CROSSTHINK: Scaling Self-Learning beyond Math Reasoning

Anonymous ACL submission

Abstract

Prior work has successfully applied Reinforce-
ment Learning (RL) to mathematical reason-
ing—where rules and correctness are well-
defined. Yet, generalizing these methods to
broader reasoning domains remains challeng-
ing due to limited data and the lack of verifi-
able rewards for unstructured domains. In this
work, we propose CROSSTHINK, a framework
that systematically incorporates multi-domain
corpora into RL training to improve general-
ization across diverse reasoning tasks. CROSS-
THINK addresses key challenges by (1) com-
bining data from varied sources; (2) applying
structured templates to control answer-space
complexity; (3) filtering for verifiable answers;
and (4) optimizing data blending strategies to
utilize multi-source data effectively. This en-
ables scalable and verifiable reward modeling
beyond math and demonstrates improved ac-
curacies on both math (MATH-500: +30.1%,
AMC23: +27.5%) and non-math reasoning
benchmarks (MMLU-PRO: +12.8%, GPQA-
DIAMOND: +11.3%, AGIEVAL: +15.1%, SU-
PERGPQA: +3.8%). Moreover, CROSSTHINK
exhibits significantly improved response effi-
ciency—using 28% fewer tokens for correct
answers—highlighting more focused and ef-
fective reasoning. Through CROSSTHINK,
we demonstrate that integrating multi-domain,
multi-format data in RL leads to more accurate,
efficient, and generalizable LLMs.

1 Introduction

Large Language Models (LLMs) have demonstrated
remarkable reasoning abilities across a wide range
of tasks, with Reinforcement Learning (RL) playing
a key role in refining their deep thinking abilities
(Hu et al., 2025; Aggarwal and Welleck, 2025; Luo
et al., 2025; DeepSeek-Al, 2025; Qin et al., 2024;
Huang et al., 2025; Team, 2025c¢). Recent advances
in RL have been particularly successful in mathe-
matical reasoning and coding, where well-defined
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Figure 1: Employing self-learning with multi-domain
data, CROSSTHINK outperforms baseline models, in-
cluding domain-specific training (Only Math) and Open-
Reasoner-Zero (ORZ-7B), achieving consistent gains
across all reasoning tasks.

rules and verifiable correctness enable effective re-
ward modeling. Yet, extending these techniques to
broader reasoning domains poses significant chal-
lenges, such as—Ilimited training data for RL due
to the difficulty of defining verifiable rewards, and
ensuring generalization across diverse tasks.

Recent works (Hu et al., 2025; Luo et al., 2025;
Cui et al., 2025) have shown ways to diversify RL
training corpora by collecting datasets from mul-
tiple sources. However, they do not evaluate the
relative importance of each source for reasoning
or explore optimal data-blending strategies to max-
imize performance. Furthermore, prior research
has largely focused on math reasoning, overlook-
ing the role of non-math reasoning domains in RL
training for generalization in out-of-distribution do-
mains. Reasoning process varies across domains
and question types. For instance, math problem-
solving follows a rule-based, structured, and sym-
bolic approach (Dehaene, 2011), whereas reason-
ing in fields such as law, physics, social sciences,
and history often relies on narrative structures, con-
textual knowledge, and heuristic strategies. More-
over, different question formats require distinct cog-
nitive approaches—open-ended questions demand



the generation of novel responses, while multiple-
choice questions (MCQ) can often be solved by
evaluating the given options and selecting the most
appropriate answer. Incorporating a diverse range
of reasoning domains and question types into RL-
based self-learning can enhance the broad reason-
ing ability of LLMs by exposing them to varied
cognitive strategies and knowledge structures.

In this work, we propose CROSSTHINK, a sys-
tematic way to incorporate multi-domain corpora
for RL training that results in better generaliza-
tion across a wide variety of tasks. As outlined
in Figure 2, CROSSTHINK comprises of phases
that—(a) curate data from diverse sources, includ-
ing synthetic data from web texts and open-source
question-answer (QA) pairs on STEM, humani-
ties, law, and social sciences (b) apply templates
(McQ/Open-Ended) to limit the answer-space (d)
prepare blends to combine multi-domain data ef-
ficiently and (e) employ self-learning with RL to
refine reasoning capability in diverse domains.

We evaluate CROSSTHINK along three axes: (1)
the effectiveness of data blending strategies in self-
learning (2) whether the blending impact amplifies
by training with more complex data samples (3) the
influence of question-answer templates on down-
stream accuracies. CROSSTHINK demonstrates
that the integration of multi-domain data with var-
ied question formats in RL boosts LLM’s reasoning
across diverse domains (Figure 1). Notably, mod-
els trained with CROSSTHINK not only achieve
higher accuracy but also exhibit dynamic response
strategies—generating concise answers for general-
purpose questions and more detailed responses for
math problems—thereby reducing inference cost
while preserving task-specific rigor. In addition,
our approach addresses the challenge of design-
ing scalable verifiable reward for non-deterministic
domains by employing different templates on the
curated data to limit the nuances in the answer
space diversity. Furthermore, we explore a sim-
ple yet effective filtering approach to rank general
purpose reasoning (GPR) data based on complexity
and show that training with harder samples further
amplifies the impact of RL across all domains.

In summary, our contributions are as follows:

* We introduce CROSSTHINK, a novel frame-
work for incorporating multi-domain corpora into
RL training, enhancing generalization across di-
verse reasoning tasks with substantial gains on
math (MATH-500: +30.1%, AMC23: +27.5%)

and non-math (MMLU-PRO: +12.8%, GPQA-
DIAMOND: +11.3%, AGIEVAL: +15.1%, and
SUPERGPQA: +3.8%) benchmarks.

* We demonstrate that applying question/answer
templates to constrain output diversity leads to
more stable reward modeling. Specifically, using
a unified open-ended question format improves
performance by 1.21% over mixed-format ques-
tions, while short-form answer templates outper-
form long-form ones by 1.20%.

* We show that math-only training is insufficient—
blending multi-domain data in RL boosts average
reasoning accuracy by 1.61% over math-only
data and improves response efficiency by reduc-
ing token usage by 28 %.

* We propose a simple yet effective model-driven
filtering technique that selects harder samples by
removing data solvable by smaller models. This
leads to an additional 2.15% average accuracy
gain for Qwen-2.5-32B, highlighting the scala-
bility of our approach to larger models.

e We will release 287.4K high-quality multi-
domain data curated for verifiable reward model-
ing to support future research.

