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Abstract001

Prior work has successfully applied Reinforce-002
ment Learning (RL) to mathematical reason-003
ing—where rules and correctness are well-004
defined. Yet, generalizing these methods to005
broader reasoning domains remains challeng-006
ing due to limited data and the lack of verifi-007
able rewards for unstructured domains. In this008
work, we propose CROSSTHINK, a framework009
that systematically incorporates multi-domain010
corpora into RL training to improve general-011
ization across diverse reasoning tasks. CROSS-012
THINK addresses key challenges by (1) com-013
bining data from varied sources; (2) applying014
structured templates to control answer-space015
complexity; (3) filtering for verifiable answers;016
and (4) optimizing data blending strategies to017
utilize multi-source data effectively. This en-018
ables scalable and verifiable reward modeling019
beyond math and demonstrates improved ac-020
curacies on both math (MATH-500: +30.1%,021
AMC23: +27.5%) and non-math reasoning022
benchmarks (MMLU-PRO: +12.8%, GPQA-023
DIAMOND: +11.3%, AGIEVAL: +15.1%, SU-024
PERGPQA: +3.8%). Moreover, CROSSTHINK025
exhibits significantly improved response effi-026
ciency—using 28% fewer tokens for correct027
answers—highlighting more focused and ef-028
fective reasoning. Through CROSSTHINK,029
we demonstrate that integrating multi-domain,030
multi-format data in RL leads to more accurate,031
efficient, and generalizable LLMs.032

1 Introduction033

Large Language Models (LLMs) have demonstrated034

remarkable reasoning abilities across a wide range035

of tasks, with Reinforcement Learning (RL) playing036

a key role in refining their deep thinking abilities037

(Hu et al., 2025; Aggarwal and Welleck, 2025; Luo038

et al., 2025; DeepSeek-AI, 2025; Qin et al., 2024;039

Huang et al., 2025; Team, 2025c). Recent advances040

in RL have been particularly successful in mathe-041

matical reasoning and coding, where well-defined042
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Figure 1: Employing self-learning with multi-domain
data, CROSSTHINK outperforms baseline models, in-
cluding domain-specific training (Only Math) and Open-
Reasoner-Zero (ORZ-7B), achieving consistent gains
across all reasoning tasks.

rules and verifiable correctness enable effective re- 043

ward modeling. Yet, extending these techniques to 044

broader reasoning domains poses significant chal- 045

lenges, such as—limited training data for RL due 046

to the difficulty of defining verifiable rewards, and 047

ensuring generalization across diverse tasks. 048

Recent works (Hu et al., 2025; Luo et al., 2025; 049

Cui et al., 2025) have shown ways to diversify RL 050

training corpora by collecting datasets from mul- 051

tiple sources. However, they do not evaluate the 052

relative importance of each source for reasoning 053

or explore optimal data-blending strategies to max- 054

imize performance. Furthermore, prior research 055

has largely focused on math reasoning, overlook- 056

ing the role of non-math reasoning domains in RL 057

training for generalization in out-of-distribution do- 058

mains. Reasoning process varies across domains 059

and question types. For instance, math problem- 060

solving follows a rule-based, structured, and sym- 061

bolic approach (Dehaene, 2011), whereas reason- 062

ing in fields such as law, physics, social sciences, 063

and history often relies on narrative structures, con- 064

textual knowledge, and heuristic strategies. More- 065

over, different question formats require distinct cog- 066

nitive approaches—open-ended questions demand 067
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the generation of novel responses, while multiple-068

choice questions (MCQ) can often be solved by069

evaluating the given options and selecting the most070

appropriate answer. Incorporating a diverse range071

of reasoning domains and question types into RL-072

based self-learning can enhance the broad reason-073

ing ability of LLMs by exposing them to varied074

cognitive strategies and knowledge structures.075

In this work, we propose CROSSTHINK, a sys-076

tematic way to incorporate multi-domain corpora077

for RL training that results in better generaliza-078

tion across a wide variety of tasks. As outlined079

in Figure 2, CROSSTHINK comprises of phases080

that—(a) curate data from diverse sources, includ-081

ing synthetic data from web texts and open-source082

question-answer (QA) pairs on STEM, humani-083

ties, law, and social sciences (b) apply templates084

(MCQ/Open-Ended) to limit the answer-space (d)085

prepare blends to combine multi-domain data ef-086

ficiently and (e) employ self-learning with RL to087

refine reasoning capability in diverse domains.088

We evaluate CROSSTHINK along three axes: (1)089

the effectiveness of data blending strategies in self-090

learning (2) whether the blending impact amplifies091

by training with more complex data samples (3) the092

influence of question-answer templates on down-093

stream accuracies. CROSSTHINK demonstrates094

that the integration of multi-domain data with var-095

ied question formats in RL boosts LLM’s reasoning096

across diverse domains (Figure 1). Notably, mod-097

els trained with CROSSTHINK not only achieve098

higher accuracy but also exhibit dynamic response099

strategies—generating concise answers for general-100

purpose questions and more detailed responses for101

math problems—thereby reducing inference cost102

while preserving task-specific rigor. In addition,103

our approach addresses the challenge of design-104

ing scalable verifiable reward for non-deterministic105

domains by employing different templates on the106

curated data to limit the nuances in the answer107

space diversity. Furthermore, we explore a sim-108

ple yet effective filtering approach to rank general109

purpose reasoning (GPR) data based on complexity110

and show that training with harder samples further111

amplifies the impact of RL across all domains.112

In summary, our contributions are as follows:113

• We introduce CROSSTHINK, a novel frame-114

work for incorporating multi-domain corpora into115

RL training, enhancing generalization across di-116

verse reasoning tasks with substantial gains on117

math (MATH-500: +30.1%, AMC23: +27.5%)118

and non-math (MMLU-PRO: +12.8%, GPQA- 119

DIAMOND: +11.3%, AGIEVAL: +15.1%, and 120

SUPERGPQA: +3.8%) benchmarks. 121

• We demonstrate that applying question/answer 122

templates to constrain output diversity leads to 123

more stable reward modeling. Specifically, using 124

a unified open-ended question format improves 125

performance by 1.21% over mixed-format ques- 126

tions, while short-form answer templates outper- 127

form long-form ones by 1.20%. 128

• We show that math-only training is insufficient— 129

blending multi-domain data in RL boosts average 130

reasoning accuracy by 1.61% over math-only 131

data and improves response efficiency by reduc- 132

ing token usage by 28%. 133

• We propose a simple yet effective model-driven 134

filtering technique that selects harder samples by 135

removing data solvable by smaller models. This 136

leads to an additional 2.15% average accuracy 137

gain for Qwen-2.5-32B, highlighting the scala- 138

bility of our approach to larger models. 139

• We will release 287.4K high-quality multi- 140

domain data curated for verifiable reward model- 141

ing to support future research. 142

Applying CROSSTHINK on different blends 143

yields substantial improvement over base model 144

(+8.55%-13.36% on average) across seven diverse 145

GPR and math benchmarks. The most effective 146

blend—2:1 ratio of GPR to math data—achieves 147

the highest average accuracy with a 13.36% gain 148

over baseline (Figure 1). Overall, these findings 149

illustrate that thoughtful choices in data blending, 150

scaling, formatting, and filtering are critical to the 151

success of RL with language models. We hope 152

that CROSSTHINK serves as a practical and exten- 153

sible framework for leveraging multi-domain data 154

to train more capable, reliable, and generalizable 155

models under the RL paradigm. 156

2 CROSSTHINK: Scaling Self-Learning 157

Beyond Math 158

While mathematical reasoning benefits from clean, 159

verifiable datasets, extending RL to general-purpose 160

reasoning is challenging due to the lack of struc- 161

tured, high-quality supervision. To address this, 162

we leverage web documents and open-source QA 163

benchmarks to collect general-purpose reasoning 164

(GPR) data. However, combining structured and 165

unstructured domains introduces noise and ambigu- 166

ity—particularly in open-ended formats—making 167

2



Preparing BlendsData FilteringApply TemplateData Curation

CC

RL Policy, 
𝜋𝜃(. )

