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Abstract
Federated Learning (FL) is a distributed train-
ing paradigm that avoids sharing users’ private
data. FL has presented unique challenges in
dealing with data, device, and user heterogene-
ity which impact both model quality and training
time. The impact is exacerbated by the scale of
the deployments. More importantly, existing FL
methods result in inefficient use of resources and
prolonged training times. In this work, we pro-
pose REFL, to systematically address the question
of resource efficiency in FL, showing the bene-
fits of intelligent participant selection and incor-
poration of updates from straggling participants.
REFL is a resource-efficient federated learning
system that maximizes FL systems’ resource effi-
ciency without compromising statistical and sys-
tem efficiency. REFL is released as open source at
https://github.com/ahmedcs/REFL.

1 Introduction
Federated Learning (FL) has seen wide adoption by service
providers such as Apple, Google, and Meta to train computer
vision (CV) and natural language processing (NLP) models
in applications such as image classification, object detection,
and recommendation systems (tensorflow.org, 2020; Yang
et al., 2018; FedAI, 2021; Team, 2017; Hsu et al., 2020;
Hartmann et al., 2019). The life cycle of FL training is as
follows: First, the FL operator builds the model architecture
and determines hyper-parameters with a standalone dataset.
Model training is then conducted on participating learners
for a number of centrally-managed rounds until a satisfac-
tory model quality is obtained. The main challenge in FL is
the heterogeneity in terms of computational capability and
data distribution among a large number of learners which
can impact training performance (Bonawitz et al., 2019a;
Kairouz et al., 2019).
Time-to-accuracy is a crucial performance metric which de-
pends on both the statistical efficiency and system efficiency
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of training (Kairouz et al., 2019; Li et al., 2020; Yang et al.,
2021; Wu et al., 2021; Lai et al., 2021). The number of learn-
ers, minibatch size, and local steps affect the former. It is
common for these factors to be treated as hyper-parameters
to be tuned for a particular FL job. A focus on training time
has also resulted in schemes that are not robust to non-IID
data distributions as they favor certain learner profiles (Li
et al., 2022). Finally, learners also have varying availability
for training (Kairouz et al., 2019; Bonawitz et al., 2019a; Li
et al., 2022; Yang et al., 2021), which requires consideration
when dealing with data heterogeneity.
Resource wastage is another major issue—where learners
perform training work that does not contribute to enhancing
model quality due to discarded late updates. This does
not encourage users to participate in FL and makes scaling
FL systems problematic. In this project, we design FL
systems with the objective of optimizing resource-to-quality
in heterogeneous settings.
Existing efforts aim to improve convergence speed (i.e.,
boosting model quality in fewer rounds) (Li et al., 2020;
Wang & Joshi, 2019) or system efficiency (i.e., reducing
round duration) (McMahan et al., 2017; 2018), or select-
ing learners with high statistical and system utility (Lai
et al., 2021). These approaches ignore the importance of
maximizing the utilization of available resources while re-
ducing the amount of wasted work. Therefore, we intro-
duce REFL, a resource-efficient FL system that optimizes
resource efficiency without compromising statistical and
system efficiency. REFL can be integrated as plug-in mod-
ule into FL systems (Bonawitz et al., 2019a; Lai et al., 2022)
and is compatible with existing privacy-preservation meth-
ods (Bonawitz et al., 2017; 2019b). In summary, we make
the following contributions: 1. We highlight the importance
of resource usage of learners’ limited capability and avail-
ability in FL and present REFL to intelligently select partici-
pants and efficiently make use of their work. 2. We propose
staleness-aware aggregation and intelligent participant se-
lection algorithms to improve resource usage with minimal
impact on time-to-accuracy. 3. We implement and evaluate
REFL using real-world FL benchmarks and compare it with
state-of-the-art solutions to show the benefits it brings to FL
systems.
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2 Background
We consider the popular cross-device FL setting introduced
in federated averaging (FedAvg) (McMahan et al., 2017;
Bonawitz et al., 2019a). The FedAvg approach consists of a
(logically) centralized server and distributed learners, such
as smartphones or IoT devices. Learners locally maintain
private data and collaboratively train a joint global model.
The training of the global model is conducted over a series
of rounds. Each participant trains the model on its local
data for a specified number of epochs and produces a model
update (i.e., the delta from the global model) which is sent to
the server. The server waits until it receives a target number
of participants’ updates and aggregates them to update the
global model. This concludes the current round and these
steps are repeated in each round until a certain objective is
met (e.g., target model quality or training budget).
The FL setting is also distinct from conventional training
because the learners may exhibit the following types of
heterogeneity: 1) data heterogeneity: learners generally
possess variable data points in number, type, and distribu-
tion; 2) device heterogeneity: learner devices have different
training speeds owing to different hardware and network
capabilities; 3) behavioral heterogeneity: the availability
of learners varies across rounds and there may be learners
that abandon the current round if they become unavailable.

