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Abstract

For a very long time, computational approaches to the design of new ma-1

terials have relied on an iterative process of finding a candidate material2

and modeling its properties. AI has played a crucial role in this regard,3

helping to accelerate the discovery and optimization of crystal properties4

and structures through advanced computational methodologies and data-5

driven approaches. To address the problem of new materials design and6

fasten the process of new materials search, we have applied latest generative7

approaches to the problem of crystal structure design, trying to solve the8

inverse problem: by given properties generate a structure that satisfies them9

without utilizing supercomputer powers. In our work we propose two ap-10

proaches: 1) conditional structure modification: optimization of the stability11

of an arbitrary atomic configuration, using the energy difference between the12

most energetically favorable structure and all its less stable polymorphs and13

2) conditional structure generation. We used a representation for materials14

that includes the following information: lattice, atom coordinates, atom15

types, chemical features, space group and formation energy of the structure.16

The loss function was optimized to take into account the periodic boundary17

conditions of crystal structures. We have applied Diffusion models approach,18

Flow matching, usual Autoencoder (AE) and compared the results of the19

models and approaches. As a metric for the study, physical pymatgen20

matcher was employed: we compare target structure with generated one21

using default tolerances. So far, our modifier and generator produce struc-22

tures with needed properties with accuracy 41% and 82% respectively. To23

prove the offered methodology efficiency, inference have been carried out,24

resulting in several potentially new structures with formation energy below25

the AFLOW-derived convex hulls.26

1 Introduction27

The search for novel materials with specified properties has been a cornerstone of scientific28

exploration for decades. From the discovery of semiconductors revolutionizing electronics29

to the development of superalloys enhancing aerospace technologies, the synthesis of new30

materials has continually propelled technological advancements.31

However, traditional methods for material discovery often employ exhaustive trial and error32

experimental approaches. In turn, computational efforts, relying on density functional theory33

(DFT)[1] approaches, usually require huge amounts of computing power. In this regard,34

automatic descriptor generators[2], GNNs[3][4] and transferable GNN models [5] fueled35

combination of these methods and machine learning (ML) approaches. In particular, the36
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utilization of generative machine learning models, such as Variational Autoencoder[6] and37

GANs[7], presents a paradigm shift in how crystal structures are generated and optimized.38

By harnessing the power of data-driven approaches, we can navigate the vast landscape of39

possible crystal structures with unprecedented efficiency and precision.40

Recent advancements in the field of materials discovery have yielded promising results41

through various innovative approaches. For instance, FTCP[6] utilizes Autoencoders for42

uncovering new materials, while CubicGAN[7] leverages GANs for the discovery of cubic43

crystal materials. Additionally, Physics Guided Crystal Generative Model (PGCGM)[8] has44

introduced a method for generating crystal structures based on specific space groups encoding.45

DP-CDVAE[9] is a model, that combines VAE and diffusion approaches. MatterGen[10]46

employed equivariant GNNs as score matching function in diffusion processes for crystal47

structure generation.48

One of the most discussed frameworks is GNoME[11] that has made most recent and large49

advancements in the field of the new materials discovery employs a sophisticated pipeline50

to discover new materials, particularly focusing on inorganic crystals. This allows for the51

discovery of innovative materials beyond known structures.52

After generating candidate structures through both pipelines, GNoME evaluates their stability53

by predicting their formation energies. Based on the comparison of the obtained formation54

energy with those of the known competing phases (i.e. stability assessment), the model selects55

the most promising candidates for further evaluation using known theoretical frameworks.56

The question of the completeness of chemical space arises due to two main concerns with57

GNoME-derived stable structures. Firstly, they mostly contain three or more unique elements,58

while ternary and quaternary structures are less explored than binary compounds. Secondly,59

the comparison of GNoME-discovered structures to the Materials Project, which has 154,71860

materials, is flawed since larger databases like AFLOW, NOMAD, and the Open Quantum61

Materials Database contain millions of entries. This raises questions about the novelty of62

the discovered materials.63

In this study, we present an end-to-end framework for the generation of crystal structures with64

specified properties using advanced generative AI techniques. The basis architecture of the65

models is Autoencoder, enabling encoding and decoding structural representations. Then, the66

most commonly used generative approaches in image generation were utilized to model prob-67

ability distribution transformations, and to capture complex underlying structure-property68

relationships within our dataset: Flow Matching[12], Denoising Diffusion Probabilistic69

Models(DDPM)[13], and Denoising Diffusion Implicit Models(DDIM)[14]. Through the70

integration of these techniques, we aim to transcend conventional limitations in materials71

discovery, paving the way for accelerated predictions of materials with desired properties.72

To employ model architectures often used for image/video generation, a matrix represen-73

tation of crystal structures was developed, containing crucial information such as chemical74

composition, atomic coordinates, symmetries (space group), and formation energies. Within75

the approach proposed, it has become important to develop a novel metric for assessing76

the similarity between generated structures and target configurations. This metric obviates77

the need for computationally expensive DFT calculations, allowing for rapid validation and78

refinement of generated structures. Furthermore, we introduce a loss function that accounts79

for the periodic boundary conditions inherent in crystal lattices, ensuring the fidelity of the80

generated structures.81

Our study explores two distinct approaches for crystal structure prediction: 1) conditional82

structure modification and 2) conditional structure generation. The former involves optimiz-83

ing the stability of existing structures by generating more stable polymorphs, while the latter84

entails the generation of entirely new structures based on user-defined criteria. Through85

rigorous analysis, we demonstrate the efficacy of our approach in discovering novel materials86

with desired properties.87

Importantly, to validate the utility of our framework, we conducted a series of generation88

experiments using the Vienna Ab initio simulation package(VASP)[15] as a tool for inference89

validation. Remarkably, our method facilitated the discovery of 6 structures below the90

corresponding convex hull. This significant outcome underscores the remarkable potential of91
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our framework in uncovering thermodynamically stable materials, thereby offering promising92

avenues for advanced materials discovery and design.93

2 Data, Dataset94

2.1 Data overview95

In this study, the AFLOW database[16] was utilized as a source of data on the structures96

and properties of materials. AFLOW is an extensive and comprehensive database that97

consolidates a vast array of materials-related information, offering an expansive repository98

for crystallographic data, computed properties, and various other materials-science-related99

datasets. AFLOW database contains more than 3.5 million structures.100

From the extensive collection housed within AFLOW, the focus was narrowed to select only101

polymorphs, because models are trained to distinguish composition-property and structure-102

property relations with numerous structures of the same chemical composition. Specifically,103

the selection process targeted polymorphic structures with 4 to 60 atoms within their unit104

cells. This criterion aimed to encompass a diverse yet manageable subset of structures,105

balancing complexity with computational feasibility. By filtering polymorphs based on their106

atom count, the dataset was balanced.107

Moreover, in order to decrease the complexity of the data, we have removed all structures108

containing elements and space groups found in less than 1% of all structures. The entire109

dataset consisted of more than 85000 polymorph groups including more than 2.1 million110

structures. The minimum size of group of polymorphs was 7 samples and the maximum one111

was 71 samples. The total number of space groups was 19 and the total number of chemical112

species over the dataset was 55. Each structure S in the dataset is described by the following113

features:114

• Fractional coordinates of atoms in the lattice basis Xcoord (has 60 rows with 3115

coordinates x, y, z each) and Xlattice (matrix 3 by 3 constructed of 3 base vectors).116