Verifiable 
Reward

{𝑜!, … 𝑜"}

ℛ

Update 𝜋#

Self-Learning with RL

𝒟 = 𝒟$%& ∪ 𝒟'$ 𝒯 ∈ 𝒯()*, 𝒯'+,&
𝒟{./0,'+,&} = 𝒯{()*,3+,&} 𝒟4+5

𝒟6 = ℋ(𝒟) ℬ ∈ {𝑆𝑟𝑐, 𝑄7%+,, 𝑈𝑠𝑒𝑓𝑢𝑙} 𝜋#!"# = 𝜋#! + 	𝛼	∇	𝒥"893(𝜋#!)

Figure 2: CROSSTHINK. We (a) curate QA pairs from from CommonCrawl and open-source datasets, categorized
into general-purpose reasoning (Dgpr) and mathematical reasoning (Dmr); (b) apply structured templates to convert
data into MCQ and open-ended formats, promoting diverse reasoning trajectories; (c) filter out unverifiable or
ill-formatted responses; (d) deploy RL using Group Relative Policy Optimization (GRPO). The final reward is used
to update the policy, iteratively improving the model’s reasoning capabilities across diverse domains.

it difficult to apply rule-based reward reliably. To168

mitigate this, we apply task-specific templates to169

unify formats, limiting answer space variability and170

enabling effective verifiable reward signals. Next,171

we apply a lightweight data filtering to discard un-172

verifiable examples for stable and interpretable RL173

training. Finally, we explore optimal data blend-174

ing strategies to investigate how the inclusion of175

general-purpose reasoning data complements math-176

ematical reasoning, ultimately leading to broader177

and more adaptive generalization in LLMs.178

Data Curation. As shown in Table 1, we start179

with curating datasets from multiple sources to en-180

sure diversity in the training data. Our training data181

D comprises of:182

D = Dsyn ∪ Dos183

Here, Dsyn → synthetically generated from Com-184

monCrawl (CC) (Gao et al., 2020) and Dos →185

open-source QA datasets. Each source of data fur-186

ther consists of QA pairs related to GPR and math:187

Dsyn → Dsyn_gpr ∪ Dsyn_mr188

Dos → Dos_gpr ∪ Dos_mr189

• General Purpose Reasoning, Dgpr: We col-190

lect open source QA datasets (Dos_gpr)—Natural191

Reasoning (Yuan et al., 2025) and MMLU [Train]192

(Hendrycks et al., 2021a) that span domains in-193

cluding STEM, Economics, Social Sciences, and194

more. To enhance diversity, we further synthe-195

size QA pairs from CC documents called CROSS-196

THINK-QA (Dsyn_gpr).197

Dgpr → Dsyn_gpr ∪ Dos_gpr198

• Mathematical Reasoning, Dmr: We combine199

open-source math datasets (Dos_mr): MATH200

Data Source Category Type Samples
MMLU [Train] GPR MCQ 99,842
CROSSTHINK-QA∗ GPR MCQ 192,930
NATURAL REASONING GPR OE 100,000
NuminaMath MR OE 87,350
CROSSTHINK-MATH∗ MR OE 100,000
Math MR OE 8523
Total 588,645

Table 1: Training data distribution by source and type.
OE=Open-Ended; GPR=General-Purpose Reasoning;
MR=Math Reasoning. *We refer to Appendix B for
generation details.

(Hendrycks et al., 2021b) and Numina-Math 201

(Beeching et al., 2024). We generate additional 202

math problems defined as CROSSTHINK-MATH 203

(Dsyn_mr) to augment reasoning diversity. 204

Dmr → Dsyn_mr ∪ Dos_mr 205

Applying Templates for Answer Space and Rea- 206

soning Diversity. General purpose reasoning 207

benchmarks are often divided into two categories: 208

(a) Multiple Choice Questions (Hendrycks et al., 209

2021a; Wang et al., 2024) and (b) Open-Ended 210

Questions (Zhong et al., 2023). Prior works over- 211

looked these variations in the answer space for 212

consistent reward design for tasks which are pre- 213

dominantly math (Hu et al., 2025; Aggarwal and 214

Welleck, 2025; Luo et al., 2025). We hypothesize 215

that each question type elicits different thinking 216

patterns, leading to diverse reasoning trajectories 217

in the model. Therefore, we synthesize Dgpr using 218

two templates: TMCQ - Multiple Choice Questions 219

(MCQ), and TOpen - Open-Ended questions. We 220

convert the MCQ datasets (MMLU) to open-ended 221

by removing the options from the questions. 222

Dmcq = TMCQ(Dgpr), Dopen = TOpen(Dgpr) 223

Additionally, some MCQ questions are incom- 224

plete without options (e.g., Which of the following 225
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ways we can file taxes?). We discard them to avoid226

