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ABSTRACT

Deep learning models are often poorly calibrated, i.e., they may produce over-
confident predictions that are wrong, implying that their uncertainty estimates are
unreliable. While a number of approaches have been proposed recently to cali-
brate classification models, relatively little work exists on calibrating regression
models. Isotonic Regression has recently been advocated for regression calibra-
tion. We provide a detailed formal analysis of the side-effects of Isotonic Regres-
sion when used for regression calibration. To address these, we investigate the
idea of quantile calibration (Kuleshov et al., 2018), recast it as entropy estima-
tion, and leverage the new formulation to construct a novel quantile regularizer,
which can be used as a blackbox to calibrate any probabilistic regression model.
Unlike most of the existing approaches for calibrating regression models, which
are based on post hoc processing of the model’s output, and require an additional
dataset, our method is trainable in an end-to-end fashion, without requiring an
additional dataset. We provide empirical results demonstrating that our approach
improves calibration for regression models trained on diverse architectures that
provide uncertainty estimates, such as Dropout VI, Deep Ensembles.

1 INTRODUCTION

For supervised machine learning, the notion of calibration of a learned predictive model is a measure
of evaluating how well a model’s confidence in its prediction matches with the correctness of these
predictions. For example, a binary classifier will be considered perfectly calibrated if, among all
predictions with probability score 0.9, 90% of the predictions are correct Guo et al. (2017). Likewise,
consider a probabilistic regression model that produces credible interval for the predicted outputs. In
this setting, the model will be considered perfectly calibrated if the 90% confidence interval contains
90% of the true test outputs (Kuleshov et al., 2018). Unfortunately, modern deep neural networks
are known to be poorly calibrated (Guo et al., 2017), raising questions on their reliability.

The notion of calibration for classification problems was originally first considered in meteorology
literature (Brier, 1950; Murphy, 1972; Gneiting & Raftery, 2007) and saw one of its first prominent
usage used in the machine learning literature by (Platt et al., 1999) in context of Support Vec-
tor Machines (SVM), in order to obtain probabilistic predictions from SVMs which are inherently
non-probabilistic models. Recently, there has been renewed interested in calibration, especially for
classification models, after it has been shown (Guo et al., 2017) that modern deep neural networks
for classification are often poorly calibrated.

The pupular notions of calibration for classification include confidence calibration, multiclass cali-
bration, classwise calibration, and confidence calibration (Kumar et al., 2019; Vaicenavicius et al.,
2019; Kull et al., 2019). Most calibration methods (Platt et al., 1999; Zadrozny & Elkan, 2001;
2002; Guo et al., 2017; Kull et al., 2017; 2019) for classification models are post hoc, where they
learn a calibration mapping R : [0, 1] → [0, 1] using an additional dataset to recalibrate an already
trained model. There has been recent work showing some of these popular post hoc methods are
either themselves miscalibrated or sample-inefficient (Kumar et al., 2019) and they do not actually
help the model output well-calibrated probabilities.

An alternative to post hoc processing is to ensure that model outputs well-calibrated probabilities
after model training finishes. We refer to these as implicit calibration methods. Notably, such an
approach does not require an additional dataset to learn the calibration mapping. While almost all
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post hoc calibration methods for classification models can be seen in a unified manner as density
estimation methods (see section 2.1 ), existing implicit calibration methods for classification models
have been designed with various, often distinct, considerations/approaches. Several heuristics like
Mixup (Zhang et al., 2017; Thulasidasan et al., 2019) and Label Smoothing (Szegedy et al., 2016;
Müller et al., 2019) that were part of high performance deep networks for classification were later
shown empirically to achieve calibration. (Maddox et al., 2019) show that their optimization method
instrinsically improves calibration. (Pereyra et al., 2017) found that penalizing high-confidence
predictions acts as a regularizer. A more principled way of achieving implicit calibration is by
minimizing a loss function that is tailored for calibration (Kumar et al., 2018). This is somewhat
similar in spirit to our proposed approach which aims to do it for regression models.

Among the early approaches for calibrating regression models, (Gneiting et al., 2007) were the first
to propose a framework for calibrating regression models. However, they do not provide any pro-
cedure to correct a miscalibrated model. Recently, (Kuleshov et al., 2018) introduced the notion
of Quantile Calibration which intuitively says that the p confidence interval predicted by model
should have target variable with probability p. They use a post hoc calibration method based on Iso-
tonic Regression (Fawcett & Niculescu-Mizil, 2007), which is a well-known calibration technique
for classification models. The difference between Isotonic Calibration in classification and Isotonic
Calibration in regression is in terms of (i) the dataset on which calibration mapping is learnt; and
(ii) the function with which learnt calibration mapping is pre-composed . In the former case, it is
pre-composed with a probability mass function (PMF) and whereas in the latter, it is pre-composed
with a conditional density function (CDF). Both these differences have side effects; in particular
(i) the nature of recalibration dataset already satisfies monotonicity constraint, so there is a risk of
overfitting in case of smaller calibration datsets; and (ii) composing the CDF with a piecewise linear
function can make the resultant CDF discontinuous and the corresponding PDF non-differentiable
(see Sec. 3 for detailed discussion for side effects of the Isotonic Calibration approach). In another
recent work, (Song et al., 2019) proposed a much stronger notion of calibration called Distributional
Calibration which guarantees that among all instances whose predicted probability density function
(PDF) of the response variable has mean µ and standard deviation σ, the marginal distribution of the
target variable should have mean µ and standard deviation σ. They too propose a post hoc recalibra-
tion method based on Gaussian processes, which can be computationally expensive. Among other
work, (Keren et al., 2018), consider a different setting where neural networks for classification are
used for regression problems and showed that temperature scaling (Hinton et al., 2015; Guo et al.,
2017) and their proposed method based on empirical prediction intervals improves calibration for
regression problems as well. Again, these are post hoc methods.

Our contributions are summarized below:

1. We analyze in detail the side effects of Isotonic Calibration for regression models. We
show how using Isotonic Calibration results in truncation of the support, which will result
in assigning zero likelihood fortes t time. We also discuss about Isotonic Calibration re-
sulting in nonsmooth PDFs, and its tendency to produce miscalibration when using small
calibration datasets.

2. At test time, after composing the predicted CDF with the learned isotonic mapping, the
mean prediction (point estimate) also changes. Kuleshov et al. (2018) do not acknowledge
the changes in the mean estimate. While Song et al. (2019) acknowledge this issue, they
use a trapezoidal approximation to remedy this. In contrast, we derive an analytical expres-
sion for the updated point estimate after isotonic calibration. We also provide a different
expression for updated point estimate, which reduces the time-complexity from O(m) to
O(1), where m is calibration dataset size.

3. In order to mitigate these shortcomings of Isotonic Calibration, we propose a simple,
yet novel and general purpose, trainable loss function for quantile calibration where the
smoothness of PDF/CDF is not sacrificed for well-calibrated probabilties. Our approach
also eliminates the need for an additional calibration dataset.

