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ABSTRACT

Cross-modal representation learning is fundamental for extracting structured in-
formation from multimodal data to enable semantic understanding and reasoning.
However, current methods optimize statistical objectives without explicit causal
constraints, where nonlinear mappings can introduce spurious dependencies or
eliminate critical mediators, leading to representation-induced structural drift that
undermines the reliability of causal inference. Therefore, establishing theoretical
guarantees for causal invariance in cross-modal representation learning remains a
foundational challenge. To this end, we propose Causal Alignment and Represen-
tation Learning (CARL), which explicitly embeds causal structure preservation
constraints into cross-modal alignment objectives. Specifically, CARL introduces
a multi-consistency loss architecture that jointly optimizes conditional indepen-
dence preservation and information bottleneck regularization to balance cross-
modal compression with critical variable retention, ensuring low-density modal-
ities are not masked by high-density reconstruction demands. We further incor-
porate monotonic alignment consistency loss to establish correspondence between
semantic similarity and representation distance through Spearman correlation, and
Markov boundary preservation loss to maintain identifiability conditions including
backdoor, frontdoor, and instrumental variable criteria in the shared representation
space. In synthetic experiments with known causal ground truth, CARL achieves
state-of-the-art performance in preserving conditional independence patterns and
maintaining causal query identifiability under structural uncertainty. Real-world
validation on Human Phenotype Project data reveals that CARL successfully pre-
serves causal structures between fundus vascular representations and cardiovascu-
lar events, demonstrating its capacity for reliable cross-modal causal inference in
complex biomedical applications.

1 INTRODUCTION

Representation learning is fundamental to modern deep learning Bengio et al. (2013), yet prevalent
methods risk distorting the very structure they aim to capture Arjovsky et al. (2019). By optimiz-
ing purely statistical criteria, objectives based on reconstruction Goodfellow et al. (2014); Kingma
& Welling (2013), contrastive learning Radford et al. (2021), or large-scale pretraining Dosovitskiy
et al. (2021) can inadvertently corrupt the underlying causal graph of the data. These nonlinear map-
pings may introduce spurious dependencies or eliminate critical mediators Geirhos et al. (2020), a
failure we term representation-induced structural drift. This drift critically undermines the promise
of causal machine learning: reliable interventional estimation Shalit et al. (2017), counterfactual rea-
soning Zuo et al. (2023), and out-of-distribution generalization Liu et al. (2021a). For instance, in
the Human Phenotype Project (HPP)1, such drift could obscure the true causal link between retinal

1https://knowledgebase.pheno.ai/
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vascular features and cardiovascular events amidst confounders like age and blood pressure Shapira
et al. (2024). To alleviate this, we propose the Causal Structure Preservation (CSP) principle, which
requires that representations preserve key conditional independences, Markov boundary informa-
tion, and the identifiability of causal effects. Establishing theoretical guarantees for such causal
invariance in cross-modal learning is a foundational problem we address herein.

A critical gap exists between the optimization objectives of current cross-modal representation learn-
ing methods and the preservation of causal invariance. Sun et al. (2025). For instance, classical
approaches like DCCA Andrew et al. (2013) focus on maximizing correlation without structural
verification mechanisms, failing to guarantee Markov boundary preservation and identifiability con-
sistency. More contemporary paradigms, while powerful, inherit similar blindness to causality.
Contrastive models like CLIP Radford et al. (2021) learn cross-modal alignment via an InfoNCE
loss but fail to enforce a monotonic relationship between semantic similarity and representation dis-
tance, a property crucial for structural consistency. Pivot-based alignment paradigms like ALIGN Jia
et al. (2021) and ImageBind Girdhar et al. (2023) optimize geometric properties of representations
rather than the explicit structural criteria required for causal inference. Consequently, none of these
prominent approaches can guarantee that their learned representations faithfully maintain key causal
properties like conditional independence, Markov boundaries, or identifiability conditions.

This abovementioned gap exposes three fundamental challenges that hinder reliable cross-modal
causal inference: i): Cross-modal Information Bottleneck (CIB): asymmetric compression from in-
formation density differences across modalities causes key variables from low-density modalities to
be masked by reconstruction demands of high-density modalities, weakening identifiability of causal
queries. ii): Modal Alignment Consistency (MAC): after independent encoding, shared space dis-
tances lack monotone correspondence with semantic similarity, preventing distance-based retrieval
from guaranteeing semantic consistency. iii): Cross-modal Identifiability Consistency (CIC): iden-
tifiability conditions including backdoor, frontdoor, and instrumental variables lack establishment
criteria in shared representations Pearl (2009). The core challenge, therefore, is to establish verifi-
able, structure-preserving mechanisms that are robust to such modal heterogeneity.

To this end, we introduce Causal Alignment and Representation Learning (CARL), a framework
that establishes verifiable structure-preserving mechanisms while handling modal heterogeneity by
embedding causal invariance constraints into cross-modal alignment objectives. CARL implements
our novel CSP principle by co-optimizing three synergistic losses: a conditional independence loss
to preserve the causal graph; a Markov boundary retention loss, implemented via conditional mutual
information estimation, to ensure key variables from low-density modalities are not masked by high-
density ones; and a monotonic alignment consistency loss guaranteeing semantic consistency by
maximizing the Spearman correlation between semantic differences and representation distances.
This joint optimization ensures crucial identifiability conditions, including backdoor, frontdoor, and
instrumental variable criteria, are preserved in the shared representation space. Validation on HPP
demonstrates CARL maintains causal structure among the representation of retinal fundus, sleep,
anthropometrics and cardiovascular. Our main contributions are:

1 We formalize the Causal Structure Preservation principle and indentify three core theoretical
challenges in causally-aware cross-modal representation learning (CIB, MAC, and CIC), establish-
ing a new theoretical foundation for causal invariance guarantees in cross-modal scenarios.

2 We propose CARL, a framework that jointly optimizes three structure-preserving losses: condi-
tional independence, Markov boundary retention, and monotonic alignment consistency, achieving
verifiable causal structure preservation and cross-modal alignment under heterogeneity.

3 Empirical validation on HPP demonstrates that CARL preserves the causal relationships between
retinal vascular features and cardiovascular events established in existing research, validating the
framework’s effectiveness in maintaining cross-modal causal structure.

2 PROBLEM FORMULATION AND CAUSAL SETUP

We formalize the causal structure preservation problem by establishing the causal model and cross-
modal setting (Section 2.1), encoder configurations (Section 2.2), and the CSP principle (Sec-
tion 2.3), then instantiate these concepts in a biomedical application (Section 2.4).
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2.1 CAUSAL MODEL AND CROSS-MODAL SETTING

We formalize the underlying causal mechanism with a Directed Acyclic Graph (DAG) G = (V,E),
where V = {T, Y ∗,M,X} consists of a treatment T ∈ T , a set of potential mediators M =
{M1, . . . ,Mk}, a true outcome Y ∗ ∈ Y , and a set of covariates X ∈ X . These variables may
be continuous, discrete, or mixed. The edges E represent direct causal relationships, where the
parent set of any node Vi ∈ V is denoted by PaG(Vi). We assume the true graph G∗ satisfies the
Causal Markov and Faithfulness assumptions Pearl (2009), enabling conditional independencies to
be inferred from the graph. Appendix A.4 details these assumptions and Causal Sufficiency.

In the cross-modal setting, we observe tabular data (T,M,X) alongside image modalities: IM for
the mediator and IY as a proxy for the true outcome, Y ∗. For instance, in biomedical phenotyp-
ing (Section 2.4), T may represent blood pressure, M captures vascular features observed both as
measurements and fundus images, and Y ∗ denotes cardiovascular outcomes. The observed outcome
Y equals Y ∗ when directly available; otherwise, Y = ϕ(IY ) serves as a feature-extracted proxy.
CARL supports three configurations based on this: IM (using IM ), IY (using IY ), and DUAL (both).

We aim to learn encoder family E = {ET , EM , EIM , EIY } that map these heterogeneous in-
puts to a shared representation space Z ⊂ Rd, yielding representation ZT = ET (T ), ZM ∈
{EM (M), EIM (IM )}, and ZY ∈ {EY (Y ), EIY (IY )} Our core objective, structure preservation,
dictates that if the original variables satisfy T ⊥ Y ∗ | M , the learned representations must adhere
to the constraint MI(ZT ;ZY | ZM ) ≤ ζ∗, where MI(·; · | ·) is the conditional mutual information
and ζ∗ is the minimal approximation error for the encoder class.

Assumption 1 (Causal Markov and Faithfulness): The data generating process is assumed to
follow a DAG G that satisfies the Causal Markov and Faithfulness assumptions. We further assume
that causal effects are identifiable, which requires that either a set of covariatesX blocks all backdoor
paths, or the frontdoor/IV criteria are met (Appendix A.2), and that both positivity (overlap) and
consistency (SUTVA) hold (Appendix A.3).

Assumption 2 (Separable Measurement and Encoders): Images modalities are assumed to fol-
low a separable measurement structure IM = gM (aM , bstyle; ηM ), IY = gY (aY , bstyle; ηY ), where
aM , aY represent semantic content variables (the causal signal we aim to preserve), bstyle captures
style factors, and ηM , ηY denote measurement noise.We assume (ηM , ηY ) ⊥ (T,M, Y ∗, X) and
bstyle ⊥ (T, Y ∗) | (M,X) (Appendix A.6.1). All encoders mapping to the shared space Z are
assumed to be Lipschitz-bounded for stability (Appendix A.8.2).

With the causal model and structural assumptions in place, we now describe the encoder architec-
tures that map heterogeneous inputs to a shared representation space while respecting causal con-
straints. We consider three configurations corresponding to different image modality availability.

2.2 CROSS-MODAL ENCODING CONFIGURATIONS

Building upon the causal assumptions defined previously, our framework learns an encoder family
E to map heterogeneous inputs into a unified representation space Z ⊂ Rd. To support variable
tracing and ensure stability, all encoders are deterministic, Lipschitz-constrained mappings, with
tabular inputs processed by multilayer perceptrons and images by convolutional architectures. The
framework flexibly supports three configurations based on the availability of image data:

Scenario 1. (IM): image IM represents the mediator, where encoderEIM : IM → ZIM and tabular
encoder EM : M → ZM learn shared representations through alignment losses. The constraint
ensures no spurious path T → IM → Y ∗ is introduced.

Scenario 2. (IY): image IY serves as outcome proxy. Encoder EIY generates ZIY = EIY (IY ) ∈
Z . An observable outcome Y = ϕ(IY ) ∈ Rk is extracted, assuming a monotonic and calibrat-
able relationship with the true outcome Y ∗. The calibration function h : Z → Rk then map the
representation back to a prediction Ŷ = h(ZIY ), optimized to align with the observed value Y .

Scenario 3. (DUAL): both image modalities are used simultaneously, but conditioning on IM and
IY jointly is avoided in loss computation to prevent collider bias.
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2.3 THE CAUSAL STRUCTURE PRESERVATION PRINCIPLE

Having defined the causal graph G and encoder configurations in the previous subsections, we now
formalize what it means for learned representations to preserve causal structure. We capture this
through the Causal Structure Preservation (CSP) principle.

Definition 2.1 (ε-Causal Structure Preservation). A representation learning system (E ,Z) sat-
isfies ε-CSP if and only if there exists ε ≥ 0 such that the following three conditions hold: (i)
Conditional Independence Transfer: For any conditional independence T ⊥ Y ∗ | M implied by
the original causal graph, the corresponding representations must satisfy MI(ZT ;ZY | ZM ) ≤ ε;
(ii) Markov Boundary Preservation: MI(ZM ;ZY ) ≥ MI(M ;Y ∗) − ε; (iii) Monotonic Align-
ment Consistency: In the IY configuration, the Spearman correlation ρS between semantic differ-
ences ∆aij = |ai − aj | and representation distances ∆zij = ∥zi − zj∥2 must be lower-bounded:
ρS(∆a,∆z) ≥ c0−ε, where c0 ∈ (0, 1] is a constant determined by the order-preserving margin as-
sumption. These three conditions jointly ensure causal structure preservation: condition (i) prevents
spurious dependencies by enforcing conditional independencies from the original graph; condition
(ii) prevents information loss by requiring the mediator to retain predictive power; condition (iii)
ensures geometric consistency between semantic similarity and representation distance. Together,
they maintain the identifiability of causal effects in the representation space.

These three conditions jointly ensure causal structure preservation: condition i) prevents spurious
direct pathways by enforcing conditional independence constraints from the original causal graph;
condition ii) prevents trivial satisfaction of i) through information loss by requiring the mediator to
retain predictive information about the outcome; and condition iii) ensures geometric consistency
by aligning semantic similarity with representation distance. Together, they guarantee that causal
relationships are neither distorted by spurious shortcuts nor weakened by information bottlenecks.

2.4 MOTIVATING APPLICATION: HUMAN PHENOTYPE PROJECT

Having formalized the framework, we now present our motivating application. We conduct our real-
world evaluation on the HPP, a large-scale, longitudinal study that collects deep phenotypic profiles
from a diverse population, offering a holistic perspective on the factors influencing health and dis-
ease Kohn et al. (2025). As previewed in Figure 1, the dataset is distinctly multi-modal, containing
a wide variety of participant information categorized into tabular records, time series, and images,
covering multiple physiological systems. Specifically, the HPP encompasses health information
spanning over 30 distinct modalities, including but not limited to gut microbiome, body composi-
tion, genetics, and blood tests. This rich, multi-modal structure, with its inherent complexity and
potential for confounding, makes the HPP an ideal and challenging testbed for evaluating CARL’s
ability to preserve causal structures in a real-world biomedical application.