Applying CROSSTHINK on different blends
yields substantial improvement over base model
(+8.55%-13.36% on average) across seven diverse
GPR and math benchmarks. The most effective
blend—?2:1 ratio of GPR to math data—achieves
the highest average accuracy with a 13.36% gain
over baseline (Figure 1). Overall, these findings
illustrate that thoughtful choices in data blending,
scaling, formatting, and filtering are critical to the
success of RL with language models. We hope
that CROSSTHINK serves as a practical and exten-
sible framework for leveraging multi-domain data
to train more capable, reliable, and generalizable
models under the RL paradigm.

2 CROSSTHINK: Scaling Self-Learning
Beyond Math

While mathematical reasoning benefits from clean,
verifiable datasets, extending RL to general-purpose
reasoning is challenging due to the lack of struc-
tured, high-quality supervision. To address this,
we leverage web documents and open-source QA
benchmarks to collect general-purpose reasoning
(GPR) data. However, combining structured and
unstructured domains introduces noise and ambigu-
ity—particularly in open-ended formats—making



D = Dsyn U Dos T € {Trco, Topen) D' =H(D)

Dmeq.openy = Tico,0pen(Dgpr)

Data Curation Apply Template

{04, .06}
-— -
RL Policy, Verifiable
‘ —l _— !Q _— - h‘ghk_ Reward
I ~— I/l\/-l Upda’re g —I

Data Filtering

g, = o, + @V Jarro(To,)

—

B € {Src, Qtype, Useful}

Preparing Blends Self-Learning with RL

Figure 2: CROSSTHINK. We (a) curate QA pairs from from CommonCrawl and open-source datasets, categorized
into general-purpose reasoning (Dy,,) and mathematical reasoning (D,,.); (b) apply structured templates to convert
data into MCQ and open-ended formats, promoting diverse reasoning trajectories; (c) filter out unverifiable or
ill-formatted responses; (d) deploy RL using Group Relative Policy Optimization (GRPO). The final reward is used
to update the policy, iteratively improving the model’s reasoning capabilities across diverse domains.

it difficult to apply rule-based reward reliably. To
mitigate this, we apply task-specific templates to
unify formats, limiting answer space variability and
enabling effective verifiable reward signals. Next,
we apply a lightweight data filtering to discard un-
verifiable examples for stable and interpretable RL
training. Finally, we explore optimal data blend-
ing strategies to investigate how the inclusion of
general-purpose reasoning data complements math-
ematical reasoning, ultimately leading to broader
and more adaptive generalization in LLMs.

Data Curation. As shown in Table 1, we start
with curating datasets from multiple sources to en-
sure diversity in the training data. Our training data
D comprises of:

D = Dy, UDys

Here, Dy, — synthetically generated from Com-
monCrawl (CC) (Gao et al., 2020) and D,; —
open-source QA datasets. Each source of data fur-
ther consists of QA pairs related to GPR and math:

Dsyn — Dsyn_gpr U Dsyn_mr
Dos — Dos_gpr U Dos_mr

* General Purpose Reasoning, D,,.: We col-
lect open source QA datasets (Dys_gp)—Natural
Reasoning (Yuan et al., 2025) and MMLU [Train]
(Hendrycks et al., 2021a) that span domains in-
cluding STEM, Economics, Social Sciences, and
more. To enhance diversity, we further synthe-
size QA pairs from CC documents called CROSS-
THINK-QA (Dsyn_gpr)-

Dgp?” — Dsyn_gpr U DOS_ng

¢ Mathematical Reasoning, D,,,,.: We combine
open-source math datasets (Dys mr): MATH

Data Source Category Type Samples
MMLU [Train] GPR MCQ 99,842
CROSSTHINK-QA* GPR MCQ 192,930
NATURAL REASONING GPR OE 100,000
NuminaMath MR OE 87,350
CROSSTHINK-MATH* MR OE 100,000
Math MR OE 8523
Total 588,645

Table 1: Training data distribution by source and type.
OE=Open-Ended; GPR=General-Purpose Reasoning;
MR=Math Reasoning. *We refer to Appendix B for
generation details.

(Hendrycks et al., 2021b) and Numina-Math
(Beeching et al., 2024). We generate additional
math problems defined as CROSSTHINK-MATH
(Dsyn_mr) to augment reasoning diversity.

Dmr — Dsyn_mr U Dos_mr

Applying Templates for Answer Space and Rea-
soning Diversity. General purpose reasoning
benchmarks are often divided into two categories:
(a) Multiple Choice Questions (Hendrycks et al.,
2021a; Wang et al., 2024) and (b) Open-Ended
Questions (Zhong et al., 2023). Prior works over-
looked these variations in the answer space for
consistent reward design for tasks which are pre-
dominantly math (Hu et al., 2025; Aggarwal and
Welleck, 2025; Luo et al., 2025). We hypothesize
that each question type elicits different thinking
patterns, leading to diverse reasoning trajectories
in the model. Therefore, we synthesize D, using
two templates: Tascq - Multiple Choice Questions
(MCQ), and Topen - Open-Ended questions. We
convert the MCQ datasets (MMLU) to open-ended
by removing the options from the questions.

Dmcq - TMC’Q (Dgpr)y Dopen = 7-Open (Dgpr>

Additionally, some MCQ questions are incom-
plete without options (e.g., Which of the following



ways we can file taxes?). We discard them to avoid
confusion during answer generation. Finally,

Dgpr = Dmcq U Dopen

Data Filtering and Formatting. To obtain high-
quality data, we apply a series of filtering and for-
matting steps, H, to remove samples that are infea-
sible to evaluate with rule-based reward. Specif-
ically, for D,,.4, we check whether the correct
answer appears within the question text itself.
Given a question-answer pair (g, a*) with answer
choices {a1,as,...,a,}, we discard a sample if
a* ¢ {ai,az,...,ap}. For Dypep, we discard sam-
ples that are challenging to evaluate with a rule-
based reward function. Formally, we retain samples
where |w(a*)| < 10; w(a*) represents the number
of words in the answer a*.

Lastly, for D,,,,., we remove entries that lack an
associated answer, ensuring that all retained ques-
tions ¢ have a valid response a*, i.e., we discard
samples where a* = ().

D' =H(D) ={(q,a"*,{a1,...,a,}) € D
Data Blending. = We study the impact of data
diversity in three paradigms:

* Data Source: We observe the effect of data
sources—D,,,- and D,,,—by tuning their rela-
tive weights in the RL training data.

* Question Types: We investigate the impact of
question types in downstream tasks.

* Data Usefulness: To analyze the contribution
of each data source, we run RL using individual
data alone and then evaluate them across diverse
downstream tasks. Based on their performances,
we create a new blend.

Based on these categories, we construct six blends,
summarized in Table 10, with their corresponding
weight distributions detailed in Table 11.

Reinforcement Learning with GRPO. We be-
gin with a pretrained large language model (LLM)
M and a training blend B, where each sample con-
tains only the input prompt and the final answer
which is verifiable. We employ Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024). More
details can be found in Appendix A.