4. We conduct extensive experiments on a wide range of architectures using the proposed loss
function (Quantile Regularization) and show empirically that it improves calibration on
wide range of architectures that produce uncertainty estimates.
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Figure 1: Computation of loss in the training loop when augmented with Quantile Regularization
(QR). Parts in Red are the ones that constitute QR. Total Loss = Loss - Entropy

2 BACKGROUND AND DEFINITIONS

Before we proceed with definitions, we state the notation followed in the rest of paper. X ,Y denotes
the input and output space respectively. X,Y denote random variables modelling inputs and outputs.
P denotes probability measure f, g are reserved for probability density functions (PDF) and F,G for
cummulative density functions (CDF). We use c to denote the evaluation of a CDF at some particular
value i.e., c = F (.) and p for evaluation of a PDF at some value i.e., p = f(.) Given sequence of
elements a1, a2, . . . , an , we use a(1), a(2), . . . a(n) for permutation s.t a(i) ≤ a(i+1). Also, m
denotes the calibration dataset size. (X, y) denotes the training data. Given random variables X,Y ,
we use KL(X||Y ) to denote the KL divergence between the corresponding distributions

A probabilistic regression model can be seen as conditional PDF/conditional CDF. In the rest of
the paper, we express it as conditional CDF M : X → (Y → [0, 1]). So, M(x) denotes model’s
predicted CDF for x ∈ X denoted as Fx. In practice this is achieved by making model output
parameters that parametrize the CDF, e.g., (µ, σ) for Gaussian, λ for Exponential, etc. In the rest
of the paper, we consider Gaussian likelihood unless stated otherwise, because it is one of the most
prevalent cases. Kuleshov et al. (2018) proposed the following notion of calibration of regression
models, called quantile calibration. An appearling aspect of this definition is that we get reliable
confidence intervals.

Definition 1 (Quantile Calibration) Given a regression model M : X → (Y → [0, 1]) and X,Y
jointly distributed as P, the model M is said to be Quantile Calibrated iff

P
[

[M(X) ](Y ) ≤ p
]

= p ∀p ∈ [0, 1] (1)

In words, [M(X) ](Y ) is cumulative density that the model predicts for random input-response pairs
drawn from the joint distribution of (X,Y ). It is important to note that, regardless of dimensions of
X , Y and support of distributions of X,Y and the likelihood of model considered, [M(X)](Y ) is a
random variable whose support is a subset of [0, 1] because range of any real-valued CDF is [0, 1].
So Def. 1 is quite general and covers the case when output is vector-valued, i.e., Y = Rn, n > 1

2.1 FUNDAMENTAL THEOREM OF POST HOC CALIBRATION

The objective of post hoc calibration is to recalibrate a miscalibrated model M by learning a map-
ping R : [0, 1] → [0, 1] s.t. R ◦M is a calibrated model. One such mapping can be obtained from
the definition of calibration itself. Setting R (p) = P

[
[M(X)](Y ) ≤ p

]
makes R ◦M a quantile cali-

brated model. (Vaicenavicius et al., 2019) call an analogous mapping in the context of classification
as canonical calibration mapping.
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Theorem 1 For any Model M : X → (Y → [0, 1]) and given the canonical calibration mapping
R(p) = P

[
[M(X)](Y ) ≤ p

]
, R ◦M is quantile calibrated

Note that learning the mapping R reduces to density estimation of P
[
[M(X)](Y ) ≤ p

]
, which is

a hard problem in itself. With this insight, and using the fact that the mapping is monotonically
increasing, (Kuleshov et al., 2018) use Isotonic Regression to learn the mapping on a separate cali-
bration dataset. Similar theorems hold for other notions of calibration, too.

2.2 ISOTONIC CALIBRATION

We next describe Isotonic Calibration which is based on Isotonic Regression. Given Data
{(ai, bi)}mi=1 where ai, bi ∈ R and ai ≤ ai+1. Isotonic Regression finds new e1, e2, . . . em by
solving the following optimization problem

mine
1

m

m∑
i=1

(bi − ei)2

s.t. e1 ≤ e2 · · · ≤ em

(2)

(Mair et al., 2009) provides a nice survey of algorithms for Isotonic Regression. In particular
Scikit-learn (Pedregosa et al., 2011) uses Pool Adjacent Violaters Algorithm (PAVA) of complexity
O(m).

Given the calibration dataset {xi, yi}mi=1, Isotonic Calibration first builds recalibration dataset as

D =
{ (

M(xi)[yi] ,
1

m

m∑
j=1

I
[
M(xj)[yj ] ≤ M(xi)[yi]

] )m
i=1

}
and sort points in D based on

first coordinates and then applies Isotonic Regression to get an isotonic mapping R . Let xtest be a test
input and Fxtest = M(xtest) be the CDF of its predicted output. Now, during post-hoc calibration, we
get a new CDF as Gxtest = R ◦ Fxtest . Confidence intervals can be obtained from Gxtest . Note that the
parameters that parametrize the Gxtest (after calibration) are different from Fxtest (before calibration).
Importantly, what this implies is that mean prediction before and after calibration changes as well.
(Kuleshov et al. (2018)) do not take this aspect into consideration, whereas (Song et al. (2019)) uses
trapezoidal approximation to find the new mean, and finding which has a time complexityO(m). In
contrast, we derive an analytical expression for the new mean which reduces time complexity from
O(m) to O(1) at test-time (See Eq .4), assuming a Gaussian likelihood model.

3 ANALYSIS OF ISOTONIC CALIBRATION

Let {(xi, yi)}mi=1 be the calibration dataset. Let {(µi, σ2
i )}mi=1 be means and variances predicted by

the learned model. Suppose we have obtained CDF values at actual outputs (y1, y2, · · · , ym). Let
these be (c1, c2, · · · , cm). Then the re-calibration dataset after sorting based on first co-ordinates
would be D = {(c(1), 1

m ), (c(2),
2
m ), · · · , (c(m), 1)} where C = (c(1), c(2), · · · c(m)) is obtained by

sorting (c1, c2, · · · cm) in ascending order. Now Isotonic Calibration fits isotonic regression on the
datasetD. Our entire analysis is based on next crucial observation. Since ( 1

m ,
2
m , · · · , 1) are already

in increasing order, isotonic regression does not modify values. In the notation of Sec. 2.2 what this
means is that, if we have that (ai, bi) , (c(i),

1
i ) then it will be ei = 1

i , i.e., bi will be same as ei. So
we do not even need to use Isotonic Regression and just linear interpolation on D yields the same
result as Isotonic Regression.

We first give conditions under which smoothness is lost and later derive the correction one has to
use after isotonic calibration. All the proofs are provided in the supplementary material.

Claim 1 Let Y be a random variable with CDF F , and let G = R ◦ F be its CDF after composing
with mapping R obtained from isotonic regression characterized by C = {c(1), c(2), · · · , c(m)}. If
there exist i−1, i, i+1 ∈ {0,m}∧c(i)−c(i−1) 6= c(i+1)−c(i) then the CDFG is not differentiable
and its corresponding probability density function g is not continuous at F−1(c(i))
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Because of this, the PDF of transformed r.v becomes discontinuous and spiky (see Fig. 2d ). Update
likelihood inversely depends on m(c(i) − c(i+1)) (see Eq. 10 for full expression). In many of cases,
it becomes so small that sometimes the updated likelihood increases by factor of 102 to 105 for
single point thereby completely destroying what the average log likelihood represents. To show this,
we report the maximum likelihood attained among the entire test dataset after isotonic calibration in
UCI experiments (see Table 4, Table 5).

Now we derive the analytical expression for the updated mean after Isotonic Calibration assuming a
Guassian likelihood.

Claim 2 Let Yiso be the transformed random variable after applying isotonic mapping R on the
random variable Y . Then the expectation of Yiso is as follows

E[Yiso] = µ− σ2

m

m−1∑
i=0

f(F−1(c(i+1)))− f(F−1(c(i)))

(c(i+1) − c(i))
(3)

The summation involves both recalibration dataset and test time prediction. Now we will use prop-
erties of quantile functions (Lemma. 1) to decouple the dependency, using which summation just
depends on the recalibration dataset.

