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ABSTRACT

Wasserstein distributionally robust optimization (DRO) has recently received sig-
nificant attention in machine learning due to its connection to generalization, ro-
bustness and regularization. Existing methods only consider a limited class of loss
functions or apply to small values of robustness. In this paper, we present a three-
player game framework for solving Wasserstein DRO problem with arbitrary level
of robustness, which can handle general loss functions. Specifically, we formulate
a min-max game between three players who optimize over probability measures,
model parameters and Lagrange multipliers. We also propose new algorithms for
finding an equilibrium of the game in convex and non-convex settings which both
enjoy provable convergence guarantees. Furthermore, we prove an excess risk
bound for the proposed algorithms which shows that the solution returned by the
algorithms closely achieves the optimal minimax risk.

1 INTRODUCTION

Distributionally robust optimization (DRO) has become popular in recent years in machine learning
due to its ability to improve robustness of learning models. Instead of choosing a model f to mini-
mize an expected loss on instances generated according to P , DRO considers a perturbation to the
underlying data distribution within an ambiguity set, whether they are from covariate shifts, changes
in the underlying domain or adversarial attacks, and seeks to solve the following saddle-point prob-
lem

min
f∈F

sup
Q∈A(P )

RQ(f), (1)

where A(P ) is an ambiguity set containing P . The choice of ambiguity set A(P ) influences the
richness of the uncertainty set that we wish to consider as well as computability and can be con-
structed in a variety of ways such as f -divergence ball (Ben-Tal et al., 2013; Namkoong & Duchi,
2017; 2016; Blanchet et al., 2018) or Wasserstein ball (Blanchet et al., 2019b;a; Abadeh et al., 2015;
Gao et al., 2017; Volpi et al., 2018).

Despite of the induced robustness, the formulation of DRO problem (1) is intractable for general
cases. Prior work on DRO has focused on tractable classes of ambiguity set and loss functions. For
example, it has been shown that the DRO problem with Wasserstein distance can be reformulated as
a convex optimization problem by proving a duality result (Blanchet & Murthy, 2019; Gao & Kley-
wegt, 2016; Esfahani & Kuhn, 2018; Zhao & Guan, 2018). But this reformulation is only possible
for limited classes of loss functions. To deal with a larger class of losses, Sinha et al. (2018) consider
a relaxation of the saddle-point problem (1) and provides a stochastic gradient-type adversarial train-
ing procedure to solve it. However, there is no guarantee to find the global optimum in non-convex
case even for this relaxed problem, and their method requires additional smoothness condition on
loss functions and can only achieve a small amount of robustness. Moreover, the Wasserstein DRO
reformulations typically possess complicated structures and can not be solved efficiently by off-the-
shelf solvers in large-scale problems. To tackle this difficulty, Li et al. (2019) propose a linearized
proximal ADMM algorithm, which can achieve the same accuracy up to hundreds times faster than
the standard off-the-shelf solver. However their algorithm can only solve Wasserstein distribution-
ally robust logistic regression problems. There are also some work on DRO with f -divergence ball
(Ben-Tal et al., 2013; Namkoong & Duchi, 2017; 2016). But any f -divergence ambiguity set around
P can only contain distributions with the same support as P and thus does not allow robustness to
unseen data.
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In this paper, we present a three-player framework for Wasserstein DRO problem, which applies to
general loss functions and arbitrary level of robustness. Instead of reducing the original intractable
saddle-point problem (two-player game) to a complicated convex optimization as in the literature,
we introduce auxiliary Lagrange multiplier for the Wasserstein constraints in the inner supremum
problem and formulate a min-max game between three-players who optimizes over probability dis-
tributions, model parameters and Lagrange multiplier. Each of the three players can use different
optimization algorithms customized for their problem, as long as the player strategies lead to an
equilibrium of the game.

Finding an equilibrium of a game between players remains an active topic of research in machine
learning. Much of the focus has been on a two-player game (Agarwal et al., 2018; Donini et al.,
2018; Cotter et al., 2019a;b; Kearns et al., 2018). In particular, Agarwal et al. (2018) propose an
algorithm for fair classification by computing an equilibrium of a two-player game where one player
chooses a mixture of objective functions, and the other player minimizes the loss of the mixture.
Recently, Narasimhan et al. (2019) also present a three-player approach for optimizing generalized
rate metrics. But their game formulation as well as the algorithms for each player is different from
ours. We summarize our contribution as follows:

• We present a three-player game framework for solving Wasserstein DRO problem. Our
framework applies to arbitrary level of robustness and general loss functions, whereas prior
work focuses on either a limited class of loss functions or small values of robustness.

• We propose new algorithms for solving an equilibrium of the game in convex and non-
convex settings which both enjoy provable convergence guarantees. In particular, the player
who optimizes over model parameters uses gradient descent algorithm in the convex case
and MCMC sampling when the loss function is non-convex.

• We prove an excess risk bound for the proposed algorithms which shows that with high
probability the learned model achieves the optimal minimax risk up to the optimization
error, which grows linearly with a predefined accuracy parameter µ, and the generalization
error, which grows as 1/

√
n.

In the next section, we formalize the problem. In Section 3, we present the three-player game
framework including the game formulation, proposed algorithms and theoretical guarantees. The
experimental results are provided in Section 4. Finally we conclude and discuss future directions.
All proofs are deferred to the appendix.

2 PROBLEM SETUP

We consider Wasserstein distributionally robust optimization (DRO) problem. Let (Z, dZ) be a
compact Polish space with metric dZ and diam(Z) := supz,z′∈Z dZ(z, z′). Denote with P(Z)
the space of all Borel probability measures on Z and P1(Z) the space of all P ∈ P(Z) with finite
moment of order 1, i.e., P1(Z) := {P ∈ P(Z) : EP [dZ(z, z0)] < ∞ for z0 ∈ Z}. Then, for any
two probability measures P,Q ∈ P1(Z), the Wasserstein distance between P and Q is defined as

W (P,Q) := inf
M∈Γ(P,Q)

(E(z,z′)∼M [dZ(z, z′)]),

where Γ(P,Q) denotes the collection of all measures on Z ×Z with marginals P and Q on the first
and second factors, respectively.

Given a model family Ω and a loss function l : Ω × Z → R+, the performance of model ω on in-
stances generated according to P is measured by expected risk denoted by RP (ω) := Ez∼P l(ω, z).
In this work, we do not assume the loss function to be convex in ω. The Wasserstein DRO problem
formulation takes the form

min
ω∈Ω

sup
Q:W (Q,P )≤ε̃

RQ(ω), (2)

where the parameter ε̃ > 0 is the radius of Wasserstein ball and represents the level of robustness.