Rule Based Reward Modeling.  To guide the RL
training, we employ a rule-based reward designed
for verifiable evaluation. Similar to (DeepSeek-Al,

2025), we define the total reward function R =
Race N Reormat as the combination of an accuracy
reward R, and a format reward Rormat. This
implies that the output will get reward only when
both the answer and the format are correct. Each
reward is further detailed in Appendix A

3 Experimental Setup

Training Details. We adopt Qwen2.5-7B and
Qwen2.5-32B (Team, 2024a) as M, which demon-
strate strong generalization capabilities across vari-
ous reasoning tasks. We directly apply GRPO on M
using the veRL framework!. We train M with key
settings including a constant learning rate of 1e-6,
a batch size and PPO mini batch size of 128 and a
maximum context length of 5000 tokens. Each gen-
eration step contains 128 unique prompts sampled
from the dataset, and performing 8 rollouts with
temperature and top-p both set to 1.0. We set KL
coefficient to 0.001 in all experiments. We conduct
training on 4 8 x NVIDIA-H100-80GB nodes, and
each training takes approximately 48 GPUs hours.

Evaluation Metrics. We evaluate reasoning per-
formance on diverse math and general-purpose
benchmarks: MATH-500 (Hendrycks et al., 2021b),
AMC23, test set of MMLU (Hendrycks et al., 2021a),
MMLU-PRO (Wang et al., 2024), AGIEVAL (Zhong
et al., 2023), GPQA-DIAMOND (Rein et al., 2024)
and SUPERGPQA (Team et al., 2025). Notably, SU-
PERGPQA is a recent and rigorous benchmark de-
signed to test the generalizability of LLMs across
285 graduate-level disciplines. Unlike existing
benchmarks that concentrate on well-represented
domains (e.g., math, law, physics), SUPERGPQA
captures long-tail knowledge and includes a wide
range of real-world professional disciplines, mak-
ing it a reliable and discriminative frontier for eval-
uating generalizability in LLMs. We employ v11lm
(Kwon et al., 2023) as the inference backend, with
maximum response length of 5k. For each bench-
mark, we report accuracy averaged over 3 indepen-
dent inference runs using greedy decoding.

4 Experiments and Results

Analyze the effect of Individual Datasets. To
design an effective multi-source blend, we first as-
sess the impact of each source on self-learning.
This helps prioritize useful sources and down-
weight less effective ones. We employ RL using

"https://github.com/volcengine/verl
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Data Source

MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL

SUPERGPQA MATH-500 AMC23 Avg

M 74.20 45.00 31.82 48.59 25.36 48.30 40.00 44.75
MMLU [Train] 69.76 38.50 32.83 47.66 27.69 22.00 5.00 3478
CROSSTHINK-QA 70.45 52.41 30.81 52.10 24.57 54.20 35.00 45.65
Natural Reasoning 68.89 31.33 33.33 46.65 22.44 68.60 42.50 44.82
NuminaMath 72.94 52.05 33.84 54.39 26.97 76.20 55.00 53.06
CROSSTHINK-MATH ~ 53.99 28.08 18.69 45.69 16.92 77.20 50.00 41.51
Math 63.30 31.64 21.72 51.95 18.31 78.40 50.00 45.04

Table 2: Results of Self-Learning on Individual Datasets. Each row shows the downstream evaluation results
after self-learning on a single data source. Results highlight the varying strengths of individual datasets across

general-purpose and mathematical benchmarks.

M=Qwen-2.5-7B on each dataset separately with
a fixed training recipe for consistency. Each model
is trained for 250 steps and evaluated on the final
checkpoint.

As shown in Table 2, different datasets have
varying impacts on downstream accuracies across
reasoning benchmarks. NuminaMath yields the
highest overall average, outperforming the base-
line (M) by over 8.30%. While particularly strong
on math tasks like MATH-500 and AMC23, it
also generalizes well to broader reasoning bench-
marks. CROSSTHINK-QA demonstrates a ~1.0%
improvement over baseline with stronger accuracy
in MMLU-PRO, AGIEVAL and MATH-500 tasks,
suggesting that synthetically generated instruction-
style data can generalize well when aligned with
benchmark distributions. Natural Reasoning, de-
spite modest scores on language-rich benchmarks,
delivers a strong average, driven by high scores
in MATH-500 and AMC23. This indicates that
reasoning-focused datasets, even if less formatted,
can contribute meaningfully in math-adjacent tasks.
In contrast, CROSSTHINK-MATH performs well on
math but generalizes poorly to other domains. Fi-
nally, MMLU [Train] underperforms across most
tasks, specifically in math domains, suggesting
that self-learning with raw MMLU [Train] data
alone is insufficient for generalization. How-
ever, it excels on SUPERGPQA, which spans cross-
disciplinary reasoning, highlighting its potential in
capturing broad conceptual knowledge and support-
ing transfer to long-tail domains—making it a valu-
able component when targeting general-purpose
reasoning benchmarks. While preparing Bgcore,
we weight datasets based on their average accu-
racy—prioritizing sources like CROSSTHINK-QA
and NuminaMath, while downweighting less effec-
tive ones like MMLU [Train].

Analysis across Blends. To show the distinction
between natural distribution and selective weight-

ing of domains, we prepare 5,4, which samples
data in proportion to each dataset’s original size.
Next, to analyze the impact of within-domain
vs. cross-domain training, we introduce a Single
Source category with two domain-specific blends:
Bonity_mr and Bopiy gpr, using only Dy, and Dy,
respectively. We further compare our approach
with a recent math-centric self-learning approach,
OPEN-REASONER-ZERO (ORZ) (Hu et al., 2025)—
which achieved strong math accuracy using com-
bination of math data. For fair comparison, we
evaluate ORZ-7B using our eval setup.

As shown in Table 3, each blend outperforms M
by a significant margin. B,,4 yields a 13% average
improvement over M, suggesting that simple data
diversity—even without rebalancing—can be bene-
ficial. By, achieves the highest overall average,
with the strongest results across most benchmarks
(e.g., MMLU-PRO: +12.82%, AGIEVAL: +15.12%).
Notably, it outperforms ORZ by ~5% on average.
While B, m: performs slightly better on math, it
lags ~3-4% behind B+ on non-math reasoning
tasks such as AGIEVAL, SUPERGPQA, and MMLU-
PRO. The trend also holds for ORZ. Our analysis
with sub-category accuracies in Appendix F reveals
that By,,+ shows large relative gains in non-math
categories while gains in math subcategories are
either negligible or even favor B+ in some tasks.
This highlights that multi-domain data offers strong
cross-domain transfer with minimal compromise
on math accuracy, making it more versatile.