This rich multi-modal structure presents a critical methodological challenge: standard representation
learning methods that optimize purely statistical objectives may inadvertently distort the underlying
causal relationships. For instance, a naive encoder could learn to predict cardiovascular events di-
rectly from retinal images by exploiting spurious correlations, thereby bypassing the true mediating
pathway through vascular features and blood pressure. Such representation-induced structural drift
would corrupt our ability to perform valid causal inference and estimate intervention effects. This
motivates our focus on causal structure preservation in cross-modal representation learning.

3 METHODOLOGY

Our proposed CARL framework provides a unified approach to preserving causal structure within
cross-modal representation learning. CARL learns an encoder family E = {ET , EM , EIM , EIY }
which can be extended with optional encoders EY , EX for outcome encoding and confounder con-
trol. This is designed to map heterogeneous inputs, spanning tabular variables (T,M, Y ∗, X) and
image observations I ∈ {IM , IY } to a shared representation space while preserving causal relation-
ships. The core of our framework is a multi-objective optimization strategy guided by three syner-
gistic losses: conditional independencies preservation LCI , Markov boundary retentionLMBR, and
monotonic alignment consistency LMAC (Section 3.1). The learned representations enable causal
discovery via the PC algorithm with variable tracing back to original inputs (Section 3.2). We estab-
lish theoretical properties proving these losses suffice for causal structure preservation (Section 3.3).
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Figure 1: Overview of the multi-modal Human Phenotype Project (HPP) dataset. This dia-
gram illustrates the six key body-level domains central to our study. The indexed variable series
{Xi, Y i,M i} represent the complex web of causal pathways. For clarity, this figure selectively
illustrates a subset of these causal relationship, focusing on significant pathways that are either dis-
covered in prior work or newly validated by our model. Refer Appendix H for detailed description.

3.1 STRUCTURE-PRESERVING LOSSES

We implement the CSP principle through three complementary loss functions. These losses are
defined using a training target y (representing the outcome Y or its proxy ϕ(IY )) and an auxiliary
outcome embedding ψY : Rk → Rd for InfoNCE computation, while encoder EY produces ZY =
EY (Y ) for downstream tasks. This joint optimization can yield causally coherent representations.

Conditional independence preservation. To enforce ZT ⊥ Y ∗ | ZM , we minimize the Condi-
tional Mutual Information (CMI), MI(ZT ;Y | ZM ). Following the variational approach for CMI
estimation (Poole et al., 2019), we estimate MI(ZT ;Y | ZM ) using the negative log-likelihood
difference between two independently parameterized neural predictors, qθ and qϕ:

LCI = E[− log qϕ(y | zm)]− E[− log qθ(y | zt, zm)] (1)

Here, qθ approximates the joint conditional distribution p(y | zt, zm) while qϕ learns p(y | zm) with
zt and zm being the treatment and mediator representations. For continuous y ∈ Rk, both heads
output diagonal-Gaussian parameters (µ, σ2 ∈ Rk); for discrete y, they output class probabilities.

Markov boundary retention. This component prevents the trivial satisfaction of conditional inde-
pendence that can occur from discarding mediator information:

LMBR = − InfoNCE(zm, ψY (y)) (2)

where ψY : Rk → Rd is a deterministic outcome embedding. Following van den Oord et al. (2019),
the InfoNCE objective provides a lower bound on the mutual information MI(ZM ;ψY (Y )) (hence
also regularizing MI(ZM ;Y )) and prevents the collapse of the mediator representation. When out-
come embeddings are unavailable, an energy-style regularizer λen∥ZM∥2 can be used instead. In the
DUAL configuration, the two image modalities never jointly appear within the same conditioning
set of a loss term.

Monotonic alignment consistency. When ground-truth semantic labels {ai}ni=1 ∈ R are available
that quantify the underlying semantic content of each sample, we enforce monotonic correspondence
between semantic ordering and representation distance, this loss maximizes their Spearman’s rank
correlation Spearman (1904) (ρS):

LMAC = −ρS(soft rank(∆a), soft rank(∆z)) (3)

where ∆aij = |ai − aj | denotes semantic amplitude differences with a ∈ R as semantic labels,
∆zij = ∥zi−zj∥2 denotes L2 representation distances, and soft rank (Blondel et al., 2020)provides
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a differentiable rank approximation. The weight wMAC is set to 0 if semantic ordering {ai}ni=1 is
not provided. This constraint ensures that semantically similar samples (small |ai−aj |) are mapped
to nearby representations (small ∥zi − zj∥2).

The overall optimization objective is:
L(E) = wCILCI + wMBRLMBR + wMACLMAC +R(E) (4)

wherewCI , wMBR, wMAC > 0 are loss weights andR(E) = λalign ·Lalign+λstyle ·Lstyle+λIB ·LIB

includes cross-modal alignment loss Lalign ensuring representations of paired modalities are close
in the shared space Z , style consistency regularization Lstyle preventing nuisance factors from
dominating learned representations, and information bottleneck term LIB controlling representa-
tion complexity. Configuration-specific alignment pairs are (ZM , ZIM ) in IM and (ZIY , ZM ) in
{IY, DUAL}, with constraint ZT ⊥ ZIM enforced in IM configuration (details in Appendix D).

3.2 DISCOVERY AND TRACING

Let Z̄ = (ZT , ZM , ZY , ZIM , ZIY , ZX) be the joint random vector of the learned representations
with distribution PZ̄ , and let GZ denote the true causal graph over Z̄. We define a causal discovery
operator Ψ : P(Z̄) → CPDAG(Z̄) that generates the corresponding completed partially directed
acyclic graph (CPDAG) from the set of conditional independencies in the distribution.

For any pair of variables i ̸= j and any feasible conditioning set
Sij ≡

{
S ⊆ Z̄ \ {Zi, Zj} : |{ZIM , ZIY } ∩ S| ≤ 1

}
, (5)

the separation indicator is defined as δ(Zi, Zj |S) = 1{Zi ⊥ Zj |ZS}. Under the assumption of
multivariate Gaussian and faithfulness, conditional independenceZi ⊥ Zj |ZS is equivalent to a zero
partial canonical correlation, ρij|S = 0. For the univariate case where dim(Zi) = dim(Zj) = 1,
the test statistic is given by Fisher’s z-transformation:

Tij|S ≡
√
n− |S| − 3 arctanh(ρ̂ij|S)

H0⇝ N (0, 1).

In the general multivariate case, we employ the Wilks-Bartlett approximation. This test uses the
product of the eigenvalues {κ̂ℓ} of the partial canonical correlations to form the statistic Λij|S ≡∏

ℓ(1− κ̂2ℓ) and tests the null hypothesis H0 : κℓ = 0∀ℓ. The significance of all tests is determined
using the Benjamini-Hochberg procedure at level q to control the false discovery rate.

From these tests, the graph skeletonEZ is constructed by connecting any pair {Zi, Zj} not separated
by any conditioning set in Sij as defined by:

EZ ≡ {{Zi, Zj} : ∄S ∈ Sij s.t. δ(Zi, Zj |S) = 1} (6)
The set of separating conditionals for a pair is denoted by Sep(Zi, Zj) = {S ∈ Sij : δ(Zi, Zj |S) =
1}. The skeleton is then oriented by first identifying all v-structures according to

(Zi → Zk ← Zj)⇐⇒ {Zi, Zk}, {Zj , Zk} ∈ EZ and ∀S ∈ Sep(Zi, Zj), Zk /∈ S
and subsequently applying the Meek rule closure to propagate all remaining edge orientations, yield-
ing the final estimated graph ̂CPDAGZ = Ψ(PZ̄). To render the latent graph interpretable, we de-
fine a variable tracing mechanism using a surjective mapping π : Z̄ → {T,M, Y ∗} and a calibration
map h : range(ZY )→ range(Y ). The surjection π links each representation to its source variable:

π(ZT ) = T, π(Ztab
M ) = π(Z img

M ) =M, π(ZY ) = Y ∗. (7)
The calibration map h ensures that h(ZY ) = Y + εcal, where the calibration error satisfies
E[εcal|ZY ] = 0. Finally, we use the pushforward operator π∗ to project the latent graph back to
the variable space, defining:

̂CPDAGV ≡ π∗( ̂CPDAGZ). (8)
This operator maps each edge (Zi → Zj) in the latent graph to an edge (π(Zi) → π(Zj)) in the
variable-level graph, which is then simplified according to CPDAG rules after node merging.

The guarantee of consistency holds under several standard assumptions: (i) multivariate Gaussianity
and faithfulness of the data distribution; (ii) the mutual exclusion and anti-bypass conditions en-
forced during training; (iii) a minimum non-zero partial correlation lower bound γ > 0; and (iv) a
bounded maximum in-degree for the graph (∆ <∞). Given these conditions, we have

Pr[ ̂CPDAGZ = CPDAG(GZ)]→ 1 as n→∞, (9)
and π∗(CPDAG(GZ)) is topologically equivalent to ground-truth variable graph CPDAG(GV )
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3.3 THEORETICAL PROPERTIES

Under the assumptions established in Sections 2.1 and 2.3, the CARL framework satisfies the fol-
lowing guarantees.
Theorem 1 (CSP Achievability). Under Assumptions A.5 and spectral norm constraints in A.8.2,
consider the loss function

L = wCI · LCI + wMBR · LMBR + wMAC · LMAC , (10)
where

LCI = E[− log qϕ(y | zm)]− E[− log qθ(y | zt, zm)], (11)
LMBR = −InfoNCE(zm, ψY (y)), (12)
LMAC = −ρS(soft rank(∆a), soft rank(∆z)), (13)

with qθ, qϕ independently parameterized. Then the empirical risk minimization admits approximate
minimizing sequences whose limit point (E∗,Z∗) satisfies ε-CSP with

ε = max{ζ∗, OP (n
−1/2), OP (K

−1/2), OP (n
−1/3)}, (14)

where K denotes the number of negative samples, n is the sample size, and ζ∗ is the essential
approximation error for the encoder class.

Proof Sketch. Under A.5 (realizability + regularity with cross-fitting), our three surrogates are risk-
consistent: LCI calibrates MI(ZT ;Y | ZM ), LMBR prevents mediator collapse via an MI lower
bound for I(ZM ;Y ), and LMAC enforces monotone alignment through a soft-rank approximation
to Spearman’s ρS (with approximation error OP (n

−1/3)). Together with A.8.2 (spectral/Lipschitz
control) ensuring compactness and stability, the sampling and approximation errors aggregate to
Eq. (14) (dominated by ζ∗, OP (n

−1/2), OP (K
−1/2), and OP (n

−1/3)), yielding ε-CSP.
Remark 1. The three loss components target the CSP conditions: LCI optimizes condition (i),
LMBR ensures condition (ii), and LMAC guarantees condition (iii). When K = Ω(n), the domi-
nant error term becomes OP (n

−1/2). The weights (wCI , wMBR, wMAC) determine which Pareto
optimal point is reached.
Theorem 2 (Causal Query Preservation). Suppose a representation system satisfies ε-CSP and
the causal query Q = E[Y ∗(t)] is identifiable in the original data space via criterion C ∈
{backdoor, frontdoor, instrumental variable}. Let Q̃ be the corresponding query computed in the
representation space using the same criterion. Then

|Q̃−Q| ≤ κ · ε+ δcal, (15)
where κ is the sensitivity constant of the identification formula, and

δcal = sup
(t,x)

|E[Y ∗ | t, x]− E[h(ZY ) | t, x]| (16)

is the conditional calibration error satisfying δcal = oP (1) under cross-fitting and realizability.

Proof Sketch. We apply the same identification functional (e.g., backdoor/frontdoor) in the repre-
sentation space. By A.8.2, the map from inputs to representations is Lipschitz, so the structural
deviation ε propagates at most linearly to the causal query, giving |Q̃ − Q| ≤ κ ε + δcal. The
calibration term δcal is OP (n

−1/2) under A.5 via cross-fitting. (Full proofs in Appendix C.9)
Remark 2. For backdoor: Q̃ =

∑
zx

E[h(ZY ) | ET (t), zx]P (zx) with κ = 1. This holds for IY and
DUAL configurations where simultaneous conditioning on ZIM and ZIY is avoided in both training
and inference.
Corollary 3 (Overall Approximation Bound). Under the conditions of Theorems 1 and 2, the
learned encoders (Ê , ̂̄Z) satisfy ε-CSP with

ε ≤ ζ∗ +OP (n
−1/2) +OP (K

−1/2) +OP (n
−1/3), (17)

where ζ∗ is the essential approximation error for the encoder class. Moreover, the PC algorithm
is consistent in the representation space, and if π is compatibility-preserving (all members in each
fiber share identical adjacencies and orientations to outside nodes), then

π∗( ̂CPDAGZ) ≡ CPDAG(GV ). (18)

Proof. The bound follows from Theorem 1. Consistency and topological equivalence follow from
Section 3.2 and the compatibility-preserving property of π.
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(a) (b) (c)

Figure 4: Structure-preservation evaluation. Panels report five metrics (CSI, MBRI, MAC, Struc-
tural, RIC) under (a) sample sizes n ∈ {500, 1000, 2000, 5000}, (b) noise levels σ ∈ {0.1, 0.3, 0.5},
and (c) comparision with baselines. Refer to Table 5 for specific values.

4 EXPERIMENT RESULTS

We evaluate CARL on two complementary datasets: a synthetic benchmark with known causal
ground truth for systematic evaluation, and the real-world HPP dataset for biomedical validation.
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Figure 2: Illustration of synthetic
data generation in IM scenario.