3 The Case for Resource-Efficient FL
We motivate REFL by underlining the trade-off between
system efficiency and resource diversity as key goals in FL.
Current FL designs either aim to reduce time-to-accuracy
(i.e., system efficiency) (Lai et al., 2021) or to increase cov-
erage of the pool of learners to fairly spread the training
data and workload (i.e., resource diversity) (Xie et al., 2020;
Li et al., 2020; Wu et al., 2021), but do not consider the cost
of wasted work by learners. The first goal results in a dis-
criminatory approach towards certain categories of learners,
either preferentially selecting computationally fast learners
or learners with model updates of high quality (i.e., those
with high statistical utility) (Li et al., 2020; Lai et al., 2021).
The second goal entails spreading out the computations ide-
ally over all available learners but at the cost of potentially
longer round duration (Xie et al., 2020; Wu et al., 2021) and
wasted work.
To strike a balance between the two extremes, FL systems
should achieve a sufficient level of resource diversity with-
out significantly sacrificing system efficiency. We first show
that existing systems fail to achieve both these goals and
result in significant wastage of resources. We also highlight
the opportunities they present which we embrace in our
design of REFL. We use an audio dataset of spoken words
provided by Google, hereafter referred to as the Google
Speech benchmark (Warden, 2018).
Asynchronous Update Aggregation: Taking inspiration
from asynchronous methods (Ho et al., 2013; Xie et al.,

FedAvg_10 FedAvg_100 SAFA SAFA+O Oort+All Oort+Dyn Random+All Random+Dyn

101 102 103

Cumulative resource usage (hours) - log
10

20

30

40

50

Te
st

 A
cc

ur
ac

y 
(%

)

1.4H8.6H 1.7H1.7H

(a) SAFA vs FedAvg
0 250 500 750 1000

Cumulative resource usage (hours)
10

15

20

25

30

Te
st

 A
cc

ur
ac

y 
(%

)

97H

122H

103H
132H

(b) Oort vs Random
Figure 1: The state-of-the-art methods versus their baselines

2020), SAFA allows straggling participants to contribute
to the global model via stale updates. We first evaluate
SAFA’s resource usage (i.e., the time cumulatively spent by
learners in training), and resource wastage (i.e., the time cu-
mulatively spent by learners producing updates that are not
incorporated into the model). We compare the performance
of SAFA as described in Wu et al. (2021) against FedAvg
with 10 and 100 clients and SAFA+O which is a version of
SAFA that assumes a perfect oracle that knows which stale
updates are eventually aggregated (i.e., will not exceed the
staleness threshold). Figure 1a shows the resource usage
and resulting test accuracy; the lines are annotated with the
runtime to achieve the final accuracy. Notably, SAFA is
inefficient in terms of resource usage, consuming nearly 5×
the resources of Fedavg and SAFA+O to achieve the same
final accuracy. By selecting all available learners, then even-
tually discarding a large number of the computed updates,
SAFA wastes around 80% of learner resources.
Optimized Participant Selection: Many FL systems select
participants using a uniform random sampler (Caldas et al.,
2019; Yang et al., 2018; Bonawitz et al., 2019a). Oort (Lai
et al., 2021) prioritizes fast learners which may have unfa-
vorable consequences through biasing the model to a subset
of the learners that can reduce data diversity. To see this
in practice, we compare Oort with Random selection using
the Google Speech benchmark for 1,000 training rounds.
We consider two conditions: 1) all learners are available
(AllAvail); 2) dynamic availability based on a real-world
behavior trace (DynAvail) (Yang et al., 2021). Figure 1b
shows that in the non-IID case, learners’ availability has a
significant effect on model accuracy (i.e., 10-point drop).

4 REFL Design
REFL’s objective is to enhance the resource efficiency of
the FL training process by maximizing resource diversity
without sacrificing system efficiency. REFL achieves this
by reducing resource wastage from delayed participants and
prioritizing those with reduced availability. It leverages a
theoretically-backed method to incorporate stale updates
based on their quality which helps improve the training
performance. It proposes a scaling rule for weighting aggre-
gations to mitigate stale updates’ impact.

