
toware [38] to firstly perform a calibration to obtain intrinsic
parameters of the camera, and then calibrate the relative
transformation between the camera and the LiDAR.

7.2.1 Visualization for trajectory and map
Our SDV-LOAM is validated by the sensor system in out-
door environments including loop-closure. The sensor sys-
tem is mounted on a vehicle (as illustrated in Fig. 6) moving
in the campus and uptown. Fig. 7 (a) and (c) shows the
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Fig. 9. The local screenshots of trajectories of Fig. 7 (c) in the form of points. (a)-(d) are the results without sweep reconstruction while (e)-(h) are
the results with sweep reconstruction. The resolution of points on the trajectory reflects the frequency of the output pose from our LiDAR odometry.
The comparison between (a)-(d) and (e)-(h) demonstrates that our sweep reconstruction block can effectively improve the frequency of LiDAR pose
estimation.

Fig. 10. The comparative result of trajectory Fig. 7 (c) with and without
sweep reconstruction, which are almost coincide. This result demon-
strates that our method can increase the output frequency without
affecting the accuracy of pose estimation.

trajectories estimated by our system on two different vehicle
routes. In order to have a better evaluation, we overlaid the
trajectories Fig. 7 (a) and (c) with Google Map and obtain
the visualization results in Fig. 7 (b) and (d). We do not
include loop-closing module in our full system. Even so, Fig.
7 (a)-(d) show that few deviations are visible at the closed
loop area of trajectory, demonstrating the high accuracy of
our pose estimation on large-scale scenes even without loop
closing.

Our system can also build an accurate map based on the
accurate pose estimated by our LiDAR odometry. The final

global map of Fig. 7 (a) and (c) built by our system is shown
in Fig. 8 (a) and (b), where the map is represented by LiDAR
point clouds.

7.2.2 Visualization for sweep reconstruction

To visualize the effectiveness of our sweep reconstruction,
we display the local screenshots of trajectory Fig. 7 (c) in the
form of points for in Fig. 9. Results show that the output
frequency of the LiDAR odometry without sweep recon-
struction (Fig. 9 (a)-(d)) is obviously lower than that with
sweep reconstruction (Fig. 9 (e)-(h)), i.e., higher frequency
can produce denser trajectory.

We further plot the trajectory estimated by our system
with/without sweep reconstruction in a same coordinate
(as shown in Fig. 10). Results show that our sweep re-
construction can increase the output frequency of LiDAR
odometry without degrading the accuracy. It is worth ex-
plaining that our SDV-LOAM can output pose at 60 Hz in
theory. Yet both our visual and LiDAR module can only
output at a frequency of around 20 Hz in practice due to
the limitation of the equipped computational resources. The
output frequency can be further improved by using high-
end computing devices or via multithreading acceleration.

7.2.3 Evaluation of sweep reconstruction

We evaluate the benefit of our sweep reconstruction in
our self-collected dataset in which the camera frames are
captured at 60 Hz and the LiDAR sweeps are acquired at
10 Hz. We could not conduct this ablation study on KITTI
[21], KITTI-360 [22] and KITTI-CARLA [23] as the frequency
of camera images and LiDAR sweeps are both 10 Hz. Fig. 11
shows the trajectories of the 10 Hz final pose output based
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Fig. 11. (a) The 10 Hz final pose output of our LiDAR module. (b) and (c) are the 60 Hz final pose output obtained by transform integration and our
sweep reconstruction respectively.

on our LiDAR module (Fig. 11 (a)), the 60 Hz final pose
output based on transform integration (Fig. 11 (b)) and from
our sweep reconstruction module (Fig. 11 (c)) respectively.
Although our self-collected dataset does not have ground
truth to enable a quantitative evaluation, the comparison of
Fig. 11 (b) and (c) still can qualitatively demonstrate that our
sweep reconstruction can better maintain local consistency
of the estimated trajectory than transform integration.

8 CONCLUSION

This paper introduces SDV-LOAM, an accurate and robust
monocular visual-LiDAR odometry and mapping method,
which fuses a semi-direct sparse depth enhanced visual
odometry, a LiDAR odometry with adaptively sweep-to-
map optimization in a complete system. Different from
existing methods which employ feature-based or direct
method as visual module, our SDV-LOAM adopts the
semi-direct method which combines the success-factors of
feature-based methods (re-projection error minimization for
accurate pose estimation) with direct methods (eliminating
the errors of depth association caused by sparse feature
extraction when integrating LiDAR information into visual
module). Aiming at the problem of inaccurate pose estima-
tion of most existing LiDAR odometry in scenes with weak
vertical geometric information, we proposed a adaptive
sweep-to-map optimization block, which can automatically
judge whether to optimize the 3 vertical DOF (i.e., roll, pitch,
upward) according to the richness of geometric information
in vertical direction of current sweep. In addition, different
from existing visual-LiDAR systems which add the high-
frequency but coarse camera poses on the low-frequency
but accurate LiDAR poses to obtain the final output poses,
we propose a sweep reconstruction block, which overlaps
and reconstructs the sweep according to the time stamps
of camera images to increase the input frequency of point
clouds, and in turn increase the output frequency of LiDAR
odometry in theory.

The proposed method achieves promising results on the
public datasets as well as our own custom-built hardware

system. Our whole system achieves 0.47% relative transla-
tional error on the training set of KITTI, 0.60% on the testing
set of KITTI odometry benchmark, 0.46% on KITTI-360,
and 0.038% on KITTI-CARLA. Meanwhile, live evaluations
based on our custom-built hardware platform in outdoor
environments prove the accuracy and robustness of our
system in practical scenarios. Future work includes trying
to utilize LiDAR depth as a soft constraint in visual BA.
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