To deal with general loss function, whether convex or non-convex, we enlarge the space of possible
solutions from deterministic models Ω to stochastic models characterized by a distribution over Ω.
A stochastic model π first samples a model ω from the distribution π and then use ω to compute
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the loss. The resulting expected risk for π is RP (π) :=
∫
RP (ω)π(dω). By replacing RQ(ω) with

RQ(π), the Wasserstein DRO problem (2) is re-formulated as
min
π∈∆

sup
Q:W (Q,P )≤ε̃

RQ(π), (3)

where ∆ is the set of all distributions over Ω. Note that Problem (3) and (2) are equivalent for convex
loss function. In practice, we do not know the true distribution P and only have access to a data
set of training samples {zi}ni=1 drawn i.i.d. from P . We therefore replace the true distribution P in
problem (3) with empirical distribution Pn = 1

n

∑n
i=1 δzi and seek to solve the following problem:

min
π∈∆

sup
Q:W (Q,Pn)≤ε̃

RQ(π). (4)

3 THREE-PLAYER GAME FRAMEWORK

In this section, we first show how the Wasserstein DRO problem (4) can be formulated as a three-
player game. Then we propose algorithms for finding an equilibrium of the expanded game in
both convex and non-convex setting. We finally establish excess risk bounds which compare the
performance of the proposed algorithms to the optimal solution of (3).

3.1 GAME FORMULATION

To derive the three-player game, we first observe that problem (4) is equivalent to
max
π∈∆

min
Q:W (Q,Pn)≤ε̃

[−RQ(π)]. (5)

Then we consider its dual problem (6) obtained by switching max and min and show the equivalence
of primal and dual problem in the following lemma.
Lemma 1. The strong duality holds, i.e.,

max
π∈∆

min
Q:W (Q,Pn)≤ε̃

[−RQ(π)] = min
Q:W (Q,Pn)≤ε̃

max
π∈∆

[−RQ(π)]. (6)

From our Lemma 1 and Lemma 36.2 of Rockafellar (1970), the maximum value of problem (5)
and the minimum value of (6) are equal and coincide with −RQ§(π§) where π§ and Q§ denote the
solutions of the two problems respectively, i.e., (Q§, π§) is the saddle point. Therefore, by finding
the saddle point of problem (6), we can obtain the solution π§ of problem (5). However, because of
the Wasserstein ball constraints, it is very hard to directly work on problem (6). A standard approach
is to introduce a Lagrange multiplier λ ≥ 0 for the Wasserstein constraint and write the Lagrangian
for the problem

L̃(Q, π, λ) = −RQ(π) + λ(W (Q,Pn)− ε̃).
Then one minimize the Lagrangian over probability measures Q, and maximize it over π ∈ ∆ and
λ ∈ R+,

min
Q

max
π∈∆,λ≥0

L̃(Q, π, λ). (7)

We pose this min-max problem as a zero-sum game between three players: a Q-player who min-
imizes L̃ over Q, a π-player who maximizes L̃ over π and a λ-player who maximizes L̃ over λ.
Since L̃ is convex in Q and linear in π and λ, one can solve an equilibrium of this game and obtain
a solution for the problem (5). For technical reasons, we impose an additional constraint on λ and
aim to solve the constrained version of problem (7)

min
Q

max
π∈∆,B≥λ≥0

L(Q, π, λ), (8)

where B is a predefined parameter and L(Q, π, λ) = −RQ(π) + λ(W (Q,Pn) − ε). Notice that
because of the introduction of B we also substitute ε̃ with ε and try to optimize L rather than L̃ .We
will show how to choose B and ε later in our theoretical analysis in Section 3.3. Now all we need
to do is to choose the strategy that each player uses to optimize their objective, so that the players
converge to an (approximate) equilibrium of this game. We consider two cases: the loss function
is (1) convex in ω, and (2) non-convex in ω. For each case, we propose an algorithm for finding
a µ-approximate Nash equilibrium of the game, which is a triple (Q̂, π̂, λ̂), where L(Q̂, π̂, λ̂) ≤
L(Q, π̂, λ̂) + µ for all Q and L(Q̂, π̂, λ̂) ≥ L(Q̂, π, λ)− µ for all π ∈ ∆ and λ ∈ [0, B].
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Algorithm 1 Three-player game for convex
loss

Input: training sample {zi}ni=1, Wasserstein
ball radius ε, bound B, accuracy µ0 and µ1,
learning rate α, β
Initialize θ1 = 0, ω1 = 0
for t = 1, 2, · · · do

λt ← B
exp(θt)

1 + exp(θt)
Qt ← BESTQ,µ1(ωt, λt)
θt+1 ← θt + α(W (Qt, Pn)− ε)
ωt+1 ← ΠΩ(ωt + β∂ω(−RQt(ωt)))

end for
return: Q̂t = 1

t

∑t
t′=1Qt′ , ω̂t =

1
t

∑t
t′=1 ωt′ , λ̂t = 1

t

∑t
t′=1 λt′

Algorithm 2 Three-player game for non-convex
loss

Input: same as in Algorithm 1, learning rate α
and η, a prior π1

Initialize θ1 = 0
for t = 1, 2, · · · do

λt ← B
exp(θt)

1 + exp(θt)
Sample ωt ∼ πt
Qt ← BESTQ,µ1(πt, λt)
θt+1 ← θt + α(W (Qt, Pn)− ε)

πt+1(dω) =
exp(−ηRQt(ω))πt(dω)∫
exp(−ηRQt(γ))πt(dγ)

end for
return: Q̂t = 1

t

∑t
t′=1Qt′ , π̂t = 1

t

∑t
t′=1 ωt′ ,

λ̂t = 1
t

∑t
t′=1 λt′

3.2 ALGORITHMS

In this subsection, we propose algorithms for solving problem (8) in both convex and non-convex
cases. Then in the following subsection, we show how the solution returned by our algorithms can
approximately solved the original problem (4) (or (3)) by choosing appropriate parameters B and ε.

3.2.1 CASE OF CONVEX l

We start with the case where l(ω, z) is convex in ω for any z. We find the approximate equilibrium
by using the standard scheme of Freund & Schapire (1996). We proceed iteratively with the Q-
player playing best response to the opponents strategies, while running the exponentiated gradient
algorithm (Kivinen & Warmuth, 1997) and online gradient descent for λ-player and π-player respec-
tively and terminate as soon as the sub-optimality of the average play falls below the pre-specified
accuracy µ := µ0 + µ1. The resulting algorithm is outlined in Algorithm 1. Here, ΠΩ denotes the
l2 projection onto Ω, and BESTQ,µ1

represents the µ1-approximate best response of Q-player, i.e.,
L(BESTQ,µ1

(ω, λ), ω, λ) ≤ minQ L(Q,ω, λ) +µ1, which is to solve a minimization problem of a
probability functional and will be discussed in Section 3.2.3. After the loop terminates, it results in
a deterministic model ω̂. Algorithm 1 is guaranteed to find an approximate equilibrium of the game
in (8) by the following theorem.