Overall matrix X of structure is constructed as117

X
64×3

= concatatenation(Xcoord
60×3

,padding
1×3

,Xlattice
3×3

) (1)

• Chemical elements which are presented as a one-hot matrix elementsij of size
64× 103 (including padding), where ones are positioned at the indices corresponding
to the position of a certain chemical element in the periodic table.

elementsij =

{
1 if i-th atom’s element number from the periodic table = j

0 otherwise

• Elemental property matrix elementalProperties containing 22 chemical features118

encoding chemical elements obtained from [8]. The properties of each element were119

calculated using Mendeleev package[17].120

• Space group spg of a structure. We use the space group encoding method presented in121

[8], when each space group is represented by a 192× 4× 4 matrix, which corresponds122

to 192 possible symmetry operations.123

• Structure formation energy E124

• Nsites - number of atoms in a crystal lattice.125

2.2 Data representation. Modification task126

The crystal pair sampling strategy involves handling a potential data leakage: possible127

inclusion of structures from the same polymorph group but with different energies into training128

and validation subsets. To mitigate this issue, the polymorph group formulas were initially129

divided into distinct training and validation sets, ensuring a relatively balanced distribution130

of chemical elements across these subsets. Subsequently, the pairs were categorized into two131

groups: those with low-energy (lowest energy in polymorph group) targets designated as132
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lowestEnergyPairs = (Si, S0)∀i ∈ [1, ..., structuresNum] and those with non-low-energy133

targets, all structures except the most optimal one, formed as nonLowestEnergyPairs =134

(Si, Sj)| i > j > 0. The validation set was constructed as a subset of lowestEnergyPairs.135

The training set was dynamically constructed every epoch from lowestEnergyPairs and136

nonlowestEnergyPairs, preserving equal numbers of pairs sampled and maintaining a137

limited count per polymorph group. This strategy ensured a robust separation between138

training and validation sets, thus preventing data leakage and improving model performance.139

Each pair sample {Sinit, Starget} ∈ pairDataset consisted of the information about each140

structure (hereinafter, we will call them initial and target structures). The following data141

was used:142

• Coordinates and lattice information of initial and target structures Xinit, Xtarget143

• Difference in formation energies between initial and target structures Ediff =144

Etarget − Einit145

• Space group of target structure spgtarget146

• Elements matrix elemetsMatrix, elemental property matrix elementalProperties147

and number of sites numSites, which are the same for initial and target structure148

because of identical chemical composition.149

The modification task involved transforming the input structure Xinit into the target structure150

Xtarget.151

2.3 Data representation. Generation task152

In its tern the generation task receives normal or uniform (depends on a model) noise as153

input from which the structure is generated, which is akin to the image generation processes154

in computer vision tasks.155

For the generation task, an additional dataset was constructed. Data for the generation task156

is slightly simpler, while it considers only {Starget}. Therefore, the models can be trained on157

all structures available, rather than pairs. The following data is used:158

• Coordinates and lattice information of target structure Xtarget159

• Formation energy of target structure Etarget160

• Space group of target structure spgtarget161

• Elements matrix elemetsMatrix, elemental property matrix elementalProperties162

and number of sites numSites of target structure.163

3 Loss and metrics164

3.1 Atomic coordinates165

The atomic coordinates are represented as a 60 × 3 matrix, where each row corresponds166

to the coordinates of an atom. The L1 loss was utilized during the training of a model for167

predicting atomic coordinates.168

L1(preds, target)i = ||predsi−targeti||1 =
∑3

j=1 |predsij−targetij |, where target and pred169

are target and predicted atomic coordinate matrices.170

3.2 Lattice171

The lattice itself is represented as a 3x3 matrix, where each row signifies a directing basis172

vector. In this case, we have also used the L1 norm as a loss function.173

3.3 Periodic boundary condition loss174

This section presents an enhanced loss function, designed for the regression model (see175

Section 5.1), that addresses this challenge by integrating periodic boundary conditions into176

4



the loss calculation, outperforming the conventional L1 loss function. In the field of ML177

applied to atomic structures, even slight displacement of atomic coordinates is crucial and178

employing appropriate loss functions that consider the periodic nature of atomic structures179

increases the flexibility of model predictions.180

In the dataset representing atomic structures, it is crucial to acknowledge the presence181

of atoms residing at various positions within the lattice framework. Certain atoms are182

positioned at the vertices, edges, or faces of the lattice. According to periodic boundary183

conditions (PBC), identical atoms in the vicinity of vertices, edges, or faces but also exist in184

analogous positions across the lattice. Implementation of such an invariance within the loss185

function helps in effectively capturing periodic pattern of crystals, enhancing the model’s186

capability to learn and predict atomic structures more comprehensively.187

(a) (b)

(c)

Figure 1: Illustration of atoms at a)vertices, b)edges, and c)faces of lattice under periodic
boundary conditions

The loss function is being calculated as minimum of distances from predicted point to the188

target one taking into account 26 its periodic images (according to PBC) A.4.189

The empirical validation of this enhanced loss function showcases its superiority(Figure4) in190

capturing discrepancies within atomic structures, thus indicating its potential as a robust191

tool for improving the accuracy of ML models in materials science applications.192

3.4 Metric193

As a metric, we have chosen an analogue of accuracy: the generated structures are compared194

to the target structures using a specialized matcher, yielding the proportion of structures that195

successfully pass the matching process. For metric calculation, we employed the Pymatgen196

StructureMatcher with the default set of parameters (ltol = 0.2, stol = 0.3, angle_tol = 5).197

Although this approach is less accurate than structure relaxation using ab initio calculations198

and comparing the structure formation energy with the energy above the hull, it enables199

model validation to be performed orders of magnitude faster than the traditional method.200

4 Model201

For experiments, a 1d UNet model (see Figure2 (b)) architecture similar to the 2d UNet model202

described in [18] was utilized along with 2D and 1D convolutional neural networks (CNNs)203

for the space group and element matrix embeddings, respectively. Based on this model, 3204

different training processes have been developed: ordinary regression model, Conditional205