Synthetic dataset. We manually create a synthetic bench-
mark dataset to encode a known ground-truth causal rela-
tionships between different modalities, using MNIST Lecun
et al. (1998). The data generation is grounded in a Struc-
tural Causal Model (SCM) that defines a latent causal chain
T → M → Y ∗, where T is an exogenous treatment, M is a
mediator, and Y ∗ is an outcome. To create the cross-modal
link, the latent causal variables are first mapped to a normal-
ized semantic amplitude α ∈ [0, 1]. This amplitude then de-
terministically controls a sequence of visual transformations
(e.g., rotation, brightness, contrast) applied to a base MNIST
digit. This mechanism is used to instantiate three distinct ex-

perimental configurations as described in Section 2.2: IM, IY, DUAL. In Figure 2, we illustrate the
data synthesis process for the IM scenario, where the mediator M is encoded as the image modal-
ity. This design ensures a structured and quantifiable causal dependency that spans both tabular and
visual modalities. Full details of the generation process are provided in Appendix I.
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Figure 3: HPP mediation pathways.

HPP Dataset. The HPP dataset, intro-
duced in Section 2.4, is used to validate
CARL’s ability to preserve known causal
pathways in a real-world biomedical ap-
plication. Implementation details are in
Appendix H.

Baselines. CARL is benchmarked
against the most representative cross-
modal methods, including CLIP Radford
et al. (2021), ImageBind Girdhar et al. (2023), DCCA Andrew et al. (2013), CausalVAE Yang et al.
(2021), ALIGN Jia et al. (2021), IRM Arjovsky et al. (2019), DEAR Shen et al. (2022) and a feature
concatenation baseline.

Metrics. We use five core metrics designed to probe causal preservation: Causal Structure In-
dex (CSI), Markov Boundary Retention Index (MBRI), Monotonic Alignment Consistency (MAC),
Structural Accuracy (Structural), and Representation Information Content (RIC). Full list of results
and experimental setup details are in the Appendix F.
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Table 1: HPP results: Summary of total effect (TE), natural direct effect (NDE), natural indirect
effect (NIE), and mediation proportion of key pathways in latent space Z .

Causal Pathways (Latent Space Z) TE NDE NIE Mediation
Proportion (%)

ZBlood pressure →ZCVD 0.486 0.271 0.215 44.24
ZBlood pressure →ZArterial stiffness →ZCVD - - 0.097 19.96
ZBlood pressure →ZFundus →ZCVD - - 0.074 15.23
ZBlood pressure →ZRenal function →ZCVD - - 0.044 9.05
ZAge →ZFundus →ZCVD 0.513 0.437 0.076 14.81
ZCRP →ZFundus →ZCVD 0.378 0.319 0.059 15.61
ZAHI →ZPRV →ZCVD 0.352 0.281 0.071 20.17
ZBMI →ZMetabolism →ZCVD 0.394 0.325 0.069 17.51
ZGut Microbiome →ZMetabolism →ZCVD 0.316 0.248 0.068 21.52

4.1 CAUSAL PATHWAY DISCOVERY IN HPP DATASET

Based on CARL’s structure-preserving learning and causal discovery as shown in Figure 3, we ob-
tained the following stable effect decompositions on HPP data (See Table 1): for ”blood pressure
→ cardiovascular events (CVD)”, total effect TE=0.486, NDE=0.271, NIE=0.215, with overall me-
diation proportion of 44.24%; indirect effects are primarily transmitted through arterial stiffness
(19.96%), retinal microvascular changes (15.23%), and renal function (9.05%); we simultaneously
identified age → retinal fundus → CVD (14.81%), CRP → retinal fundus → CVD (15.61%), AHI
→ PRV/HRV → CVD (20.17%), BMI → metabolism → CVD (17.51%), and gut microbiome
→ metabolism → CVD (21.52%). These pathways are consistent with independent high-level re-
search directions and have interpretable mechanisms: blood pressure reduction shows clear dose-
response/risk reduction relationships with major adverse cardiovascular events G.1; arterial stiffness
(PWV) can independently predict events and death G.2; retinal microvascular abnormalities pre-
dict stroke and coronary heart disease G.3; renal function impairment (decreased eGFR, increased
proteinuria) increases CVD and mortality risk G.4; retinal ”biological age gap” correlates with all-
cause/cardiovascular mortality G.5; systemic inflammation (CRP) shows dose-response with mi-
crovascular caliber changes and links to CVD G.6; OSA-related HRV reduction indicates higher
CVD risk G.7; obesity mediates considerable proportion of CVD risk through metabolic factors
such as blood pressure/lipids/glucose G.8; microbiome-TMAO and other metabolites are closely
associated with atherosclerosis and adverse events G.9.

4.2 SYNTHETIC DATA VALIDATION

Figure 4 demonstrates CARL’s structure-preserving performance across multiple evaluation dimen-
sions. In sample size scaling experiments (n ∈ {500, 1000, 2000, 5000}), CARL maintains CSI at
1.0 with structural accuracy stable within 0.61-0.75, validating that the ε-CSP bound tightens at the
theoretical OP (n

−1/2) rate. Under noise robustness testing (σ ∈ {0.1, 0.3, 0.5}), CARL’s MAC
degrades from 0.89 to 0.42 while CSI remains at 1.0, and MBRI decreases from 0.77 to 0.63, in-
dicating that monotonic alignment constraints maintain semantic-geometric correspondence under
distributional perturbation. Baseline comparisons reveal CLIP’s CSI at 0.25, ImageBind’s Structural
at 0.33, and similar performance from DCCA, confirming that purely statistical objectives cannot
guarantee conditional independence pattern preservation.

4.3 ABLATION STUDY

Table 2 quantifies the contribution patterns of each loss function. Removing LCI causes CSI to drop
from 1.0 to 0.25 while MAC increases to 0.83 but structural accuracy falls to 0.40, indicating that se-
mantic alignment and structural preservation decouple when conditional independence constraints
are absent. Removing LMBR reduces MBRI from 0.63 to 0.46 and CSI to 0.75, confirming the
necessity of Markov boundary information for complete structural preservation. Removing LMAC

decreases MAC from 0.55 to 0.32 while CSI remains at 1.0, showing that semantic-geometric con-
sistency and conditional independence preservation are mutually independent. The alignment-only
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configuration reproduces the fundamental problems of statistical methods: high MAC (0.89) but low
CSI (0.25) and structural accuracy (0.32).

Table 3 validates the necessity of key design choices. Shared predictor heads reduce CSI from 1.0 to
0.75 with slight decreases in MBRI and MAC, confirming the importance of independent parame-
terization for unbiased CMI estimation. Absence of cross-validation causes CSI to plummet to 0.25,
indicating severe risks of overfitting spurious conditional dependencies. WithK = 32 negative sam-
ples, all metrics decline and CSI drops to 0.75, validating the impact of InfoNCE estimation quality
on structural preservation. Representation dimension d = 16 performs comparably to the full con-
figuration, with all metric differences within 0.05, confirming the stability of constraint mechanisms
across different representation scales.

Table 2: Loss function ablation: impact on
structure preservation performance.

CSI MBRI MAC Structural RIC

w/o LCI 0.25 0.62 0.83 0.40 0.44
w/o LMBR 0.75 0.46 0.54 0.52 0.37
w/o LMAC 1.00 0.63 0.32 0.56 0.42
only Lalign 0.25 0.66 0.89 0.32 0.49
CARL (Full) 1.00 0.63 0.55 0.61 0.42

Table 3: Architecture design ablation study: impact
of key design choices on performance.

CSI MBRI MAC Structural RIC

Shared Predictor Head 0.75 0.61 0.53 0.54 0.41
w/o Cross Validation 0.25 0.66 0.63 0.37 0.43
K : 32 0.75 0.55 0.49 0.48 0.41
d : 16 1 0.58 0.56 0.60 0.43
CARL (Full) 1 0.63 0.55 0.61 0.42

5 RELATED WORK

Cross-modal representation learning has achieved great success in aligning heterogeneous data like
images and text into a shared semantic space using contrastive objectives Radford et al. (2021);
Jia et al. (2021); Girdhar et al. (2023). However, these methods optimize statistical associations
and are agnostic to the underlying causal graph, risking the distortion of causal pathways Arjovsky
et al. (2019); Geirhos et al. (2020). In parallel, Causal Representation Learning (CRL) aims to learn
causally robust representations that support generalization and counterfactual reasoning Schölkopf
et al. (2021); Bagi et al. (2023); Zuo et al. (2023). Yet, CRL has predominantly focused on unimodal
data and has not systematically addressed the unique challenges of multi-modal settings, such as in-
formation asymmetry across modalities or ensuring consistent geometric-semantic alignment Liang
et al. (2022); Zhang et al. (2024). While initial exploration into multi-modal causal representation
learning exist Sun et al. (2025), the disconnect between the scaling power of modern cross-modal
models and the structural requirements for reliable, verifiable causal inference creates a critical gap.
Our work aims to bridge this gap by introducing a framework that explicitly preserves key causal
structures, including conditional independencies and effect identifiability conditions, during cross-
modal representation learning. Please refer to Appendix E for a detailed literature review.

6 CONCLUSION

We address the problem of representation-induced structural drift in cross-modal representation
learning through the introduction of the Causal Structure Preservation principle and the CARL
framework. We identify and formalize three core challenges: Cross-modal Information Bottleneck,
Modal Alignment Consistency, and Cross-modal Identifiability Consistency, proposing a joint op-
timization strategy combining conditional independence preservation, Markov boundary retention,
and monotonic alignment consistency. Theoretical analysis establishes achievability guarantees for
ε-CSP and proves the preservation of causal query identifiability in representation space. Validation
on the HPP dataset demonstrates that CARL preserves complex mediation pathways from blood
pressure to cardiovascular disease through arterial stiffness, retinal microvascular changes, and renal
function. Synthetic benchmark testing reveals the limitations of purely statistical optimization meth-
ods in structural preservation while validating the theoretical necessity and practical effectiveness of
our three loss function components. This framework provides verifiable theoretical foundations and
methodological support for reliable causal inference in multimodal data environments.
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LLM USAGE DISCLOSURE

In the preparation of this paper, we made limited use of large language model (LLM) tools such as
ChatGPT and Gemini. After drafting the manuscript, we used these tools only for minor language
polishing. All research ideas, analyses, and the substantive content of the paper were conceived,
developed, and written by the authors.

A NOTATION AND ASSUMPTIONS

A.1 NOTATION

Throughout this paper, we adopt the following notation conventions. Let T ∈ T denote the treatment
variable, M ∈ M the mediator variable, Y ∗ ∈ Y the true but unobserved outcome, Y ∈ Rk the
observed outcome (reduces to scalar when k = 1), andX ∈ X the covariate set. Image observations
IM , IY ∈ RH×W×C have height H , width W , and C channels. The shared representation space is
denoted as Z ⊂ Rd where d is the representation dimension.

The encoder family E comprises the following mappings: treatment encoderET : T → Z , mediator
encoder EM : M → Z , image-mediator encoder EIM : IM → Z , image-outcome encoder
EIY : IY → Z , and optional outcome encoder EY : Rk → Z and covariate encoder EX : X → Z .
The corresponding representations are denoted asZT = ET (T ) for encoded treatment, ZM obtained
from either EM (M) or EIM (IM ), and ZY from either EY (Y ) or EIY (IY ).

Key functions include the parameterized conditional distributions qθ : Z × Z → P(Rk) and qϕ :
Z → P(Rk) modeling p(y|zt, zm) and p(y|zm) respectively, outcome embedding function ψY :
Rk → Rd, image-to-outcome extraction function ϕ : IY → Rk, posterior calibration function
h : Z → Rk, and differentiable rank approximation soft rankτrank(·) with temperature τrank.

Loss function parameters include primary loss weights wCI , wMBR, wMAC , regularization coef-
ficients λalign, λstyle, λIB , temperature parameters τalign for InfoNCE alignment, τrank for soft-rank
approximation, balance coefficient τmbr for MBR loss weighting, and significance level α for hy-
pothesis testing (default 0.05).

A.2 IDENTIFICATION CONDITIONS

Definition A.2.1 (Backdoor Criterion) Given a DAG G = (V,E), a set of variables S ⊆ V \
{T, Y ∗} satisfies the backdoor criterion relative to the ordered pair (T, Y ∗) if and only if (i) S ∩
de(T ) = ∅ where de(T ) denotes the descendants of T , and (ii) S blocks all paths of the form
T ← · · · → Y ∗.

Definition A.2.2 (Frontdoor Criterion) A set of variablesM ⊆ V \{T, Y ∗} satisfies the frontdoor
criterion relative to (T, Y ∗) if and only if (i) ∀π ∈ ΠT→Y ∗ : M ∩ π ̸= ∅ where ΠT→Y ∗ denotes
all directed paths from T to Y ∗, (ii) (T ⊥ M | ∅)GT→M

holds in the graph with edges T → M
removed, and (iii) (M ⊥ Y ∗ | T )G

M→Y ∗ holds in the graph with edges M → Y ∗ removed.

Definition A.2.3 (Instrumental Variable) A variable Z is an instrumental variable for (T, Y ∗)
if and only if (i) Cov(Z, T ) ̸= 0 (relevance), (ii) (Z ⊥ Y ∗)GT

holds in the graph with T and
its outgoing edges removed (exclusion restriction), and (iii) Z ⊥ U where U denotes unobserved
confounders affecting (T, Y ∗).

A.3 POSITIVITY AND CONSISTENCY

Definition A.3.1 (Positivity) The treatment mechanism satisfies the positivity condition if and only
if there exist constants c1, c2 ∈ (0, 1) such that c1 ≤ P (T = t | X = x) ≤ c2 for all (t, x) ∈
supp(T,X). For continuous treatments, we require bounded density ϵ1 ≤ fT |X(t|x) ≤ ϵ2 almost
everywhere for some ϵ1, ϵ2 > 0.

Definition A.3.2 (SUTVA) Let Yi(t) denote the potential outcome of unit i under treatment t. The
Stable Unit Treatment Value Assumption holds if and only if (i) Yi(t) = Yi(ti) for all treatment
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vectors t = (t1, . . . , tn) (no interference), and (ii) for all t ∈ T , there exists a unique potential
outcome Yi(t) (treatment uniqueness).