Theorem 1. Suppose that l(ω, z) is convex in ω and K-Lipschitz in ω with respect to || · ||2 for any
z. Let ρ := diam(Z) + ε and BΩ ≥ maxω∈Ω ||ω||2. Then setting α =

µ0

4ρ2B
and β =

µ0

4K2
,

Algorithm 1 will return a µ-approximate equilibrium in at most
4K2B2

Ω + 8B2ρ2 log(2)

µ2
0

iterations.

Theorem 1 shows that we may need up to 4K2B2
Ω+8B2ρ2 log(2)

µ2
0

iterations to achieve a sub-optimality
µ. Note that B is the restriction that we place on the Lagrange multiplier λ. In general, large value
of B will bring the problem (8) closer to (7) and thus to the primal problem (4), but at the cost of
needing more iterations to reach any given suboptimality µ.

3.2.2 CASE OF NON-CONVEX l

In modern machine learning models, like deep neural networks, the loss function is usually non-
convex. We now provide a different algorithm for non-convex loss functions where the π-player
updates a probability distribution on the set of model parameters Ω using exponentially weighted
aggregation procedure (Cesa-Bianchi & Lugosi, 2006; Alquier et al., 2017) instead of online gra-
dient descent. The Q-player and λ-player, however, continue to operate in the same way as in
Algorithm 1.
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Subroutine 3 Sampling ωt ∼ πt
Start: Draw ω1 ∼ π1

for t = 1, 2, · · · do
Set ω := ωt
Metropolis-Hastings algorithm: Repeat N times
for j = 0, 1, · · · , N − 1 do

Sample u ∼ U[0,1]

Sample ω′ ∼ N (ω, σ2I)

if u < min{1, exp[η(
∑t
t′=1(RQt′ (ω)−RQt′ (ω

′)))]} then
ω ← ω′

end if
end for
Set ωt+1 := ω

end for

In the proposed algorithm, outlined in Algorithm 2, the π-player maintains a prior distribution on
the set of model parameters, which is updated after the encounter of each new task Qt using the
performance of the models. Typically, if the expected risk for model ω is small, then we will assign
a large weight to ω. This results in weighting more those models whose accumulative loss is small.
We first give a bound for the cumulative regret of the strategy with respect to any model.
Lemma 2. Assume that l(ω, z) is K-Lipschitz in ω with respect to || · ||2 for any z and uniformly
bounded for any ω ∈ Ω and z ∈ Z , i.e., 0 ≤ l(ω, z) ≤M . Let Ω = {ω : ||ω||2 ≤ B̃Ω, ω ∈ Rd} and
π1 the uniform distribution on Ω. Let Q1, Q2, · · · , QT , π1, π2, · · · , πT be the iterates generated by
Algorithm 2. Then for any ω ∈ Ω,

T∑
t=1

RQt(πt) ≤
T∑
t=1

RQt(ω) + τT ,

where τT :=
ηM2T

8
+
µ0T

4
+
d

η
log(

8KB̃Ω

µ0
).

Now we show that the algorithm provably converges to an approximate equilibrium of the game (8)
with high probability.

Theorem 2. Let ρ := diam(Z)+ε. Then, under the assumptions of Lemma 2, by setting α =
µ0

4ρ2B

and η =
2µ0

M2
, with probability at least 1− 2δ, Algorithm 2 will return a µ-approximate equilibrium

in at most
8M2 log(1/δ) + 32B2ρ2 log(2) + 4dM2 log(8KB̃Ω/µ0)

µ2
0

iterations.

Remember that in convex setting the algorithm returns a deterministic model ω̂T . However when
the loss function is non-convex, it yields a stochastic model π̂T with a probability mass of 1

T on each
ωt. For the case that T is very large, this stochastic model may be undesirable in practice. To select
a deterministic model, a heuristic approach is to compute Q̂ using Algorithm 2 and then have the
π-player play the best response to Q̂ which is the maximizer of −RQ̂(π) and can always be chosen
to put all of the mass on one of the candidate ω.

Remark 1. As will be shown in Section 3.2.3, the step of calculatingQt is equivalent to a stochastic
optimization problem where the objective depends on the random variable ω ∼ πt. Stochastic Ap-
proximation (SA) methods (Kushner & Yin, 2003) can be applied to this problem, at each iteration
using a random sample of ω. Now, the algorithm can be implemented without calculating πt exactly
as in the last step since it only requires being able to sample a model ω from the distribution πt. This
can be achieved by using Markov chain Monte Carlo (MCMC) methods which allow us to sample
the distribution without calculating the integral in the denominator (see Subroutine 3).

Remark 2. In Subroutine 3, we use N -steps of Metropolis-Hastings algorithm with a Gaussian
proposal distribution (Robert & Casella, 2013) to sample ωt+1 from πt+1. To ensure a short burn-in
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period, we use previous drawing ωt as a starting point. Note that we have to compare ω and ω′ on
the whole distributions that Q-player has yielded so far for computing the acceptance ratio, which
might make our algorithm become slow when t grows. In practice, to improve the speed we may
truncate past history and use only a fixed number of timesteps.

3.2.3 BEST: THE Q-PLAYER’S BEST RESPONSE

In both algorithms, we let the Q-player play the µ1-approximate best response to the opponents
strategies. Recall that BESTQ,µ1

(ω, λ) for a given ω and λ is any µ1-approximate minimizer of
a functional L(Q,ω, λ) over all probability measures on the metric space (Z, dZ). Because the
optimization now takes place in the infinite dimensional space of probability measures, standard
finite dimensional algorithms like gradient descent are initially unavailable; even the proper notion
for the derivate of the probability functional is unclear. Luckily, it can be shown that this probability
functional minimization problem is equivalent to solving a transportation map. We first give the
definition of the transportation map Tω,λ(z) : Z → Z:

Tω,λ(z) = arg max
z′
{l(ω, z′)− λ · dZ(z′, z)}. (9)

Then we can prove that BESTQ can be derived exactly by using the transportation map Tω,λ in the
following lemma.
Lemma 3. Let Qω,λ := Tω,λ#Pn be the pushforward of the empirical distribution Pn under the
transportation map Tω,λ, i.e., Qω,λ = 1

n

∑n
i=1 δTω,λ(zi). Then the best response of Q-player for a

given ω and λ is attained by

BESTQ(ω, λ) =
1

n

n∑
i=1

δTω,λ(zi) and W (BESTQ(ω, λ), Pn) =
1

n

n∑
i=1

dZ(Tω,λ(zi), zi).