confusion during answer generation. Finally,227

Dgpr = Dmcq ∪ Dopen228

Data Filtering and Formatting. To obtain high-229

quality data, we apply a series of filtering and for-230

matting steps, H, to remove samples that are infea-231

sible to evaluate with rule-based reward. Specif-232

ically, for Dmcq, we check whether the correct233

answer appears within the question text itself.234

Given a question-answer pair (q, a∗) with answer235

choices {a1, a2, . . . , an}, we discard a sample if236

a∗ /∈ {a1, a2, . . . , an}. For Dopen, we discard sam-237

ples that are challenging to evaluate with a rule-238

based reward function. Formally, we retain samples239

where |w(a∗)| ≤ 10; w(a∗) represents the number240

of words in the answer a∗.241

Lastly, for Dmr, we remove entries that lack an242

associated answer, ensuring that all retained ques-243

tions q have a valid response a∗, i.e., we discard244

samples where a∗ = ∅.245

D′ = H(D) = {(q, a∗, {a1, . . . , an}) ∈ D246

Data Blending. We study the impact of data247

diversity in three paradigms:248

• Data Source: We observe the effect of data249

sources—Dmr and Dgpr—by tuning their rela-250

tive weights in the RL training data.251

• Question Types: We investigate the impact of252

question types in downstream tasks.253

• Data Usefulness: To analyze the contribution254

of each data source, we run RL using individual255

data alone and then evaluate them across diverse256

downstream tasks. Based on their performances,257

we create a new blend.258

Based on these categories, we construct six blends,259

summarized in Table 10, with their corresponding260

weight distributions detailed in Table 11.261

Reinforcement Learning with GRPO. We be-262

gin with a pretrained large language model (LLM)263

M and a training blend B, where each sample con-264

tains only the input prompt and the final answer265

which is verifiable. We employ Group Relative Pol-266

icy Optimization (GRPO) (Shao et al., 2024). More267

details can be found in Appendix A.268

Rule Based Reward Modeling. To guide the RL269

training, we employ a rule-based reward designed270

for verifiable evaluation. Similar to (DeepSeek-AI,271

2025), we define the total reward function R = 272

Racc ∧ Rformat as the combination of an accuracy 273

reward Racc and a format reward Rformat. This 274

implies that the output will get reward only when 275

both the answer and the format are correct. Each 276

reward is further detailed in Appendix A 277

3 Experimental Setup 278

Training Details. We adopt Qwen2.5-7B and 279

Qwen2.5-32B (Team, 2024a) as M, which demon- 280

strate strong generalization capabilities across vari- 281

ous reasoning tasks. We directly apply GRPO on M 282

using the veRL framework1. We train M with key 283

settings including a constant learning rate of 1e-6, 284

a batch size and PPO mini batch size of 128 and a 285

maximum context length of 5000 tokens. Each gen- 286

eration step contains 128 unique prompts sampled 287

from the dataset, and performing 8 rollouts with 288

temperature and top-p both set to 1.0. We set KL 289

coefficient to 0.001 in all experiments. We conduct 290

training on 4 8 x NVIDIA-H100-80GB nodes, and 291

each training takes approximately 48 GPUs hours. 292

Evaluation Metrics. We evaluate reasoning per- 293

formance on diverse math and general-purpose 294

benchmarks: MATH-500 (Hendrycks et al., 2021b), 295

AMC23, test set of MMLU (Hendrycks et al., 2021a), 296

MMLU-PRO (Wang et al., 2024), AGIEVAL (Zhong 297

et al., 2023), GPQA-DIAMOND (Rein et al., 2024) 298

and SUPERGPQA (Team et al., 2025). Notably, SU- 299

PERGPQA is a recent and rigorous benchmark de- 300

signed to test the generalizability of LLMs across 301

285 graduate-level disciplines. Unlike existing 302

benchmarks that concentrate on well-represented 303

domains (e.g., math, law, physics), SUPERGPQA 304

captures long-tail knowledge and includes a wide 305

range of real-world professional disciplines, mak- 306

ing it a reliable and discriminative frontier for eval- 307

uating generalizability in LLMs. We employ vllm 308

(Kwon et al., 2023) as the inference backend, with 309

maximum response length of 5k. For each bench- 310

mark, we report accuracy averaged over 3 indepen- 311

dent inference runs using greedy decoding. 312

4 Experiments and Results 313

Analyze the effect of Individual Datasets. To 314

design an effective multi-source blend, we first as- 315

sess the impact of each source on self-learning. 316

This helps prioritize useful sources and down- 317

weight less effective ones. We employ RL using 318

1https://github.com/volcengine/verl
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Data Source MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg
M 74.20 45.00 31.82 48.59 25.36 48.30 40.00 44.75
MMLU [Train] 69.76 38.50 32.83 47.66 27.69 22.00 5.00 34.78
CROSSTHINK-QA 70.45 52.41 30.81 52.10 24.57 54.20 35.00 45.65
Natural Reasoning 68.89 31.33 33.33 46.65 22.44 68.60 42.50 44.82
NuminaMath 72.94 52.05 33.84 54.39 26.97 76.20 55.00 53.06
CROSSTHINK-MATH 53.99 28.08 18.69 45.69 16.92 77.20 50.00 41.51
Math 63.30 31.64 21.72 51.95 18.31 78.40 50.00 45.04

Table 2: Results of Self-Learning on Individual Datasets. Each row shows the downstream evaluation results
after self-learning on a single data source. Results highlight the varying strengths of individual datasets across
general-purpose and mathematical benchmarks.

M=Qwen-2.5-7B on each dataset separately with319

a fixed training recipe for consistency. Each model320

is trained for 250 steps and evaluated on the final321

checkpoint.322

As shown in Table 2, different datasets have323

varying impacts on downstream accuracies across324

reasoning benchmarks. NuminaMath yields the325

highest overall average, outperforming the base-326

line (M) by over 8.30%. While particularly strong327

on math tasks like MATH-500 and AMC23, it328

also generalizes well to broader reasoning bench-329

marks. CROSSTHINK-QA demonstrates a ∼1.0%330

improvement over baseline with stronger accuracy331

in MMLU-PRO, AGIEVAL and MATH-500 tasks,332

suggesting that synthetically generated instruction-333

style data can generalize well when aligned with334

benchmark distributions. Natural Reasoning, de-335

spite modest scores on language-rich benchmarks,336

delivers a strong average, driven by high scores337

in MATH-500 and AMC23. This indicates that338

reasoning-focused datasets, even if less formatted,339

can contribute meaningfully in math-adjacent tasks.340

In contrast, CROSSTHINK-MATH performs well on341

math but generalizes poorly to other domains. Fi-342

nally, MMLU [Train] underperforms across most343

tasks, specifically in math domains, suggesting344

that self-learning with raw MMLU [Train] data345

alone is insufficient for generalization. How-346

ever, it excels on SUPERGPQA, which spans cross-347

disciplinary reasoning, highlighting its potential in348

capturing broad conceptual knowledge and support-349

ing transfer to long-tail domains—making it a valu-350

able component when targeting general-purpose351

reasoning benchmarks. While preparing Bscore,352

we weight datasets based on their average accu-353

racy—prioritizing sources like CROSSTHINK-QA354

and NuminaMath, while downweighting less effec-355

tive ones like MMLU [Train].356

Analysis across Blends. To show the distinction357

between natural distribution and selective weight-358

ing of domains, we prepare Bnd, which samples 359

data in proportion to each dataset’s original size. 360

Next, to analyze the impact of within-domain 361

vs. cross-domain training, we introduce a Single 362

Source category with two domain-specific blends: 363

Bonly_mr and Bonly_gpr, using only Dmr and Dgpr 364

respectively. We further compare our approach 365

with a recent math-centric self-learning approach, 366

OPEN-REASONER-ZERO (ORZ) (Hu et al., 2025)— 367

which achieved strong math accuracy using com- 368

bination of math data. For fair comparison, we 369

evaluate ORZ-7B using our eval setup. 370

As shown in Table 3, each blend outperforms M 371

by a significant margin. Bnd yields a 13% average 372

improvement over M, suggesting that simple data 373

diversity—even without rebalancing—can be bene- 374

ficial. Bgpr↑ achieves the highest overall average, 375

with the strongest results across most benchmarks 376

(e.g., MMLU-PRO: +12.82%, AGIEVAL: +15.12%). 377

Notably, it outperforms ORZ by ∼5% on average. 378

While Bonly_mr performs slightly better on math, it 379

lags ∼3–4% behind Bgpr↑ on non-math reasoning 380

tasks such as AGIEVAL, SUPERGPQA, and MMLU- 381

PRO. The trend also holds for ORZ. Our analysis 382

with sub-category accuracies in Appendix F reveals 383

that Bgpr↑ shows large relative gains in non-math 384

categories while gains in math subcategories are 385

either negligible or even favor Bgpr↑ in some tasks. 386

This highlights that multi-domain data offers strong 387

cross-domain transfer with minimal compromise 388

on math accuracy, making it more versatile. 389

Both Bmcq↑ and Bopen↑ show consistent gains, 390

with the latter achieving a slight edge (+0.6% on 391

average) with stronger results on math tasks. Since 392

math problems are inherently open-ended in struc- 393

ture, highlighting more open-ended domains aligns 394

with the format and reasoning demands of math 395

tasks—leading to better generalize to both general 396

purpose reasoning (GPR) and math tasks. Despite 397

outperforming M, Bscore is overall worse than 398
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Model Category Blend MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg
M 74.20 45.00 31.82 48.59 25.36 48.30 40.00 44.75
ORZ 73.20 48.90 29.30 63.49 27.60 81.40 62.50 55.20