4.1 Intelligent Participant Selection (IPS)
The IPS component allows the global model to capture a
wide distribution of learners’ data. Moreover, it can fur-
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Algorithm 1: Priority Selection Algorithm
Input :Nt-Target number of participants
Output :S-List of selected participants
Initialize St = ∅, Pt = ∅, a = (µt, 2µt);
on event Learner_Check_In:

Send slot a to learner l;
Receive learner l’s availability probability pl;
Pt = Pt ∪ pl;

on event End_Selection_Window:
Sort in ascending order Pt;
Randomly shuffle Pt for probabilities with ties;
Return St as the top Nt learners in Pt;

ther reduce resource wastage by adapting the number of
participants in every round.
Least available prioritization: Algorithm 1 describes
how the IPS component selects participants from the large
pool of available learners. Each learner periodically trains a
model that predicts its future availability.
Availability prediction model: We use Prophet (Taylor &
Letham, 2017) to train a simple linear prediction model on
the Stunner dataset (Szabó et al., 2019), which comprises
device events (e.g., the charging state of the devices) from a
large number of mobile users. Given a time window in the
future, the model produces a probability for the availability
of the device within the queried time window.
Adaptive Participant Target (APT): IPS optimizes re-
source usage by adapting the pre-set target number of partic-
ipants N0 selected by the operator. In large-scale scenarios,
this could potentially further improve resource consump-
tion. Note, irrespective of clients’ availability, APT is an
add-on feature that prevents over-committing of participants,
further reducing resource consumption.

4.2 Staleness-Aware Aggregation (SAA)
This component enables the participants to submit their
updates past the round deadline and processes these stale
updates along with the fresh updates. Stale updates can be
noisy since the model can drift significantly by the time a
stale update arrives. In order to mitigate this impact, we
adjust the weight of the stale updates.
Tackling staleness: We propose a stale-update weight
that combines the staleness-based damping rule of
DynSGD (Jiang et al., 2017) with a boosting factor. The
boosting favors a stale update based on its deviation from the
fresh updates’ average and hence it does not require any in-

formation about learners’ data. Let, Λs =
∥ûF−

us+nF ûf
nF+1 ∥2

∥ûF∥2

be the deviation of the stale update us from the average
of the fresh updates ûF . Let Λmax = maxs∈S Λs. The
boosting factor term scales a stale update s proportional to
1− e−

Λs
Λmax . Finally, we compute the scaling factor as:

ws = (1− β) 1
τs+1 + β(1− e−

Λs
Λmax ) (1)

where β is a tunable weight for the averaging. For every

fresh update f ∈ F , we choose a scale value of one, i.e.,
wf = 1. The final coefficients for weighted averaging are
the normalized weights. That is, for an update i ∈ F ∪ S,
the final coefficient as: ŵi =

wi∑
i∈F∪S wi

. Hence, wi < wf ,
meaning that weights applied to stale updates are strictly less
than weights for new updates. More details and convergence
analysis are in Abdelmoniem et al. (2023b).

5 Evaluation
Our evaluation addresses the following questions: 1. Is
REFL able to achieve its resource-efficient federated learn-
ing design goal? 2. Is REFL scalable and future-proof?
We summarize the observations on REFL: 1. it achieves
better models with significantly fewer resources compared
to existing systems; 2. it scales well and is future-proof.

5.1 Experimental Setup
Our experiments simulate FL benchmarks consisting of
learners using real-world device configurations and avail-
ability traces. Our experiments capture different scenarios,
models, datasets and data distributions as detailed next. We
use a cluster of NVIDIA GPUs to interleave the training of
the emulated learners. The participants train in parallel on
time-multiplexed GPUs using PyTorch v1.8.0.
Implementation: We implement REFL atop FedScale (Lai
et al., 2022), a framework for emulation and evaluation of
FL systems. The SAA and IPS are implemented as Python
modules and integrated into FedScale’s server aggregation
logic and participant selection procedures, respectively.
Data partitioning: To account for realistic heteroge-
neous data, we partition the labeled training dataset among
the learners using different methods. We introduce label-
limited mappings where learners are assigned data sam-
ples drawn from a random subset of labels, with data sam-
ples per learner following particular distributions as follows.
L1) Uniform distribution: using uniform random assign-
ment of data points to labels on each learner; L2) Zipf
distribution: Zipfian distribution with α = 1.95 resulting
in a higher level of label skew (popularity).
System performance of learners: Learners’ hardware
performance is assigned at random from profiles of real
device measurements from the AI (Benchmark, 2021) and
MobiPerf (M-Lab, 2021) benchmarks for inference time
and network speeds of mobile devices, respectively. AI
Benchmark catalogs inference times for popular DNN mod-
els (e.g., MobileNet) on a wide range of Android devices
(e.g., Samsung Galaxy S20 and Huawei P40). The profiles
include devices with at least 2GB RAM using WiFi, which
matches the common case in FL settings (Yang et al., 2018;
Bonawitz et al., 2019a; Lai et al., 2021).
Dynamic Availability: We use a trace of 136K mobile
users from different countries over a period of 1-week (Yang
et al., 2021). The trace contains ≈180 million events such
as connecting to WiFi, battery charging, and (un)locking
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Figure 2: Training convergence comparison under
OC+DynAvail across different label-limited cases.
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Figure 3: Comparison against SAFA.