Flow Matching (CFM)[19] model, and diffusion model.206

The model was conditioned (see Figure2 (a)) on the following data: time condition (t), the207

same as in [18], element condition (el), formation energy difference condition (Ediff ), and208

desirable space group (spg). elemb, spgemb and Ediff are concatenated into one embedding209
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Cemb. t is fed into the Transformer Positional Encoding Layer and transformed into an210

embedding Temb. The two embeddings: Cemb and Temb are then applied into one condition.211

(a) Condition block (b) UNet

Figure 2: a)Formation of conditions using formation energy, space group, and elemental
representation, and b)Schematic depiction of the model architecture

5 Methodology212

In this work, two approaches are proposed: crystal structure generation and crystal structure213

modification. For the generation approach, crystal structures are generated from normal214

or uniform noise and conditioned to t, el, E, spg. Within the generation, we employed215

three algorithms: DDPM, DDIM, and CFM models. For the modification approach, crystal216

structures are generated by modifying other structures, while conditioning to el, Ediff , spg217

(and optionally t, not used in ordinary regression UNet). For the modification task, we have218

employed three algorithms: UNet Regression model, diffusion model, based on Palette[20]219

approach, and CFM model. For the generation task, we have employed four algorithms:220

diffusion models with DDPM and DDIM samplers, and CFM models on Uniform and Normal221

noise.222

5.1 Regression model223

During the training stage, the structure coordinates and lattice x0, elements features el, space224

group spg and Ediff are used as conditions. The model is trained to return x1 structure225

coordinates and lattice (Algorithm 1). As for the inference process, one can see the details226

in the Algorithm 2227

5.2 Conditional Flow Matching models228

CFM is a fast method for training Continuous Normalizing Flows (CNF)[21] models without229

the need for simulations. It offers a training objective that enables conditional generative230

modeling and accelerates both training and inference.231

The basic way of training CFM model (Algorithm 3) organized as follows: during the232

training stage, x0 and x1 are sampled from the source distribution and the target distribution233

respectively, then a linear interpolation xt is calculated as xt = tx1 + (1− t)x0 (exponential234

moving average between distributions x0 and x1; t is sampled from a uniform distribution235

U(0, 1)), and afterwards pass the xt and t as inputs to our model fθ, forcing the model to236

predict a velocity from the distribution x0 to x1. Therefore, the loss for CFM model is237

the following: LCFM = Et,x1,x0
[||fθ(xt, t)− (x1 − x0)||2] = Et,x1,x0

[||fθ(tx1 + (1− t)x0, t)−238

(x1 − x0)||2]239

For the modification approach, x0 and x1 are both sampled from our dataset distribution240

according to the sampling strategy for modification mentioned in 2.2. Also, the model is241

conditioned to el, spg1, Ediff , besides t (see Algorithm 4)242
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For the generation approach, we tested two noise distributions for the x0: normal distribu-243

tion N (0, 1) and uniform noise distribution U(0, 1), which resulted in significantly better244

performance. The intuition for using uniform distribution instead of normal one was inspired245

by the diagram of x, y, z coordinate distribution (Figure 3). The model is also conditioned246

to el, spg1, E, and t (see Algorithm 5)247

During the sampling stage, we generate X1 structure by the given X0 by solving the following248

ordinary differential equation (ODE): dxt = fθ(xt, t, el, spg1, E)dt, beginning with x0. In249

order to solve the ODE, the Euler method was employed: xt+h = xt + hfθ(xt, t, el, spg1, E)250

(Algorithm 6)251

5.3 Diffusion models252

In our work, we observe diffusion models. Diffusion models generate samples from a target253

distribution x1, starting from a source distribution x0 ∼ N (0, I).254

During training, these models are trained to reverse a Markovian forward process, which255

adds noise x0 to the data step by step. Meaning, diffusion models are trained to predict the256

noise added to the data samples x1. In order to train a model in this setup, the following loss257

function is used, Lsimple = Et,x1,x0 [||x0 − fθ(
√
ᾱtx1 +

√
1− ᾱtx0, t)||2] where ᾱt =

∏t
s=1 αs258

and αt = 1− βt (βt is the variance by which added noise is being scheduled on each step t).259

Our modification approach is based on Palette, which enables sample-to-sample generation260

(from noise ϵ ∼ N (0, 1)) using x0 structure coordinates and lattice, el, spg1, Ediff and t as261

conditions for generation of x1 using the DDPM algorithm. Sampling stage is performed by262

a backward diffusion process with linear scheduler (see Algorithms 7, 8).263

For the generation approach ((Algorithm 9), x0 is sampled from a normal distribution and264

el, spg1, E, t are fed into the model as conditions. During our experiments, we tested265

2 approaches: DDPM(Algorithm 10) classic approach and DDIM(Algorithm 11) which266

results in usage of smaller number of sampling steps in order to speed up the generation267

process. Moreover, DDIM enables the process of generating samples from random noise to268

be deterministic.269

6 Experiment Results270

All the models presented in tables (Table 1 and Table 2) have been trained with the same271

hyperparameters and architectures. The metric used is described in Section 3.4. We also272

provide all experiment details in A.3.273

Table 1: Validation metrics on generation task
DDPM DDIM CFM N (0, 1) CFM U(0, 1)
0.8074 0.82 0.482 0.8097

Table 2: Validation metrics on modification task
Ordinary Model Diffusion CFM

0.4148 0.3653 0.2059

7 Inference274

In order to demonstrate a potential of the proposed approaches, we have chosen a chemical275

composition, containing numerous variations and phases of structures composed of [W, B,276

Ta] with well-explored convex hull. Structures that lie on the convex hull are considered to277

be thermodynamically stable, and the ones above it are either metastable or unstable.278
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7.1 Inference pipeline279

The proposed testing procedure involves generating test conditions for structures, passing280

them to the trained generative models, pre-optimizing the generated structures to accelerate281

the following ab initio calculations, and final relaxation and formation energy calculating using282

VASP. Although in this work two approaches were proposed: Generation and Modification,283

the following pipeline has only been applied to generation models, due to the fact, that284

modification approach is based on structure-polymorphs, which leads to the necessity to285

have at least one structure with needed composition, which is not always so. That fact286

makes generation models much more flexible in generation structures not only with needed287

properties, but also with needed composition. Another advantage of the generation models is288

value of metric that is two times bigger than in modification tasks. The inference algorithm289

is as follows:290

1. Test Condition Formation:291

• The chosen chemical formulas were utilized for feature extraction of el. Three292

chemical compositions have been used: 1) Ta1W1B6, 2) Ta1W2B5 and 3)293

Ta2W1B5.294

• We have taken spg presented in the dataset as an additional condition, obtaining295