The above lemma shows that BESTQ can be obtained directly by solving the transportation map
Tω,λ(zi). Similarly, in the case of non-convex loss functions, computing BESTQ,µ1(π, λ) is equiv-
alent to solving the stochastic transportation map, i.e., Tπ,λ(z) = arg maxz′{Eω∼π[l(ω, z′) − λ ·
dZ(z′, z)]}, which is a stochastic optimization problem and can be tackled with Stochastic Approxi-
mation methods by using a random sample ω at each iteration. Moreover, computing the (stochastic)
transportation map is a strongly-concave optimization problem for large λ when the loss function is
smooth and dZ(·, zi) is strongly convex (Sinha et al., 2018). Thus (stochastic) gradient method can
solve T(π)ω,λ(zi) efficiently with provable convergence guarantees. In practice, we use (stochastic)
gradient ascent steps to solve the map. See Appendix D for the pseudo-code. It should be mentioned
that this concave property does not necessarily hold when λ is small and hence gradient ascent in that
case can only guarantee to find a local maximum (Reddi et al., 2016; Allen-Zhu & Hazan, 2016).
We leave this problem to future work. And in our experimental section, we empirically show that it
behaves well on real-world datasets.

Remark 3. We discover that the the algorithm proposed in Sinha et al. (2018) for solving a relaxed
DRO problem can be recovered from our framework by having the Q-player play best response, π-
player play gradient descent and λ-player play a constant strategy, meaning that he always chooses
a fixed λ no matter what the opponent strategies are. Therefore our framework might be viewed as
a generalization of their method despite that our motivation and techniques are different.

3.3 RISK BOUNDS

From results in the previous section, Algorithm 1&2 are guaranteed to converge to an approximate
equilibrium of problem (8) (or with high probability). Now we show that how such algorithms solve
the original problem (3), i.e., generalizing robustness to the perturbations on the true distribution
P . Let (Q̂, π̂, λ̂) be the µ-approximate equilibrium returned by our algorithms. Denote π∗ =
arg minπ∈∆ supQ:W (Q,P )≤ε̃RQ(π) be the solution of the problem (3). The performance of our
algorithms is measured in terms of excess risk defined as

sup
Q:W (Q,P )≤ε̃

RQ(π̂)− sup
Q:W (Q,P )≤ε̃

RQ(π∗).

In this section, we will provide an upper bound for the excess risk of our algorithms. Notice that
in the process of deriving Algorithms 1&2 we introduce three different sources of error. First, we
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replace the true distribution P with the empirical distribution Pn. Second, we introduce a bound B
on the λ and substitute ε̃ with ε. Finally, we only run the algorithms for a fixed iterations until it
reaches sub-optimality level µ. The first source of error is unavoidable and also called generalization
error in statistical learning theory. We can upper bound it by using existing uniform convergence
bounds for local worst-case risk (Lee & Raginsky, 2018). The other two sources of error are caused
by the optimization algorithm and can be driven arbitrary small via a careful selection of B and ε.
We first establish that the equilibrium (Q̂, π̂, λ̂) satisfies the following property and then show how
to use it to choose B and ε.

Lemma 4. Suppose that the loss function l(ω, z) is uniformly bounded for any ω ∈ Ω and z ∈ Z ,
i.e., 0 ≤ l(ω, z) ≤M . Then we have

λ̂ ≤ 2µ+M

ε
and W (Q̂, Pn)− ε ≤ 2µ+M

B
.

Recall that ε and B are predefined parameters which are introduced in problem (8). We can always

choose a large enough B such that
2µ+M

B
< ε̃ and let ε = ε̃ − 2µ+M

B
. Then by Lemma 4, we

have W (Q̂, Pn) ≤ ε̃. We now combine the three different sources of error and yield the following
excess risk bound.

Theorem 3. Assume that the loss function l(ω, z) is Lipschitz with respect to z and uniformly
bounded for any ω ∈ Ω and z ∈ Z , i.e., 0 ≤ l(ω, z) ≤ M . Let (Q̂, π̂, λ̂) be the µ-approximate

equilibrium returned by Algorithm 1 or 2 with B =
(2µ+M)2

µε̃
+

2µ+M

ε̃
and ε =

2µ+M

3µ+M
ε̃.

Then, with probability at least 1− δ, π̂ satisfies

sup
Q:W (Q,P )≤ε̃

RQ(π̂)− sup
Q:W (Q,P )≤ε̃

RQ(π∗) ≤ 3µ+ Õ(1/
√
n),

where Õ suppresses polynomial dependence on log(1/δ).

This theorem shows that the solution returned by our algorithms achieves the optimal worst-case
loss on the true distribution up to the optimization error, which grows linearly with µ, and the
generalization error, which grows as 1/

√
n. For Algorithm 1, we can set µ ∝ 1/

√
n to guarantee

that the optimization error does not dominate the generalization error. Then, by Theorem 3 and
Theorem 1, we know that Algorithm 1 with B ∝

√
n, ε ≈ ε̃, α ∝ ρ−2n−1 and β ∝ 1/

√
n will

terminate in at most O(n2ρ2) iterations and return ω̂, which with probability at least 1− δ satisfies
supQ:W (Q,P )≤ε̃RQ(ω̂) − supQ:W (Q,P )≤ε̃RQ(π∗) ≤ Õ(1/

√
n). A similar analysis also applies to

Algorithm 2.

4 EXPERIMENTS

We evaluate our algorithms on real-world datasets in convex and non-convex settings with the sim-
ple binary Logistic Regression (LR) and the widely-used convolutional neural networks (CNNs)
respectively. We train on MNIST (LeCun et al., 1998) and test on MNIST-M (Ganin & Lempitsky,
2015), SVHN (Netzer et al., 2011), SYN (Ganin & Lempitsky, 2015) and USPS (Denker et al.,
1989) datasets, using test accuracy as a metric for evaluating distributional robustness.

For convex setting, we consider the number-pairwise classification, and take the raw pixel values in
[0, 1] as the features accommodated with a LR classifier. For each class pair, we randomly sample
60% images for training and determine parameters by cross-validation with grid search (e.g., ε = 0.5
and B = 3000). Besides the classic LR, we also compare our method with a distributionally robust
variant DRLR (Li et al., 2019). For non-convex setting, we use a ConvNet (Volpi et al., 2018) for
multi-class classification, which is composed of two convolutional layers with two fully connected
layers, and set the hyperparameter N = 50 for MCMC sampling (results with LeNet (LeCun et al.,
1998) in Appendix E). We use 10000 digit images for training. The results are compared to that of
Empirical Risk Minimization (ERM), the iterative method (ITP) (Volpi et al., 2018) and the stochas-
tic gradient descent procedure (WRM) (Sinha et al., 2018), the latter two of which are aimed to solve
a relaxed Wasserstein DRO problem. We use TQ = 15 iterations for solving the transportation map.
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Table 1: Average classification accuracy on test datasets with CNNs.