C
R

O
S

S
T

H
IN

K

Bnd 73.18 54.81 38.07 59.99 26.54 77.00 60.00 55.66

Data Source
Bmr↑ 74.85 55.51 40.10 61.47 26.81 77.80 67.50 57.72
Bgpr↑ 74.94 57.82 38.58 63.71 29.16 77.60 65.00 58.12

Question Types
Bmcq↑ 74.26 55.77 39.59 62.54 28.05 78.00 60.00 56.89
Bopen↑ 74.46 55.82 43.15 61.28 26.82 78.40 62.50 57.49

Data Usefulness Bscore 74.70 56.16 40.10 59.80 27.37 78.00 62.50 56.95

Single Source
Bonly_mr 74.24 54.26 38.58 61.39 27.69 78.60 70.00 57.82
Bonly_gpr 72.77 52.06 37.06 56.56 27.44 72.20 55.00 53.30

Table 3: Results of CROSSTHINK-7B across Blends. Bgpr↑ achieves the highest overall average accuracy,
outperforming domain-specific and naturally sampled blends—underscoring the benefit of self-learning with diverse
reasoning data.

Bmr↑ or Bonly_mr. This gap arises because Bscore399

assigns weights based on average scores, without400

accounting for task-specific strengths. For example,401

Math and CROSSTHINK-MATH are overrepresented402

due to math performance, while datasets like MMLU403

or Natural Reasoning, which excel in general404

reasoning, are underweighted. In contrast, domain-405

aware blends selectively prioritize datasets based406

on their utility within specific domains, leading to407

more effective coverage and stronger scores across408

both math and GPR tasks.409

In Single Source vs. multi-domain analy-410

sis, Bonly_mr achieves the highest average math411

score,ranking as the second-best blend overall in412

terms of average accuracy. In contrast, while413

Bonly_gpr outperforms M, it underperforms in414

math tasks and trails 4.2% on average across non-415

math reasoning tasks, despite being tailored for416

GPR. This counterintuitive finding suggests that to417

obtain maximum gain in GPR tasks we need to in-418

clude math problems in the training. As discussed419

earlier, Bgpr↑ gets the best average reasoning accu-420

racy which consists of both math and GPR domains.421

This confirms that math data alone is transferable422

to structured reasoning tasks, whereas GPR data is423

less effective when isolated.424

5 Ablations425

CROSSTHINK is token efficient in responses.426

To further understand the influence of multi-427

domain data in response generation, we compare428

the average token lengths of correct and incor-429

rect responses between models trained on two430

blends: Bgpr↑ and Bonly_mr. As shown in Figure 3,431

on general-purpose reasoning (GPR) benchmarks,432

Bgpr↑ consistently outperforms Bonly_mr and ORZ433

(Hu et al., 2025), not only in accuracy (as shown in434

Figure 3: Token efficiency comparison of models
trained on Bgpr↑ (multi-domain blend) and two single
domain blends (Bonly_mr and ORZ).

Table 3) but also in response efficiency—producing 435

correct answers with significantly fewer tokens2. 436

For instance, on MMLU, the average token count 437

for correct responses is 229 for Bgpr↑, compared to 438

351 for Bonly_mr. This demonstrates that exposure 439

to multi-domain data enables the model to internal- 440

ize a more efficient reasoning strategy, leading to 441

both improved performance and reduced inference 442

cost. 443

In contrast, on math-specific benchmarks, 444

Bonly_mr and ORZ perform slightly better in ac- 445

curacy, as expected due to domain alignment. In- 446

terestingly, correct responses are generally longer 447

than GPR tasks as solving math problems inherently 448

requires detailed, multi-step derivations, hypothesis 449

exploration, verification and refinement. Despite 450

this, the Bgpr↑ shows its adaptability by generat- 451

ing longer responses for math tasks and shorter 452

ones for GPR tasks—indicating a dynamic response 453

strategy learned through multi-domain training. As 454

shown in Table 12, Bgpr↑ increases its average to- 455

kens by 62% when generating responses for math 456

tasks (Mean Tokens=622) as opposed to GPR tasks 457

2Detailed categorization per task is shown in Appendix E.
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(Mean Tokens=385). Whereas, Bonly_mr increases458

by 14% (Mean Tokens=731 for math and Mean To-459

kens=639 for GPR tasks) showing a much smaller460

dynamic range. This trend is also mirrored in ORZ461

which shows an even smaller increase (12%) in462

average token length across domains.463

This adaptive behavior highlights a key strength464

of multi-domain training: it equips the model with465

the flexibility to tailor its response style to the na-466

ture of the task. By learning from a diverse range of467

domains, Bgpr↑ learns to reason efficiently—across468

all tasks, Bgpr↑ uses on average 28% fewer tokens469

for correct responses than Bonly_mr—producing470

compact yet accurate answers where appropriate,471

and detailed ones when necessary.472

Data Format Study: Question and Answer Tem-473

plates. To examine the training data formatting474

effect on model performance, we conduct two con-475

trolled studies focused on question and answer476

template design. In Table 3, we observe that477

Bopen↑ outperforms Bmcq↑, suggesting that mod-478

els trained on more open-ended data generalize479

better across benchmarks. This motivated us to480

investigate whether converting all questions into a481

unified open-ended format leads to better perfor-482

mance. In Question Template Study, we use the483

natural distribution blend (Bnd) and only perturb484

the question template. To generate the open-ended485

variant, we remove the answer options from MCQs,486

prompting the model to produce an answer without487

selecting from predefined choices.488

Question Type GPR Avg Math Avg Total Avg

MCQ +OPEN-ENDED 50.52 68.50 55.66
OPEN-ENDED 51.30 70.80 56.87

Table 4: Impact of Question Format. Converting
all questions to open-ended format improves accuracy
across benchmarks, reducing reliance on option guess-
ing and encouraging deeper reasoning (Appendix C).

From Table 4, the open-ended setting surpasses489

the mixed-format one on nearly all tasks, achieving490

1.21% higher average score. It yields notable gains491

on reasoning-intensive and MCQ-formatted bench-492

marks such as MMLU, SUPERGPQA, and GPQA-493

DIAMOND. This result may be attributed to the494

inherent structure of MCQ questions, where ran-495

dom guessing can yield an accuracy of approxi-496

mately 25% in MMLU and GPQA-DIAMOND where497

we have four options. In contrast, open-ended ques-498

tions eliminate this guessing advantage, compelling499

the model to rely heavily on reasoning to arrive at 500

a correct answer. By reducing the likelihood of 501

reward hacking through random option selection, 502

the open-ended format encourages more robust rea- 503

soning and leads to improved generalization. 504

In Answer Template Study, we investigate how 505

the format of MCQ-style output labels influences 506

training. We compare two answer templates: Long 507

- the model is trained to generate both the option 508

label and its corresponding description (e.g., (A) 509

Sky is blue), and Short - the model is trained to 510

output only the option label (e.g., A). Here, we use 511

the Bonly_gpr blend, which primarily consists of 512

MCQ datasets (Table 1), making it ideal for analyz- 513

ing the effects of answer formatting in this setting. 514

Answer Type GPR Avg Math Avg Total Avg

Long 49.18 63.60 53.30
Short 50.95 63.35 54.50

Table 5: Impact of Answer Format. Using short-form
answers improves accuracy by reducing output ambi-
guity and avoiding penalization from rigid reward func-
tions in rule-based training (Appendix C).