A.4 CAUSAL MARKOV PROPERTY AND FAITHFULNESS

A.4.1 FORMAL STATEMENT OF CAUSAL MARKOV ASSUMPTION

Definition A.1 (Causal Markov Property): Given a directed acyclic graph G = (V,E), each
variable Vi ∈ V satisfies the conditional independence relation

Vi ⊥⊥ (NonDescG(Vi) \ PaG(Vi)) | PaG(Vi)

Where NonDescG(Vi)\PaG(Vi) denotes the set of non-descendant variables of Vi in G excluding
its parents, and PaG(Vi) denotes the parent set of Vi.

In the basic structure T →M → Y ∗ of the CARL framework, the causal Markov property manifests
as: for root node T , we have T ⊥⊥ NonDescG(T ) (since PaG(T ) = ∅); for Y ∗, we have Y ∗ ⊥
⊥ T | PaG(Y ∗) = {M}; for M , we have M ⊥⊥ (NonDescG(M) \ PaG(M)) | PaG(M) = {T}.
When including covariates X and image observations IM , IY , the Markov property requires all
variables to be conditionally independent of their non-descendant non-parent variables given their
graph-structural parents.

A.4.2 FAITHFULNESS AND ADJACENCY FAITHFULNESS

Definition A.2 (Faithfulness): A distribution P is faithful to DAG G if and only if the conditional
independence relations in P correspond one-to-one with the d-separation relations in G:

X ⊥⊥ Y | Z in P ⇔ X ⊥d Y | Z in G

For robustness considerations in practical applications, we adopt the adjacency faithfulness condi-
tion: if Vi and Vj are adjacent in graph G, then for conditioning sets S that exclude the endpoints
and their descendants, we reject H0 : Vi ⊥⊥ Vj | S at level α (up to measure-zero exceptions).

Faithfulness fails under parameter cancellation, deterministic relationships, and special parameter
configurations. Parameter cancellation occurs when causal effects cancel each other through differ-
ent paths, and deterministic relationships exist in cases of strict functional dependencies. In con-
tinuous parameter spaces, parameter configurations that violate faithfulness constitute measure-zero
sets.

A.4.3 BASIC IDENTIFICATION CONDITIONS

Positivity Condition: The treatment variable must have positive probability of being observed under
all covariate conditions:

0 < P (T = t | X = x) < 1 for all (t, x) in support

For mediator variables, we similarly require

0 < P (M = m | T = t,X = x) < 1

For continuous treatments/mediators, we use positive density conditions fT |X(t|x) >
0, fM |T,X(m|t, x) > 0 to replace discrete probabilities.

Consistency Condition (SUTVA): This includes the no-interference assumption and treatment ver-
sion consistency. The no-interference assumption requires that individual i’s potential outcomes are
not affected by other individuals’ treatment status, while treatment version consistency requires that
there are no different versions of treatment for the same treatment level.

Positivity violations manifest as treatment probabilities of 0 or 1 under certain covariate combina-
tions, detectable through propensity score distributions. Consistency violations involve treatment
spillover effects or ambiguous treatment definitions, requiring domain knowledge for assessment.
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A.5 REALIZABILITY AND REGULARITY FOR ESTIMATOR CONSISTENCY

Assumption 1 (Causal Structure). The data generating process follows a directed acyclic graph
G = (V,E) with core causal chain T → M → Y ∗. This structure satisfies the Markov prop-
erty (Definition A.4.1) and faithfulness (Definition A.4.2), with identification conditions detailed in
Section A.4.3.

Assumption 2 (Anti-bypass). The outcome representation ZY satisfies no direct information flow
from (T,M) bypassing the outcome pathway. When ZY = EY (Y ), we require ZY ⊥ (T,M)|Y .
When ZY = EIY (IY ) in IY configurations, we require ZY ⊥ (T,M)|IY where IY captures all
outcome-relevant information. These encoders are mutually exclusive and share no feature extrac-
tion layers or gradient paths from (T,M), ensuring complete branch isolation in the representation
space.

Assumption 3 (Configuration-Specific Conditions). In the IM configuration, no spurious path
T → IM → Y ∗ exists, and IM observes M with independent noise. In the IY configuration, the
proxy Y = ϕ(IY ) satisfies monotonic calibratability with Y ∗, meaning there exists a monotonic
function h such that E[Y ∗|ϕ(IY )] = h(ϕ(IY )). The DUAL configuration satisfies both IM and IY
conditions, with IM and IY never simultaneously conditioned in both training loss computation and
discovery-phase conditioning sets.

Assumption 4 (Technical Regularity). Encoders satisfy Lipschitz continuity with ∥E(x1) −
E(x2)∥ ≤ L∥x1 − x2∥ for Lipschitz constant L > 0. All representations have bounded second
moments E[∥Z∥2] < ∞. Observed samples are independently and identically distributed or satisfy
mixing conditions. Representations maintain non-degeneracy with Var(Z) ≥ σ2

0 > 0 preventing
representation collapse.

Assumption 5 (Estimator Consistency). The following conditions ensure consistency of key es-
timators. For NLL-based CMI approximation, the predictor qθ achieves realizability or bounded
calibration error with respect to p(y|z). For InfoNCE lower bounds, in-batch negative samples
satisfy approximate independence. Theoretically, K = Ω(n) achieves optimal rate OP (n

−1/2).
Practically, K ≍ logn provides sufficient statistical power with error OP ((log n)

−1/2), balancing
computational cost and estimation accuracy. For soft-rank consistency, the temperature decays as
τrank = O(n−α) for α ∈ (0, 1/2) ensuring both rank consistency and bounded gradients.

A.6 MEASUREMENT AND PAIRING ASSUMPTIONS

A.6.1 FORMALIZATION OF SEPARABLE MEASUREMENT ASSUMPTION

Definition A.3 (Separable Measurement Structure): Image observations satisfy separable mea-
surement structure

IM = gM (aM , bstyle; ηM ), IY = gY (aY , bstyle; ηY )

where aM , aY represent semantic content variables related to causal variables, bstyle denotes the
style variable affecting visual appearance but not causal relationships, and ηM , ηY are measurement
noises independent of all causally relevant variables.

Key independence conditions for separable measurement include noise independence (ηM , ηY ) ⊥⊥
(T,M, Y ∗, X) and style conditional independence bstyle ⊥⊥ (T, Y ∗) | (M,X).

A.6.2 VERIFICATION METHODS

At significance level α, we fail to reject H0 : Corr(η̂, T ) = 0 (HSIC/permutation-based indepen-
dence tests; multiple testing controlled via Benjamini–Hochberg FDR). For style independence, we
test H0 : I(bstyle;T, Y

∗ |M,X) = 0 (conditional mutual information permutation test).

Practical verification strategies include using style disentanglement techniques to verify the sep-
arability of style variables, verifying the invariance of causal relationships through multiple style
transformations, and cross-validating the consistency of causal effects under different style condi-
tions.
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A.6.3 PAIRED DATA PREREQUISITES

Strong pairing conditions require entity-level exact pairing (IMi , IYi ,Mi, Y
∗
i , Ti, Xi), where the

subscript i indicates the same individual or entity. When exact pairing is infeasible, we allow tem-
poral window pairing (observations paired within reasonable time windows), matched pairing (near-
est neighbor matching based on key covariates), and distributional alignment (ensuring marginal
distribution matching P (IM ) ≈ Ptarget(I

M )).

Paired data is used to construct positive sample pairs in InfoNCE loss. When paired data is unavail-
able, we need to ensure positive sample pairs come from the same semantic category or continu-
ous semantic neighborhood, filtering alternative positive sample pairs through semantic similarity
thresholds. Under weak pairing or distributional alignment (e.g., MMD), if the sampling and cross-
fitting conditions in B.3 and B.4 are satisfied, and positive pairs/negatives are sampled indepen-
dently, the validity of lower bounds and bias bounds can be maintained.

A.7 SCENARIO-SPECIFIC CONDITIONS

A.7.1 FRONT-DOOR CRITERION AND INSTRUMENTAL VARIABLE CONDITIONS

Front-door Criterion (Three Conditions): For path T → M → Y ∗, M as a front-door variable
must satisfy: M intercepts all causal paths from T to Y ∗, back-door blocking from T to M , and
back-door blocking from M to Y ∗. Specifically, all directed paths from T to Y ∗ pass through M ,
there are no back-door paths from T toM or all back-door paths are blocked byX , and given T and
X , all back-door paths from M to Y ∗ are blocked.

Instrumental Variable (Three Conditions): Let Z be an instrumental variable for T , satisfying
Relevance: Cov(Z, T ) ̸= 0 (excluding weak instruments; first-stage F-statistic exceeds conventional
thresholds, e.g., > 10); Exclusion restriction: Z ⊥⊥ Y ∗ | (T,X); Exogeneity: Z ⊥⊥ U | X , where
U represents unobserved confounders affecting Y ∗.

Positivity conditions require 0 < P (M = m | T = t,X = x) < 1 in the front-door case and
0 < P (T = t | Z = z,X = x) < 1 in the IV case.

A.7.2 SCENARIO-SPECIFIC NECESSARY AND SUFFICIENT CONDITIONS

IM Scenario Conditions: The necessary condition is the absence of directed path T → IM → Y ∗.
The sufficient condition is satisfied when IM = gM (M, bstyle; ηM ) with ηM ⊥⊥ Y ∗ and bstyle ⊥⊥
Y ∗ | M . Violation detection fails to reject H0 : I(IM ;Y ∗ | M,X) = 0 at level α (conditional
mutual information test); if H0 is rejected, we deem a violation.

IY Scenario Conditions: Proxy sufficiency requires Y ∗ ⊥⊥ X | ϕ(IY ), T , where ϕ(IY ) contains
all information about Y ∗ givenX . Strict monotonicity requires the existence of a strictly monotonic
function h such that

E[Y ∗ | ϕ(IY )] = h(ϕ(IY )), where h is strictly monotonic

Equivalently, monotonicity manifests as Pr(Y ∗
1 > Y ∗

2 ) = Pr(ϕ(IY1 ) > ϕ(IY2 )). The order-
consistent equivalent form is used for binary comparisons and does not require linear linkage.

DUAL Scenario Conditions: Simultaneously satisfies both IM and IY conditions. Due to the
existence of collider structure IM ← M → Y ∗ → IY , simultaneously conditioning on IM and
IY introduces spurious associations. Implementation strategy requires avoiding simultaneous use
of both image modalities in the same batch or same loss term when estimating conditional mutual
information or training discriminators.

A.8 REGULARITY AND IMPLEMENTATION CONDITIONS

A.8.1 SAMPLE EXCHANGEABILITY AND MOMENT CONDITIONS

Observed samples (Z1, Z2, . . . , Zn) satisfy either independent and identically distributed Zi
iid∼ PZ

or β-mixing conditions. For time series data, β-mixing requires β(k) = O(k−α), where α > 2.
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Moment conditions include bounded second moments E
[
∥Zi∥22

]
< ∞ for all i, and optional light-

tail assumptions where Zi satisfies sub-Gaussian conditions
E[exp(tZi)] ≤ exp(σ2t2/2) for all t ∈ R

Non-degenerate encoder conditions require Var(Z·) ≥ σ2
0 > 0 to prevent representation collapse to

constants.

A.8.2 IMPLEMENTATION METHODS FOR LIPSCHITZ CONSTRAINTS

Encoder functions E : X → Z must satisfy Lipschitz continuity
∥E(x1)− E(x2)∥2 ≤ L∥x1 − x2∥2

where L > 0 is the Lipschitz constant.

Practical implementation constrains each layer’s weight matrix W through spectral normalization
WSN = W

σ(W ) , where σ(W ) is the largest singular value of W . Gradient clipping limits gradient

norms∇clip = min
(
1, C

∥∇∥2

)
∇, where C is the clipping threshold. Optional gradient penalty adds

LGP = λEx

[
max(0, ∥∇xE(x)∥2 − 1)2

]
to the loss function.

Verification methods numerically estimate the Lipschitz constant L ≈ maxx1,x2

∥E(x1)−E(x2)∥2

∥x1−x2∥2
,

monitor spectral norm changes of encoders during training, and verify the boundedness of represen-
tation changes under perturbed inputs. A computable upper bound is L ≤

∏
ℓ σmax(Wℓ) (tracked

via power iteration).

A.9 IDENTIFIABILITY CONDITIONS

Causal effect identification requires backdoor, front-door (Section A.7.1), or instrumental variable
criteria. Under Assumption A.5 and the structure-preserving losses, these criteria apply in the repre-
sentation space using (ZT , ZM , ZX , ZY ) with directional constraints maintaining T as exogenous.

These assumptions provide the foundation for theoretical guarantees in Appendix B and Ap-
pendix C, and guide implementation choices in Appendix D.

B THEORETICAL PROPERTIES AND TECHNICAL CONDITIONS

B.1 THEORETICAL FOUNDATIONS OF LOSS FUNCTIONS

The alignment loss Lalign provides a lower bound on mutual information via noise contrastive es-
timation. Let (z+, y+) be a positive sample pair and {y−k }Kk=1 be independently sampled negative
samples. The InfoNCE loss is defined as:

LInfoNCE = −E
[
log

exp(f(z+, y+)/τalign)

exp(f(z+, y+)/τalign) +
∑

k exp(f(z
+, y−k )/τalign)

]
(19)

where f : Z ×Y → R is the scoring function. By the Donsker-Varadhan variational representation,
I(Z;Y ) ≥ logK − LInfoNCE. This lower bound improves with increasing K, and its validity relies
on the negative sampling independence assumption Y −

k ⊥ (Z+, Y +) (see Assumption A.5).