DATASETS ERM ITP WRM TPG-DRO

USPS 78.9%±1.7% 78.4%±1.3% 80.0%±1.3% 78.9%±1.9%
SVHN 28.3%±3.2% 34.6%±3.3% 35.4%±1.4% 35.6%±3.1%
MNIST-M 54.8%±2.1% 59.8%±1.8% 58.6%±1.3% 58.7%±2.0%
SYN 40.6%±2.2% 45.0%±1.4% 42.6%±0.8% 45.1%±1.4%

For the transportation cost of the underlying space, we use the Euclidean norm cost for the feature
vectors and define the overall as dZ((x, y), (x′, y′)) = ||x− x′||22 +∞1y 6=y′ .
The results are averaged over 10 independent sampling, and reported in Figure 1 and Table 1. We
observe that our method TPG-DRO (LR) achieves higher or at least the same accuracy on almost
all test datasets compared to the models trained with LR and DRLR. In non-convex setting, our
method TPG-DRO outperforms ERM on all datasets and improves the performances of ITP on
USPS, SVHN and SYN datasets. On MNIST-M, the performance of our method is slightly inferior
to ITP. Compared to WRM, TPG-DRO also achieves higher accuracy on all datasets except for
USPS. The running time of our algorithms as well as the baselines is provided in Appendix E.

Figure 1: Average classification accuracy on test datasets with LR.

5 CONCLUSION

We introduce a three-player game framework for solving Wasserstein DRO problem with arbitrary
level of robustness, which applies to convex and non-convex loss functions. One advantage of the
framework is that it makes new algorithms possible by designing different strategies for each player.

There remain many avenues for future investigation. Our algorithm for non-convex loss functions
uses MCMC sampling method instead of gradient-based algorithms. A major benefit of adapting
this strategy is that MCMC is (in theory) able to fully explore the parameter space. Thus it may find
a better optima for a non-convex function. As shown in Theorem 2, it returns an approximate equi-
librium with high probability. However compared to gradient-based algorithms MCMC sampling

8
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is computationally expensive and requires more tuning such as choosing a proper proposal distribu-
tion. In the future, one interesting problem is to develop more efficient and theoretically grounded
(gradient-based) algorithm for the π-player in non-convex setting.
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A PROOFS IN SECTION 3.1

A.1 PROOF OF LEMMA 1

Proof. We first prove that the Wasserstein ball is compact and convex. Since Z is compact by
our assumption, by Theorem 6.18 of Villani (2008), the Wasserstein space P1(Z) is also compact.
Notice that the Wasserstein ball is a closed subset of P1(Z) since Wasserstein distance defines a
distance on P1(Z), and a closed subset of a compact space is compact. So the Wasserstein ball is
compact. The convexity of the Wasserstein ball is straightforward since the Wasserstein distance is
convex. Then by the minimax theorem (Neumann, 1928; Sion et al., 1958), the strong duality holds
because −RQ(π) is linear in π and Q and the domains of Q and π are compact and convex.

B PROOFS IN SECTION 3.2

B.1 PROOF OF THEOREM 1

Proof. We first derive the regret bounds for the updates of λ-player and π-player using standard
convergence analysis for online convex optimization. Let Λ := {λ : 0 ≤ λ ≤ B} and Λ′ := {λ′ ∈
R2

+ : ||λ′||1 = B}. We associate every λ ∈ Λ with the λ′ ∈ Λ′ which is equal to λ on the first
dimension and puts the remaining mass on the second dimension. Consider a run of Algorithm 1.
For each λt, let λ′t ∈ Λ′ be the associated element of Λ′. Let rt := W (Qt, Pn)− ε and let r′t ∈ R2

be equal to rt on the first coordinate and 0 on the second coordinate. By definition of Wasserstein
distance, it is easy to see that ||r′t||∞ = |rt| ≤ W (Qt, Pn) + ε ≤ diam(Z) + ε = ρ. Moreover, for
any λ and the associated λ′, we have for all t

λrt = (λ′)T r′t,

and in particular,

λtrt = (λ′t)
T r′t.

If we interpret r′t as the reward vector for the λ-player, then the choices of λ′t correspond to those of
the exponentiated gradient algorithm. By Corollary 2.14 and 2.16 of Shalev-Shwartz et al. (2012),
for any λ′ ∈ Λ′, we have

T∑
t=1

(λ′)T r′t ≤
T∑
t=1

(λ′t)
T r′t + ξT ,

where ξT :=
B log(2)

α
+ αρ2BT . Therefore, we also have for any λ ∈ Λ,

T∑
t=1

λrt ≤
T∑
t=1

λtrt + ξT .

Similarly, for the π-player, the choices of ωt ∈ Ω correspond to those of the online gradient descent
with a sequence of loss RQ1

(w), RQ2
(w), · · · , RQT (w). Since l(ω, z) is convex in ω for any z

by our assumption, RQt(ω) is also convex in ω for any t. Then, by Corollary 2.17 and 2.13 of
Shalev-Shwartz et al. (2012), for any ω ∈ Ω, we have

T∑
t=1

−RQt(ω) ≤
T∑
t=1

−RQt(ωt) + ζT ,

12
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where ζT =
B2

Ω

2β
+ βTK2. Now we use these regret bounds to bound the suboptimality of

L(Q̂T , ω̂T , λ̂T ). First, for any (π, λ),

L(Q̂T , π, λ) = −RQ̂T (π) + λ(W (Q̂T , Pn)− ε).

≤ 1

T

∑T
t=1(−RQt(π) + λ(W (Qt, Pn)− ε))

≤ 1

T

∑T
t=1(−RQt(ωt) + λt(W (Qt, Pn)− ε)) +

ξT
T

+
ζT
T

=
1

T

∑T
t=1 L(Qt, ωt, λt) +

ξT
T

+
ζT
T

≤ 1

T

∑T
t=1 L(Q̂T , ωt, λt) + µ1 +

ξT
T

+
ζT
T

≤ L(Q̂T , ω̂T , λ̂T ) + µ1 +
ξT
T

+
ζT
T

,

where the first inequality uses the linearity of −RQ(π) in Q and the convexity of mapping u →
W (u, v), the second inequality follows from the regret bounds, the third inequality is by the choice
of Qt, and the last inequality uses convexity of RQ̂T (ω) in ω.

Also, for any Q,

L(Q, ω̂T , λ̂T ) ≥ 1

T

∑T
t=1 L(Q,ωt, λt))

≥ 1

T

∑T
t=1 L(Qt, ωt, λt)− µ1

=
1

T

∑T
t=1(−RQt(ωt) + λt(W (Qt, Pn)− ε))− µ1

≥ 1

T

∑T
t=1(−RQt(ω̂T ) + λ̂T (W (Qt, Pn)− ε))− ξT

T
− ζT
T
− µ1

≥ −RQ̂T (ω̂T ) + λ̂T (W (Q̂T , Pn)− ε)− ξT
T
− ζT
T
− µ1

= L(Q̂T , ω̂T , λ̂T )− ξT
T
− ζT
T
− µ1

,

where the first inequality uses the convexity of RQ(ω), the second inequality follows from the
definition ofQt, the third inequality uses the regret bounds, and the last inequality is due to convexity
of Wasserstein distance.