19 space groups.296

• Finally, a set of target formation energies E has been formed. We have carried297

out three experiments: 1) starting from the energy of the convex hull and298

decreasing with a step of 0.01 eV/atom, 2) starting from the energy of the299

convex hull and decreasing with a step of 0.1 eV/atom, and 3) starting from the300

energy 1 eV/atom less than the energy of the convex hull and decreasing with a301

step of 0.01 eV/atom. In total, 21 energy values were used for every inference302

run.303

• Final inference conditions were obtained by making all possible combinations of304

spg and E for a certain composition el305

2. Model Inference: The conditions from the step 1 have been put to one of the trained306

models, resulting in the generation of structures. Two models have been employed:307

Diffusion approach and Flow matching308

3. Pre-Optimization: Following the generation of all structures, each structure has been309

pre-optimized using the PyMatGen structure relaxation method. The method used310

m3gnet [22] model with default parameters. PyMatGen pre-optimization contributed311

to overall speedup of further VASP relaxation.312

4. Structure relaxation: Pre-optimized structures were relaxed using VASP (the rec-313

ommended pseudopotentials, plane wave energy cutoff of 500 eV, Ediif and Ediffg314

convergence criteria of 10−5 and −10−2 were used).315

7.2 Inference results316

To summarize, 6 experiments have been carried out for two different models and for three317

formation energy conditionings. Every experiment includes 3*380 structures, per 380318

structures for every single chemical composition. The results of experiments can be seen in319

Table 3320

As can be seen, 4 structures were obtained with formation energies significantly lower than321

those obtained from the AFLOW-derived convex hull. Thus, it can be concluded that322

this observation indicates the potential stability of the generated structures rather than323

differences in the computational methods used in this work and during AFLOW generation.324

Another four structures also have energies below the convex hull, but in the vicinity of it.325

Thus, their potential stability should be interpreted with caution.326

8 Data availability327

The raw crystal dataset is downloaded from328

https://aflowlib.org329
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Table 3: Inference results. Each matrix element corresponds to either the minimal energy
above the hull achieved in an experiment or the energy above the hull of structures with
energies below the hull.

Ta1W1B6,
meV/atom

Ta1W2B5,
meV/atom

Ta2W1B5,
meV/atom

Diffusion

energy step = 0.01
energy gap = 0 10,41 3,275 13,079

energy step = 0.1
energy gap = 0 11,835 3,83 −0,042

energy step = 0.01
energy gap = 1 97,676 −1,409 5,539

Flow-Matching

energy step = 0.01
energy gap = 0 11,981

−0,483
−0,466
−0,387

−5,426

energy step = 0.1
energy gap = 0 11,286 0,037 −5,497

energy step = 0.01
energy gap = 1 9,529 −4,852 1,029

9 Code availability330

The source code for training and inferencing our models can be obtained from GitHub at331

https://github.com/AIRI-Institute/conditional-crystal-generation332

10 Conclusion333

In this article, we have offered two approaches to generate crystal structures: conditional334

generation and conditional modification. The first approach is significantly more flexible335

as it does not require structure-polymorphs, enabling the generation of structures without336

restrictions on chemical composition, which can be crucial in certain scenarios. Another337

advantage of the first approach is the simplicity of data preprocessing; it only requires the338

chemical composition, space group, atom coordinates, and formation energies.339

Our methodology has experimentally proven its effectiveness, resulting in four confident340

potentially new crystal structures with the following energies above the hull: {-1.409, -5.497,341

-5.426, and -4.852} meV/atom, and four uncertain candidates with energies of {-0.483, -0.466,342

-0.387, and -0.042} meV/atom. We have demonstrated that conditional generation approaches,343

commonly used in image generation, are also fruitful in the design of new materials.344

Although the proposed methodology demonstrates its efficiency in generating potentially345

new crystal structures, it has certain limitations. Firstly, the data is represented in a matrix346

form, which does not account for all possible symmetries of the crystal structures. Secondly,347

the structures in the dataset range from 4 to 60 atoms per unit cell, with most structures348

containing fewer than 8 atoms per unit cell. However, to perform well on structures with a349

large number of atoms per unit cell, the models just should be pretrained on a dataset that350

includes larger structures.351

Furthermore, despite the limited number of experiments(6) and structures generated (7182),352

we succeeded in identifying hypothetically new structures. We hope that our article will353

help to reveal the potential of generative AI in design of new materials with targeted354

thermodynamic properties and inspire other researchers to be part of this innovative journey355

in materials design. We believe that rapid and efficient generation of novel materials can lead356

to breakthroughs in various fields such as electronics, pharmaceuticals, and energy storage.357

This can accelerate technological advancements and make cutting-edge technologies more358

accessible and affordable.359
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A Appendix section 1432

A.1 Distribution of atomic coordinates433

Figure 3: Distribution of the components of fractional atomic coordinates (X, Y, Z)

A.2 Pseudocode434

Algorithm 1 Training Regression Modification Model
1: repeat
2: x0 ∼ q(x0);x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
3: L ← ||x1 − fθ(x0, t, el, spg1, E)||
4: θ ← Update(θ,∇θL(θ))
5: until converge

Algorithm 2 Inferencing Regression Modification Model

1: x0 ∼ q(x0); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
2: x1 = fθ(x0, t, el, spg1, E)
3: return x1

Algorithm 3 CFM Training
1: repeat
2: x0 ∼ q(x0);x1 ∼ q(x1)
3: t ∼ U(0, 1)
4: xt = tx1 + (1− t)x0

5: LCFM ← ||fθ(xt, t)− (x1 − x0)||
6: θ ← Update(θ,∇θLCFM (θ))
7: until converge

Algorithm 4 Training CFM for Modification
1: repeat
2: x0 ∼ q(x0);x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
3: t ∼ U(0, 1)
4: xt = tx1 + (1− t)x0

5: LCFM ← ||fθ(xt, t, el, spg1, E)− (x1 − x0)||
6: θ ← Update(θ,∇θLCFM (θ))
7: until converge
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Algorithm 5 Training CFM for Generation
1: repeat
2: x0 ∼ N (0, 1) or x0 ∼ U(0, 1)
3: x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
4: t ∼ U(0, 1)
5: xt = tx1 + (1− t)x0

6: LCFM ← ||fθ(xt, t, el, spg1, E)− (x1 − x0)||
7: θ ← Update(θ,∇θLCFM (θ))
8: until converge

Algorithm 6 Sampling with CFM for Modification or Generation

1: h = 1
T

2: x0 ∼ q(x0) or x0 ∼ N (0, 1) or x0 ∼ U(0, 1)
3: el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
4: for dot = 1, . . . , T do
5: xt+1 = xt + hfθ(xt, t, el, spg1, E)
6: end for
7: return x1