Both By,cqt and Bypent show consistent gains,
with the latter achieving a slight edge (+0.6% on
average) with stronger results on math tasks. Since
math problems are inherently open-ended in struc-
ture, highlighting more open-ended domains aligns
with the format and reasoning demands of math
tasks—Ileading to better generalize to both general
purpose reasoning (GPR) and math tasks. Despite
outperforming M, Bgcore is overall worse than



Model Category Blend MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg
M 74.20 45.00 31.82 48.59 25.36 48.30 40.00 44.75
ORZ 73.20 48.90 29.30 63.49 27.60 81.40 62.50 55.20
Bra 73.18 54.81 38.07 59.99 26.54 77.00 60.00 55.66

2 Data Source Brt 74.85 55.51 40.10 61.47 26.81 77.80 67.50 57.72
ﬁ gprt 74.94 57.82 38.58 63.71 29.16 77.60 65.00 58.12
% Question Types Bnegt 74.26 55.77 39.59 62.54 28.05 78.00 60.00 56.89
5 P opent 74.46 55.82 43.15 61.28 26.82 78.40 62.50 57.49
Data Usefulness  Bscore 74.70 56.16 40.10 59.80 27.37 78.00 62.50  56.95

Sinele Sour Bonty mr 7424 54.26 38.58 61.39 27.69 78.60 70.00 57.82
BEOOUCe 3 g 7277 52.06 37.06 56.56 27.44 72.20 55.00  53.30

Table 3: Results of CROSSTHINK-7B across Blends. B, achieves the highest overall average accuracy,
outperforming domain-specific and naturally sampled blends—underscoring the benefit of self-learning with diverse

reasoning data.

Byt o Boniy_myr. This gap arises because Bscore
assigns weights based on average scores, without
accounting for task-specific strengths. For example,
Math and CROSSTHINK-MATH are overrepresented
due to math performance, while datasets like MMLU
or Natural Reasoning, which excel in general
reasoning, are underweighted. In contrast, domain-
aware blends selectively prioritize datasets based
on their utility within specific domains, leading to
more effective coverage and stronger scores across
both math and GPR tasks.

In Single Source vs. multi-domain analy-
sis, Boniy_mr achieves the highest average math
score,ranking as the second-best blend overall in
terms of average accuracy. In contrast, while
Boniy gpr outperforms M, it underperforms in
math tasks and trails 4.2% on average across non-
math reasoning tasks, despite being tailored for
GPR. This counterintuitive finding suggests that to
obtain maximum gain in GPR tasks we need to in-
clude math problems in the training. As discussed
earlier, B+ gets the best average reasoning accu-
racy which consists of both math and GPR domains.
This confirms that math data alone is transferable
to structured reasoning tasks, whereas GPR data is
less effective when isolated.

5 Ablations

CROSSTHINK is token efficient in responses.
To further understand the influence of multi-
domain data in response generation, we compare
the average token lengths of correct and incor-
rect responses between models trained on two
blends: Byp-+ and Bypiy my- As shown in Figure 3,
on general-purpose reasoning (GPR) benchmarks,
Bgprt consistently outperforms B,y - and ORZ
(Hu et al., 2025), not only in accuracy (as shown in
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Figure 3: Token efficiency comparison of models
trained on By,,+ (multi-domain blend) and two single
domain blends (B,piy_mr and ORZ).

Table 3) but also in response efficiency—producing
correct answers with significantly fewer tokens?.
For instance, on MMLU, the average token count
for correct responses is 229 for By,,+, compared to
351 for Bopiy_mr- This demonstrates that exposure
to multi-domain data enables the model to internal-
ize a more efficient reasoning strategy, leading to
both improved performance and reduced inference
cost.

In contrast, on math-specific benchmarks,
Boniy_mr and ORZ perform slightly better in ac-
curacy, as expected due to domain alignment. In-
terestingly, correct responses are generally longer
than GPR tasks as solving math problems inherently
requires detailed, multi-step derivations, hypothesis
exploration, verification and refinement. Despite
this, the B+ shows its adaptability by generat-
ing longer responses for math tasks and shorter
ones for GPR tasks—indicating a dynamic response
strategy learned through multi-domain training. As
shown in Table 12, B+ increases its average to-
kens by 62% when generating responses for math
tasks (Mean Tokens=622) as opposed to GPR tasks

*Detailed categorization per task is shown in Appendix E.



(Mean Tokens=385). Whereas, B,y _m, increases
by 14% (Mean Tokens=731 for math and Mean To-
kens=639 for GPR tasks) showing a much smaller
dynamic range. This trend is also mirrored in ORZ
which shows an even smaller increase (12%) in
average token length across domains.

This adaptive behavior highlights a key strength
of multi-domain training: it equips the model with
the flexibility to tailor its response style to the na-
ture of the task. By learning from a diverse range of
domains, Byt learns to reason efficiently—across
all tasks, B+ uses on average 28% fewer tokens
for correct responses than B,y pm—producing
compact yet accurate answers where appropriate,
and detailed ones when necessary.

Data Format Study: Question and Answer Tem-
plates. To examine the training data formatting
effect on model performance, we conduct two con-
trolled studies focused on question and answer
template design. In Table 3, we observe that
Bopent outperforms B,,,q4t, suggesting that mod-
els trained on more open-ended data generalize
better across benchmarks. This motivated us to
investigate whether converting all questions into a
unified open-ended format leads to better perfor-
mance. In Question Template Study, we use the
natural distribution blend (B,4) and only perturb
the question template. To generate the open-ended
variant, we remove the answer options from MCQs,
prompting the model to produce an answer without
selecting from predefined choices.

Question Type GPR Avg Math Avg Total Avg
MCQ +OPEN-ENDED 50.52 68.50 55.66
OPEN-ENDED 51.30 70.80 56.87

Table 4: Impact of Question Format. Converting
all questions to open-ended format improves accuracy
across benchmarks, reducing reliance on option guess-
ing and encouraging deeper reasoning (Appendix C).

From Table 4, the open-ended setting surpasses
the mixed-format one on nearly all tasks, achieving
1.21% higher average score. It yields notable gains
on reasoning-intensive and MCQ-formatted bench-
marks such as MMLU, SUPERGPQA, and GPQA-
DIAMOND. This result may be attributed to the
inherent structure of MCQ questions, where ran-
dom guessing can yield an accuracy of approxi-
mately 25% in MMLU and GPQA-DIAMOND where
we have four options. In contrast, open-ended ques-
tions eliminate this guessing advantage, compelling

the model to rely heavily on reasoning to arrive at
a correct answer. By reducing the likelihood of
reward hacking through random option selection,
the open-ended format encourages more robust rea-
soning and leads to improved generalization.