Combining the above results immediately implies that for any T ≥ 1, the suboptimality µT of
L(Q̂T , ω̂T , λ̂T ) satisfies

µT ≤
ξT
T

+
ζT
T

+ µ1 =
B log(2)

Tα
+ αρ2B +

B2
Ω

2Tβ
+ βK2 + µ1.

By plugging α =
µ0

4ρ2B
and β =

µ0

4K2
, if T ≥ 4K2B2

Ω + 8B2ρ2 log(2)

µ2
0

, we can verify that

µT ≤
4ρ2B2 log(2)

µ0
4K2B2

Ω+8B2ρ2 log(2)

µ2
0

+
2K2B2

Ω

µ0
4K2B2

Ω+8B2ρ2 log(2)

µ2
0

+
µ0

2
+ µ1 = µ.

B.2 PROOF OF LEMMA 2

Proof. First, note that

πt(dω) =
exp(−η

∑t−1
t′=1RQt′ (ω))π1(dω)∫

exp(−η
∑t−1
t′=1RQt′ (γ))π1(dγ)

.

Denote Ht =
∫

exp(−η
∑t−1
t′=1RQt′ (γ))π1(dγ). Since RQt(ω) ∈ [0,M ] by assumption, using

Hoeffdings inequality (Hoeffding, 1963), for any t, we have

logEπt(exp(−ηRQt(ω))) ≤ −ηRQt(πt) +
η2M2

8
,

13
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which can be rewritten as

Eπt(exp(−ηRQt(ω))) exp(−η
2M2

8
) ≤ exp(−ηRQt(πt)).

For Eπt(exp(−ηRQt(ω))), it can be calculated as

Eπt(exp(−ηRQt(ω))) =
∫

exp(−ηRQt(ω))πt(dω)

=

∫
exp(−ηRQt(ω))

exp(−η
∑t−1
t′=1RQt′ (ω))π1(dω)

Ht

=

∫
exp(−η

∑t
t′=1RQt′ (ω))π1(dω)

Ht

=
Ht+1

Ht

.

Multiplying over t = 1, 2, · · · , T , we get

exp(−η
2M2T

8
)HT+1 ≤ exp(−η

T∑
t=1

RQt(πt)).

Taking log on both sides and rearranging the terms, we obtain∑T
t=1RQt(πt) ≤

ηM2T

8
− log(HT+1)

η

=
ηM2T

8
−

log(
∫

exp(−η
∑T
t=1RQt(γ))π1(dγ))

η

=
ηM2T

8
−

log(Eπ1
[exp(−η

∑T
t=1RQt(γ))])

η

=
ηM2T

8
+ infπ

{
Eπ
∑T
t=1RQt(γ) +

KL(π||π1)

η

}
=
ηM2T

8
+ infπ

{∑T
t=1RQt(π) +

KL(π||π1)

η

}
,

where the third equality follows from the duality formula for Kullback-Leibler divergence (Catoni,
2003). Denote ω∗ = arg min

∑T
t=1RQt(ω). Consider a parametric distribution family pc(dω) ∝

1{||ω−ω∗||2 ≤ c}π1(dω) where 1{·} is the indicator function. Note that when c is small, pc highly
concentrates on ω∗. Now we have

KL(pc||π1) = − log(π1(||ω − ω∗||2 ≤ c)),
and

π1(||ω − ω∗||2 ≤ c) ≥
πd/2(c/2)d

Γ(d/2 + 1)

/ πd/2(B̃Ω)d

Γ(d/2 + 1)
=
( c

2B̃Ω

)d
,

where the inequality is due to the fact that since π1 is uniformly distributed on the B̃Ω d-ball, the
probability to be calculated is greater than the ratio between the volume of d-ball with radius of c/2
and the volume of d-ball with radius B̃Ω. So we get

KL(pc||π1) ≤ d log(
2B̃Ω

c
).

Furthermore, by Lipschitz assumption,
T∑
t=1

RQt(pc) ≤
T∑
t=1

RQt(ω
∗) + TKc.

Therefore, ∑T
t=1RQt(πt) ≤

ηM2T

8
+ infπ

{∑T
t=1RQt(π) +

KL(π||π1)

η

}
≤ ηM2T

8
+ infc

{∑T
t=1RQt(pc) +

KL(pc||π1)

η

}
≤
∑T
t=1RQt(ω

∗) +
ηM2T

8
+ infc

{
TKc+

d

η
log(

2B̃Ω

c

}
≤
∑T
t=1RQt(ω

∗) +
ηM2T

8
+
µ0T

4
+
d

η
log(

8KB̃Ω

µ0
)

,
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where the last equality follows by choosing c =
µ0

4K
. We complete the proof.

B.3 PROOF OF THEOREM 2

Proof. The proof follows the same logic as that of Theorem 1. First, since the strategy for λ-player
remains the same, the regret bound obtained in Theorem 1 still holds, that is, for any λ ∈ Λ,

T∑
t=1

λrt ≤
T∑
t=1

λtrt + ξT .

Then the suboptimality of L(Q̂T , π̂T , λ̂T ) is bounded as follows. For any (π, λ),

L(Q̂T , π, λ) = −RQ̂T (π) + λ(W (Q̂T , Pn)− ε).

≤ 1

T

∑T
t=1(−RQt(π) + λ(W (Qt, Pn)− ε))

≤ 1

T

∑T
t=1(−RQt(πt) + λt(W (Qt, Pn)− ε)) +

ξT
T

+
τT
T

=
1

T

∑T
t=1 L(Qt, πt, λt) +

ξT
T

+
τT
T

≤ 1

T

∑T
t=1 L(Q̂T , πt, λt) + µ1 +

ξT
T

+
τT
T

≤ 1

T

∑T
t=1 L(Q̂T , ωt, λt) + µ1 +

ξT
T

+
τT
T

+M

√
log(1/δ)

2T
(with probability at least 1− δ)

= L(Q̂T , π̂T , λ̂T ) + µ1 +
ξT
T

+
τT
T

+M

√
log(1/δ)

2T

,

where the first inequality uses the linearity of −RQ(π) in Q and the convexity of mapping u →
W (u, v), the second inequality follows from the regret bound for λ-player and Lemma 2, the third
inequality is by the choice of Qt, and the last inequality uses Chernoff bound.