As shown in Table 5, the short answer template 515

outperforms the long-form variant, with a 1.20% 516

gain in average accuracy. The trend holds for both 517

GPR and math benchmarks. These results suggest 518

that reducing the complexity of the output space 519

helps minimize ambiguity and allows the model 520

to better align its predictions with the structure 521

of the question. Furthermore, when training with 522

long-form answers using a rule-based reward (e.g., 523

exact string matching), the model is often penal- 524

ized for minor deviations in phrasing, even when 525

the correct option is selected. This introduces noisy 526

supervision and may hinder learning. While this 527

issue could be mitigated by designing a more flexi- 528

ble reward function (e.g., LLM-as-a-Judge), we aim 529

to keep our approach simple and interpretable. As 530

such, we adopt a naive rule-based reward for clarity 531

and reproducibility, and leave more sophisticated 532

reward designs for future investigation. 533

Difficulty Filtering. High-quality data is a key 534

factor in self-learning to ensure efficient and sta- 535

ble learning. Recent works (Hu et al., 2025; Luo 536

et al., 2025; Cui et al., 2025; Zeng et al., 2025; 537

Fatemi et al., 2025) investigate data selection based 538

on question complexity, showing that training on 539

harder questions improves downstream accuracy. 540

However, their approach relies on datasets with pre- 541
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defined difficulty scores. In this work, we explore542

a simple approach to estimate question difficulty543

for GPR datasets that do not come with explicit544

difficulty labels. Specifically, we label questions545

as ‘difficult’ if they are answered incorrectly by a546

smaller model (Qwen-2.5-7B) in a zero-shot set-547

ting and filter out the ‘easy’ questions. The intu-548

ition is that questions easily answered by a base549

model are likely to be knowledge-based or shallow550

in reasoning depth, whereas those it fails on are551

likely to require deeper reasoning or broader gener-552

alization. We construct two versions of our train-553

ing dataset Bgpr↑—an unfiltered set containing all554

questions, and a filtered set (Bf(gpr)↑) that retains555

only the difficult samples—and use them to train556

separate instances of a larger M = Qwen-2.5-32B.557

Model Blend GPR Avg Math Avg Total Avg

Qwen-2.5-32B 54.95 52.78 54.33

CROSSTHINK-32B
Bgpr↑ 62.20 74.95 65.84

Bf(gpr)↑ 63.39 79.50 67.99

Table 6: Difficulty-Based Filtering. Filtering Bgpr↑ to
retain only hard examples (Bf(gpr)↑) yields consistent
gains across all tasks, highlighting the effectiveness of
selective training on challenging data (Appendix C).

According to Table 6, this filtering approach re-558

sults in consistent performance gains across all559

evaluated benchmarks. While both filtered and un-560

filtered models outperform M, Bf(gpr)↑ achieves561

the highest accuracy on every task. The gains are562

especially prominent in complex benchmarks such563

as MMLU-PRO, GPQA-DIAMOND, AGIEVAL, and564

AMC23, where Bf(gpr)↑ improves by up to 2–8%565

over Bgpr↑. On average, filtering boosts overall ac-566

curacy by 2.15%, a notable gain considering that it567

comes from training on fewer but harder examples.568

This suggests that selectively training on challeng-569

ing examples can yield more robust and generaliz-570

able models, likely due to stronger gradient signals571

and a focus on harder-to-learn reasoning patterns.572

6 Related Work573

Reasoning in LLM. Large Language Models574

have achieved strong performance on various NLP575

tasks, with Chain-of-Thought (CoT) prompting576

(Wei et al., 2022) enabling multi-step reasoning577

across domains like math, science, and program-578

ming. Long CoT (OpenAI, 2024) further enhances579

reasoning by introducing behaviors such as reflec-580

tion, verification, and correction, with strong scal-581

ing properties. Models like QwQ (Team, 2024b,582

2025c), DeepSeek-R1 (DeepSeek-AI, 2025), Kimi 583

k1.5 (Team, 2025a), and InternThinker (Cai et al., 584

2024) leverage Long CoT with RL to boost rea- 585

soning performance. Smaller models like Open- 586

Reasoner-Zero (Hu et al., 2025), Open-R1 (Face, 587

2025), O1 (Qin et al., 2024; Huang et al., 2025), s1 588

(Muennighoff et al., 2025), and LIMO (Ye et al., 589

2025) also benefit from Long CoT via distillation. 590

Data Sampling in RL. Recent work explores 591

mixing data from multiple sources in RL to im- 592

prove reasoning diversity and generalization in RL 593

(Hu et al., 2025; Luo et al., 2025; Zeng et al., 2025; 594

Wen et al., 2025). However, they primarily focus 595

on math due to the ease of designing verifiable 596

rewards. Sampling strategies often rely on ques- 597

tion complexity or algorithmic verifiability, such as 598

(Xie et al., 2025) uses synthetic puzzles to control 599

difficulty. However, these methods remain lim- 600

ited to structured domains like math or logic. Yeo 601

et al. (2025) reports the best MMLU-PRO scores 602

by blending multi-domain (Yue et al., 2024) data, 603

though majority of it is math-focused, leaving un- 604

clear the contribution of non-math data. Despite 605

these efforts, the impact of including non-math do- 606

mains—like law, social science, or commonsense 607

reasoning—remains underexplored. CROSSTHINK 608

is the first systematic framework to incorporate 609

multi-domain, multi-format data into RL, introduc- 610

ing verifiable rewards for non-deterministic tasks 611

and demonstrating that diverse blends lead to LLMs 612

that reason more broadly, adapt dynamically, and 613

think more efficiently. 614

7 Conclusion 615

We present CROSSTHINK, a simple and scalable 616

framework for improving the generalization abili- 617

ties of LLMs through RL with multi-domain cor- 618

pora. By combining multi-domain data, struc- 619

tured templates, and difficulty-aware filtering, 620

CROSSTHINK enables consistent gains across both 621

general-purpose (+3.8–15.1%) and mathematical 622

(+27.5–30.1%) benchmarks—using 28% fewer to- 623

kens for correct responses. Importantly, these ben- 624

efits persist across model scales and task types, 625

demonstrating that data diversity, not just data 626

volume, is key to broader reasoning capabilities. 627

CROSSTHINK offers a practical recipe for building 628

more generalizable, efficient, and reliable LLMs un- 629

der the RL paradigm—paving the way for scalable 630

self-learning beyond math. 631
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8 Limitations632