Claim 3 Let c(i) = Fµ(i),σ(i)
(y(i)) and p(i) = fµ(i),σ(i)

(y(i))

E[Yiso] = µ− σ
m∑
i=0

1

m

σ(i+1)p(i+1) − σ(i)p(i)
c(i+1) − c(i)︸ ︷︷ ︸
δ

(4)

Now δ can be computed once, so at test time given µ, σ as model prediction, the updated mean after
isotonic calibration is µ− δσ. With this, the time required is reduced fromO(m) toO(1). Also, the
construction of recalibration dataset as suggested in (Kuleshov et al., 2018) can result in truncation
of the support of updated r.v (see fig. 2d) and see Sec. B.1 for more on this. One way to remedy
this is to use (x,∞) to calibration dataset for any x ∈ Rn. So the recalibration dataset becomes
{(c(1), 1

m+1 ), . . . , (c(m),
m
n+1 ), (1, 1)} .

To illustrate all these , we use Bayesian linear regression with 256 training examples generated from
y = 3x + ε where ε ∼ N (0, 1). and x ∈ [−4, 4] randomly sampled and calibration dataset of size
32.

4 QUANTILE REGULARIZATION

In quantile calibration, we want P
[
[M(X)](Y ) ≤ p

]
= p ∀p ∈ [0, 1]. Our method is based on the

idea that both right and left hand sides can be viewed as CDFs. Let R(p) = P
[
[M(X)](Y ) ≤ p

]
and S(p) = p. Here R can be seen as the CDF of [M(X)](Y ) while S can be seen as the CDF
of Uniform[0,1]. Quantile calibration mandates these two CDFs to be equal. So, for a perfectly
calibrated quantile model M, we have that [M(X)](Y ) be a uniform distribution. We seek to penalize
the model when this r.v deviates from a uniform distribution which gives us a calibration loss that
can be used as a regularizer with any regression loss, achieving highly desirable calibration during
training itself. We name above proposed procedure as Quantile Regularization, hereafter denoted as
QR.

We use the KL divergence as the distance measure. Note that the KL divergence between any distri-
bution on [0, 1] and the uniform distribution is negative of the differential entropy, which provides a
very intuitive interpretation for the Quantile Regularization (QR). Essentially, to improve calibration
while training, QR maximizes the differential entropy of [M(X)](Y ) i.e., the predicted cumulative
density of target value. We formalize the statement for completeness below.

Claim 4 Let M be any regression model. Then M is perfectly quantile calibrated iff

KL
(

[M(X)](Y )||U
)

= 0 (5)
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Figure 2: Fig. 2a shows 256 training data points. Fig. 2b shows the calibration mapping learnt using
Isotonic Calibration with 32 samples. Fig. 2c shows predicted PDF at test time before applying
Isotonic Calibration and truncation and shift in mean that happens if the mapping in Fig. 2b is
applied . It also shows that such truncation can affect the support. Fig. 2d shows the resulting PDF
after Isotonic Calibration

4.1 DIFFERENTIAL ENTROPY ESTIMATION

We need the differential entropy estimator for deriving our calibration loss function. There is a rich
literature for entropy estimation. A brief overview about non-parametric entropy estimation can
be found in (Beirlant & Dudewicz, 1997). We use sample-spacing entropy estimation originally
proposed in (Vasicek, 1976). A k spacing of random variable is defined as the amount of probability
mass between ordered samples that are k − 1 samples apart. Let S be a one-dimensional r.v. with
CDF F and assume we are given n samples {si}ni=1 ∼ S and k s.t. 1 ≤ k ≤ n. Sample spacing
entropy estimation is based on the following observation of k-spacings of random variables

ES
[
F (s(i+k))− F (s(i))

]
=

k

n+ 1

There are many formulations of sample spacing entropy estimators but we use the one in (Learned-
Miller et al. (2003); Equation 8 ) which is

Ĥ(S) =
1

n− k

n−k∑
i=1

log
[n+ 1

k
(s(i+k) − s(k))

]
(6)

4.2 CALIBRATION LOSS FUNCTION

In our case, the random variable is [M(X)](Y ). Given training data with input-output pairs (xi, yi),
we need to get samples [M(xi)](yi), compute the expression Ĥ(S), and maximize it. Note that,
we want to make this part of the training loop to achieve implicit calibration. To do so, we need
ordered samples to compute the Entropy in Eq. 6. However, inherently, sorting is not a differentiable
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operation. We therefore use NeuralSort (Grover et al., 2019) as a differentiable relaxation to sorting.
We summarize our Quantile Regularization algorithm below

Algorithm 1 Quantile Regularization

Precondition: (xi, yi) are n i.i.d training instances and µi, σi = MODELw(xi) and DIFFSORT is any
differentiable relaxation to sorting operation.

1: function CALIBRATION LOSS FUNCTION(y,µ,σ)
2:
3: for i← 1 to m do
4: Φi← Φ(µi, σi) . Φ: CDF
5: ci ← Φi[yi]
6: end for
7: s ← DIFFSORT(c)
8: k ←

√
n

9: e ← 1

n− k

n−k∑
i=1

log
[n+ 1

k
(si+k − si)

]
10: return e
11:
12: end function

Assume that X, y is the training data. Let (µw,σw) = MODELw(X), where w denotes the param-
eters of the model, `(y,µw,σw) denotes the architecture specific loss and CL be calibration loss
computed by Algorithm 1. The overall loss function can be written as follows, where the L is the
hyperparameter that controls the effect of QR.

L(X, y,µW,σW) = `(y,µw,σw)− L× CL(y,µw,σw) (7)

4.3 DEGENERATE BUT PERFECTLY QUANTILE CALIBRATED MODEL

Every notion of calibration has examples of models such that it is perfectly calibrated according to
that specific notion but is far from the ideal model. We prove below that Quantile Calibration is no
different. Specifically, we give conditions under which a model is quantile calibrated and then use it
to build a model that is degenerate in the sense that the model does not depend on the inputs while
predicting output, but is a perfectly quantile calibrated model.

Claim 5 Let f be the marginal distribution of Y and Fx = M [x] be the model’s predicted cumu-
lative distribution for x ∈ X and fx be the corresponding predicted probability density then, if
following holds, M is Quantile Calibrated

f [F−1x (p)] = fx(F−1x (p)) ∀x, ∀p

Now if we set f = fx ∀x, the above condition easily holds. So, a model that outputs marginal
distribution of Y for every input x ∈ X , is perfectly quantile calibrated. Note that this ob-
servation is general that it does not require Gaussian likelihood, for it to be true. As a sim-
ple example, consider f(x, y) = N (y|5x, 1)N (x|0, 4). then the marginal distribution of y is
f(y) =

∫∞
−∞N (y|5x, 1)N (x|0, 4)dx = N (y|5.0, 5.42.5 + 12) = N (y|0, 401) so the model

which predictsN (y|0, 401) regardless of input is perfectly quantile calibrated, but the true model is
N (y|5x, 1). So, a model can predict good confidence intervals despite being far from ideal. There-
fore, we need model to be both well-calibrated and sharp.