In Answer Template Study, we investigate how
the format of MCQ-style output labels influences
training. We compare two answer templates: Long
- the model is trained to generate both the option
label and its corresponding description (e.g., (A)
Sky is blue), and Short - the model is trained to
output only the option label (e.g., A). Here, we use
the B,,1y_gpr blend, which primarily consists of
McCQ datasets (Table 1), making it ideal for analyz-
ing the effects of answer formatting in this setting.

Answer Type GPR Avg Math Avg Total Avg
Long 49.18 63.60 53.30
Short 50.95 63.35 54.50

Table 5: Impact of Answer Format. Using short-form
answers improves accuracy by reducing output ambi-
guity and avoiding penalization from rigid reward func-
tions in rule-based training (Appendix C).

As shown in Table 5, the short answer template
outperforms the long-form variant, with a 1.20%
gain in average accuracy. The trend holds for both
GPR and math benchmarks. These results suggest
that reducing the complexity of the output space
helps minimize ambiguity and allows the model
to better align its predictions with the structure
of the question. Furthermore, when training with
long-form answers using a rule-based reward (e.g.,
exact string matching), the model is often penal-
ized for minor deviations in phrasing, even when
the correct option is selected. This introduces noisy
supervision and may hinder learning. While this
issue could be mitigated by designing a more flexi-
ble reward function (e.g., LLM-as-a-Judge), we aim
to keep our approach simple and interpretable. As
such, we adopt a naive rule-based reward for clarity
and reproducibility, and leave more sophisticated
reward designs for future investigation.

Difficulty Filtering. High-quality data is a key
factor in self-learning to ensure efficient and sta-
ble learning. Recent works (Hu et al., 2025; Luo
et al., 2025; Cui et al., 2025; Zeng et al., 2025;
Fatemi et al., 2025) investigate data selection based
on question complexity, showing that training on
harder questions improves downstream accuracy.
However, their approach relies on datasets with pre-



defined difficulty scores. In this work, we explore
a simple approach to estimate question difficulty
for GPR datasets that do not come with explicit
difficulty labels. Specifically, we label questions
as ‘difficult’ if they are answered incorrectly by a
smaller model (Qwen-2.5-7B) in a zero-shot set-
ting and filter out the ‘easy’ questions. The intu-
ition is that questions easily answered by a base
model are likely to be knowledge-based or shallow
in reasoning depth, whereas those it fails on are
likely to require deeper reasoning or broader gener-
alization. We construct two versions of our train-
ing dataset B,,+—an unfiltered set containing all
questions, and a filtered set (B #(gpr)t) that retains
only the difficult samples—and use them to train
separate instances of a larger M = Qwen-2.5-32B.

Model Blend GPR Avg Math Avg Total Avg

Qwen-2.5-32B 54.95 52.78 54.33
Bgprt 62.20 74.95 65.84

CROSSTHINK-32B g 1 6339 7950 67.99

Table 6: Difficulty-Based Filtering. Filtering B+ to
retain only hard examples (B ;1) yields consistent
gains across all tasks, highlighting the effectiveness of
selective training on challenging data (Appendix C).

According to Table 6, this filtering approach re-
sults in consistent performance gains across all
evaluated benchmarks. While both filtered and un-
filtered models outperform M, By, achieves
the highest accuracy on every task. The gains are
especially prominent in complex benchmarks such
as MMLU-PRO, GPQA-DIAMOND, AGIEVAL, and
AMC23, where B (g, improves by up to 2-8%
over B,,-+. On average, filtering boosts overall ac-
curacy by 2.15%, a notable gain considering that it
comes from training on fewer but harder examples.
This suggests that selectively training on challeng-
ing examples can yield more robust and generaliz-
able models, likely due to stronger gradient signals
and a focus on harder-to-learn reasoning patterns.

6 Related Work

Reasoning in LLM. Large Language Models
have achieved strong performance on various NLP
tasks, with Chain-of-Thought (CoT) prompting
(Wei et al., 2022) enabling multi-step reasoning
across domains like math, science, and program-
ming. Long CoT (OpenAl, 2024) further enhances
reasoning by introducing behaviors such as reflec-
tion, verification, and correction, with strong scal-
ing properties. Models like QwQ (Team, 2024b,

2025c), DeepSeek-R1 (DeepSeek-Al, 2025), Kimi
k1.5 (Team, 2025a), and InternThinker (Cai et al.,
2024) leverage Long CoT with RL to boost rea-
soning performance. Smaller models like Open-
Reasoner-Zero (Hu et al., 2025), Open-R1 (Face,
2025), O1 (Qin et al., 2024; Huang et al., 2025), s1
(Muennighoff et al., 2025), and LIMO (Ye et al.,
2025) also benefit from Long CoT via distillation.

Data Sampling in RL. Recent work explores
mixing data from multiple sources in RL to im-
prove reasoning diversity and generalization in RL
(Hu et al., 2025; Luo et al., 2025; Zeng et al., 2025;
Wen et al., 2025). However, they primarily focus
on math due to the ease of designing verifiable
rewards. Sampling strategies often rely on ques-
tion complexity or algorithmic verifiability, such as
(Xie et al., 2025) uses synthetic puzzles to control
difficulty. However, these methods remain lim-
ited to structured domains like math or logic. Yeo
et al. (2025) reports the best MMLU-PRO scores
by blending multi-domain (Yue et al., 2024) data,
though majority of it is math-focused, leaving un-
clear the contribution of non-math data. Despite
these efforts, the impact of including non-math do-
mains—Iike law, social science, or commonsense
reasoning—remains underexplored. CROSSTHINK
is the first systematic framework to incorporate
multi-domain, multi-format data into RL, introduc-
ing verifiable rewards for non-deterministic tasks
and demonstrating that diverse blends lead to LLMs
that reason more broadly, adapt dynamically, and
think more efficiently.

7 Conclusion

We present CROSSTHINK, a simple and scalable
framework for improving the generalization abili-
ties of LLMs through RL with multi-domain cor-
pora. By combining multi-domain data, struc-
tured templates, and difficulty-aware filtering,
CROSSTHINK enables consistent gains across both
general-purpose (+3.8-15.1%) and mathematical
(+27.5-30.1%) benchmarks—using 28% fewer to-
kens for correct responses. Importantly, these ben-
efits persist across model scales and task types,
demonstrating that data diversity, not just data
volume, is key to broader reasoning capabilities.
CROSSTHINK offers a practical recipe for building
more generalizable, efficient, and reliable LLMs un-
der the RL paradigm—paving the way for scalable
self-learning beyond math.