Algorithm 7 Training DM for Modification
1: repeat
2: x0 ∼ q(x0);x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
3: t ∼ U({1, . . . , T})
4: ϵ ∼ N (0, I)
5: LD ← ||ϵ− fθ(

√
ᾱtx1 +

√
1− ᾱtϵ, x0, t, el, spg1, E)||

6: θ ← Update(θ,∇θLD(θ))
7: until converge

Algorithm 8 Sampling with DM for Modification

1: xT ∼ N (0, I)
2: for dot = T, . . . 1 do
3: x0 ∼ q(x0);x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
4: z ∼ N (0, I) if t > 1 else z = 0
5: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
fθ(xt, x0, t, el, spg1, E)) +

√
1− αtz

6: end for
7: return x1

Algorithm 9 Training DM for Generation
1: repeat
2: x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
3: t ∼ U({1, . . . , T})
4: ϵ ∼ N (0, I)
5: LD ← ||ϵ− fθ(

√
ᾱtx1 +

√
1− ᾱtϵ, t, el, spg1, E)||

6: θ ← Update(θ,∇θLD(θ))
7: until converge

Algorithm 10 DDPM Sampling

1: xT ∼ N (0, I)
2: for dot = T, . . . 1 do
3: x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
4: z ∼ N (0, I) if t > 1 else z = 0
5: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
fθ(xt, t, el, spg1, E)) +

√
1− αtz

6: end for
7: return x1
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Algorithm 11 DDIM Sampling

1: xT ∼ N (0, I)
2: for dot = T, . . . 1 with step C do
3: x0 ∼ q(x0);x1 ∼ q(x1); el ∼ q(el); spg1 ∼ q(spg1);E ∼ q(E)
4: z ∼ N (0, I) if t > 1 else z = 0
5: xθ = fθ(xt, t, el, spg1, E)

6: xt−1 =
√
αt−1(

xt−
√
1−αtxθ√
αt

) +
√

1− αt−1 − σ2
t xθ + σtz

7:
8: end for
9: return x1

A.3 Experiment Details435

All the experiments use the same hyperparameters for the model:436

• num_res_blocks = 7437

• attention_resolution = (1, 2, 4, 8)438

• model_channels = 128439

In all the experiments models are trained with the same training parameters:440

• optimizer = Adam441

– betas = (0.9, 0.999)442

– eps = 1e-08443

– weight_decay = 0444

• batch_size = 256445

• epochs = 400446

• learning_rate = 1e-4447

• lr_warmup_steps = 500448

• random_state = 42449

An important note, that all our experiments have been conducted in mixed precision in fp16.450

Generation task: Diffusion Model (DDPM):451

• num_train_timesteps = 1000 (diffusion process discretization)452

• beta_start = 0.0001453

• beta_end = 0.02454

• num_inference_steps = 100455

• beta_schedule = "squaredcos_cap_v2" (cosine)456

Diffusion Model (DDIM):457

• num_train_timesteps = 1000 (diffusion process discretization)458

• beta_start = 0.0001459

• beta_end = 0.02460

• num_inference_steps = 100461

• beta_schedule = "squaredcos_cap_v2" (cosine)462

Flow Matching x0 ∼ N (0, 1):463

• num_inference_steps = 100464

Flow Matching x0 ∼ U(0, 1):465
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• num_inference_steps = 100466

Modification task:467

Regression UNet:468

• num_inference_steps = 1469

Diffusion Model:470

• num_train_timesteps = 1000 (diffusion process discretization)471

• beta_start = 0.0001472

• beta_end = 0.02473

• num_inference_steps = 100474

• beta_schedule = "squaredcos_cap_v2" (cosine)475

Flow Matching:476

• num_inference_steps = 100477

A.4 PBC Loss details478

The PBC loss function operates through several steps:479

1. Vertices evaluation: If the target coordinate of the atom is lattice vertex (all 3
coordinates x, y, zare equal to 1 or 0), then loss between prediction point predsi and
target point targeti is being calculated using following formula:

Lvertex(predsi, targeti) = min
v∈vertices

||predsi − v||,

where vertices is a set of 8 possible positions according to PBC ({0, 0, 0}, {0, 0, 1},480

..., {1, 1, 1}).481

2. Edges evaluation: If the target coordinate of the atom is located on lattice edge (two482

coordinates are equal to 1 or 0 and one is not). For example, a lattice edge atom483

at point {0, 1, 0.3} has identical atoms at points {0, 0, 0.3}, {1, 0, 0.3}, {1, 1, 0.3}. As484

we can see, in this example z-coordinate is fixed but x and y are exchangeable.485

Therefore, if the target point is represented as {x, y, z}, we can use the following486

formula:487

Ledge(predsi, targeti) = min
e∈edgePoints

||predsi − e||,

where edgePoints is a set of 4 possible positions according to PBC.488

• Case of fixed point x: edgePoints = {{x, 0, 0}, {x, 0, 1}, {x, 1, 0}, {x, 1, 1}}489

• Case of fixed point y: edgePoints = {{0, y, 0}, {0, y, 1}, {1, y, 0}, {1, y, 1}}490

• Case of fixed point z: edgePoints = {{0, 0, z}, {0, 1, z}, {1, 0, z}, {1, 1, z}}491

3. Sides evaluation: If the target coordinate of the atom is located on lattice side (one492

coordinate is equal to 1 or 0 and two are not). For example, lattice side atom at493

point {0, 0.5, 0.3} has identical atom at point {1, 0.5, 0.3}. In this example y and494

z coordinates are fixed but x is exchangeable. Therefore, if the target point is495

represented as {x, y, z}, we can use the following formula:496

Lsize(predsi, targeti) = min
s∈sidePoints

||predsi − s||,

where sidePoints is a set of 2 possible positions according to PBC.497

• Case of exchangeable point x: sidePoints = {{0, y, z}, {1, y, z}}498

• Case of exchangeable point y: sidePoints = {{x, 0, z}, {x, 1, z}}499

• Case of exchangeable point z: sidePoints = {{x, y, 0}, {x, y, 1}}500
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(a) Target structure (b) Prediction

Figure 4: Example of using PBC-aware loss. The depicted structures (Mo2Nb2Ta2W2) are
visually different, but in fact they are exact the same. It is confirmed by insignificant value
of PBC-aware loss

4. Points, which don’t belong to the groups above, are processed using the default loss501

function.502

Since the min(x1, x2, ..., xn) function is undifferentiable at multiple points (xi = xj ∀i ̸= j
), it makes a loss function to have a more complicated surface. Therefore, we used a norm
function with order k → −∞ which is differentiable at all points as a replacement.

mindiff (x1, x2, ..., xn) = (

n∑
i=1

|xi|k)
1
k k −→ −∞

Therefore, overall PBC-aware loss for a structure is represented as:503

LPBC(preds, target) =

n∑
i=1

I(targeti is vertex point)Lvertex(predsi, targeti)