While CROSSTHINK demonstrates strong improve-633

ments in reasoning accuracy, adaptability, and ef-634

ficiency, there is still room for improvement. As635

discussed in Section 5, the reward modeling frame-636

work used in this work is rule-based and relatively637

simplistic. Specifically, it relies on exact string638

matching for correctness and formatting verifica-639

tion, which can be brittle for open-ended responses.640

For example, if the ground truth is (A) Sky is641

blue, and the model predicts (A) the sky is642

generally blue most times, the answer is se-643

mantically correct but still receives a negative re-644

ward. This limitation improperly affects general-645

purpose reasoning tasks with inherently more di-646

verse and less deterministic answer spaces. Future647

work could incorporate more flexible, semantics-648

aware reward functions, such as fuzzy matching,649

entailment scoring, embedding-based similarity650

metrics, or llm-as-a-Judge, to better align reward651

signals with human judgment. Additionally, we did652

not perform extensive hyperparameter tuning for653

RL training. All models were trained using fixed654

schedules and standard values for learning rate, KL655

coefficients, and rollout configurations. Moreover,656

scaling RL training for longer steps and dataset657

are computationally expensive which constrained658

us to deploy all runs for a fixed number of steps659

(650 steps). Recent works (Yu et al., 2025; Aggar-660

wal and Welleck, 2025; Luo et al., 2025) shows661

improvement over naive GRPO by adjusting clip ra-662

tio, dynamic sampling, number of rollouts, context663

length. While our results are strong under fixed664

conditions, additional gains may be possible with665

better-tuned training regimes by exploiting hyper-666

parameters.667

9 Ethical Considerations668

Reinforcement learning strongly incentivizes the669

reasoning capabilities of LLMs, enabling models670

to perform better across complex tasks. However,671

this process can also inadvertently amplify exist-672

ing biases present in the base model or introduced673

through reward modeling and data selection. In674

this work, we primarily focus on scaling and di-675

versifying reasoning ability across domains and do676

not explicitly address fairness, bias mitigation, or677

value alignment. Future work should systemati-678

cally evaluate how reinforcement learning affects679

the model’s behavior across sensitive axes such as680

gender, race, and geopolitical context—especially681

in open-ended, non-verifiable tasks. 682
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A Reinforcement Learning 906

We utilize Group Relative Policy Optimization 907

(GRPO) (Shao et al., 2024) as our RL algorithm. 908

Unlike PPO (Schulman et al., 2017), GRPO does 909

not use a separate critic model and instead esti- 910

mates the baseline from group scores, improving 911

efficiency and reducing memory. For each question 912

q, GRPO samples a group of outputs o1, o2, ..., oG 913

from the old policy πθold and then optimizes the 914

policy model πθ by maximizing the following ob- 915

jective: 916

xi,t =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
917

JGRPO(θ) = E
[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)

]
918

× 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
xi,tÂi,t, 919

clip

(
xi,t, 1− ϵ, 1 + ϵ

)
Âi,t

)
920

−βDKL
(
πθ∥πref

)]
921

DKL [πθ∥πref] =
πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
922

− log
πref(oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− 1. 923

where ϵ and β are hyperparameters, and Âi,t is 924

the advantage, computed using a group of rewards 925

{r1, r2, ..., rG} corresponding to the outputs within 926

each group: 927

Âi,t =
ri − mean({r1, r2, ..., rG})

std({r1, r2, ..., rG})
928
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Defining Rewards. We combine accuracy re-929

ward (Racc) and format reward (Rformat) to estimate930

the final reward:931

Accuracy Reward: The accuracy reward eval-932

uates correctness based on whether the model’s933

response p is similar to the ground truth solution a934

to satisfy the correctness criteria:935

Racc(p, a) =

{
1, if equal(p, a),
0, otherwise.

936

Format Reward: The format reward ensures937

the response a is structured according to prede-938

fined tags, where the reasoning will reside in939

‘<think></think>’ tokens and the final answer will940

be shown inside \boxed{}:941

Rformat(a) =

{
1, if F (a),

0, otherwise.
942

where F (a) returns True if a is correctly format-943

ted and False otherwise.944

B Data Synsthesis945

To obtain a balanced high-quality multi-domain946

data, we synthesize a high-quality ques-947

tion answering dataset spanning over math948

(CROSSTHINK-MATH) and general purpose949

reasoning (CROSSTHINK-QA) domain using950

publicly available datasets such as CommonCrawl951

(Gao et al., 2020). Our dataset is intended to be952

used by the community to deploy reinforcement953

learning with LLMs which is licensed under the954

Creative Commons Attribution 4.0 International955

License (CC BY 4.0)3. The data may be used to956

train and evaluate. This dataset contains synthetic957

data created using Qwen/Qwen2.5-Math-72B,958

Qwen2.5-72B-Instruct. If this dataset is used to959

create, train, fine tune, or otherwise improve an AI960

model, which is distributed or made available, such961

AI model may be subject to redistribution and use962

requirements in the Qwen License Agreement4.963

B.1 CROSSTHINK-QA964

We synthetically generate a large-scale multiple-965

choice question (MCQ) dataset following two ap-966

proaches below:967

3https://creativecommons.org/licenses/by/4.0/
legalcode

4https://huggingface.co/Qwen/Qwen2.5-Math-72B/
blob/main/LICENSE and https://huggingface.co/Qwen/
Qwen2.5-72B-Instruct/blob/main/LICENSE

B.1.1 SDG from Scratch 968

Topic, Subtopic, and Difficulty Definition: We 969

first define a broad set of topics, such as physics, bi- 970

ology, chemistry, and others. For each topic, we use 971

Nemotron-4-340B-Instruct (Nvidia et al., 2024) 972

to generate a list of popular subtopics. We also 973

define multiple difficulty levels to ensure diversity 974

and scale of the data. 975

Question Generation: We initially gen- 976

erate few-shot examples that demon- 977

strate various levels of difficulty using 978

Nemotron-4-340B-Instruct (Nvidia et al., 979

2024). We later prompt Qwen2.5 models (Team, 980

2024a) along with the few-shot examples to 981

generate a multiple-choice question based on the 982

specified topic, subtopic, and difficulty. Each 983

generated question is checked to ensure it follows 984

the required format. 985

Augmentation: Similarly to the OpenMathIn- 986

struct (Toshniwal et al., 2024) pipeline, we augment 987

generated questions by prompting Qwen2.5 (Team, 988

2024a) models to create a question similar to or 989

inspired by the original. 990

Benchmark Decontamination: We perform de- 991

contamination against test sets of popular MCQ 992

benchmarks such as GPQA (Rein et al., 2024), 993

MMLU (Hendrycks et al., 2021a), and MMLU- 994

PRO (Wang et al., 2024), using the method 995

from (Yang et al., 2023). 996

Solution Generation: We prompt DeepSeek- 997

R1 (DeepSeek-AI, 2025) to generate multiple rea- 998

soning traces per question. Since there are no 999

ground-truth answers for the questions generated 1000

in earlier stages, we use majority voting over gener- 1001

ated solutions to determine the most likely correct 1002

answer. 1003

B.1.2 SDG from Book 1004

We utilized Qwen2.5-VL-72B-Instruct (Team, 1005

2025b) for extracting text from textbooks 1006

(OpenStax5 and An Introduction to Formal 1007

Logic6), which was then manually checked 1008

for transcription accuracy. We employed 1009

Mixtral-8x22B-Instruct-v0.1 (Jiang et al., 1010

2024) and Qwen2.5-72B-Instruct (Team, 2024a) 1011

to synthesize multiple-choice questions based on 1012

5https://openstax.org/
6https://forallx.openlogicproject.org/

forallxyyc.pdf
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sections and key terms extracted from these text-1013