8 Limitations

While CROSSTHINK demonstrates strong improve-
ments in reasoning accuracy, adaptability, and ef-
ficiency, there is still room for improvement. As
discussed in Section 5, the reward modeling frame-
work used in this work is rule-based and relatively
simplistic. Specifically, it relies on exact string
matching for correctness and formatting verifica-
tion, which can be brittle for open-ended responses.
For example, if the ground truth is (A) Sky is
blue, and the model predicts (A) the sky is
generally blue most times, the answer is se-
mantically correct but still receives a negative re-
ward. This limitation improperly affects general-
purpose reasoning tasks with inherently more di-
verse and less deterministic answer spaces. Future
work could incorporate more flexible, semantics-
aware reward functions, such as fuzzy matching,
entailment scoring, embedding-based similarity
metrics, or 11m-as-a-Judge, to better align reward
signals with human judgment. Additionally, we did
not perform extensive hyperparameter tuning for
RL training. All models were trained using fixed
schedules and standard values for learning rate, KL
coefficients, and rollout configurations. Moreover,
scaling RL training for longer steps and dataset
are computationally expensive which constrained
us to deploy all runs for a fixed number of steps
(650 steps). Recent works (Yu et al., 2025; Aggar-
wal and Welleck, 2025; Luo et al., 2025) shows
improvement over naive GRPO by adjusting clip ra-
tio, dynamic sampling, number of rollouts, context
length. While our results are strong under fixed
conditions, additional gains may be possible with
better-tuned training regimes by exploiting hyper-
parameters.

9 Ethical Considerations

Reinforcement learning strongly incentivizes the
reasoning capabilities of LLMs, enabling models
to perform better across complex tasks. However,
this process can also inadvertently amplify exist-
ing biases present in the base model or introduced
through reward modeling and data selection. In
this work, we primarily focus on scaling and di-
versifying reasoning ability across domains and do
not explicitly address fairness, bias mitigation, or
value alignment. Future work should systemati-
cally evaluate how reinforcement learning affects
the model’s behavior across sensitive axes such as
gender, race, and geopolitical context—especially

in open-ended, non-verifiable tasks.
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A Reinforcement Learning

We utilize Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) as our RL algorithm.
Unlike PPO (Schulman et al., 2017), GRPO does
not use a separate critic model and instead esti-
mates the baseline from group scores, improving
efficiency and reducing memory. For each question
q, GRPO samples a group of outputs o1, 02, ..., 0G
from the old policy mp,,, and then optimizes the
policy model 7y by maximizing the following ob-
jective:
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where € and [ are hyperparameters, and /1,-7,5 is
the advantage, computed using a group of rewards
{r1,r2,...,rq} corresponding to the outputs within
each group:

it =

ri —mean({ry,r2,...,rg})
std({r1,72,...,7G})
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Defining Rewards. We combine accuracy re-
ward (R,cc) and format reward (Rformat) t0 €Stimate
the final reward:

Accuracy Reward: The accuracy reward eval-
uates correctness based on whether the model’s
response p is similar to the ground truth solution a
to satisfy the correctness criteria:

{

Format Reward: The format reward ensures
the response a is structured according to prede-
fined tags, where the reasoning will reside in
‘<think></think>" tokens and the final answer will
be shown inside \boxed{ }:

L,
0,

B if equal(p, a),

Race (p , a)

otherwise.

L,
0,

if F(a)
Rformat(a) = { .’
otherwise.
where F'(a) returns True if a is correctly format-
ted and False otherwise.

B Data Synsthesis

To obtain a balanced high-quality multi-domain
data, we synthesize a high-quality ques-
tion answering dataset spanning over math
(CROSSTHINK-MATH) and general purpose
reasoning (CROSSTHINK-QA) domain using
publicly available datasets such as CommonCrawl
(Gao et al., 2020). Our dataset is intended to be
used by the community to deploy reinforcement
learning with LLMs which is licensed under the
Creative Commons Attribution 4.0 International
License (CC BY 4.0)>. The data may be used to
train and evaluate. This dataset contains synthetic
data created using Qwen/Qwen2.5-Math-72B,
Qwen2.5-72B-Instruct. If this dataset is used to
create, train, fine tune, or otherwise improve an Al
model, which is distributed or made available, such
Al model may be subject to redistribution and use
requirements in the Qwen License Agreement*.

B.1 CROSSTHINK-QA

We synthetically generate a large-scale multiple-
choice question (MCQ) dataset following two ap-
proaches below:

3https://creativecommons.org/licenses/by/4.0/
legalcode

*https://huggingface.co/Qwen/Qwen2.5-Math-72B/
blob/main/LICENSE and https://huggingface.co/Qwen/
Qwen2.5-72B-Instruct/blob/main/LICENSE
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B.1.1 SDG from Scratch

Topic, Subtopic, and Difficulty Definition: We
first define a broad set of topics, such as physics, bi-
ology, chemistry, and others. For each topic, we use
Nemotron-4-340B-Instruct (Nvidia et al., 2024)
to generate a list of popular subtopics. We also
define multiple difficulty levels to ensure diversity
and scale of the data.

Question Generation: We initially gen-
erate  few-shot examples that demon-
strate various levels of difficulty using

Nemotron-4-340B-Instruct (Nvidia et al.,
2024). We later prompt Qwen2.5 models (Team,
2024a) along with the few-shot examples to
generate a multiple-choice question based on the
specified topic, subtopic, and difficulty. Each
generated question is checked to ensure it follows
the required format.

Augmentation: Similarly to the OpenMathln-
struct (Toshniwal et al., 2024) pipeline, we augment
generated questions by prompting Qwen2.5 (Team,
2024a) models to create a question similar to or
inspired by the original.

Benchmark Decontamination: We perform de-
contamination against test sets of popular MCQ
benchmarks such as GPQA (Rein et al., 2024),
MMLU (Hendrycks et al., 2021a), and MMLU-
PRO (Wang et al., 2024), using the method
from (Yang et al., 2023).

Solution Generation: We prompt DeepSeek-
R1 (DeepSeek-Al, 2025) to generate multiple rea-
soning traces per question. Since there are no
ground-truth answers for the questions generated
in earlier stages, we use majority voting over gener-
ated solutions to determine the most likely correct
answer.

B.1.2 SDG from Book

We utilized Qwen2.5-VL-72B-Instruct (Team,
2025b) for extracting text from textbooks
(OpenStax® and An Introduction to Formal
Logic®), which was then manually checked
for transcription accuracy. We employed
Mixtral-8x22B-Instruct-v@.1 (Jiang et al,
2024) and Qwen2.5-72B-Instruct (Team, 2024a)
to synthesize multiple-choice questions based on

Shttps://openstax.org/
6https://forallx.openlogicproject.or‘g/
forallxyyc.pdf


https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://huggingface.co/Qwen/Qwen2.5-Math-72B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-Math-72B/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://openstax.org/
https://forallx.openlogicproject.org/forallxyyc.pdf
https://forallx.openlogicproject.org/forallxyyc.pdf

sections and key terms extracted from these text-
books. We prompted the models to generate ques-
tions with four distinct and plausible options, along
with the correct answer and a justification for it.
Subsequently, each generated question was evalu-
ated using another model to ensure that every ex-
ample is self-contained and accurate.