5 EXPERIMENTS

We evaluate our approach on various regression datasets in terms of the calibration error as well as
other standard metrics, such as root-mean-squared-error (RMSE) and negative log-likelihood (NLL).
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Heteroscedastic Dropout VI

Dataset Calibration Error(%) RMSE NLL

base QR base QR base QR

Air Foil 13.15 ± 1.92 9.11 ± 1.89 3.63 ±0.05 4.05 ± 0.05 2.70 ± 0.01 2.83 ± 0.01
Boston Housing 21.35 ± 4.89 19.96 ± 3.36 4.59 ±0.23 4.58 ± 0.12 3.23 ± 0.05 3.16 ± 0.05

Concrete Strength 25.78 ± 2.01 15.90 ± 3.72 8.74 ± 0.18 9.21 ± 0.13 3.61 ± 0.03 3.66 ± 0.02
Fish Toxicity 3.23 ± 0.39 3.09 ± 0.79 0.92 ± 0.01 0.94 ± 0.00 1.24 ± 0.01 1.27 ± 0.01

Kin8nm 7.23 ± 0.69 5.41 ± 0.23 0.09 ± 0.00 0.11 ± 0.00 -0.87 ± 0.01 -0.72 ± 0.01
Protein Structure 2.79 ± 0.22 1.22 ± 0.30 4.63 ± 0.02 4.80 ± 0.01 2.89 ± 0.01 2.94 ± 0.01

Red Wine 3.72 ± 0.29 1.67 ± 0.44 0.65 ± 0.00 0.65 ± 0.00 0.98 ± 0.01 0.97 ± 0.01
White Wine 4.30 ± 0.48 3.05 ± 0.68 0.73 ± 0.00 0.73 ± 0.00 1.10 ± 0.01 1.11 ± 0.01

Yacht Hydrodynamics 29.52 ± 3.36 29.00 ± 2.70 3.55 ± 0.19 4.20 ± 0.12 2.28 ± 0.03 2.51 ± 0.02
Year Prediction MSD 5.16 ± NA 0.77 ± NA 9.08 ± NA 9.32 ± NA 3.45 ± NA 3.48 ± NA

Table 1: Base Model is Dropout-VI model without Quantile Regularization and QR is when Base
Model is trained with Quantile Regularization. NLL stands for negative log likelihood. RMSE
stands for Root Mean Square Error. Bold represents there is no overlap over 1 std interval.

5.1 l2 QUANTILE CALIBRATION ERROR

Given any model M : X → (Y → [0, 1]), we define the l2 calibration error as follows. Let us
choose M equidistant points {pi}Mi=1 in (0, 1] with pM = 1. Given a test set {xi, yi}Nn=1, whose
predictions are Fn = F (xn), the M-bin estimator of above integral gives us the calibration metric
used in (Kuleshov et al., 2018).

CE(F ) =

∫ 1

0

(
P
[
[M(X)](Y ) ≤ p

]
− p
)2
dp ≈ 1

M

M∑
i=1

[ N∑
j=1

1

N
I[Fj(yj) ≤ pi]− pi

]2
(8)

5.2 UCI DATA EXPERIMENTS

We consider two architectures - Dropout VI (Gal, 2016) and Deep Ensembles(Lakshminarayanan
et al., 2017). The dataset sizes ranges from 308 to 515345 and input feature dimensions ranges
from 6 to 91. Every dataset, except Year Prediction MSD, is divided into 5 splits whereas for
Year Prediction MSD there is a single split where we train on 463715 points and test on 51630
points. This experiment is repeated 3 times and averages are reported except for Year Prediction
MSD. We use 2 hidden layer network with 128 units with ReLU activation, and trained with Adam
Optimizer with a learning rate of 10−2 . Results are presented in Table 1 and 2. We use L = 1
for Dropout-VI and L = 5 for Deep Ensembles. Spacing value is choosen as k =

√
n for all

datasets except Year Prediction MSD, for which we use k = 3 ∗
√
n for both architectures where

n is the batch size. See Sec. C.3 and Sec. C.4 for detailed experiments about how values of L, k
influence calibration error and RMSE. The code and link to the datasets can be found here: https:
//github.com/occam-ra-zor/QR

5.3 MONOCULAR DEPTH ESTIMATION

Now we consider problem of Monocular Depth Estimation. We use architecture present in Jégou
et al. (2017) which combines principles of Dense-nets and U-net for Dense prediction tasks like
semantic segmenation and depth estimation. We use Make3d Dataset (Saxena et al. (2005)) which
has 400 scenes for training and 134 scenes for testing. We use 57 and 103 layer Neural Network,
which is denoted as FC-DenseNet57, FC-DenseNet103 in Jégou et al. (2017). We set L = 0.1 and
k =
√
n where n is batchsize. Also, we use pooling layers on cummulative density values to make

sure the locality is exploited and to decrease the computational time, while computing calibration
loss. Results are presents in Table. 3 and additional details and experiments in Sec. C.6

5.4 DISCUSSION

Both, in case of Dropout VI and Deep Ensembles, calibration error improves when trained with
quantile regularizer. Table 3 indicates Quantile Regularization is effective in large scale architec-
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Deep Ensemble with Adversarial Training

Dataset Calibration Error(%) RMSE NLL

base QR base QR base QR

Air Foil 24.61 ± 2.31 16.17 ± 3.91 3.13 ± 0.04 3.34 ± 0.08 2.95 ± 0.04 2.59 ± 0.02
Boston Housing 37.76 ± 4.55 25.25 ± 2.95 4.83 ± 0.1 4.49 ± 0.11 4.60 ± 0.21 3.89 ± 0.16

Concrete Strength 37.27 ± 2.94 22.76 ± 3.32 9.02 ± 0.10 8.48 ± 0.19 4.82 ±0.05 3.76 ± 0.07
Fish Toxicity 3.26 ± 0.62 1.67 ± 0.38 0.92 ± 0.00 0.92 ± 0.00 1.57 ± 0.00 1.31 ± 0.00

Kin8nm 0.56 ± 0.36 1.25 ± 0.03 0.07 ± 0.00 0.07 ± 0.00 -1.35 ± 0.00 -1.25 ± 0.01
Protein Structure 2.48 ± 0.17 1.62 ± 0.08 3.95 ± 0.00 4.34 ± 0.00 2.60 ± 0.00 2.73 ± 0.00

Red Wine 8.66 ± 0.38 2.28 ± 0.17 0.69 ± 0.00 0.65 ± 0.00 1.92 ± 0.00 1.05 ± 0.00
White Wine 8.30 ± 0.75 4.48 ± 0.31 0.76 ± 0.00 0.76 ± 0.00 1.64 ± 0.00 1.14 ± 0.00

Yacht Hydrodynamics 24.18 ± 6.64 26.81 ± 4.16 3.48 ± 0.20 2.73 ± 0.17 3.48 ± 0.20 2.66 ± 0.08
Year Prediction MSD 1.94 ± NA 0.51 ± NA 8.68 ± NA 8.68 ± NA 3.34 ± NA 3.36 ± NA

Table 2: Base Model is Deep Ensemble without Quantile Regularization and QR is when Base
Model is trained with Quantile Regularization. NLL stands for negative log likelihood. RMSE
stands for Root Mean Square Error. Bold represents there is no overlap over 1 std interval

FC-DenseNet57 FC-DenseNet103

Model Calibration Error(%)↓ RMSE ↓ Calibration Error(%) ↓ RMSE ↓
Base 17.61 12.30 17.11 12.02

QR (ours) 12.43 13.55 10.94 12.60

Table 3: Base represents model trained without Quantile Regularization and QR represents Base
model trained with Quantile Regularization.

tures as well. Tables 4,5 indicate QR-trained model works better than base in post-hoc setting too.
Also in some cases, Isotonic Calibration increases the calibration error (e.g., for dropout VI, see
Concrete Strength, Yacht Hydrodynamics and for Deep Ensembles see Boston Housing and Yacht
Hydrodynamics). We believe this is due to two reasons

1. Unlike isotonic calibration for classification calibration, recalibration dataset in case of
regression calibration already satisfies monotonicity constraint (see Sec. 3). So Isotonic
calibration in case of regression calibration has much weaker regularization properties and
hence overfits

2. Isotonic calibration is a non-parameteric method that requires large amount of data to work
well. This could be another reason for the poor performance of isotonic regression in some
cases.