books. We prompted the models to generate ques-1014

tions with four distinct and plausible options, along1015

with the correct answer and a justification for it.1016

Subsequently, each generated question was evalu-1017

ated using another model to ensure that every ex-1018

ample is self-contained and accurate.1019

B.2 CROSSTHINK-MATH1020

To construct CROSSTHINK-MATH, we adopt an1021

approach similar to the technique in (Ge et al.,1022

2024). Specifically, we use web documents1023

from Common Crawl to build personas, and we1024

use Qwen2.5-72B-Instruct (Team, 2024a) model1025

when generating personas. Then, to promote diver-1026

sity in math questions, we incorporate math skills1027

introduced in (Didolkar et al., 2024) and condi-1028

tion the Qwen2.5-72B-Instruct model on both1029

the math skills and the personas. Finally, we use1030

the Qwen2.5-72B-Math-Instruct model to gen-1031

erate the solutions. Prompt templates are shown in1032

Figure 4, Figure 5, and Figure 6.1033

C Breakdown of Performance1034

We further provide a breakdown of the results show-1035

ing impact of data formats and filtering in RL train-1036

ing. Table 7 and Table 8 shows the impact of the1037

question and answer formats across all tasks. In1038

Table 9, we further extend the results for models1039

trained on unfiltered and filtered datasets.1040

D Data Proportion across Blends1041

CROSSTHINK has been trained using the datasets1042

shown in Table 1. To better understand the data1043

composition used in our reinforcement learning ex-1044

periments, we report the proportion of each dataset1045

in the six blending strategies in Table 10, intro-1046

duced in Section 2. These proportions reflect how1047

data is distributed across different sources depend-1048

ing on the specific blending paradigm: data source,1049

question type, and data usefulness.1050

E Token Efficiency Analysis1051

Token Efficiency in Correct Responses. Under-1052

standing not only whether a model answers cor-1053

rectly but also how efficiently it reasons is critical1054

in real-world deployments, especially for reducing1055

inference cost and latency. To this end, we analyze1056

the token lengths of correct responses generated1057

by models trained under different data blending1058

strategies.1059

Table 12 presents the minimum, maximum, and 1060

mean number of tokens used in correct answers 1061

across two task types: General Purpose Reason- 1062

ing (GPR) and Math. We compare three models: 1063

(1) Bgpr↑ (multi-domain training), (2) Bonly_math 1064

(math-only training), and (3) ORZ (a strong math- 1065

centric baseline model). 1066

Across GPR tasks, Bgpr↑ produces the most 1067

concise correct responses, with a mean of 385 1068

tokens—39.6% fewer than Bonly_mr and 65.4% 1069

fewer than ORZ. This suggests that training with 1070

multi-domain corpora equips the model to reason 1071

more efficiently in less structured tasks, avoiding 1072

unnecessarily verbose responses. 1073

On math benchmarks, where detailed step-by- 1074

step derivations are essential, all models naturally 1075

generate longer outputs. However, Bgpr↑ still 1076

demonstrates adaptability, producing appropriately 1077

longer responses compared to GPR, while keep- 1078

ing the output concise relative to Bonly_math and 1079

ORZ. This behavior underscores the ability of multi- 1080

domain trained models to dynamically adjust their 1081

reasoning strategy and verbosity based on task re- 1082

quirements. 1083

Interestingly, ORZ exhibits the longest response 1084

lengths across both GPR and math tasks. While 1085

this aligns with its design as a reasoning-heavy 1086

model, it also reflects less efficiency—potentially 1087

generating unnecessarily long chains of thought, 1088

particularly in domains outside its training focus. 1089

In summary, the token efficiency analysis reveals 1090

that Bgpr↑ achieves a favorable trade-off between 1091

accuracy and brevity, tailoring its reasoning depth 1092

to the complexity of the task. This reinforces the 1093

value of diverse, multi-domain training in promot- 1094

ing adaptable and cost-efficient language models. 1095

Thinking Long vs Thinking Accurate. Recent 1096

studies such as DeepScaler (Luo et al., 2025) have 1097

noted that incorrect answers often exhibit longer 1098

trajectories, leading to wasted computation and 1099

less efficient learning. Echoing this observation, 1100

we analyze the average token lengths of correct and 1101

incorrect responses for models trained on different 1102

blends: Bgpr↑, Bonly_mr, and ORZ. 1103

As shown in Figure 7, incorrect responses are 1104

consistently and substantially longer than correct 1105

ones—by 3.6× on average. This pattern holds 1106

across both general-purpose and math reasoning 1107

tasks, suggesting that verbose reasoning does not 1108

guarantee correctness. In fact, longer responses 1109

often reflect the model’s uncertainty, overthinking, 1110
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Text-to-persona template

Who is likely to read the text?

{text}

Note: 1. Your response should always start with “Persona:”. 2. The persona should be realistic and
detailed, but don’t include specific name of person. 3. Don’t include any preamble or disclaimer,
but only provide the persona. 4. Persona should be at most two sentences.

Persona:

Figure 4: Prompt template for text-to-persona generation.

Persona-to-persona template

Who is in close relationship with the given persona?

{persona}

Note: 1. Your response should always start with "Related Persona:". 2. The persona should be
realistic and detailed, but don’t include specific name of person. 3. Don’t include any preamble or
disclaimer, but only provide the persona. 4. Persona should be at most two sentences.

Related Persona:

Figure 5: Prompt template for persona-to-persona generation.

Persona and skill to math problem template

Create a math problem related to the following persona and require understanding of the following
skills:

Skills: {skills}

Persona: {persona}

Note: 1. The math problem should be challenging and involve given advanced mathematical skills.
Only top talents can solve it correctly. 2. You should make full use of the persona description to
create the math problem to ensure that the math problem is unique and specific to the persona.
3. Your response should always start with "Math problem:". Your response should not include a
solution to the created math problem. 4. Your created math problem should include no more than 2
sub-problems.

Math problem:

Figure 6: Prompt template for persona and skill to problem generation.

Question Type MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg

MCQ +OPEN-ENDED 73.18 54.81 38.07 59.99 26.54 77.00 60.00 55.66
OPEN-ENDED 74.61 54.36 39.09 59.30 29.16 76.60 65.00 56.87

Table 7: Impact of Question Format. Converting all questions to open-ended format improves accuracy across
benchmarks, reducing reliance on option guessing and encouraging deeper reasoning.
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Answer Type MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg

Long 72.77 52.06 37.06 56.56 27.44 72.20 55.00 53.30
Short 74.22 54.56 39.59 58.01 28.39 74.20 52.50 54.50

Table 8: Impact of Answer Format. Using short-form answers improves accuracy by reducing output ambiguity
and avoiding penalization from rigid reward functions in rule-based training.

Model Blend MMLU MMLU-PRO GPQA-DIAMOND AGIEVAL SUPERGPQA MATH-500 AMC23 Avg

Qwen-2.5-32B 83.30 55.10 40.40 62.77 33.16 60.55 45.00 54.33

CROSSTHINK-32B
Bgpr↑ 83.57 68.83 46.70 73.90 37.99 82.40 67.50 65.84

Bf(gpr)↑ 83.60 69.43 49.75 75.82 38.34 84.00 75.00 67.99

Table 9: Difficulty-Based Filtering. Filtering Bgpr↑ to retain only hard examples (Bf(gpr)↑) yields consistent gains
across all tasks, highlighting the effectiveness of selective training on challenging data.