B.2 CROSSTHINK-MATH

To construct CROSSTHINK-MATH, we adopt an
approach similar to the technique in (Ge et al.,
2024). Specifically, we use web documents
from Common Crawl to build personas, and we
use Qwen2.5-72B-Instruct (Team, 2024a) model
when generating personas. Then, to promote diver-
sity in math questions, we incorporate math skills
introduced in (Didolkar et al., 2024) and condi-
tion the Qwen2.5-72B-Instruct model on both
the math skills and the personas. Finally, we use
the Qwen2.5-72B-Math-Instruct model to gen-
erate the solutions. Prompt templates are shown in
Figure 4, Figure 5, and Figure 6.

C Breakdown of Performance

We further provide a breakdown of the results show-
ing impact of data formats and filtering in RL train-
ing. Table 7 and Table 8 shows the impact of the
question and answer formats across all tasks. In
Table 9, we further extend the results for models
trained on unfiltered and filtered datasets.

D Data Proportion across Blends

CROSSTHINK has been trained using the datasets
shown in Table 1. To better understand the data
composition used in our reinforcement learning ex-
periments, we report the proportion of each dataset
in the six blending strategies in Table 10, intro-
duced in Section 2. These proportions reflect how
data is distributed across different sources depend-
ing on the specific blending paradigm: data source,
question type, and data usefulness.

E Token Efficiency Analysis

Token Efficiency in Correct Responses. Under-
standing not only whether a model answers cor-
rectly but also how efficiently it reasons is critical
in real-world deployments, especially for reducing
inference cost and latency. To this end, we analyze
the token lengths of correct responses generated
by models trained under different data blending
strategies.
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Table 12 presents the minimum, maximum, and
mean number of tokens used in correct answers
across two task types: General Purpose Reason-
ing (GPR) and Math. We compare three models:
(1) Bypr4 (multi-domain training), (2) Boniy_math
(math-only training), and (3) ORZ (a strong math-
centric baseline model).

Across GPR tasks, B, produces the most
concise correct responses, with a mean of 385
tokens—39.6% fewer than B, n,, and 65.4%
fewer than ORZ. This suggests that training with
multi-domain corpora equips the model to reason
more efficiently in less structured tasks, avoiding
unnecessarily verbose responses.

On math benchmarks, where detailed step-by-
step derivations are essential, all models naturally
generate longer outputs. However, B+ still
demonstrates adaptability, producing appropriately
longer responses compared to GPR, while keep-
ing the output concise relative to By math and
ORZ. This behavior underscores the ability of multi-
domain trained models to dynamically adjust their
reasoning strategy and verbosity based on task re-
quirements.

Interestingly, ORZ exhibits the longest response
lengths across both GPR and math tasks. While
this aligns with its design as a reasoning-heavy
model, it also reflects less efficiency—potentially
generating unnecessarily long chains of thought,
particularly in domains outside its training focus.

In summary, the token efficiency analysis reveals
that B+ achieves a favorable trade-off between
accuracy and brevity, tailoring its reasoning depth
to the complexity of the task. This reinforces the
value of diverse, multi-domain training in promot-
ing adaptable and cost-efficient language models.

Thinking Long vs Thinking Accurate. Recent
studies such as DeepScaler (Luo et al., 2025) have
noted that incorrect answers often exhibit longer
trajectories, leading to wasted computation and
less efficient learning. Echoing this observation,
we analyze the average token lengths of correct and
incorrect responses for models trained on different
blends: B+, Boniy_mr» and ORZ.

As shown in Figure 7, incorrect responses are
consistently and substantially longer than correct
ones—by 3.6x on average. This pattern holds
across both general-purpose and math reasoning
tasks, suggesting that verbose reasoning does not
guarantee correctness. In fact, longer responses
often reflect the model’s uncertainty, overthinking,



Text-to-persona template

Who is likely to read the text?
{text}

Note: 1. Your response should always start with “Persona:”. 2. The persona should be realistic and
detailed, but don’t include specific name of person. 3. Don’t include any preamble or disclaimer,
but only provide the persona. 4. Persona should be at most two sentences.

Persona:

Figure 4: Prompt template for text-to-persona generation.

Persona-to-persona template

Who is in close relationship with the given persona?
{persona}

Note: 1. Your response should always start with "Related Persona:". 2. The persona should be
realistic and detailed, but don’t include specific name of person. 3. Don’t include any preamble or
disclaimer, but only provide the persona. 4. Persona should be at most two sentences.

Related Persona:

Figure 5: Prompt template for persona-to-persona generation.

Persona and skill to math problem template

Create a math problem related to the following persona and require understanding of the following
skills:

Skills: {skills}
Persona: {persona}

Note: 1. The math problem should be challenging and involve given advanced mathematical skills.
Only top talents can solve it correctly. 2. You should make full use of the persona description to
create the math problem to ensure that the math problem is unique and specific to the persona.
3. Your response should always start with "Math problem:". Your response should not include a
solution to the created math problem. 4. Your created math problem should include no more than 2
sub-problems.

Math problem:
Figure 6: Prompt template for persona and skill to problem generation.
Question Type MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg
MCQ +OPEN-ENDED  73.18 54.81 38.07 59.99 26.54 77.00 60.00  55.66
OPEN-ENDED 74.61 54.36 39.09 59.30 29.16 76.60 65.00 56.87

Table 7: Impact of Question Format. Converting all questions to open-ended format improves accuracy across
benchmarks, reducing reliance on option guessing and encouraging deeper reasoning.
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Answer Type MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg
Long 72.77 52.06 37.06 56.56 27.44 72.20 55.00 53.30
Short 74.22 54.56 39.59 58.01 28.39 74.20 52.50  54.50

Table 8: Impact of Answer Format. Using short-form answers improves accuracy by reducing output ambiguity
and avoiding penalization from rigid reward functions in rule-based training.

Model Blend MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg
Qwen-2.5-32B 8330 5510 40.40 62.77 33.16 60.55 4500 5433

Byrt 8357 6883 46.70 73.90 37.99 8240 6750 6584
CROSSTHINK32B - fg oy 83.60 6943 49.75 75.82 3834 8400 7500 67.99

Table 9: Difficulty-Based Filtering. Filtering B+ to retain only hard examples (B (y)1) yields consistent gains
across all tasks, highlighting the effectiveness of selective training on challenging data.

] ngm | ] Bonlyﬂw ORZ

General Purpose General Purpose Math Reasoning Math Reasoning
Reasoning Reasoning (Correct) (Incorrect)
(Correct) (Inorrect)

4000

3000

2000

1000

Avg Token of Answers

Figure 7: Average token lengths of correct and incorrect
responses across general-purpose and math reasoning
tasks for models trained on By, Boniy_mr, and ORZ.

or repetitive CoT traces, rather than productive de-
duction.