For large calibration datasets like protein structure (calibration dataset size m = 36, 584) and Year
Prediction MSD ( calibration dataset size m = 463715), Isotonic Regression offers better improve-
ments. Although it can work well in such setting, the PDF after calibration becomes unusable. QR
not only works well on small datasets but also works well on very large datasets, like Year predic-
tion MSD (nearly 60 % improvement on both architectures). There is a small increase in RMSE and
NLL in models trained with QR, but in many cases it is negligible. A possible justification for this is
that just because the model is well calibrated doesn’t necessarily mean it is close to the true model.
Being well0calibrated and being close to true model are two separate things (see Sec. 4.3).

6 CONCLUSION

We have proposed a black-box calibration loss function that can be used with any probabilistic
regression model. Unlike current methods for quantile calibration, our method is implicit in nature
and does not require an additional calibration dataset and, more importantly, the smoothness of the
PDF is not lost. We conduct experiments to show effectiveness of our proposed method.

9
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APPENDIX

A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1 For any Model M : X → (Y → [0, 1]) and given canonical calibration mapping
R(p) = P

[
[M(X)](Y ) ≤ p

]
, R ◦M is quantile calibrated

Proof: To show that R◦M is quantile calibrated. we need to show that P[(R◦M)[X][Y ] ≤ p] = p,
∀p ∈ [0, 1] since we are assuming that R (p) is invertible function, which gives us that it is surjective.
An equivalent way of showing this is that P[ (R ◦M) [X][Y ] ≤ R(p)] = R (p) ∀p ∈ [0, 1]

P
[
(R ◦M)[X][Y ] ≤ R(p)

]
= P

[
R−1

(
(R ◦M)[X][Y ]

)
≤ R−1

(
R(p)

)]
R−1 is strictly increasing

= P
[
(M[X])[Y ] ≤ p

]
= R(p) By definition

�

A.2 PROOF OF CLAIM 1,2,3

Claim 1 Let Y be a random variable with CDF F , and let G = R ◦ F be its CDF after composing
with mapping R obtained from isotonic regression characterized by C = {c(1), c(2), · · · , c(m)}. If
there exist i−1, i, i+1 ∈ {0,m}∧c(i)−c(i−1) 6= c(i+1)−c(i) then the CDFG is not differentiable
and its corresponding probability density function g is not continuous at F−1(c(i))

Proof: First, G can be expressed as follows

G(x) =



F (x)

mc(1)
. −∞ < x ≤ F−1(c(1))

F (x)− c(1)
m(c(2) − c(1))

+ 1
m F−1(c(1)) < x ≤ F−1(c(2))

F (x)− c(2)
m(c(3) − c(2))

+ 2
m F−1(c(2)) < x ≤ F−1(c(3))

...
...

F (x)− c(m−1)
c(m) − c(n−1)

+ m−1
m F−1(c(m−1)) < x ≤ F−1(c(m))

Let a = F−1(c(1)). We will show that G not differentiable at a. Similarly we can show that it is not
differentiable at the other m− 2 switching points.

The left derivative is as follows

lim
x→a−

G(x)−G(a)

x− a
= lim
x→a−

F (x)

m.c(1)
− F (a)

m.c(1)

x− a
=

1

mc(1)
lim
x→a−

F (x)− F (a)

x− a
=
F ′(a)

mc(1)

12
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The right derivative is as follows

lim
x→a+

G(x)−G(a)

x− a
= lim
x→a+

F (x)− c(1)
m(c(2) − c(1))

+ 1
m −

1
m

x− a
(9)

=
1

m.(c(2) − c(1))
lim
x→a+

F (x)− F (a)

x− a
=

F ′(a)

m.(c(2) − c(1))

Hence G is not differentiable.

Although the CDF is not differentiable at only a finite number of points, we can still get the PDF by
piece-wise differentiation.

g(x) =



f(x)

mc(1)
. −∞ < x ≤ F−1(c(1))

f(x)

m(c(2) − c(1))
F−1(c(1)) < x ≤ F−1(c(2))

f(x)

m(c(3) − c(2))
F−1(c(2)) < x ≤ F−1(c(3))

...
...

f(x)

m.(c(n) − c(m−1))
F−1(c(m−1)) < x ≤ F−1(c(m))

(10)

Now consider for any i− 1, i, i+ 1 ∈ {0,m} s.t ci − ci−1 6= ci+1 − ci. Let a = F−1(ci) then

lim
x→a−

g(x) = lim
x→a−

f(x)

m(c(i) − c(i−1))
=

f(a)

m(c(i) − c(i−1))

lim
x→a+

g(x) = lim
x→a+

f(x)

m(c(i+1) − c(i))
=

f(a)

m(c(i+1) − c(i))

Since the right limit and left limit do not coincide and by construction of point a, we have that limit
does not exist and therefore g(x) is not continuous at a

Note that, most of times, the hypothesis is satisfied, so the smoothness is lost. �

Claim 2 Let Yiso be transformed random variable after applying isotonic mapping R on random
variable Y . Then the expectation of Yiso is as follows

E[Yiso] = µ− σ2

n

m−1∑
i=0

f(F−1(c(i+1)))− f(F−1(c(i)))

(c(i+1) − c(i))

Proof: Assume that, before transformation, the random variable is distributed X ∼ N (µ, σ2) so

f(x) =
1√

2πσ2
exp
−(x− µ)2

2σ2

13
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E[Yiso] =

∫ ∞
−∞

x.g(x)dx

=

m−1∑
i=0

∫ F−1(c(i+1))

F−1(c(i))

x.
f(x)

n.(c(i+1) − c(i))
dx

=

m−1∑
i=0

1

n(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

x.
1√

2π.σ2
exp
−(x− µ)2

2.σ2
dx

=

m−1∑
i=0

1

n(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

(x− µ+ µ).
1√

2π.σ2
exp
−(x− µ)2

2.σ2
dx

x = x− µ+ µ

=

m−1∑
i=0

1

m(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

(x− µ)
1√

2π.σ2
exp
−(x− µ)2

2.σ2︸ ︷︷ ︸
= t and use sub

dx

+

m−1∑
i=0

1

n(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

µ
1√

2π.σ2
exp
−(x− µ)2

2.σ2
dx using linearity

=

m−1∑
i=0

1

m(c(i+1) − c(i))

[ −σ2

√
2π.σ2

exp
−(x− µ)2

2.σ2

]x=F−1(c(i+1))

x=F−1(c(i))

+

m−1∑
i=0

µ

m(c(i+1) − c(i))
F (F−1(c(i+1)))− F (F−1(ci)) using def of cdf

=

m−1∑
i=0

−σ2

m

f(F−1(c(i+1)))− f(F−1(c(i)))

(c(i+1) − c(i))
+ µ

m−1∑
i=0

1

m

F (F−1(c(i+1)))− F (F−1(ci))