Conditional mutual information is estimated via the density ratio method. Define ∆NLL =
E[− log qϕ(y|zm)] − E[− log qθ(y|zt, zm)], where qθ and qϕ are two independently parameter-
ized predictors to avoid bias in CMI estimation. Under the realizability assumption (Assump-
tion A.5), i.e., there exists θ∗ such that qθ∗(y|z) = p(y|z) almost surely, we have limn→∞ ∆NLL =
I(ZT ;Y |ZM ). Under model misspecification, the bias is ζ∗ = infθ KL(p∥qθ), and consistency
requires ζ∗ → 0.

B.2 NLL CALIBRATION AND REALIZABILITY

B.2.1 THEORETICAL FOUNDATION OF NLL SURROGATES

Theorem B.1 (Calibration of ∆NLL). Assume (i) ET , EM are Lipschitz and predictors qθ, qϕ are
well-specified (realizable), and (ii) the regularity conditions in Appendix A.8 hold. The conditional
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independence loss employs two independently parameterized predictors qθ and qϕ to avoid bias in
CMI estimation. Specifically:

• qθ : ZT ×ZM → P(Y) models p(y|zt, zm)

• qϕ : ZM → P(Y) models p(y|zm)

Then
∆NLLn

P−→ I(ZT ;Y | ZM ).

Without realizability, letting

ζ⋆ := inf
θ,ϕ

{
EZT ,ZM

[
KL

(
p(· | ZT , ZM ) ∥ qθ(· | ZT , ZM )

)]
+EZM

[
KL

(
p(· | ZM ) ∥ qϕ(· | ZM )

)]}
,

we have
∆NLLn = I(ZT ;Y | ZM ) + ζ⋆ + εn, εn

P−→0.

Proof: Let the true conditional densities be p(y|zt, zm) and p(y|zm), and the parameterized densities
be qθ(y|zt, zm) and qϕ(y|zm). Define

NLLtzm = − 1

n

n∑
i=1

log qθ(yi | zt,i, zm,i) , NLLzm = − 1

n

n∑
i=1

log qϕ(yi | zm,i) .

∆NLLn := NLLzm −NLLtzm = I(Y ;ZT | ZM ) + ζ⋆ +OP (n
−1/2),

Under realizability, by the law of large numbers and continuous mapping theorem, convergence to
true entropies follows. Under misspecification, the additional fixed bias ζ∗ quantifies the degree of
model mismatch.

Lemma B.1 (Realizability Condition): If there exist parameters θ∗, ϕ∗ such that qθ∗(y|zt, zm) =
p(y|zt, zm) and qϕ∗(y|zm) = p(y|zm) almost surely, then

lim
n→∞

E[∆NLLn] = H(Y |ZM )−H(Y |ZT , ZM ) = I(ZT ;Y |ZM ).

Lemma B.2 (Approximation Error Bound): Under model misspecification, let θn, ϕn be empiri-
cal risk minimizers. Then

|∆NLLn − I(ZT ;Y |ZM )− ζ⋆| ≤ ξn + δn

where ξn = OP ((logn/n)
1/2) is the finite sample error and δn = OP (n

−1/2) is the optimization
error.

B.2.2 PRACTICAL VERIFICATION STRATEGIES

Corollary B.1 (Calibration Testing): NLL calibration is verified through the following procedure.
First, training convergence is monitored by checking |∆NLLn+k − ∆NLLn| < ϵ for sufficiently
large k. Second, cross-validation consistency requires computing ∆NLLval on independent vali-
dation sets and ensuring |∆NLLtrain − ∆NLLval| < δ. Third, conditional independence testing
directly examines the null hypothesis ZT ⊥⊥ Y | ZM , where rejection at p < 0.05 provides statisti-
cal evidence for I(ZT ;Y |ZM ) > 0.

B.3 INFONCE LOWER BOUND CONDITIONS

B.3.1 SUFFICIENT CONDITIONS FOR LOWER BOUND VALIDITY

Theorem B.2 (InfoNCE Lower Bound Theorem): Let (Z+, Y +) be a positive sample pair and
{Y −

k }Kk=1 be negative samples drawn independently from marginal distribution PY . Define the
InfoNCE loss as

LInfoNCE = −E

[
log

exp(f(Z+, Y +)/τ)

exp(f(Z+, Y +)/τ) +
∑K

k=1 exp(f(Z
+, Y −

k )/τ)

]

24



Published as a conference paper at ICLR 2026

where f : Z × Y → R is a scoring function and τ > 0 is the temperature parameter. Under
the following conditions: (i) Negative independence: Y −

k
i.i.d.∼ PY and Y −

k ⊥⊥ (Z+, Y +); (ii)
Lipschitz scoring: |f(z1, y) − f(z2, y)| ≤ L∥z1 − z2∥; (iii) Sufficient negatives: Theoretically
K = Ω(n) minimizes bias to OP (n

−1/2). Practically, K ≍ log n (validation selects constant C
such that K ≥ C logn) achieves error εK = OP (K

−1/2) = OP ((logn)
−1/2), which is suffi-

cient for most applications while maintaining computational tractability. We have the lower bound
relation (van den Oord et al., 2019; Poole et al., 2019):

I(Z;Y ) ≥ logK − LInfoNCE − εK

where εK = OP (K
−1/2).

Proof: According to the Donsker-Varadhan variational representation (Donsker & Varadhan, 1975),

I(Z;Y ) = sup
f

EPZY
[f(Z, Y )]− logEPZ⊗PY

[exp(f(Z, Y ))].

Lemma B.3 (Negative Sample Approximation): Under negative sample independence,

EPZ⊗PY
[exp(f(Z, Y ))] =

1

K

K∑
k=1

exp(f(Z+, Y −
k )) +OP (K

−1/2).

Lemma B.4 (Temperature Scaling): For any τ > 0, replacing f by fτ := f/τ yields the same
functional family up to a scale; the InfoNCE lower bound retains the form I(Z;Y ) ≥ logK −
LInfoNCE(fτ ). Hence τ acts as a numerical conditioning parameter rather than tightening the bound
per se; it should be selected via validation.

B.3.2 TECHNICAL REQUIREMENTS FOR PRACTICAL IMPLEMENTATION

Corollary B.2 (Negative Sampling Strategy): To ensure the conditions of Theorem B.2 are sat-
isfied, practical implementation requires the following. Global batch sampling ensures that in dis-
tributed training, negative samples are drawn from the global batch rather than local batches. Tem-
perature adjustment selects τ ∈ [0.01, 0.1] through validation sets for optimal performance. Nega-
tive sample quantity follows K ≍ log n to ensure statistical power.

Theorem B.3 (Distributed Consistency): In distributed settings with D devices and batch size B
per device, if negative samples are drawn from the global batch DB, InfoNCE lower bound validity
is maintained (van den Oord et al., 2019):

I(Z;Y ) ≥ log(DB − 1)− Lglobal
InfoNCE −OP ((DB)−1/2).

Proof: Extension of Theorem B.2 analysis to multi-device settings, with the key requirement being
maintenance of global negative sample independence.

B.4 CONDITIONAL MUTUAL INFORMATION BIAS CONTROL

B.4.1 SOURCES OF CMI ESTIMATION BIAS

Theorem B.4 (CMI Bias Decomposition Theorem): Let Î(ZT ;Y |ZM ) be some estimator of CMI.
Under the density estimation framework, total bias decomposes as:

E[Î(ZT ;Y |ZM )]− I(ZT ;Y |ZM ) = Bdensity +Bfinite +Bdiscretization

where Bdensity represents conditional density estimation bias, Bfinite represents finite sample bias,
and Bdiscretization represents discretization bias when applicable.

Lemma B.5 (Conditional Density Bias Bound): Using kernel density estimation with bandwidth
h = O(n−1/(d+4)) (Silverman’s rule or plug-in bandwidth in practice),

|Bdensity| = O(n−4/(d+4))

where d is the dimension of the conditioning variable ZM (Wasserman, 2006).
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B.4.2 SAMPLE SPLITTING AND CROSS-FITTING

Theorem B.5 (Cross-fitting Bias Control): When estimating CMI using K-fold cross-fitting, let
D = ∪Kk=1Dk be the data partition and p̂−k be density estimators trained on D \ Dk. Define

ÎCV =
1

K

K∑
k=1

1

|Dk|
∑
i∈Dk

log
p̂−k(yi|zt,i, zm,i)

p̂−k(yi|zm,i)
.

Under regularity conditions (Chernozhukov et al., 2018):

|E[ÎCV]− I(ZT ;Y |ZM )| = O(n−1/2).

Proof: The key advantage of cross-fitting lies in avoiding overfitting bias. For each fold k,

Ei∈Dk

[
log

p̂−k(Yi|ZT,i, ZM,i)

p̂−k(Yi|ZM,i)

]
= I(ZT ;Y |ZM ) + o(1)

since p̂−k is independent of (Yi, ZT,i, ZM,i). Summing and averaging yields the desired result.

Corollary B.3 (Practical Bias Control Strategy): Effective bias control employs 5-fold or 10-fold
cross-fitting. Conditional density estimation utilizes regularized neural networks or Gaussian pro-
cesses. Monitoring variance across different folds guides regularization strength adjustment when
excessive variance is observed.

B.5 SOFT-RANK TO SPEARMAN CORRELATION CONSISTENCY

B.5.1 THEORETICAL PROPERTIES OF SOFT-RANK FUNCTIONS

Definition B.1 (Soft-rank Function): Given vector x = (x1, . . . , xn) and temperature parameter
τ > 0, the soft-rank function is defined as:

SoftRankτ (xi) =

n∑
j=1

σ

(
xi − xj
τ

)
where σ(z) = (1 + exp(−z))−1 is the sigmoid function.

Theorem B.6 (Soft-rank Consistency Theorem): Let (X,Y ) be a bivariate random vector and
Rank(xi) be the true rank of xi in the sample. As τ → 0,

lim
τ→0

SoftRankτ (xi) = Rank(xi)− 1

with uniform convergence over compact domains (Blondel et al., 2020).

Proof: As τ → 0, σ((xi − xj)/τ)→ 1xi>xj
, hence

lim
τ→0

SoftRankτ (xi) =

n∑
j=1

1xi>xj
= Rank(xi)− 1.

Uniformity follows from the monotonicity of the sigmoid function.

Theorem B.7 (Spearman Correlation Convergence Theorem): Let ρS(X,Y ) be the true Spear-
man correlation coefficient and ρ̂τ be the soft-rank based estimator:

ρ̂τ = Corr(SoftRankτ (X), SoftRankτ (Y )).

Under conditions: (i) (Xi, Yi) independent and identically distributed for i = 1, . . . , n; (ii) joint
distribution has continuous marginals; (iii) τ = O(n−α) for some α ∈ (0, 1/2), we have:

|ρ̂τ − ρS(X,Y )| = OP (n
−1/2 + τ log n).

Proof: Decompose error into bias and variance components:

ρ̂τ − ρS(X,Y ) = [E[ρ̂τ ]− ρS(X,Y )] + [ρ̂τ − E[ρ̂τ ]].

Lemma B.6 (Bias Term Analysis): |E[ρ̂τ ]− ρS(X,Y )| = O(τ logn).

Lemma B.7 (Variance Term Analysis): Var[ρ̂τ ] = O(n−1).
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B.5.2 GRADIENT BOUNDEDNESS AND OPTIMIZATION STABILITY

Theorem B.8 (Soft-rank Gradient Bound): The MAC loss LMAC = −ρ̂τ has gradient with
respect to representation z satisfying: ∥∥∥∥∂LMAC

∂z

∥∥∥∥ ≤ C

τ
· 1
n

where C is a constant depending only on the data range (Blondel et al., 2020).

Proof:
∂SoftRankτ (xi)

∂xi
=

1

τ

∑
j ̸=i

σ′((xi − xj)/τ) ≤
1

τ
· n− 1

4

using σ′(z) ≤ 1/4. The result follows by chain rule and correlation coefficient gradient formulas.

Corollary B.4 (Training Stability): Choosing τ = O(n−1/3) balances bias and gradient stability:
Bias: O(n−1/3 log n); Gradient norm: O(n−2/3); Overall rate: OP (n

−1/3).

B.6 STRUCTURE PRESERVATION IN REPRESENTATION SPACE

The conditional data processing inequality guarantees information monotonicity. For deterministic
mappings E, we have I(E(X);E(Y )|E(Z)) ≤ I(X;Y |Z) (Cover & Thomas, 2006). Under stan-
dard regularity conditions in Assumption A.5 (Lipschitz continuity and bounded second moments),
standard estimators achieve OP (n

−1/2) convergence rates.

The anti-bypass condition (Assumption A.5) ensures correct causal pathways. Defining the Markov
chain T → (M,Y ) → ZY , the conditional data processing inequality yields I(T ;ZY |M) ≤
I(T ;Y |M). Combined with the original conditional independence T ⊥ Y ∗|M and the IY bridging
assumption E[Y ∗|ϕ(IY )] = h(ϕ(IY )) (Assumption A.5), the mutual information I(T ;ZY |M) is
controlled by the calibration error εh = ∥E[Y ∗|ϕ(IY )] − h(ϕ(IY ))∥2. Under bounded support or
sub-Gaussian conditions, standard f -divergence inequalities (e.g., Pinsker’s inequality) convert the
mean squared error εh to a mutual information upper bound (Fedotov et al., 2003).

B.7 PC ALGORITHM CONSISTENCY GUARANTEES

Partial correlation testing achieves asymptotic normality via Fisher transformation (Fisher, 1921;
1924). Given conditioning set S, the Fisher-transformed sample partial correlation T =√
n− |S| − 3arctanh(ρ̂XY ·S) is asymptotically N (0, 1) under H0 : ρXY ·S = 0.

Multiple testing correction employs the Benjamini-Hochberg procedure. For m hypotheses with
ordered p-values p(1) ≤ . . . ≤ p(m), define k∗ = max{i : p(i) ≤ iα/m} and reject
{H(1), . . . ,H(k∗)}. Under independence or positive regression dependence on subsets (PRDS), this
procedure controls the false discovery rate at FDR ≤ α.