ORZ

Figure 7: Average token lengths of correct and incorrect
responses across general-purpose and math reasoning
tasks for models trained on Bgpr↑, Bonly_mr, and ORZ.

or repetitive CoT traces, rather than productive de-1111

duction.1112

F Sub-category Accuracy Analysis1113

To further support our observation that multi-1114

domain training improves general-purpose reason-1115

ing while remaining competitive on math tasks, we1116

analyze the number of correct responses across sub-1117

categories in MMLU-PRO and AGIEVAL. Figure 81118

and Figure 9 show the count of correct answers1119

produced by Bgpr↑ and Bonly_math across their re-1120

spective sub-domains.1121

On MMLU-PRO, Bgpr↑ consistently outperforms1122

Bonly_math across non-math reasoning categories1123

such as business, law, psychology, chemistry, and1124

economics. Notably, it achieves relative improve-1125

ments of +20.58% in law and +13.26% in busi-1126

ness. Surprisingly, Bgpr↑ also performs better in the1127

math category (+7.2%), despite not being trained1128

exclusively on mathematical data. This may be1129

attributed to the nature of MMLU-PRO’s math prob-1130

lems, which are college-level and benefit from1131

a combination of symbolic and heuristic reason-1132

ing—skills reinforced through exposure to diverse1133

domains. 1134

In contrast, the AGIEVAL benchmark (shown 1135

in Figure 9) features Olympiad-level math ques- 1136

tions that are more abstract and complex. Here, 1137

Bonly_math has a slight edge (+1.8%) in the math 1138

category, which aligns with its domain-specific 1139

training. However, Bgpr ↑ demonstrates stronger 1140

performance in symbolic and language-heavy do- 1141

mains, showing +13.06% improvement in Law and 1142

+9.88% in English. Averaged across all non-math 1143

reasoning categories, Bgpr↑ achieves a +8.6% rela- 1144

tive gain over Bonly_math, reinforcing its advantage 1145

in general-purpose and real-world reasoning tasks. 1146

A similar trend is observed in the SUPERG- 1147

PQA sub-category analysis shown in Figure 10. 1148

Bgpr↑ significantly outperforms Bonly_math across 1149

nearly all categories—especially in engineering, 1150

agronomy, economics, education, law, and philoso- 1151

phy. The only exception is the “Science” category, 1152

which includes math-heavy disciplines like physics, 1153

chemistry, and astronomy, where both blends per- 1154

form comparably. This further highlights that multi- 1155

domain training with Bgpr↑ enhances reasoning 1156

across a broad spectrum of fields, achieving strong 1157

generalization even in real-world, professional do- 1158

mains that fall outside traditional math tasks. 1159

G Extended Related Work 1160

Self-Learning beyond Math. High-quality 1161

training data are crucial for scalable Reasoner-Zero 1162

training. Most of the recent works emphasize math- 1163

ematical benchmark-centric data (AMC, AIME, 1164

Math, Olympiads, and AoPS) for reinforcement 1165

learning (Hu et al., 2025; Aggarwal and Welleck, 1166

2025; Trung et al., 2024; Ye et al., 2025; Zeng et al., 1167

2025) as designing verifiable rewards is much eas- 1168

ier for math tasks. They exclude problems such as 1169
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Category Blend Name Symbol Blend Description

Data Source
Natural Distribution Bnd

Ratio of number of samples in a dataset divided
by the total number of samples in all the datasets.

More Math Bmr↑ 2:1 ratio of Dmr and Dgpr

More General Purpose Reasoning Bgpr↑ 2:1 ratio of Dgpr and Dmr

Question Types
More MCQ Bmcq↑ 2:1 ratio of Dmcq and Dopen

More Open-Ended Bopen↑ 2:1 ratio of Dopen and Dmcq

Data Usefulness Avg. Score Bscore
Provide weight to each source based

on their average benchmark performances

Table 10: Overview of Data Blending Strategies. Blends are categorized by data source, question type, and
usefulness—each constructed to assess the impact of domain diversity, format variation, and task relevance on
RL-based reasoning.

Data Name Type Bnd Bmr↑ Bmcq↑ Bopen↑ Bgpr↑ Bscore Bonly_math Bonly_gpr

MMLU MCQ 0.1696 0.0864 0.2251 0.1159 0.1678 0.1296 0.2542
CROSSTHINK-QA MCQ 0.3277 0.1670 0.4349 0.2241 0.3242 0.1731 0.4912
NATURAL REASONING OPEN-ENDED 0.1699 0.0866 0.1149 0.2231 0.1680 0.1683 0.2546
NuminaMath OPEN-ENDED 0.1484 0.2943 0.1004 0.1949 0.1516 0.2020 0.4460
CROSSTHINK-MATH OPEN-ENDED 0.1699 0.3370 0.1149 0.2231 0.1736 0.1579 0.5105
MATH OPEN-ENDED 0.0145 0.0287 0.0098 0.0190 0.0148 0.1691 0.0435

Table 11: Proportion of each dataset in different blends.

Task Type Model Min Max Mean

GPR
Bgpr↑ 83.20 2697.80 385.41

Bonly_mr 159.60 9594.00 638.57
ORZ 223.00 8221.80 1114.60

Math
Bgpr↑ 170.25 10130.00 622.00

Bonly_mr 201.75 11330.25 730.68
ORZ 292.00 12917.00 1257.00

Table 12: Token length statistics (Min, Max, Mean) for
correct responses across task types.

multiple choice and proof-oriented problems which1170

reduces the answer space diversity. MCQ type of1171

questions are important for MMLU and other non-1172

reasoning centric tasks. Recently, (Ma et al., 2025;1173

Su et al., 2025) attempted to address this with a1174

model-based verifier to handle diversity in the an-1175

swer space. However, as discussed in previous1176

works, LLM-as-a-Judge may suffer from pitfalls of1177

reward hacking (DeepSeek-AI, 2025; Weng, 2024;1178

Wen et al., 2024) and further diverge the model1179

more from the correct reasoning processes. Ad-1180

ditionally, they do not show any analysis to esti-1181

mate the contribution of each domain in the final1182

task performance. Despite training on diverse do-1183

mains, CROSSTHINK offers simple, scalable and1184

robust reward estimation without any external re-1185

ward model. For a rule-based reward model, the1186

format of input data and the final answer is crucial1187

and largely underexplored. Furthermore, their ad-1188

ditional sources of data synthesis approach has no 1189

details making it infeasible to scale for domains 1190

other than math. The kind of data and the ratio of 1191

each type of data important for the overall improve- 1192

ment of LLMs across multiple benchmarks have yet 1193

to be explored. 1194
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Figure 8: Sub-category Accuracy Comparison across MMLU-PRO Domains. The Bgpr↑ blend consistently
outperforms Bonly_mr in a wide range of non-math reasoning categories such as business, law, psychology, and
economics. Surprisingly, it also slightly surpasses the math-specialized blend in the MMLU-PRO math category,
highlighting the generalizability and versatility of multi-domain training.

Figure 9: Sub-category Accuracy Comparison across
AGIEVAL. While Bonly_mr performs marginally better
in the math, Bgpr↑ achieves stronger results in non-math
domains.

Figure 10: Sub-category Accuracy Comparison
across SUPERGPQA. The Bgpr↑ blend consistently out-
performs Bonly_mr in a wide range of non-math rea-
soning categories except the science category which
consists of fields like mathematics, physics, astronomy,
chemistry etc.—highlighting the generalizability and
versatility of multi-domain training.
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