(c(i+1) − c(i))︸ ︷︷ ︸
1

= µ− σ2

n

m−1∑
i=0

f(F−1(c(i+1)))− f(F−1(c(i)))

(c(i+1) − c(i))

�

Lemma 1 Let fµ,σ, Fµ,σ, F−1µ,σ be density, distribution, and quantile functions, respectively, of the
normal distribution with mean µ and std σ. Then

fµ,σ

[
F−1µ,σ

(
Fµ0,σ0

(y0)
)]

=
σ0
σ
fµ0,σ0

(y0)

Proof: We use the following three properties of normally distributed random variables

1. Fµ,σ(y) = F0,1(y−µσ )

2. fµ,σ(y) = 1
σf0,1(y−µσ )

3. F−1µ,σ(p) = σ.F−10,1 (p) + µ

14
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fµ,σ

[
F−1µ,σ

(
Fµ0,σ0

(y0)
)]

= fµ,σ

[
F−1µ,σ

(
F0,1(

y0 − µ0

σ0
)
)]

by using (1)

= fµ,σ

[
σ.F−10,1 (F0,1(

y0 − µ0

σ0
)) + µ

]
by using (3)

= fµ,σ

[
σ.
y0 − µ0

σ0
+ µ

]
F−1F (x) = x

=
1

σ
f0,1

[σ.y0 − µ0

σ0
+ µ− µ

σ

]
by using (2)

=
1

σ
f0,1

[y0 − µ0

σ0

]
=
σ0
σ
.

1

σ0
f0,1

[y0 − µ0

σ0

]
Mul and Div by σ0

=
σ0
σ
fµ0,σ0

(y0) by using (2)

�

Claim 3

E[Yiso] = µ− σ
m∑
i=0

1

m

σ(i+1)p(i+1) − σ(i)p(i)
c(i+1) − c(i)︸ ︷︷ ︸
δ

Proof: We first re-substitute c(i) = Fµ(i+1),σ(i+1)
(y(i+1)), then using the above claim, substituting

that f(F−1(c(0))) = f(F−1(0)) = lim
x→−∞

f(x) = 0

µ− σ2

m

m∑
i=0

f(F−1(c(i+1)))− f(F−1(c(i)))

(c(i+1) − c(i))

= µ− σ2

m

m∑
i=0

f(F−1(Fµ(i+1),σ(i+1)
(y(i+1))))− f(F−1(Fµ(i+1),σ(i+1)

(y(i+1))))

(c(i+1) − c(i))

= µ− σ

m

[σ(1)p(1)
c(1)

+

m−1∑
i=1

σ(i+1)p(i+1) − σ(i)p(i)
c(i+1) − c(i)

]
by using f(F−1(c(0))) = 0, c(0) = 0

= µ− σ

m

[m−1∑
i=0

σ(i+1)p(i+1) − σ(i)p(i)
c(i+1) − c(i)

]
σ(0) = 0, p(0) = 0, c(0) = 0

�

A.3 PROOFS OF CLAIM 4 AND CLAIM 5

Claim 4 Let M be any regression model. Then M is perfectly quantile calibrated iff

KL
(

[M(X)](Y )||U
)

= 0

Proof: �

Claim 5 Let fµ,σ be the marginal distribution of Y and
(
Fµx,σx

= M [x]
)∣∣∣X = x be the model’s

predicted cumulative distribution for x ∈ X , then if fµ,σ[F−1µx,σx
(p)] = fµx,σx(F−1µx,σx

(p)) ∀x, ∀p ∈
[0, 1], we have that M is Quantile Calibrated.
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Proof:
fM [X][Y ](p) =

∫
X
f
M [x][Y ]

∣∣∣X=x
(p) . fX(x)dx

=

∫
X

d

dp
P
[(
M [x][Y ]

∣∣∣X = x
)
≤ p
]
. fX(x)dx

=

∫
X

d

dp
P
[
(Fµx,σx [Y ] ≤ p

]
. fX(x)dx

=

∫
X

d

dp
P
[
(Y ≤ F−1µx,σx

(p)
]
. fX(x)dx

=

∫
X

d

dp

[
Fµ,σ[F−1µx,σx

(p)]
]
. fX(x)dx

=

∫
X
fµ,σ[F−1µx,σx

(p)] .
1

fµx,σx
(F−1µx,σx(p))

. fX(x)dx

=

∫
X

1 . fX(x)dx

= 1

Since we have thatM [X][Y ]Uniform[0, 1] we can conclude thatM is Perfectly Quantile Calibrated.
�

B IMPLEMENTATION DETAILS

B.1 CALCULATING NEGATIVE LOG LIKELIHOOD AFTER ISOTONIC CALIBRATION

Note that we have analytical expression for the updated density function g (see Eq. 10 ). Given
a test input xtest, predicted CDF F , corresponding PDF f and target ytest, now we describe the
procedure to calculate likelihood for ytest after isotonic calibration i.e., g(ytest). Recall that c(i)’s are
ordered x-coordinates of recalibration dataset. Now since F−1(c(i−1)) ≤ x < F−1(c(i)) implies
that c(i−1) ≤ F (x) < c(i) as F is monotonic. We can then do binary search for finding the correct i
s.t c(i−1) ≤ F (x) < c(i) and scaling appropriately. This is summarized below

1: µ, σ = MODEL(xtest)
2: Fy = Fµ,σ(ytest)
3: fy = fµ,σ(ytest)
4: c = [0.0, c(1), c(2), · · · , c(m)]
5: i = BINARYSEARCH(c, Fy)
6: if Fy ≤ c(m) then
7: fyiso = fy

n∗(c(i−1)−c(i))
8: else
9: fyiso = 0

10: end if
11: RETURN fyiso

B.2 CALCULATION OF TRUNCATION POINT

The above algorithm clearly elucidates why there is a possibility of assigning zero likelihood at test
time after Isotonic Calibration as discussed in Sec. 3. If F (ytest) > c(m) then we have that g(ytest) =

0. So truncation point is ytrun = F−1(c(m)). Then the support of random variable is reduced from
(−∞,+∞) to (−∞, ytrun] . so for every point in (ytrun,∞) model assigns zero likelihood, which is
extremely undesirable. A simple way to circumvent this proposed in the discussion in Sec. 3
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C EXPERIMENTS

C.1 BAYESIAN LINEAR REGRESSION

For Bayesian Linear Regressionm we use sklearn’s (Pedregosa et al., 2011) Bayesian Ridge Regres-
sion implementation.