the screen. A device is available when it is plugged into a
charger and connected to the network, similar to (Bonawitz
et al., 2019a; Lai et al., 2021; Abdelmoniem et al., 2023a).
Hyper-parameter settings: The FL and learning hyper-
parameters were the default values set by the FedScale
framework and no further tuning was done. The common
FL hyper-parameters were the same for all methods in the
comparison. We used the recommended parameter settings
for the evaluated methods, Oort and SAFA.

5.2 Experimental Results
Here, we focus on Google Speech. For more in-depth results
of other benchmarks and experimental settings, we refer the
reader to Abdelmoniem et al. (2023b).
Selection algorithms: In this experiment, we run the FL
training process for more rounds in the label-limited non-IID
case and observe that REFL achieves superior performance
thanks to the availability-based prioritization and aggrega-
tion of stale updates. Figure 2 shows that REFL converges
to significantly higher accuracy than Oort, in less time and
with lower resource usage.
Aggregation algorithms: Comparing SAFA and REFL, we
use the DL+DynAvail setting with a total learner population
of 1,000 and a round deadline of 100s. We use FedAvg as
the underlying aggregation algorithm. REFL pre-selects 100
participants and the target ratio is set to 10% and 80% for
SAFA and REFL, respectively. For both schemes, we set
the staleness threshold to 5 rounds.
The results in Figure 3 show that run times of SAFA and
REFL are comparable, but SAFA consumes significantly
more resources. REFL improves accuracy by 10 points
using ≈60% fewer resources compared to SAFA.
Large-scale federated learning: We show the impact
of large populations on resource usage using the Google
speech benchmark and 3× the number of learners (3,000).
As shown in Figure 3b, we observe that SAFA wastes many
resources in the non-IID setting and REFL is able to produce
models of the same quality with nearly 5× less resources.
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Figure 4: Impact of future hardware advancements.

Future hardware advancements: We run the Google
Speech benchmark in 4 settings using: current device con-
figurations (HS1); device configurations with completion
times (i.e., computation and communication) doubled for
the top X percentile of devices (where X is 25% (HS2),
75% (HS3), and 100% (HS4)). As shown in Figure 4a, with
realistic label-limited non-IID settings, REFL sees signif-
icant performance benefits due to the aggregation of stale
updates and higher participant diversity.

6 Related Work
Heterogeneity in FL: A key challenge facing wider adop-
tion of FL systems is uncertainties in system behavior due
to learner, system, and data heterogeneity. Learners’ compu-
tational capacity can restrict contributions and extend round
duration (Li et al., 2020; Yang et al., 2021; Abdelmoniem
et al., 2023a). System and algorithmic solutions to tackle
heterogeneity have been proposed (Wang et al., 2020; Lai
et al., 2021; Abdelmoniem & Canini, 2021). Heterogene-
ity in FL is particularly challenging because participants
have varying data distributions and availability, as well as
heterogeneous system configurations that cannot be con-
trolled (Kairouz et al., 2019; Abdelmoniem et al., 2023a).
FL proposals: Improvements in FL systems include reduc-
ing communication costs (Konečný et al., 2016; Smith et al.,
2017; Bonawitz et al., 2019a; Chen et al., 2020; Reisizadeh
et al., 2020), improving privacy guarantees (McMahan et al.,
2018; Melis et al., 2019; Bonawitz et al., 2019a; Nasr et al.,
2019; Bagdasaryan et al., 2020), compensating for partial
work (Li et al., 2020; Wang et al., 2020), minimizing de-
vices’ energy consumption (Li et al., 2019; M. Evans &
Peacock, 1994), and personalizing global models trained by
participants (Jiang et al., 2019).

7 Conclusion
We studied two key issues preventing the wider adoption of
FL systems: resource wastage and diversity. We presented
REFL that addresses these issues through two core compo-
nents that encompass novel selection and aggregation algo-
rithms. Compared to existing systems, REFL was shown,
both theoretically and empirically, to improve model quality
while reducing resource usage and training time. REFL is
a vital step towards establishing a practical ecosystem for
resource-efficient federated learning.
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