+I(targeti is edge point)Ledge(predsi, targeti)

+I(targeti is side point)Lside(predsi, targeti)

+I(targeti is usual point)L2(predsi, targeti)

As the count of atoms varies across different structures, the LPBC metric tends to yield504

higher values for structures featuring a larger number of atoms. Thus, it is important to505

normalize the loss function with the number of atoms in the structure if it would be used in506

batches with structures with different number of atoms. Therefore, a PBC-aware loss for a507

batch of structures is formulated as:508

LbatchPBC(batchPreds, batchTargets) =

batchSize∑
i=1

1

numSitesi
LPBC(batchPredsi, batchTargetsi)

Compute resources509

For our computational needs in model training and inference, we deployed a total of three510

GPU servers with the following configurations:511

Server 1:512

• GPU: NVIDIA A100/80G513

• CPU: 8vCPU of Intel(R) Xeon(R) Gold 6248R @ 3.00 GHz514

• RAM: 64Gb515

Server 2:516
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• GPU: NVIDIA V100 (32GB)517

• CPU: 8vCPU of Intel(R) Xeon(R) Gold 6278C @ 2.60 GHz518

• RAM: 64Gb519

Server 3:520

• GPU: NVIDIA V100 (32GB)521

• CPU: 8vCPU of Intel(R) Xeon(R) Gold 6278C @ 2.60 GHz522

• RAM: 64Gb523

Every model training time consumed up to 2 weeks employing computing power of one GPU524

server.525

For the ab-initio calculations implemented in VASP, we deployed a total of 5 identical CPU526

servers with the following configurations:527

• CPU: 64vCPU of Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz528

• RAM: 256Gb529

Structure relaxation with VASP for all six experiments mentioned in Table 3 took more that530

180 thousand CPU hours. Computing power of all CPU servers was employed.531
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NeurIPS Paper Checklist532

The checklist is designed to encourage best practices for responsible machine learning research,533

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do534

not remove the checklist: The papers not including the checklist will be desk rejected. The535

checklist should follow the references and follow the (optional) supplemental material. The536

checklist does NOT count towards the page limit.537

Please read the checklist guidelines carefully for information on how to answer these questions.538

For each question in the checklist:539

• You should answer [Yes] , [No] , or [NA] .540

• [NA] means either that the question is Not Applicable for that particular paper or541

the relevant information is Not Available.542

• Please provide a short (1–2 sentence) justification right after your answer (even for543

NA).544

The checklist answers are an integral part of your paper submission. They are visible to the545

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also546

include it (after eventual revisions) with the final version of your paper, and its final version547

will be published with the paper.548

The reviewers of your paper will be asked to use the checklist as one of the factors in their549

evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to550

answer "[No] " provided a proper justification is given (e.g., "error bars are not reported551

because it would be too computationally expensive" or "we were unable to find the license for552

the dataset we used"). In general, answering "[No] " or "[NA] " is not grounds for rejection.553

While the questions are phrased in a binary way, we acknowledge that the true answer554

is often more nuanced, so please just use your best judgment and write a justification to555

elaborate. All supporting evidence can appear either in the main paper or the supplemental556

material, provided in appendix. If you answer [Yes] to a question, in the justification please557

point to the section(s) where related material for the question can be found.558

IMPORTANT, please:559

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",560

• Keep the checklist subsection headings, questions/answers and guidelines below.561

• Do not modify the questions and only use the provided macros for your answers.562

1. Claims563

Question: Do the main claims made in the abstract and introduction accurately564

reflect the paper’s contributions and scope?565

Answer: [Yes] ,566

Justification: The main claims made in the abstract and introduction do accurately567

reflect the paper’s contributions and scope. Every aspects mentioned in the abstract568

and introduction are further revealed in the main paper.569

Guidelines:570

• The answer NA means that the abstract and introduction do not include the571

claims made in the paper.572

• The abstract and/or introduction should clearly state the claims made, including573

the contributions made in the paper and important assumptions and limitations.574

A No or NA answer to this question will not be perceived well by the reviewers.575

• The claims made should match theoretical and experimental results, and reflect576

how much the results can be expected to generalize to other settings.577

• It is fine to include aspirational goals as motivation as long as it is clear that578

these goals are not attained by the paper.579

2. Limitations580
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Question: Does the paper discuss the limitations of the work performed by the581

authors?582

Answer: [Yes]583

Justification: All the limitations are discussed in the conclusion section. More584

specifically, limitations are 1) in number of atoms per unit cell of crystal structure585

that model can work with and 2) symmetries that our structure representation is586

able to encode. For example, crystals have infinite periodic structure. There is no587

possible way to588

Guidelines:589

• The answer NA means that the paper has no limitation while the answer No590

means that the paper has limitations, but those are not discussed in the paper.591

• The authors are encouraged to create a separate "Limitations" section in their592

paper.593

• The paper should point out any strong assumptions and how robust the results594

are to violations of these assumptions (e.g., independence assumptions, noiseless595

settings, model well-specification, asymptotic approximations only holding596

locally). The authors should reflect on how these assumptions might be violated597

in practice and what the implications would be.598

• The authors should reflect on the scope of the claims made, e.g., if the approach599

was only tested on a few datasets or with a few runs. In general, empirical600

results often depend on implicit assumptions, which should be articulated.601

• The authors should reflect on the factors that influence the performance of the602

approach. For example, a facial recognition algorithm may perform poorly when603

image resolution is low or images are taken in low lighting. Or a speech-to-text604

system might not be used reliably to provide closed captions for online lectures605

because it fails to handle technical jargon.606

• The authors should discuss the computational efficiency of the proposed algo-607

rithms and how they scale with dataset size.608

• If applicable, the authors should discuss possible limitations of their approach609

to address problems of privacy and fairness.610

• While the authors might fear that complete honesty about limitations might611

be used by reviewers as grounds for rejection, a worse outcome might be that612

reviewers discover limitations that aren’t acknowledged in the paper. The613

authors should use their best judgment and recognize that individual actions in614

favor of transparency play an important role in developing norms that preserve615

the integrity of the community. Reviewers will be specifically instructed to not616

penalize honesty concerning limitations.617

3. Theory Assumptions and Proofs618

Question: For each theoretical result, does the paper provide the full set of assump-619

tions and a complete (and correct) proof?620

Answer: [NA] .621

Justification: Our work does not include significant theoretical results due to the622

fact that it is mainly focused on experiments.623

Guidelines:624

• The answer NA means that the paper does not include theoretical results.625

• All the theorems, formulas, and proofs in the paper should be numbered and626

cross-referenced.627

• All assumptions should be clearly stated or referenced in the statement of any628

theorems.629

• The proofs can either appear in the main paper or the supplemental material,630

but if they appear in the supplemental material, the authors are encouraged to631

provide a short proof sketch to provide intuition.632

• Inversely, any informal proof provided in the core of the paper should be633

complemented by formal proofs provided in appendix or supplemental material.634
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• Theorems and Lemmas that the proof relies upon should be properly referenced.635