Also, for any Q,

L(Q, π̂T , λ̂T ) =
1

T

∑T
t=1 L(Q,ωt, λt))

≥ 1

T

∑T
t=1 L(Q, πt, λt))−M

√
log(1/δ)

2T
(with probability at least 1− δ)

≥ 1

T

∑T
t=1 L(Qt, πt, λt)− µ1 −M

√
log(1/δ)

2T

=
1

T

∑T
t=1(−RQt(πt) + λt(W (Qt, Pn)− ε))− µ1 −M

√
log(1/δ)

2T

≥ 1

T

∑T
t=1(−RQt(π̂T ) + λ̂T (W (Qt, Pn)− ε))− ξT

T
− τT
T
− µ1 −M

√
log(1/δ)

2T

≥ −RQ̂T (π̂T ) + λ̂T (W (Q̂T , Pn)− ε)− ξT
T
− τT
T
− µ1 −M

√
log(1/δ)

2T

= L(Q̂T , π̂T , λ̂T )− ξT
T
− τT
T
− µ1 −M

√
log(1/δ)

2T

,

where the first inequality uses Chernoff bound, the second inequality follows from the definition
of Qt, the third inequality uses the regret bound and Lemma 2, and the last inequality is due to
convexity of Wasserstein distance.

The above results immediately imply that with probability at least 1− 2δ,

µT ≤
ξT
T

+
τT
T

+ µ1 +M

√
log(1/δ)

2T

=
B log(2)

Tα
+ αρ2B +

ηM2

8
+
µ0

4
+

d

ηT
log(

8KB̃Ω

µ0
) +M

√
log(1/δ)

2T
+ µ1

.

By plugging α =
µ0

4ρ2B
and η =

2µ0

M2
, if T ≥

8M2 log(1/δ) + 32B2ρ2 log(2) + 4dM2 log(8KB̃Ω/µ0)

µ2
0

, we can verify that µT ≤ µ.
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B.4 PROOF OF LEMMA 3

The proof of Lemma 3 uses the following strong duality result by Blanchet & Murthy (2019):
Proposition 1. Let f : Z → R be upper semicontinuous. Denote χf,ϑ(z) := supz′∈Z{f(z′)− ϑ ·
dZ(z, z′)}. Then for any P ∈ P1(Z),

sup
Q:W (Q,P )≤ε̃

RQ(f) = min
ϑ≥0
{ϑε̃+ EP [χf,ϑ(z)]},

and for any ϑ ≥ 0,
sup
Q
{RQ(f)− ϑW (Q,P )} = EP [χf,ϑ(z)].

Proof. First by definition, BESTQ(ω, λ) = arg minQ L(Q,ω, λ) = arg minQ[−RQ(ω) +
λ(W (Q,Pn) − ε)] = arg maxQ[RQ(ω) − λW (Q,Pn)], i.e., BESTQ is the maximizer of
RQ(ω)− λW (Q,Pn). Then for Qω,λ, we have

RQω,λ(ω)− λW (Qω,λ, Pn) ≤ supQ{RQ(ω)− λW (Q,Pn)} = EPn [χω,λ(z)]
= EPn [l(ω, Tπ,λ(z))]− λEPn [dZ(Tω,λ(z), z)]
= RQω,λ(ω)− λEPn [dZ(Tω,λ(z), z)] ≤ RQω,λ(ω)− λW (Qω,λ, Pn)

,

where the first equality follows from Proposition 1 and the last inequality uses the definition
of Wasserstein distance. Therefore we obtain RQω,λ(ω) − λW (Qω,λ, Pn) = supQ{RQ(ω) −
λW (Q,Pn)} and W (Qω,λ, Pn) = EPn [dZ(Tω,λ(z), z)], which means that the best response
BESTQ can be attained by Qω,λ. We complete the proof.

C PROOFS IN SECTION 3.3

C.1 PROOF OF LEMMA 4

Proof. Define λ = 0 if W (Q̂, Pn) ≤ ε otherwise λ = B. Then we have

µ−RPn(π̂) + λ̂(W (Pn, Pn)− ε)
= µ+ L(Pn, π̂, λ̂) ≥ L(Q̂, π̂, λ̂)

≥ L(Q̂, π̂, λ)− µ
= −RQ̂(π̂) + λ(W (Q̂, Pn)− ε)− µ
= −RQ̂(π̂) +B(W (Q̂, Pn)− ε)+ − µ

,

where the fist and second inequalities follows from the definition of µ-approximate equilibrium and
the last equality uses the definition of λ and notation x+ = max{x, 0}. Arranging the terms on both
sides and using RQ̂(π̂)−RPn(π̂) ≤M by assumption gives

2µ+M − λ̂ε ≥ B(W (Q̂, Pn)− ε)+ ≥ 0.

Thus, we obtain λ̂ ≤ 2µ+M

ε
, proving the first part of the lemma. The second part of the lemma

follows immediately by (W (Q̂, Pn)− ε)+ ≥W (Q̂, Pn)− ε and 2µ+M ≥ 2µ+M − λ̂ε.

C.2 PROOF OF THEOREM 3

We begin by establishing an auxiliary lemma:
Lemma C.1. Under the assumptions of Theorem 3, denote F = {l(ω, z) : ω ∈ Ω} and FT =

{ 1
T

∑T
i=1 l(ωi, z) : ωi ∈ Ω} for any given T , then with probability at least 1− δ, for all g ∈ FT ,

sup
Q:W (Q,P )≤ε̃

RQ(g)− sup
Q:W (Q,Pn)≤ε̃

RQ(g) ≤ 48
√
TC(F)√
n

+M

√
log( 1

δ )

2n
+

48√
n
C · diam(Z) ,

where C(F) =
∫∞

0

√
logN (F , || · ||∞, u/2)du andN (F , ||·||∞, u/2) denotes the covering number

of F .
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Proof. First, by Theorem 2 of Lee & Raginsky (2018), we have with probability at least 1 − δ, for
all g ∈ FT ,

sup
Q:W (Q,P )≤ε̃

RQ(g)− sup
Q:W (Q,Pn)≤ε̃

RQ(g) ≤ 48C(FT )√
n

+M

√
log( 1

δ )

2n
+

48√
n
C · diam(Z) .

Then, for any u, suppose F ′ is a u/2-covering set of F . Define F ′T = { 1
T

∑T
i=1 fi : fi ∈ F ′}. It is

easy to verify that F ′T is also a u/2-covering set of FT . Therefore we have N (FT , || · ||∞, u/2) ≤
N (F , || · ||∞, u/2)T . The lemma now follows by C(FT ) ≤

√
TC(F).

Now we are ready to prove Theorem 3.