Under the faithfulness assumption (Assumption A.5), consistent conditional independence testing,
and the existence of a minimum effect size (minimum non-zero partial correlation γ > 0) with
bounded degree conditions, the PC algorithm recovers the true Markov equivalence class with prob-
ability approaching 1. The error probability decays exponentially or polynomially in n, with the
specific rate depending on γ, maximum degree, and test power.

C MAIN THEORETICAL PROOFS

C.1 PROOF STRATEGY AND ROADMAP

To improve readability and make dependencies explicit, we organize the proofs so that the reader can
proceed linearly: from the statistical consistency of each surrogate loss (Appendix B), to structural
preservation of the joint objective (Theorem 1), and finally to query-level identifiability guarantees
(Theorem 2).
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1. Step 1: Statistical Foundations (Appendix B). We establish risk-consistency of our vari-
ational/contrastive surrogates under Assumption A.5 (Realizability and Regularity with
cross-fitting):

• Lemmas B.1–B.2: the calibrated surrogate for conditional mutual information makes
LCI estimate MI(ZT ;Y | ZM ) with error OP (n

−1/2), and the InfoNCE term in
LMBR lower-bounds MI(ZM ;Y ) with finite-K deviation OP (K

−1/2).
• Lemmas B.6–B.8: the soft-rank operator used in LMAC approximates Spearman’s ρS

with error OP (n
−1/3) while keeping gradients bounded.

2. Step 2: Structural Preservation (Appendix C.2– C.3). Using Step 1, we prove Theo-
rem 1 (CSP Achievability): minimizing the joint loss Ltotal enforces the ε-CSP conditions
(see equation 14). Here Assumption A.8.2 (Lipschitz/spectral control) provides compact-
ness and stability, yielding uniform convergence of ERM and controlling the generalization
gap at rate OP (n

−1/2).

3. Step 3: Identifiability Preservation (Appendix C.4). Theorem 2 translates ε-CSP into a
query-level bound. By the Lipschitz stability in A.8.2, the representation error ε propagates
at most linearly to the causal query: |Q̃−Q| ≤ κ ε+δcal, where the calibration term satisfies
δcal = OP (n

−1/2) under A.5 (see equation 16).

C.2 CONDITIONAL INDEPENDENCE PRESERVATION THEOREM

Theorem C.1 (Conditional Independence Preservation): Consider CARL framework’s three sce-
narios: IM/DUAL scenarios with Y = Y ∗, and IY scenario with Y = ϕ(IY ) as proxy variable.
Under the assumptions in Appendix A.5, suppose the original variables satisfy T ⊥⊥ Y ∗ | M .
Representations trained by CARL and converged to approximate empirical risk minimizers satisfy:

I(ZT ;ZY | ZM ) ≤ ζ⋆(ET , EM ) + oP (1)

with high probability, where ζ⋆(ET , EM ) is the model misspecification bias for given learned en-
coder classes (see Appendix B.2).

Premise Conditions: (1) Representation ZY = EY (Y ) depends solely on Y without additional
dependence on (ZT , ZM ) or information bypassing Y (anti-bypass, see Appendix A.5); (2) Markov
boundary retention loss LMBR is enabled with weight wmbr > 0; (3) Encoders are deterministic
functions during evaluation or contain randomness exogenous to (T,M, Y ); (4) IY Bridging: For
IY scenarios, there exists measurement model Y = h(Y ∗, ν) where ν ⊥⊥ (T,M,X), such that
T ⊥⊥ Y ∗ |M,ν ⊥⊥ (T,M,X)⇒ T ⊥⊥ Y |M .

Proof: Under IY scenarios, the bridging assumption ensures that original conditional independence
T ⊥⊥ Y ∗ |M implies conditional independence on proxy variables T ⊥⊥ Y |M .

Let (ÊT , ÊM , ÊY ) be approximate empirical risk minimizers of the conditional independence loss
LCI = E[NLL(ZT , ZM → Y )] − E[NLL(detach(ZM ) → Y )]. According to Theorem B.1 in
Appendix B.2, upon training convergence we have LCI = I(ZT ;Y | ZM )+ ζ⋆(ET , EM )+ oP (1),
where ζ⋆(ET , EM ) depends on the learned encoder classes.

The key observation is that since ZY = EY (Y ) depends solely on Y (premise condition 1), there
exists a Markov chain ZT → (Y,ZM ) → ZY . Applying the conditional data processing inequality
yields I(ZT ;ZY | ZM ) ≤ I(ZT ;Y | ZM ). Notably, even when evaluation involves exogenous
noise (random encoding Markov kernels), conditional DPI remains valid since the Markov chain
property is preserved.

The Markov boundary retention loss LMBR ensures ZM does not collapse to zero information
by maximizing an InfoNCE lower bound of I(ZM ;Y ). Specifically, there exists a constant c >
0 determined by temperature parameters and batch size such that I(ZM ;Y ) ≥ c − εK , where
εK = OP (K

−1/2) (see Appendix B.3). This excludes trivial solutions that achieve conditional
independence through ZM degradation.

When original variables satisfy T ⊥⊥ Y |M , theoretically the minimum value of I(ZT ;Y | ZM ) is
ζ⋆(ET , EM ) (limited only by model misspecification for given encoder classes). Minimization of
LCI drives the system toward this theoretical lower bound. Combining conditional data processing
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inequality and NLL calibration results, we obtain:
I(ZT ;ZY | ZM ) ≤ I(ZT ;Y | ZM ) ≤ ζ⋆(ET , EM ) + oP (1).

Here ζ⋆(ET , EM ) depends on the learned encoder classes; under Lipschitz constraints and sufficient
capacity, ζ⋆ can be controlled to be small (see Appendix B.2).

Remark: In all scenarios, we employ ZY = EY (Y ) ensuring it depends solely on Y (see Ap-
pendix A.5), and enable LMBR to prevent ZM degradation. The IY scenario bridging assumption
ensures conditional independence transfer from Y ∗ to proxy Y , making the conclusion applicable
to the original target variable Y ∗ as well.

C.3 MARKOV BOUNDARY RETENTION THEOREM

Theorem C.2 (Markov Boundary Retention): Under the assumptions in Appendix A.5 and the
premises of Theorem C.1, with ZM = g(M) as a deterministic encoder function and ZY depending
solely on Y (anti-bypass condition), representations trained by CARL preserve Markov boundary
properties:

I(ZM ;ZY ) ≥ I(M ;Y ∗)− δMB

I(ZT ;ZY | ZM ) ≤ min
{
I(T ;Y ∗ |M) +H(M | ZM ), ζ⋆(ET , EM ) + oP (1)

}
where δMB = H(M | ZM ) + H(Y ∗ | ZY ) represents encoder information loss (interpreted as
conditional cross-entropy w.r.t. a common base measure or using discretization approximation; both
provide upper bounds for continuous variables), and ζ⋆(ET , EM ) is the model misspecification bias
from Theorem C.1.

Proof: For the first inequality, since ZM = g(M) is deterministic, I(ZM ;Y ∗ | M) = 0, hence the
chain rule gives I(M ;Y ∗) = I(ZM ;Y ∗) + I(M ;Y ∗ | ZM ). Since I(M ;Y ∗ | ZM ) ≤ H(M |
ZM ), we obtain:

I(ZM ;Y ∗) ≥ I(M ;Y ∗)−H(M | ZM ).

For the information-theoretic inequality I(ZM ;ZY ) ≥ I(ZM ;Y ∗) − H(Y ∗ | ZY ), we use the
standard derivation:

I(ZM ;ZY )− I(ZM ;Y ∗) = H(ZM | Y ∗)−H(ZM | ZY ) ≥ −H(Y ∗ | ZY )

where the inequality follows from:
H(ZM | ZY ) ≤ H(ZM , Y

∗ | ZY ) = H(ZM | Y ∗, ZY )+H(Y ∗ | ZY ) ≤ H(ZM | Y ∗)+H(Y ∗ | ZY ).

Combining yields:
I(ZM ;ZY ) ≥ I(M ;Y ∗)−H(M | ZM )−H(Y ∗ | ZY ).

Defining δMB = H(M | ZM ) +H(Y ∗ | ZY ) yields the first inequality.

For the second inequality, we derive two independent upper bounds. First, by data processing in-
equality with T → ZT and Y ∗ → Y → ZY :

I(ZT ;ZY | ZM ) ≤ I(ZT ;Y | ZM ) ≤ I(T ;Y | ZM ).

Since conditioning coarsening gives I(T ;Y | ZM ) ≤ I(T ;Y | M) +H(M | ZM ), and using IY
bridging I(T ;Y |M) ≤ I(T ;Y ∗ |M):

I(ZT ;ZY | ZM ) ≤ I(T ;Y ∗ |M) +H(M | ZM ).

Second, Theorem C.1 provides an independent training error bound:
I(ZT ;ZY | ZM ) ≤ ζ⋆(ET , EM ) + oP (1).

Taking the minimum of these two independent bounds yields the second inequality.

Estimable Certificate Version: In IY scenarios, using observable proxy Y :
I(ZM ;ZY ) ≥ I(M ;Y )−H(M | ZM )−H(Y | ZY )

whereH(M | ZM ) andH(Y | ZY ) are estimated through validation set cross-entropy. Since Y ∗ →
Y is post-processing, I(M ;Y ) ≤ I(M ;Y ∗). The CARL framework optimizes a lower bound of
I(ZM ;Y ) through the InfoNCE term in LMBR, with practical estimation requiring consideration
of statistical error εK = OP (K

−1/2). The estimation version incorporates cross-fitting bias control
from Appendix B.4.
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C.4 MONOTONIC ALIGNMENT CONSISTENCY THEOREM

Theorem C.3 (Monotonic Alignment Consistency Preservation): Under Assumptions A.2 (sep-
arable measurement & measurable encoders), A.4.2 (Lipschitz constraints), and B.4 (soft-rank con-
sistency), let ∆aij = |ai − aj | and ∆zij = ∥zi − zj∥2. If the additional order-preserving margin
assumption holds: there exists γ > 0 such that

Pr[(∆aij −∆akℓ)(∆zij −∆zkℓ) > 0] ≥ 1

2
+ γ

Under copula density upper and lower bound regularity conditions, there exists κ ∈ (0, 1] such that
ρS(∆a,∆z) ≥ κτK(∆a,∆z). Since the order-preserving margin assumption gives τK ≥ 2γ, we
have c(γ) = κ · 2γ.

Then there exists a constant c = c(γ) ∈ (0, 1] such that upon convergence of LMAC training,

ρS(∆a,∆z) ≥ c− δMAC − εgen

where
δMAC = OP (τ logN + n

−1/2
eff )

neff is the number of subsampled pairwise distances, εgen = OP (n
−1/2) with constants depending

on the Rademacher complexity of the representation class and IB/Lipschitz regularization; details
in Appendix B.5. In practice, choosing τ ≍ n

−1/3
eff achieves δMAC = OP (n

−1/3
eff ) while avoiding

gradient vanishing.

Proof: By Theorem B.6, we have supx |SoftRankτ (x) − Rank(x)| ≤ Cτ logN , where N is the
number of elements participating in ranking, equal to neff.

By Theorem B.7, we have |ρ̂τ −ρS(∆a,∆z)| = OP (n
−1/2
eff +τ logN). Here the pairwise distances

{∆aij ,∆zij} are controlled to have size neff through subsampling strategies, avoiding excessive
computational complexity while maintaining statistical effectiveness.

The order-preserving margin assumption combined with Lipschitz stability provides a positive lower
bound for the Spearman correlation through Kendall’s τ . This assumption can be verified through
pairwise comparison tests on validation sets, equivalent to permutation tests for Kendall’s τ .

ERM convergence maximizes the training objective to a neighborhood of the population target,
producing generalization error εgen = OP (n

−1/2).

Regarding the choice of τ , theoretically without gradient lower bound constraints, the optimal choice
would be τ∗ ≍ (logN)−1n

−1/2
eff , giving δMAC = OP (n

−1/2
eff ). However, in practice to avoid soft-

rank gradient vanishing, we take τ ≍ n
−1/3
eff to balance approximation bias and optimization stabil-

ity, achieving the practical convergence rate δMAC = OP (n
−1/3
eff ).

C.5 IDENTIFIABILITY CONSISTENCY THEOREM

Theorem C.4 (Cross-modal Identifiability Preservation): Under Assumptions A.4 (causal struc-
ture and faithfulness), A.7.1 (identification conditions), A.7 (scenario-specific requirements),
and the outcome calibration assumption C.6, suppose the original causal query E[Y ∗(t)] =
Q(t;P (T,M, Y ∗, X)) is identifiable via backdoor adjustment, front-door criterion, or instrumen-
tal variables. Let (ZT , ZM , ZY , ZX) be the learned representations from CARL training satisfying
Theorems C.1-C.3.

Define the corresponding query in representation space E[Ỹ (t)] = Q(t;P (ZT , ZM , Ỹ , ZX)), where
Ỹ := ĥ(ZY ). Then

∣∣∣E[Ỹ (t)]− E[Y ∗(t)]
∣∣∣ ≤ δMB + 1IY · δMAC + δcal + εident
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where δMB is from Theorem C.2, δMAC is from Theorem C.3 (activated in IY scenarios, otherwise
0), δcal := |E[Y ∗]−E[ĥ(ZY )]| is the outcome calibration error, and εident represents identification-
specific statistical error (εident = OP (n

−1/2) under parametric/calibratable settings; OP (n
−β)

under nonparametric settings depending on smoothness and dimensionality).

Proof: We establish identifiability preservation for each identification strategy.