4. Experimental Result Reproducibility636

Question: Does the paper fully disclose all the information needed to reproduce637

the main experimental results of the paper to the extent that it affects the main638

claims and/or conclusions of the paper (regardless of whether the code and data are639

provided or not)?640

Answer: [Yes]641

Justification: The paper fully discloses all the information needed to reproduce the642

main experimental results. The information includes: 1) all hyperparameters for643

the models, including the random seed they were performed on 2) crystal structures644

used as a data, 3) VASP settings.645

Guidelines:646

• The answer NA means that the paper does not include experiments.647

• If the paper includes experiments, a No answer to this question will not be648

perceived well by the reviewers: Making the paper reproducible is important,649

regardless of whether the code and data are provided or not.650

• If the contribution is a dataset and/or model, the authors should describe the651

steps taken to make their results reproducible or verifiable.652

• Depending on the contribution, reproducibility can be accomplished in various653

ways. For example, if the contribution is a novel architecture, describing the654

architecture fully might suffice, or if the contribution is a specific model and655

empirical evaluation, it may be necessary to either make it possible for others to656

replicate the model with the same dataset, or provide access to the model. In657

general. releasing code and data is often one good way to accomplish this, but658

reproducibility can also be provided via detailed instructions for how to replicate659

the results, access to a hosted model (e.g., in the case of a large language model),660

releasing of a model checkpoint, or other means that are appropriate to the661

research performed.662

• While NeurIPS does not require releasing code, the conference does require all663

submissions to provide some reasonable avenue for reproducibility, which may664

depend on the nature of the contribution. For example665

(a) If the contribution is primarily a new algorithm, the paper should make it666

clear how to reproduce that algorithm.667

(b) If the contribution is primarily a new model architecture, the paper should668

describe the architecture clearly and fully.669

(c) If the contribution is a new model (e.g., a large language model), then there670

should either be a way to access this model for reproducing the results or a671

way to reproduce the model (e.g., with an open-source dataset or instructions672

for how to construct the dataset).673

(d) We recognize that reproducibility may be tricky in some cases, in which674

case authors are welcome to describe the particular way they provide for675

reproducibility. In the case of closed-source models, it may be that access to676

the model is limited in some way (e.g., to registered users), but it should be677

possible for other researchers to have some path to reproducing or verifying678

the results.679

5. Open access to data and code680

Question: Does the paper provide open access to the data and code, with sufficient681

instructions to faithfully reproduce the main experimental results, as described in682

supplemental material?683

Answer: [Yes]684

Justification: The raw crystal dataset can be downloaded from https://aflowlib.org.685

The source code for training and inferencing our models can be obtained from686

GitHub at https://github.com/AIRI-Institute/conditional-crystal-generation. Both687

data and code are also referenced in the main paper’s Section 9 and Section 9 .688
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Guidelines:689

• The answer NA means that paper does not include experiments requiring code.690

• Please see the NeurIPS code and data submission guidelines (https://nips.691

cc/public/guides/CodeSubmissionPolicy) for more details.692

• While we encourage the release of code and data, we understand that this might693

not be possible, so “No” is an acceptable answer. Papers cannot be rejected694

simply for not including code, unless this is central to the contribution (e.g., for695

a new open-source benchmark).696

• The instructions should contain the exact command and environment needed697

to run to reproduce the results. See the NeurIPS code and data submis-698

sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)699

for more details.700

• The authors should provide instructions on data access and preparation, in-701

cluding how to access the raw data, preprocessed data, intermediate data, and702

generated data, etc.703

• The authors should provide scripts to reproduce all experimental results for704

the new proposed method and baselines. If only a subset of experiments are705

reproducible, they should state which ones are omitted from the script and why.706

• At submission time, to preserve anonymity, the authors should release707

anonymized versions (if applicable).708

• Providing as much information as possible in supplemental material (appended709

to the paper) is recommended, but including URLs to data and code is permitted.710

6. Experimental Setting/Details711

Question: Does the paper specify all the training and test details (e.g., data splits,712

hyperparameters, how they were chosen, type of optimizer, etc.) necessary to713

understand the results?714

Answer: [Yes]715

Justification: All the training and testing details and all the hyperparameters for716

the experiments are mentioned in the paper.717

Guidelines:718

• The answer NA means that the paper does not include experiments.719

• The experimental setting should be presented in the core of the paper to a level720

of detail that is necessary to appreciate the results and make sense of them.721

• The full details can be provided either with the code, in appendix, or as722

supplemental material.723

7. Experiment Statistical Significance724

Question: Does the paper report error bars suitably and correctly defined or other725

appropriate information about the statistical significance of the experiments?726

Answer: [No]727

Justification: Firstly, calculating statistical significance for all our experiments728

is computationally expensive. Secondly, experimental results(crystal structures729

obtained from model inference) have been approved by further ab-initio calculations730

implemented in VASP.731

Guidelines:732

• The answer NA means that the paper does not include experiments.733

• The authors should answer "Yes" if the results are accompanied by error bars,734

confidence intervals, or statistical significance tests, at least for the experiments735

that support the main claims of the paper.736

• The factors of variability that the error bars are capturing should be clearly737

stated (for example, train/test split, initialization, random drawing of some738

parameter, or overall run with given experimental conditions).739

• The method for calculating the error bars should be explained (closed form740

formula, call to a library function, bootstrap, etc.)741
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• The assumptions made should be given (e.g., Normally distributed errors).742

• It should be clear whether the error bar is the standard deviation or the standard743

error of the mean.744

• It is OK to report 1-sigma error bars, but one should state it. The authors745

should preferably report a 2-sigma error bar than state that they have a 96%746

CI, if the hypothesis of Normality of errors is not verified.747

• For asymmetric distributions, the authors should be careful not to show in748

tables or figures symmetric error bars that would yield results that are out of749

range (e.g. negative error rates).750

• If error bars are reported in tables or plots, The authors should explain in the751

text how they were calculated and reference the corresponding figures or tables752

in the text.753

8. Experiments Compute Resources754

Question: For each experiment, does the paper provide sufficient information on the755

computer resources (type of compute workers, memory, time of execution) needed756

to reproduce the experiments?757

Answer: [Yes]758

Justification: In the paper, we state all the compute powers that we have employed759

for AI model training and ab-initio calculations. One can observe it in Section A.4.760