C.2 UCI-EXPERIMENTS

C.2.1 EXPERIMENTAL RESULTS AFTER POST-HOC CALIBRATION

Heteroscedastic Dropout

Dataset Calibration Error(%) RMSE Maximum Likelihood

base+iso QR + iso base + iso QR+iso base +iso QR+iso

Air Foil 15.96 ± 2.08 10.00 ± 1.73 3.61 ± 0.06 4.03 ± 0.06 917.33 412.33
Boston Housing 29.80 ± 4.91 23.26 ± 5.11 4.52 ± 0.19 4.55 ± 0.09 115.08 6748.73

Concrete Strength 34.41 ± 3.06 21.54 ± 6.37 8.70 ± 0.09 9.18 ± 0.19 238.10 52.91
Fish Toxicity 1.39 ± 0.13 1.54 ± 0.27 0.92 ± 0.01 0.94 ± 0.01 2044.42 661.17

Kin8nm 0.26 ± 0.02 0.18 ± 0.03 0.09 ± 0.01 0.10 ± 0.00 29798.21 33123.68
Protein Structure 3.08 ± 0.63 0.05 ± 0.01 4.63 ± 0.02 4.80 ± 0.01 423.61 299.68

Red Wine 3.08 ± 0.63 1.71 ± 0.43 0.65 ± 0.00 0.65 ± 0.00 27011.34 973.92
White Wine 4.24 ± 0.31 2.92 ± 0.55 0.73 ± 0.00 0.73 ± 0.00 2523.27 9664.37

Yacht Hydrodynamics 12.13 ± 3.54 23.65 ±10.96 3.87 ± 0.22 4.29 ± 0.17 668.81 1020.40
Year Prediction MSD 0.04 ± NA 0.02 ± NA 9.00 ± NA 9.02 ± NA 15.64 15.64

Table 4: base+iso is DropoutVI without Quantile Regularization and after isotonic calibration and
QR is when Base Model is trained with Quantile Regularization and after isotonic calibration.
RMSE stands for Root Mean Square Error. Maximum Likelihood represents maximum of the like-
lihoods among test time points

Deep Ensemble with Adversarial Training

Dataset Calibration Error(%) RMSE Maximum Likelihood

base+iso QR + iso base + iso QR+iso base +iso QR+iso

Air Foil 38.26 ± 3.62 21.0 ± 4.77 3.12 ± 0.03 3.34 ± 0.07 873.89 560.88
Boston Housing 52.05 ± 2.40 30.81 ± 3.77 4.83 ± 0.13 4.47 ± 0.10 164.63 221.09

Concrete Strength 50.10 ± 2.26 31.11 ± 2.44 9.00 ± 0.08 8.53 ± 0.15 24956.94 13536.36
Fish Toxicity 6.31 ± 0.34 1.60 ± 0.17 0.92 ± 0.00 0.92 ± 0.00 15522.65 10141.10

Kin8nm 5.26 ± 0.10 0.52 ± 0.02 0.07 ± 0.00 0.07 ± 0.00 27399.41 83444.29
Protein Structure 0.07 ± 0.00 0.04 ± 0.00 4.01 ± 0.09 4.33 ± 0.01 1723.68 1733.38

Red Wine 18.04 ± 0.34 2.38 ± 0.42 0.70 ± 0.00 0.65 ± 0.00 30918.93 19673.26
White Wine 19.40 ± 0.45 5.22 ± 0.32 0.77 ± 0.00 0.73 ± 0.00 78359.57 30925.28

Yacht Hydrodynamics 81.48 ± 10.89 44.50 ± 4.62 3.47 ± 0.18 3.73 ± 0.17 149.63 196.68
Year Prediction MSD 0.07 ± 0.00 0.05 ± NA 8.68 ± NA 8.68 ± NA 5.65 6.18

Table 5: base+iso is Deep Ensemble without Quantile Regularization and after isotonic calibration
and QR+iso is when Base Model is trained with Quantile Regularization and after isotonic calibra-
tion. RMSE stands for Root Mean Square Error. Maximum Likelihood represents maximum of the
likelihoods among test time points
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C.2.2 CALIBRATION PLOTS
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(d) White Wine

Figure 3: Dashed line (y=x) indicates perfect Calibration. The closer to dashed line, the better
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(d) Yacht Hydrodynamics

Figure 4: Dashed line (y=x) indicates perfect Calibration. The closer to dashed line, the better
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C.3 VARYING QUANTILE REGULARIZATION PARAMETER L

In the following sections, we show how quantile regularization parameter L affects both calibration
error and Root Mean Square Error (RMSE) for dropout-VI in Sec. C.3.1 and for deep ensembles in
Sec. C.3.2. We do so by fixing spacing value to k =

√
n, where n is batch-size and varying L

C.3.1 FOR DROPOUT
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Figure 5: On X-axis we have Calibration Error (%). On Y-axis we have the QR-reg parameter
L. Each curve with same color represents calibration error for a particular dataset as we vary QR-
reg parameter L for {1, 2, 3, 4, 5} . Spacing value is set to k =

√
n. Here model is Dropout.

Datasets are divided into two groups based on the scale of Calibration Error , which is useful for
viewing the plots. On left, plot is for {airfoil, boston, concrete, yacht, kin8nm}. On right, plot is for
{fish, red, white, protein}.
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Figure 6: On X-axis we have Root Mean Square Error (RMSE). On Y-axis we have that QR-reg pa-
rameter L. Each curve with same color represents RMSE for a particular dataset as we vary QR-reg
parameter L for {1, 2, 3, 4, 5} . Spacing value is set to k =

√
n. Here the model is Dropout.

Datasets are divided into two groups based on the scale of RMSE , which is useful for view-
ing the plots. On left, plot is for {airfoil, boston, concrete, yacht, protein}. On right, plot is for
{fish, red, white, kin8nm}.
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C.3.2 FOR DEEP ENSEMBLES

1 2 3 4 5
QR reg parameter L 

15

20

25

30

35

40

ca
lib

ra
tio

n 
er

ro
r %

airfoil
boston
concrete
yacht

1 2 3 4 5
QR reg parameter L 

1

2

3

4

5

6

7

ca
lib

ra
tio

n 
er

ro
r %

fish
kin8nm
red
white
protein

Figure 7: On X-axis we have Calibration Error (%). On Y-axis we have the QR-reg parameter L.
Each curve with same color represents calibration error for a particular dataset as we vary QR-reg
parameter L for {1, 2, 3, 4, 5} . Spacing value is set to k =

√
m. Here model is Deep Ensemble.

Datasets are divided into two groups based on the scale of Calibration Error , which is useful for
viewing the plots. On left, plot is for {airfoil, boston, concrete, yacht, kin8nm}. On right, plot is for
{fish, red, white, protein}.
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Figure 8: On X-axis we have Root Mean Square Error (RMSE). On Y-axis we have the QR-reg
parameter L. Each curve with same color represents RMSE for a particular dataset as we vary
QR-reg parameter L for {1, 2, 3, 4, 5}. Spacing value is set to k =

√
m. Here the model is Deep

Ensemble. Datasets are divided into two groups based on the scale of RMSE , which is useful for
viewing the plots. On left, plot is for {airfoil, boston, concrete, yacht, protein }. On right, plot is for
{fish, kin8nm, red, white}.
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C.4 VARYING SPACING VALUE k

In the following sections, we show how spacing value k affects both calibration error and Root Mean
Square Error (RMSE) for dropout-VI in Sec. C.4.1 and for deep ensembles in Sec. C.4.2. We do so
by fixed Quantile Regularization parameter L and varying spacing to different multiplies of

√
n.

C.4.1 DROPOUT-VI
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Figure 9: On X-axis we have Cailibration Error (%). On Y-axis we have the spacing multi-
plier t. Resultant Spacing value for spacing multiplier t is k = t.

√
n. Each curve with same

color represents Cailibration Error (%) for a particular dataset as we vary spacing multiplier t for
{1, 2, 3, 4, 5} . Here the model is Dropout. Quantile Regularization parameter is fixed at L = 1.
Datasets are divided into two groups based on the scale of Cailibration Error (%) , which is useful
for viewing the plots. On left, plot is for {airfoil, boston, concrete, yacht }. On right, plot is for
{fish kin8nm, red, white,protein,year}.
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Figure 10: On X-axis we have Root Mean Square Error (RMSE). On Y-axis we have the spacing
multiplier t. Resultant Spacing value for spacing multiplier t is k = t.