Backdoor Adjustment Case: By Theorem C.1’s conditional independence preservation and A.4.2’s
Lipschitz conditions, the d-separation of X is maintained in (ZT , ZX , ZY ) with oP (1) error, yield-
ing

E[Ỹ (t)] = EZX

[
E[Ỹ |ZT = zt, ZX ]

]
+ oP (1)

which is equivalent to the original backdoor formula, with discrepancies dominated by δcal and
εident.

Front-door Criterion Case: Theorem C.2 ensures Markov boundary information retention of ZM

for Y ∗, combined with C.1’s CI preservation, yielding the representation space front-door formula

E[Ỹ (t)] = EZM

[
E[Ỹ |ZM ] · EZX

[P (ZM |ZT = zt, ZX)]
]
+ δMB .

Due to the deterministic mapping ZM = EM (M) and Lipschitz property of ĥ, the mediation path-
way identification formula remains valid in the calibrated representation space, with errors contain-
ing δMB and δcal.

Instrumental Variable Case: In representation space, relevance Cov(ZZ , ZT ) ̸= 0 and exclu-
sion/exogeneity ZZ ⊥ ZY |(ZT , ZX) approximately hold (by C.1 and A.4.2), yielding IV estimation
based on ĥ(ZY ) equivalent to the original formula, with error δcal + εident.

Scenario-unified Treatment: IM scenarios directly apply the above results with δMAC = 0 since
no image-to-outcome monotonic alignment is involved. IY scenarios introduce the δMAC term
through IY bridging and Theorem C.3’s monotonic consistency, ensuring order consistency from
ϕ(IY ) to Y ∗. DUAL scenarios avoid simultaneous conditioning on IM and IY A.7, applying the
corresponding identification strategies by pathway.

Error Decomposition: The total error comprises four components. δMB reflects Markov boundary
information loss during encoding, primarily fromH(M |ZM )+H(Y ∗|ZY ). δMAC is activated only
in IY scenarios, arising from soft-rank approximation and semantic-representation distance mono-
tonic alignment errors. δcal captures calibration error from representation space to outcome space,
empirically assessable through |Ê[Y ∗] − Ê[ĥ(ZY )]| or appropriate calibration losses on validation
sets. εident encompasses statistical fluctuations of identification formulas under finite samples and
generalization errors from representation learning.

Under regularity conditions A.8 and technical conditions B.2-B.5, all error terms converge at con-
trollable rates, ensuring asymptotic preservation of cross-modal identifiability.

C.6 OUTCOME CALIBRATION ASSUMPTION

Let h∗(z) = E[Y ∗|ZY = z] be the true conditional expectation function. There exists a learned
estimator ĥ : ZY → R that is Lipschitz continuous and approximates h∗. The calibration error
is defined as δcal := |E[Y ∗] − E[ĥ(ZY )]|, which can be empirically assessed through validation
set performance of the calibration head. In practice, ĥ is implemented through regression heads or
calibration layers, inheriting Lipschitz properties from the overall network constraints A.8.2.

C.7 METRIC CONSISTENCY PROOF

This section establishes formal connections between the four evaluation metrics and the main theo-
retical theorems, proving that these metrics can effectively detect the theoretical guarantees.

Theorem (Metric Consistency): Suppose the representations from converged CARL training sat-
isfy the conditions of Theorems C.1-C.4. Then the four evaluation metrics have the following consis-
tency relationships with the corresponding theoretical results, where 1IY indicates the IY scenario:
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CIP and Conditional Independence Preservation (Theorem C.1): Under Gaussian conditions,
by the data processing inequality I(Ỹ ;ZT |ZM ) ≤ I(ZY ;ZT |ZM ) ≤ ζ∗, we have

I(Ỹ ;ZT |ZM ) = −1

2
log(1− ρ2pc)⇒ |ρpc| ≤ g(ζ∗) :=

√
1− e−2ζ∗

Let βn(ρ, α) be the power function of the partial correlation test (significance level α, sample size
n). Then under the local alternative |ρpc| ≤ g(ζ∗),

Pr(CIP = 1) = 1− Pr(reject H0) ≥ 1− βn(g(ζ∗), α)

CSI and Identifiability Preservation (Theorem C.4): Let SM := I(M ;Y ∗), S̃M := SM − δMB

(Markov boundary signal retention). Under linear-Gaussian approximation and calibration models,
there exist constants κ1, κ2 > 0 such that

R2
correct ≥ κ2S̃M , R2

direct ≤ κ1g(ζ∗)2

Using the definition CSI = (R2
correct −R2

direct)/(R
2
correct + ε), we obtain

CSI ≥ 1− κ1g(ζ
∗)2

κ2S̃M + ε
− ξn

MBRI and Markov Boundary Retention (Theorem C.2): Define

M̂BRI :=
Î(M ; Ỹ )

Î(M ; Ỹ ) + Î(T ; Ỹ ) + ε

Let ξMI(n,B) denote the histogram MI estimation bias with B bins. Then by C.2 and C.1,

E[M̂BRI] ≥ I(M ;Y ∗)− δMB − ξMI

I(M ;Y ∗)− δMB − ξMI + ζ∗ + ξMI + ε
−OP (n

−1/2)

MAC and Monotonic Alignment Consistency (Theorem C.3):

E[M̂AC] ≥ c(γ)− δMAC − εgen − ξrank(neff)

where ξrank(neff) = OP (n
−1/2
eff ) comes from the U-statistic convergence of sample Spearman cor-

relation, and neff is the non-overlapping pair subsampling size.

C.8 METRIC CONSISTENCY

Theorem C.6 (Metric-Theory Correspondence) Suppose the encoder family E satisfies Assump-
tions 1-4 and (ZT , ZM , ZY ) are the converged representations. Then the evaluation metrics have
the following correspondence with theoretical guarantees.

Proposition C.6.1 (CIP Metric) If I(ZT ;ZY | ZM ) ≤ ζ∗, then the partial correlation coefficient
satisfies |ρpc(ZT , ZY | ZM )| ≤

√
1− exp(−2ζ∗).

Proof: Under Gaussian assumptions, the relationship between conditional mutual information and
partial correlation is I(ZT ;ZY | ZM ) = − 1

2 log(1− ρ
2
pc). From I(ZT ;ZY | ZM ) ≤ ζ∗, we obtain

ρ2pc ≤ 1− exp(−2ζ∗).

Proposition C.6.2 (CSI Metric) LetL : T →M → Y ∗ be the correct causal path andL′ : T → Y ∗

the direct path. If I(M ;Y ∗)− δMB > 0, then R2(L)−R2(L′)
R2(L)+ϵ ≥ 1− O(ζ∗2)

I(M ;Y ∗)−δMB
.

Proof: By Markov boundary retention (Theorem C.2), R2(L) ∝ I(ZM ;ZY ) ≥ I(M ;Y ∗)− δMB .
By conditional independence preservation, R2(L′) ∝ I(ZT ;ZY ) ≤ ζ∗ under linear approximation.

Proposition C.6.3 (MBRI Metric) Define MBRI = Î(M ;Y )/[Î(M ;Y ) + Î(T ;Y ) + ϵ]. Then
E[MBRI] ≥ I(M ;Y ∗)−δMB

I(M ;Y ∗)−δMB+ζ∗+ϵ +O(n−1/2).
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Proof: By Theorem C.2, the numerator Î(M ;Y )
P−→ I(ZM ;ZY ) ≥ I(M ;Y ∗)−δMB . By Theorem

C.1, in the denominator Î(T ;Y )
P−→ I(ZT ;ZY ) ≤ ζ∗. The result follows from the continuous

mapping theorem.

Proposition C.6.4 (MAC Metric) Let ∆a = {|ai− aj |}i,j be semantic distances and ∆z = {∥zi−
zj∥2}i,j be representation distances. Then ρS(∆a,∆z) ≥ c(γ) − O(τ log n + n−1/2) where c(γ)
is determined by the order-preserving margin γ and τ is the soft-rank temperature.

Proof: By Theorems C.3 and B.7, soft-rank converges to true ranks at rate O(τ log n) and sample
Spearman correlation converges at rate O(n−1/2).

C.9 PROOFS OF CAUSAL STRUCTURE PRESERVATION THEOREMS

Lemma C.8.1 (Conditional Independence Transfer). Under the anti-bypass assumption (ZY de-
pends only on Y or IY ), there exists a Markov chain ZT → (Y, ZM ) → ZY . By the condi-
tional data processing inequality, I(ZT ;ZY | ZM ) ≤ I(ZT ;Y | ZM ). Combined with Theo-
rem B.2.1’s NLL calibration consistency, when q is realizable or under cross-fitting, I(ZT ;Y |
ZM ) = LCI − ζ∗ − oP (1), where ζ∗ is the model misspecification bias.

Lemma C.8.2 (Markov Boundary Necessity). Let ZM = g(M) be a deterministic encoding. By
mutual information decomposition, I(ZM ;ZY ) = I(ZM ;Y ∗) + I(ZM ;ZY | Y ∗) − I(ZM ;Y ∗ |
ZY ). Since I(ZM ;ZY | Y ∗) = 0 (Markov property) and I(ZM ;Y ∗ | ZY ) ≤ H(Y ∗ | ZY ), we
have I(ZM ;ZY ) ≥ I(ZM ;Y ∗)−H(Y ∗ | ZY ). Furthermore, by chain decomposition I(M ;Y ∗) =
I(ZM ;Y ∗) + I(M ;Y ∗ | ZM ) and I(M ;Y ∗ | ZM ) ≤ H(M | ZM ), we obtain I(ZM ;Y ∗) ≥
I(M ;Y ∗) −H(M | ZM ). Combining yields I(ZM ;ZY ) ≥ I(M ;Y ∗) −H(M | ZM ) −H(Y ∗ |
ZY ). Defining information loss δMB = H(M | ZM ) + H(Y ∗ | ZY ), we have I(ZM ;ZY ) ≥
I(M ;Y ∗) − δMB . InfoNCE provides a consistent lower bound for I(ZM ;ZY ) as K → ∞ with
estimation error OP (K

−1/2).

Proof of Theorem 1. Under the parameter space Θ = {θ : ∥Wℓ(θ)∥2 ≤ cℓ, ∥CNNk(θ)∥2→2 ≤
κk} with spectral norm constraints, the loss function L is lower semicontinuous on compact sets.
By variational analysis, the empirical risk minimization problem minθ∈Θ L(θ;Pn) admits solution
sequences.

For condition (i), by Lemma C.9 and Theorem B.2.1, LCI converges to a consistent estimate of
I(ZT ;Y |ZM ) with bias |LCI−I(ZT ;Y |ZM )| ≤ ζ∗(E)+OP (n

−1/2). For condition (ii), LMBR =
−InfoNCE(zm, zy) directly optimizes I(ZM ;ZY ). By Theorem B.3.2, InfoNCE provides a lower
bound with bias OP (K

−1/2), and combined with Lemma C.9, I(ZM ;ZY ) ≥ I(M ;Y ∗)− δMB −
OP (K

−1/2). For condition (iii), by Theorem B.5.1, choosing temperature τ = O(n−1/3) yields
|ρ̂τ − ρS | = OP (n

−1/3), and combined with the order-preserving margin assumption, ρS ≥ c0 −
OP (n

−1/3).

Combining estimation errors from all three conditions, there exists ε =
max{ζ∗(ET ), ζ

∗(EM ), ζ∗(EY ), OP (n
−1/2), OP (K

−1/2), OP (n
−1/3)} such that the limit

point satisfies ε-CSP. When K ≥ cn, K−1/2 and n−1/2 are of the same order; if K = ω(n) (e.g.,
K = n logn), then K−1/2 = o(n−1/2). Therefore, the dominant order is OP (n

−1/2). Different
choices of weights (wCI , wMBR, wMAC) correspond to different points on the Pareto frontier.

Proof of Theorem 2. We prove for three identification criteria.

Backdoor criterion: The original query is Q =
∑

x E[Y ∗|t, x]P (x). In representation space, Q̃ =∑
zx

E[h(ZY )|ET (t), EX(x)]P (zx). Define intermediate quantity Q̂ =
∑

x E[h(ZY )|t, x]P (x).
Error decomposes as |Q̃ − Q| ≤ |Q̃ − Q̂| + |Q̂ − Q|. The first term is controlled by Lipschitz
properties: |E[h(ZY )|ET (t), EX(x)] − E[h(ZY )|t, x]| ≤ ε · Lip(h). The second term δcal =

sup(t,x) |E[Y ∗|t, x]− E[h(ZY )|t, x]| is the conditional calibration error. Thus |Q̃−Q| ≤ ε+ δcal,
i.e., κ = 1.

Frontdoor criterion: The original query is Q =
∑

m,x E[Y ∗|m,x]P (m|t)P (x). In representation
space, Q̃ =

∑
zm,zx

E[h(ZY )|zm, zx]P (zm|ET (t))P (zx). Error decomposes into three terms: (a)
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mediator distribution error |P (zm|ET (t)) − P (m|t)| ≤ ε · Lip(PM |T ); (b) outcome model error
|E[h(ZY )|zm, zx]−E[Y ∗|m,x]| ≤ ε·Lip(h)+δcal; (c) marginal distribution error |P (zx)−P (x)| ≤
ε · Lip(PX). Since the frontdoor formula involves nested expectations, total error |Q̃ − Q| ≤
(Lip(PM |T ) + Lip(h) + Lip(PX)) · ε+ δcal. Define κ = max{Lip(PM |T ),Lip(h),Lip(PX)}.
Instrumental variable criterion: Let Z be an instrument. The original query via two-
stage least squares is Q = Cov(Y ∗, Z)/Cov(T,Z). In representation space, Q̃ =
Cov(h(ZY ), ZZ)/Cov(ZT , ZZ) where ZZ = EZ(Z). Numerator error |Cov(h(ZY ), ZZ) −
Cov(Y ∗, Z)| ≤ ε · Lip(h) + δcal · ∥Z∥2; denominator error |Cov(ZT , ZZ) − Cov(T,Z)| ≤
ε · (Lip(ET ) + Lip(EZ)). By Lipschitz properties of ratios, when Cov(T,Z) ≥ c0 > 0 (rel-
evance lower bound), total error |Q̃ − Q| ≤ c−2

0 · [(Lip(h) + ∥Z∥2) · ε + δcal]. Thus κ =
c−2
0 ·max{Lip(h), ∥Z∥2,Lip(ET ),Lip(EZ)}.