Guidelines:761

• The answer NA means that the paper does not include experiments.762

• The paper should indicate the type of compute workers CPU or GPU, internal763

cluster, or cloud provider, including relevant memory and storage.764

• The paper should provide the amount of compute required for each of the765

individual experimental runs as well as estimate the total compute.766

• The paper should disclose whether the full research project required more767

compute than the experiments reported in the paper (e.g., preliminary or failed768

experiments that didn’t make it into the paper).769

9. Code Of Ethics770

Question: Does the research conducted in the paper conform, in every respect, with771

the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?772

Answer: [Yes]773

Justification: Our research, working process, data and code correspond with NeurIPS774

Code of Ethics in https://neurips.cc/public/EthicsGuidelines775

Guidelines:776

• The answer NA means that the authors have not reviewed the NeurIPS Code777

of Ethics.778

• If the authors answer No, they should explain the special circumstances that779

require a deviation from the Code of Ethics.780

• The authors should make sure to preserve anonymity (e.g., if there is a special781

consideration due to laws or regulations in their jurisdiction).782

10. Broader Impacts783

Question: Does the paper discuss both potential positive societal impacts and784

negative societal impacts of the work performed?785

Answer: [Yes]786

Justification: The broad societal impacts are discussed int the conclusion section.787

Guidelines:788

• The answer NA means that there is no societal impact of the work performed.789

• If the authors answer NA or No, they should explain why their work has no790

societal impact or why the paper does not address societal impact.791
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• Examples of negative societal impacts include potential malicious or unintended792

uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-793

erations (e.g., deployment of technologies that could make decisions that unfairly794

impact specific groups), privacy considerations, and security considerations.795

• The conference expects that many papers will be foundational research and796

not tied to particular applications, let alone deployments. However, if there797

is a direct path to any negative applications, the authors should point it out.798

For example, it is legitimate to point out that an improvement in the quality799

of generative models could be used to generate deepfakes for disinformation.800

On the other hand, it is not needed to point out that a generic algorithm for801

optimizing neural networks could enable people to train models that generate802

Deepfakes faster.803

• The authors should consider possible harms that could arise when the technology804

is being used as intended and functioning correctly, harms that could arise when805

the technology is being used as intended but gives incorrect results, and harms806

following from (intentional or unintentional) misuse of the technology.807

• If there are negative societal impacts, the authors could also discuss possible808

mitigation strategies (e.g., gated release of models, providing defenses in addition809

to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a810

system learns from feedback over time, improving the efficiency and accessibility811

of ML).812

11. Safeguards813

Question: Does the paper describe safeguards that have been put in place for814

responsible release of data or models that have a high risk for misuse (e.g., pretrained815

language models, image generators, or scraped datasets)?816

Answer: [NA]817

Justification: The paper poses no such risks.818

Guidelines:819

• The answer NA means that the paper poses no such risks.820

• Released models that have a high risk for misuse or dual-use should be released821

with necessary safeguards to allow for controlled use of the model, for example822

by requiring that users adhere to usage guidelines or restrictions to access the823

model or implementing safety filters.824

• Datasets that have been scraped from the Internet could pose safety risks. The825

authors should describe how they avoided releasing unsafe images.826

• We recognize that providing effective safeguards is challenging, and many papers827

do not require this, but we encourage authors to take this into account and828

make a best faith effort.829

12. Licenses for existing assets830

Question: Are the creators or original owners of assets (e.g., code, data, models),831

used in the paper, properly credited and are the license and terms of use explicitly832

mentioned and properly respected?833

Answer: [Yes]834

Justification: The models utilized in this research are appropriately cited within835

the text, including references to the AFLOW database. We have no commercial836

interests related to the use of these models and the crystal structure database. The837

code used in this study was entirely developed by our team.838

Guidelines:839

• The answer NA means that the paper does not use existing assets.840

• The authors should cite the original paper that produced the code package or841

dataset.842

• The authors should state which version of the asset is used and, if possible,843

include a URL.844
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.845

• For scraped data from a particular source (e.g., website), the copyright and846

terms of service of that source should be provided.847

• If assets are released, the license, copyright information, and terms of use in848

the package should be provided. For popular datasets, paperswithcode.com/849

datasets has curated licenses for some datasets. Their licensing guide can help850

determine the license of a dataset.851

• For existing datasets that are re-packaged, both the original license and the852

license of the derived asset (if it has changed) should be provided.853

• If this information is not available online, the authors are encouraged to reach854

out to the asset’s creators.855

13. New Assets856

Question: Are new assets introduced in the paper well documented and is the857

documentation provided alongside the assets?858

Answer: [Yes]859

Justification: The primary assets of our research are: 1) the methodology, and 2) the860

code for training models and performing inference. Both are thoroughly documented.861

Guidelines:862

• The answer NA means that the paper does not release new assets.863

• Researchers should communicate the details of the dataset/code/model as part864

of their submissions via structured templates. This includes details about865

training, license, limitations, etc.866

• The paper should discuss whether and how consent was obtained from people867

whose asset is used.868

• At submission time, remember to anonymize your assets (if applicable). You869

can either create an anonymized URL or include an anonymized zip file.870

14. Crowdsourcing and Research with Human Subjects871

Question: For crowdsourcing experiments and research with human subjects, does872

the paper include the full text of instructions given to participants and screenshots,873

if applicable, as well as details about compensation (if any)?874

Answer: [NA]875

Justification: The paper does not involve crowdsourcing nor research with human876

subjects.877

Guidelines:878

• The answer NA means that the paper does not involve crowdsourcing nor879

research with human subjects.880

• Including this information in the supplemental material is fine, but if the main881

contribution of the paper involves human subjects, then as much detail as882

possible should be included in the main paper.883

• According to the NeurIPS Code of Ethics, workers involved in data collection,884

curation, or other labor should be paid at least the minimum wage in the885

country of the data collector.886

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human887

Subjects888

Question: Does the paper describe potential risks incurred by study participants,889

whether such risks were disclosed to the subjects, and whether Institutional Review890

Board (IRB) approvals (or an equivalent approval/review based on the requirements891

of your country or institution) were obtained?892

Answer: [NA]893

Justification: The paper does not involve crowdsourcing nor research with human894

subjects895

Guidelines:896
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• The answer NA means that the paper does not involve crowdsourcing nor897

research with human subjects.898

• Depending on the country in which research is conducted, IRB approval (or899

equivalent) may be required for any human subjects research. If you obtained900

IRB approval, you should clearly state this in the paper.901

• We recognize that the procedures for this may vary significantly between902

institutions and locations, and we expect authors to adhere to the NeurIPS903

Code of Ethics and the guidelines for their institution.904

• For initial submissions, do not include any information that would break905

anonymity (if applicable), such as the institution conducting the review.906
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