√
n. Each curve with same

color represents RMSE for a particular dataset as we vary spacing multiplier t for {1, 2, 3, 4, 5} .
Here the model is Dropout. Quantile Regularization parameter is fixed at L = 1. Datasets are divided
into two groups based on the scale of RMSE , which is useful for viewing the plots. On left, plot is
for {airfoil, boston, concrete, yacht, protein,year}. On right, plot is for {fish, red, white, kin8nm}.
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C.4.2 DEEP ENSEMBLES
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Figure 11: On X-axis we have Cailibration Error (%). On Y-axis we have the spacing multi-
plier t. Resultant Spacing value for spacing multiplier t is k = t.

√
n. Each curve with same

color represents Cailibration Error (%) for a particular dataset as we vary spacing multiplier t for
{1, 2, 3, 4, 5} . Here the model is Deep Ensemble. Quantile Regularization parameter is fixed at
L = 5. Datasets are divided into two groups based on the scale of Cailibration Error (%) , which is
useful for viewing the plots. On left, plot is for {airfoil, boston, concrete, yacht }. On right, plot is
for {fish kin8nm, red, white,protein,year}.
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Figure 12: On X-axis we have Root Mean Square Error (RMSE). On Y-axis we have the spacing
multiplier t. Resultant Spacing value for spacing multiplier t is k = t.

√
n. Each curve with same

color represents RMSE for a particular dataset as we vary spacing multiplier t for {1, 2, 3, 4, 5}
. Here the model is Deep Ensemble. Quantile Regularization parameter is fixed at L = 5.
Datasets are divided into two groups based on the scale of RMSE , which is useful for viewing
the plots. On left, plot is for {airfoil, boston, concrete, yacht, protein,year}. On right, plot is for
{fish, red, white, kin8nm}
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C.5 ISOTONIC CALIBRATION WITH K-FOLD CROSS VALIDATION

Note that, in the UCI experiments, we used the training data as was done in Kuleshov et al. (2018).
In this sections this we consider Isotonic Calibration with K-fold cross validation. It is summarized
as below. FM denotes the final model after recalibration that is used at test time.

1: Initialize K Models , M[1], . . . ,M[K]
2: Get K Training data sets, TrainData[1], . . . ,TrainData[K]
3: Get K calibration data sets, CalibrationDataset[1], . . . ,CalibrationDataset[K]
4:
5: for each i do
6: M[i] = TRAIN

(
M[i],TrainData[i]

)
7: R[i] = GET ISO

(
M[i], CalibrationDataset[i]

)
8: end for

9: FM =

K∑
i=1

R[i] ◦M[i]

Heteroscedastic Drooput VI
Dataset Single Model 5-fold Cross Validation

base Iso Base with 5-fold Iso with 5-fold
Air Foil 13.15 ± 1.92 15.96 ± 2.08 9.74 ± 0.51 11.93 ± 1.05

Boston Housing 21.35 ± 4.89 29.80 ± 4.91 22.45 ± 0.45 20.69 ± 1.54
Concrete Strength 25.78 ± 2.01 34.41 ± 3.06 22.68 ± 2.04 26.09 ± 0.83

Fish Toxicity 3.23 ± 0.39 1.39 ± 0.13 3.83 ± 0.23 1.45 ± 0.20
Red Wine 3.72 ± 0.29 3.08 ± 0.63 2.84 ± 0.24 2.01 ± 0.15

White Wine 4.30 ± 0.48 4.24 ± 0.31 3.12 ± 0.21 3.07 ± 0.21
Yacht Hydrodynamics 29.52 ± 3.36 12.13 ± 3.54 34.88 ± 1.59 14.83 ± 0.68

Table 6: Base Model is Dropout-VI model without Quantile Regularization and QR is when Base
Model is trained with Quantile Regularization. ’5 fold cross validation’ column considers the pro-
cedure described above.

Deep Ensemble with Adversarial Training
Dataset Single Model 5-fold Cross Validation

base Iso Base with 5-fold Iso with 5-fold
Air Foil 24.61 ± 2.31 38.26 ± 3.62 15.74 ± 0.89 18.35 ± 1.15

Boston Housing 37.76 ± 4.55 52.05 ± 2.40 33.74 ± 2.50 22.17 ± 1.26
Concrete Strength 37.27 ± 2.94 50.10 ± 2.26 32.67 ± 1.53 31.21 ± 0.77

Fish Toxicity 3.26 ± 0.62 6.31 ± 0.34 1.62 ± 0.35 1.24 ± 0.05
Red Wine 8.66 ± 0.38 18.04 ± 0.34 5.90 ± 0.26 1.60 ± 0.10

White Wine 8.30 ± 0.75 19.40 ± 0.45 6.55 ± 0.17 3.52 ± 0.18
Yacht Hydrodynamics 24.18 ± 6.64 81.48 ± 10.89 23.84 ± 1.56 21.03 ± 1.71

Table 7: Base Model is Deep Ensemble without Quantile Regularization and QR is when Base
Model is trained with Quantile Regularization. ’5 fold cross validation’ column considers the pro-
cedure described above.
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C.6 MONOCULAR DEPTH ESTIMATION

We scaled down the images to 115 × 153. We used batch size of 4 and learning rate of 5e − 5 and
trained it for 1500 epochs with adam optimizer with step decay of 4.

C.6.1 USAGE OF POOLING LAYERS

Instead of directly using Quantile Regularization as suggested in Alg. 1, we added average pooling
layer before computing entropy over cumulative density values. This is justified in principle because
average of CDF functions is again a valid CDF. Note that this is serves two purposes.

1. It exploits locality for better uncertainty propagation
2. It reduces the computational resources for computing loss

C.6.2 POST-HOC CALIBRATION RESULTS

FC-DenseNet57 FC-DenseNet103
Model Calibration Error(%)↓ RMSE ↓ Calibration Error(%) ↓ RMSE ↓

Base after Iso 1.39 12.01 11.02 12.26
QR after Iso 0.87 13.91 0.99 12.67

Table 8: ’Base after Iso’ represents Base model when composed with Isotonic Mapping. ’QR after
Iso’ represents QR model when composed with Isotonic mapping.

C.6.3 CALIBRATION PLOTS
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(a) Calibration plot for FC-DenseNet 57
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(b) Caibration plot for FC-DenseNet 103

Figure 13: Base Represents FC-DenseNet57 in Fig. 13a and QR represents FC-DenseNet 57 trained
with Quantile Regularization. Base Represents FC-DenseNet103 in Fig. 13b and QR represents FC-
DenseNet103 trained with Quantile Regularization. Ideal line is y = x line which represents perfect
calibration. The More closer the curve to diagonal line the better.

D DATASETS DIMENSION

We consider following datasets (size-of-data,num-input-features): AirFoil (1503,6) , Bouston Hous-
ing (506,13), Concrete Strength (1030,8),Fish Toxicity (908,7),Kin8nm (8192, 9), Protein Structure
(45730, 10), Red Wine (1599, 12), White Wine (4898, 12), Yacht Hydrodynamics (308,6), year
prediction MSD (515345,91)
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(a) Calibration plot for FC-DenseNet 57
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(b) Caibration plot for FC-DenseNet 103

Figure 14: Base+iso Represents FC-DenseNet57 in Fig. 14a after isotonic claibration and QR rep-
resents FC-DenseNet 57 trained with Quantile Regularization after isotonic calibration. Base Rep-
resents FC-DenseNet103 in Fig. 14b and QR represents FC-DenseNet103 trained with Quantile
Regularization. Ideal line is y = x line which represents perfect calibration. The More closer the
curve to diagonal line the better.
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