F Sub-category Accuracy Analysis

To further support our observation that multi-
domain training improves general-purpose reason-
ing while remaining competitive on math tasks, we
analyze the number of correct responses across sub-
categories in MMLU-PRO and AGIEVAL. Figure 8
and Figure 9 show the count of correct answers
produced by By,+ and By math across their re-
spective sub-domains.

On MMLU-PRO, B+ consistently outperforms
Bonty_math across non-math reasoning categories
such as business, law, psychology, chemistry, and
economics. Notably, it achieves relative improve-
ments of +20.58% in law and +13.26% in busi-
ness. Surprisingly, B+ also performs better in the
math category (+7.2%), despite not being trained
exclusively on mathematical data. This may be
attributed to the nature of MMLU-PRO’s math prob-
lems, which are college-level and benefit from
a combination of symbolic and heuristic reason-
ing—skills reinforced through exposure to diverse
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domains.

In contrast, the AGIEVAL benchmark (shown
in Figure 9) features Olympiad-level math ques-
tions that are more abstract and complex. Here,
Boniy_math has a slight edge (+1.8%) in the math
category, which aligns with its domain-specific
training. However, Bgpr 1 demonstrates stronger
performance in symbolic and language-heavy do-
mains, showing +13.06% improvement in Law and
+9.88% in English. Averaged across all non-math
reasoning categories, By,,+ achieves a +8.6% rela-
tive gain over Byy1y math, reinforcing its advantage
in general-purpose and real-world reasoning tasks.

A similar trend is observed in the SUPERG-
PQA sub-category analysis shown in Figure 10.
Bgprt significantly outperforms By, math across
nearly all categories—especially in engineering,
agronomy, economics, education, law, and philoso-
phy. The only exception is the “Science” category,
which includes math-heavy disciplines like physics,
chemistry, and astronomy, where both blends per-
form comparably. This further highlights that multi-
domain training with By, enhances reasoning
across a broad spectrum of fields, achieving strong
generalization even in real-world, professional do-
mains that fall outside traditional math tasks.

G Extended Related Work

Self-Learning beyond Math. High-quality
training data are crucial for scalable Reasoner-Zero
training. Most of the recent works emphasize math-
ematical benchmark-centric data (AMC, AIME,
Math, Olympiads, and AoPS) for reinforcement
learning (Hu et al., 2025; Aggarwal and Welleck,
2025; Trung et al., 2024; Ye et al., 2025; Zeng et al.,
2025) as designing verifiable rewards is much eas-
ier for math tasks. They exclude problems such as



Category Blend Name

Symbol

Blend Description

Ratio of number of samples in a dataset divided

Data Source Natural Distribution Bra by the total number of samples in all the datasets.
More Math Bt 2:1 ratio of Dy, and Dy,
More General Purpose Reasoning B¢ 2:1 ratio of Dy, and Dy,
. More MCQ Brneqt 2:1 ratio of Dypeq and Dypen,
Question Types More Open-Ended Bopent 2:1 ratio of Dypen and Dyneg
Data Usefulness Ave. Score Bewore Provide weight to each source based

on their average benchmark performances

Table 10: Overview of Data Blending Strategies. Blends are categorized by data source, question type, and
usefulness—each constructed to assess the impact of domain diversity, format variation, and task relevance on

RL-based reasoning.

Data Name Type Bnd erT Bmch BopenT ngrT Bscm”e Bon,ly_ma,th Bonly_gpr
MMLU MCQ 0.1696 0.0864 0.2251 0.1159 0.1678 0.1296 0.2542
CROSSTHINK-QA MCQ 0.3277 0.1670 0.4349 0.2241 0.3242 0.1731 0.4912
NATURAL REASONING OPEN-ENDED 0.1699 0.0866 0.1149 0.2231 0.1680 0.1683 0.2546
NuminaMath OPEN-ENDED 0.1484 0.2943 0.1004 0.1949 0.1516 0.2020 0.4460
CROSSTHINK-MATH OPEN-ENDED 0.1699 0.3370 0.1149 0.2231 0.1736 0.1579 0.5105
MATH OPEN-ENDED 0.0145 0.0287 0.0098 0.0190 0.0148 0.1691 0.0435
Table 11: Proportion of each dataset in different blends.
Task Type ~ Model ~ Min Max Mean ditional sources of data synthesis approach has no
Bgprt 8320  2697.80  385.41 details making it infeasible to scale for domains
GPR Boniy_mr 159.60  9594.00  638.57 other than math. The kind of data and the ratio of
ORZ  223.00 8221.80 1114.60 each type of data important for the overall improve-
Boprt 17025 10130.00  622.00 ment of LLMs across multiple benchmarks have yet
Math Bonty_mr 201.75 1133025  730.68 to be explored.
ORZ 292.00 12917.00 1257.00

Table 12: Token length statistics (Min, Max, Mean) for
correct responses across task types.

multiple choice and proof-oriented problems which
reduces the answer space diversity. MCQ type of
questions are important for MMLU and other non-
reasoning centric tasks. Recently, (Ma et al., 2025;
Su et al., 2025) attempted to address this with a
model-based verifier to handle diversity in the an-
swer space. However, as discussed in previous
works, LLM-as-a-Judge may suffer from pitfalls of
reward hacking (DeepSeek-Al, 2025; Weng, 2024;
Wen et al., 2024) and further diverge the model
more from the correct reasoning processes. Ad-
ditionally, they do not show any analysis to esti-
mate the contribution of each domain in the final
task performance. Despite training on diverse do-
mains, CROSSTHINK offers simple, scalable and
robust reward estimation without any external re-
ward model. For a rule-based reward model, the
format of input data and the final answer is crucial
and largely underexplored. Furthermore, their ad-
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Figure 8: Sub-category Accuracy Comparison across MMLU-PRO Domains. The B, blend consistently
outperforms Boniy_mr in a wide range of non-math reasoning categories such as business, law, psychology, and
economics. Surprisingly, it also slightly surpasses the math-specialized blend in the MMLU-PRO math category,
highlighting the generalizability and versatility of multi-domain training.
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Figure 9: Sub-category Accuracy Comparison across
AGIEVAL. While B,y,1y_m, performs marginally better
in the math, By, achieves stronger results in non-math
domains.
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Figure 10: Sub-category Accuracy Comparison
across SUPERGPQA. The B,,,+ blend consistently out-
performs Bopiy me in a wide range of non-math rea-
soning categories except the science category which
consists of fields like mathematics, physics, astronomy,
chemistry etc.—highlighting the generalizability and
versatility of multi-domain training.
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