Proof. We start by decomposing the excess risk.

sup
Q:W (Q,P )≤ε̃

RQ(π̂)− sup
Q:W (Q,P )≤ε̃

RQ(π∗)

= sup
Q:W (Q,P )≤ε̃

RQ(π̂)− sup
Q:W (Q,Pn)≤ε̃

RQ(π̂) + sup
Q:W (Q,Pn)≤ε̃

RQ(π̂)− sup
Q:W (Q,Pn)≤ε̃

RQ(π∗)+

sup
Q:W (Q,Pn)≤ε̃

RQ(π∗)− sup
Q:W (Q,P )≤ε̃

RQ(π∗)

.

For the first difference term, by Lemma C.1, we have with probability at least 1− δ/2,

sup
Q:W (Q,P )≤ε̃

RQ(π̂)− sup
Q:W (Q,Pn)≤ε̃

RQ(π̂) ≤ O(1/
√
n) +M

√
log( 2

δ )

2n
.

We next bound the second difference term. Denote Q̄ = arg minQ:W (Q,Pn)≤ε̃−RQ(π̂). Since

ε̃ = ε+
2µ+M

B
in our setting, by Lemma 4, we have W (Q̂, Pn) ≤ ε̃. Then,

sup
Q:W (Q,Pn)≤ε̃

RQ(π̂)− sup
Q:W (Q,Pn)≤ε̃

RQ(π∗)

= min
Q:W (Q,Pn)≤ε̃

−RQ(π∗)− min
Q:W (Q,Pn)≤ε̃

−RQ(π̂)

≤ −RQ̂(π∗)− min
Q:W (Q,Pn)≤ε̃

−RQ(π̂)

= L(Q̂, π∗, 0)− min
Q:W (Q,Pn)≤ε̃

−RQ(π̂)

≤ L(Q̂, π̂, λ̂)− min
Q:W (Q,Pn)≤ε̃

−RQ(π̂) + µ

≤ L(Q̄, π̂, λ̂) +RQ̄(π̂) + 2µ

= −RQ̄(π̂) + λ̂(W (Q̄, Pn)− ε) +RQ̄(π̂) + 2µ

= λ̂(W (Q̄, Pn)− ε) + 2µ

≤ λ̂(ε̃− ε) + 2µ ≤ (2µ+M)2

Bε
+ 2µ = 3µ

,

where the first inequality follows from W (Q̂, Pn) ≤ ε̃, the second and third inequalities use the
definition of µ-approximate equilibrium, the fourth inequality is due to the fact that W (Q̄, Pn) ≤ ε̃
by the definition of Q̄ and the last inequality uses Lemma 4.

Finally, by Proposition 1, the last difference term can be rewritten as

sup
Q:W (Q,Pn)≤ε̃

RQ(π∗)− sup
Q:W (Q,P )≤ε̃

RQ(π∗)

= min
ϑ≥0
{ϑε̃+

∫
Z
χϑ,lπ∗ (z)Pn(dz)} −min

ϑ≥0
{ϑε̃+

∫
Z
χϑ,lπ∗ (z)P (dz)}

.

Denote ϑ̄ = arg minϑ≥0{ϑε̃+
∫
Z χϑ,lπ∗ (z)P (dz)}. Then, we have

sup
Q:W (Q,Pn)≤ε̃

RQ(π∗)− sup
Q:W (Q,P )≤ε̃

RQ(π∗) ≤
∫
Z
χϑ̄,lπ∗ (z)(Pn − P )(dz) .
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Algorithm 4 Pseudo-code of the three players

Sample {zi}mi=1 ∼ Pn
Q-player update:
for i = 1, 2, · · · ,m do
zki ← zi
Update zki by ascending its stochastic descents
if non-convex then

Sample ω from π
end if
zki ← zki + κ∂z[l(ω, z

k
i )− λdZ(zki , zi)]

end for
λ-player update:
Update θ by

θ ← θ + α(
1

m

∑m
i=1 dZ(zki , zi)− ε)

π-player update:
Case 1: Convex loss
Update ω by

ω ← ΠΩ(w − β(
1

m

∑m
i=1 ∂ωl(ω, z

k
i )))

Case 2: Non-convex loss
Metropolis-Hastings algorithm: Repeat N times
for j = 0, 1, · · · , N − 1 do

Sample u ∼ U[0,1]

Sample ω′ ∼ N (ω, σ2I)

if u < min{1, exp[η(
∑t
t′=1

1
m

∑m
i=1(l(ω, zkit′)− l(ω′, zkit′)))]} then

ω ← ω′

end if
end for

Since l(ω, z) takes values in [0,M ] by assumption, the same holds for lπ∗ and χϑ̄,lπ∗ . From Hoeffd-
ings inequality, it follows that

sup
Q:W (Q,Pn)≤ε̃

RQ(π∗)− sup
Q:W (Q,P )≤ε̃

RQ(π∗) ≤M

√√√√ log(
2

δ
)

2n

holds with probability at least 1− δ/2.

Collecting all these terms and applying the union bound, we have

supQ:W (Q,P )≤ε̃RQ(π̂)− supQ:W (Q,P )≤ε̃RQ(π∗) ≤ O(1/
√
n) + 2M

√√√√ log(
2

δ
)

2n
+ 3µ

with probability at least 1− δ.

D PSEUDO-CODE

The pseudo-code of each player is summarized in Algorithm 4.

E ADDITIONAL EXPERIMENTAL RESULTS

Here, we provide the time consumption of our algorithms and the baselines used in the experimental
section. All the experiments are conducted on a single NVIDIA TITAN Xp GPU. We compute the
overall training time on MNIST for 20 epochs. Table 2 summarizes the running time for different
algorithms. We observe that in convex case the time cost of our algorithm is close to LR and DRLR,
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Table 2: The running time for different algorithms on MNIST.

Methods Training Duration

ERM 0.1
Non-convex (hours) ITP 0.1

WRM 0.6
TPG-DRO 1
LR 3

Convex (mins) DRLR 3
TPG-DRO (LR) 6

Table 3: Average classification accuracy on test datasets with LeNet.

DATASETS ERM ITP WRM TPG-DRO

USPS 76.2%±2.1% 76.0%±1.4% 81.0%±1.0% 81.6%±2.3%
SVHN 24.1%±1.2% 24.4%±1.5% 32.2%±2.1% 33.4%±2.5%
MNIST-M 48.0%±1.9% 51.4%±0.2% 58.6%±0.7% 57.2%±1.0%
SYN 34.7%±1.2% 37.0%±0.6% 44.7%±0.8% 45.1% ±1.0%

but in non-convex case our algorithm is a little bit slower than other baselines mainly because of
the sampling step. We believe that this time gap in non-convex setting can be greatly reduced by
using more advanced MCMC sampling method. Table 3 reports the results using LeNet. As in the
body, the model trained with our algorithm achieves higher or at least comparable accuracy on all
test datasets compared to the models trained with ERM, ITP and WRM.
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