Under realizability assumption E[Y ∗|ZY ] = h∗(ZY ) and cross-fitting, δcal = OP (n
−1/2) by The-

orem B.3.1.

D IMPLEMENTATION DETAILS

D.1 ENCODER PARAMETERIZATION

For representation mappings E : X → Z ⊂ Rd, we specify the functional forms. Throughout this
section, ∥ · ∥2 denotes the operator spectral norm. Tabular encoders ET and EM employ multilayer
perceptron architectures defined as the composition E = ϕL ◦ . . . ◦ ϕ1, where each layer ϕℓ :
Rdℓ−1 → Rdℓ has the form ϕℓ(x) = σ(Wℓx + bℓ) with σ being a 1-Lipschitz activation function.
To satisfy the Lipschitz constraint (Assumption A.5), weight matrices Wℓ satisfy spectral norm
constraints ∥Wℓ∥2 ≤ cℓ, yielding total Lipschitz constant L ≤

∏
ℓ cℓ.

Image encodersEIM andEIY adopt convolutional architecturesF = ψK◦CNNK◦. . .◦CNN1. Each
convolutional operator CNNk satisfies ∥CNNk∥2→2 ≤ κk (estimated via spectral normalization).
The final projection ψK : Rh×w×c → Rd is a linear mapping satisfying ∥ψK∥2 ≤ 1.

D.2 BATCH CONSTRUCTION FOR LOSS FUNCTIONS

The InfoNCE loss constructs positive and negative samples following this mathematical procedure.
Given batch B = {(xi, yi)}Ni=1, positive pairs are defined as P = {(zi, ψY (yi)) : i ∈ [N ]}. The
negative sample set Ni = {ψY (yj) : j ̸= i} serves as approximately independent samples (see
Assumption A.5).

The scoring function f : Z × Y → R is a bounded Lipschitz function. Theoretical results do not
depend on the specific form; in practice, normalized inner products or other bilinear forms may be
employed.

The two terms in conditional mutual information estimation utilize the same predictor family qθ to
ensure consistency (theoretical justification in Appendix B.1).

D.3 PREDICTOR ARCHITECTURE FOR CMI ESTIMATION

We adopt a two-tower design to avoid information leakage:

EncT : XT → ZT , EncM : XM → ZM .

The joint predictor and the marginal predictor are parameterized separately as

qθ : [ZT , ZM ]→ MLPθ → y, qϕ : ZM → MLPϕ → y.

No layer in qϕ receives any function of ZT . We compute

LCI = E[− log qϕ(y | ZM )]− E[− log qθ(y | ZT , ZM )]

on held-out mini-batches (or via K-fold cross-fitting) to reduce overfitting bias.
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D.4 PC ALGORITHM FORMALIZATION

Conditional independence testing employs hypothesis testing based on partial correlation coeffi-
cients. For node pair (Zi, Zj) and conditioning set S, the test statistic is Tij|S =

√
n− |S| − 3 ·

arctanh(rij|S), where rij|S is the sample partial correlation coefficient. Actual testing uses Fisher
transformation (see Appendix B.7). The recursive relation

rij|S∪{k} =
rij|S − rik|Srjk|S√
(1− r2ik|S)(1− r

2
jk|S)

(20)

serves to define partial correlations.

Edge orientation follows the PC algorithm skeleton with Meek orientation rules (Spirtes-Glymour-
Scheines): v-structures Zi → Zk ← Zj are identified if and only if Zi−Zk −Zj forms a triple and
Zk /∈ Sep(Zi, Zj).

Variable tracing is achieved through deterministic mapping π : VZ → Vorig, arising from the single-
valuedness of encoders.

D.5 OPTIMIZATION ALGORITHM

CARL employs first-order optimization of the joint objective:
min
E∈E
L(E;D) = wCILCI + wMBRLMBR + wMACLMAC + λR(E) (21)

where the regularization termR(E) incorporates weight norm and spectral norm penalties to control
capacity and maintain Lipschitz bounds.

Parameter updates are implemented via projected gradient descent:
θt+1 = ΠΘ[θ

t − ηt∇θL(θt)] (22)
where ΠΘ is the projection operator onto the feasible parameter space:

Θ = {θ : ∥Wℓ(θ)∥2 ≤ cℓ, ∀ℓ; ∥CNNk(θ)∥2→2 ≤ κk, ∀k} (23)
encompassing spectral norm constraints for multilayer perceptrons and convolutional operators.

E RELATED WORK

Cross-Modal Representation Learning. Cross-modal representation learning has become a cor-
nerstone of modern AI Sun et al. (2025), enabling machines to understand and integrate information
from disparate sources, such as vision, language, and tabular data Mao et al. (2022). The primary
goal is to learn a shared semantic embedding space where data from different modalities are aligned
and comparable. Early pioneering work, such as Deep Canonical Correlation Analysis (DCCA) An-
drew et al. (2013), focused on maximizing the statistical correlation between modality-specific rep-
resentations. In recent years, contrastive learning has emerged as the dominant paradigm, fueling the
success of large-scale vision-language models like CLIP Radford et al. (2021) and ALIGN Jia et al.
(2021), and more recent architectures that unify even more modalities, such as ImageBind Girdhar
et al. (2023) and models from the PaLI family Chen et al. (2023). These models have achieved
remarkable zero-shot performance on various tasks by aligning vast unpaired datasets.

Despite their empirical power, the training objectives of these methods are fundamentally statisti-
cal and remain agnostic to the underlying causal mechanisms that generate the data Pearl (2009);
Arjovsky et al. (2019). By optimizing for reconstruction accuracy, statistical correlation, or con-
trastive similarity, these powerful nonlinear mappings can inadvertently distort the data’s intrinsic
causal graph, a critical failure we identify as representation-induced structural drift. This distor-
tion can manifest as the introduction of spurious dependencies not present in the original system
or, conversely, the elimination of critical mediators essential for correct causal reasoning. This
phenomenon is closely related to the problem of shortcut learning, where models exploit statistical
artifacts rather than the intended causal features Geirhos et al. (2020). Consequently, while current
cross-modal models excel at pattern recognition and statistical association, they lack the structural
guarantees necessary for robust causal inference, motivating the urgent need for a new class of
causally-aware representation learning frameworks.
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Causal Representation Learning. In response to the limitations of traditional methods, the field
of Causal Representation Learning (CRL) has emerged with the ambitious goal of learning repre-
sentations that encode not just statistical patterns, but the underlying causal structure of the data-
generating process Schölkopf et al. (2021). Such causally-informed representations are believed to
be more robust, generalize better to out-of-distribution scenarios Liu et al. (2021a; 2022); Bagi et al.
(2023), and provide a principled basis for fair and explainable models Kusner et al. (2017). A signifi-
cant body of work in CRL has focused on learning disentangled representations, where latent factors
correspond to independent causal mechanisms, often by leveraging assumptions of invariance across
different environments or interventions Lu et al. (2022); Brehmer et al. (2022). Other lines of re-
search have focused on enabling counterfactual reasoning within the learned latent space, which is
critical for tasks like algorithmic fairness and personalized decision-making Zuo et al. (2023).

However, the vast majority of existing CRL research has been developed and validated on unimodal,
often single-domain, datasets (e.g., images). Consequently, these methods are often ill-equipped to
handle the unique challenges posed by multi-modal data, such as information asymmetry between
modalities or the need to ensure consistent geometric and semantic alignment, which we identified
earlier. Furthermore, while some recent studies have begun to explore causal learning from multi-
modal biomedical observations Sun et al. (2025), a general framework that explicitly guarantees the
preservation of causal effect identifiability conditions, such as the backdoor, frontdoor, and instru-
mental variable criteria Pearl (2009), in a shared representation space remains an open challenge.
This gap is particularly critical in high-stakes domains like healthcare, where preserving the integrity
of causal pathways for reliable decision-making is paramount.

Preserving Causal Structure in Multi-Modal Settings. A natural and critical frontier is therefore
to bridge the gap between these two lines of research: to enable the powerful alignment capabili-
ties of cross-modal models with the robust causal principles from CRL. However, this synthesis is
profoundly challenging, as the unique characteristics of multi-modal data introduce specific obsta-
cles that are not addressed by conventional unimodal CRL methods Schölkopf et al. (2021). One
major obstacle is the Cross-modal Information Bottleneck (CIB), where information-dense modal-
ities (e.g., images or text) can dominate the learning objective, potentially masking or discarding
causally salient variables from sparser modalities (e.g., tabular biomarkers) Zhang et al. (2024); Wei
et al. (2024); Xu et al. (2025). Another is ensuring Modal Alignment Consistency (MAC); standard
contrastive objectives guarantee coarse-grained alignment but do not enforce a monotonic relation-
ship between semantic similarity and latent space distance, a property crucial for preserving ordered
relationships and the relative strength of causal effects Liang et al. (2022).

Most importantly, the complex, nonlinear transformations inherent in deep encoders offer no guaran-
tee of Cross-modal Identifiability Consistency (CIC). The very conditions required for causal effect
identification, such as the backdoor, frontdoor, and instrumental variable criteria, can be invalidated
during the encoding process, rendering downstream causal queries unreliable Pearl (2009). While
initial and important steps have been taken to explore causal learning from multi-modal biomedical
data Sun et al. (2025), these pioneering efforts often focus on specific applications or do not provide
a general mechanism for verifiably preserving these identifiability conditions. As of yet, a general
framework designed to explicitly tackle CIB, MAC, and CIC simultaneously, thereby ensuring that
learned cross-modal representations are ”causally sufficient” for downstream inference, remains an
open and pressing challenge.

F EXPERIMENT DETAILS

F.1 EXPERIMENTAL SETUP

Network architectures and optimization protocols are fixed a priori and selected by cross-validated
grid search to ensure comparability across methods. Tabular encoders adopt a three-hidden-layer
MLP with 128 units per layer, each block ordered as Linear→BatchNorm→ReLU. Image encoders
use a ResNet-18 trained from scratch with the same data partitions as the tabular streams. The
predictors qθ and qϕ used in the conditional-independence objective are two parameter-independent
MLPs with two hidden layers of 64 units and ReLU activations. All models are optimized with
Adam at learning rate 1 × 10−4, β1 = 0.9, β2 = 0.999, and L2 regularization 1 × 10−5. Mini-
batches contain 256 samples. Training runs for at most 200 epochs with early stopping monitored on
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the validation objective and a patience of 20 epochs. CARL employs fixed loss weights wCI = 1.0,
wMBR = 0.5, wMAC = 0.1, representation dimension d = 64, the number of InfoNCE negatives
Kneg = 128, and soft-rank temperature τrank = 0.1. Model selection uses five-fold cross-validation;
hyperparameters are chosen by inner validation on the training folds, and all baselines follow the
same protocol, budgets, and representation dimension.

F.2 EVALUATION METRICS

All metric values lie in [0, 1]. Let N denote the batch size. The number of InfoNCE negatives is
Kneg = 128 and the total number of candidates in the denominator is Ktot = Kneg + 1. The
significance level is α = 0.05. The kernel-ridge regularization parameter is λ = 10−3. Numerical
stability uses ϵ = 10−8. The centering matrix is H = I − 1

N 11⊤. Cosine similarity is s(u,v) =
u⊤v

∥u∥2∥v∥2
.

Causal Structure Index (CSI).

CSI = 1
4

4∑
k=1

I
(
p(k) > α

)
where the four null hypotheses are ZT ⊥ZY | ZM , T ⊥ZY | ZM , ZT ⊥Y | ZM , and T ⊥Y | M .
Each p-value is computed by a kernel-based conditional-independence test with Gaussian kernels.
Bandwidths follow the median heuristic. Residual kernels are obtained by kernel ridge regression
with λ and the statistic

TKCI(U, V |W ) =
1

N2
tr
(
HKU⊥WHKV⊥W

)
is calibrated by wild bootstrap with B = 500 resamples.

Markov Boundary Retention Index (MBRI).

ÎNCE(U ;V ) = E
[
log

exp s(u,v)∑
v′∈N (v) exp s(u,v

′)

]
+ logKtot.

Ĩ(U ;V ) = min{ ÎNCE(U ;V )/ logKtot, 1 }.
The final score is

MBRI =
Ĩ(ZM ;ZY )

Ĩ(ZM ;ZY ) + Ĩ(ZT ;ZY ) + ϵ
.

Monotonic Alignment Consistency (MAC). From semantic amplitudes {ai} and representations
{zi}, a uniformly subsampled set of pairs P of size |P | = min{50,000, N(N−1)

2 } forms the vectors
∆a = {|ai − aj |}(i,j)∈P and ∆z = {∥zi − zj∥2}(i,j)∈P . Spearman’s rank correlation is mapped to
[0, 1] by

MAC = 1
2

(
1 + ρS(∆a,∆z)

)
.

Structural Accuracy. Let Askel
pred and Askel

true denote the predicted and true skeleton adjacency
matrices on the evaluation node set. The skeleton Structural Hamming Distance is SHDskel =
∥Upper(Askel

pred −Askel
true)∥0. Let m∪ = ∥Upper(Askel

pred ∨Askel
true)∥0 with guard m∪ ≥ 1. The score is

Structural = 1− SHDskel

m∪
.

Representation Information Content (RIC-avg).

RIC-avg = 1
3

(
Ĩ(ZT ;T ) + Ĩ(ZM ;M) + Ĩ(ZY ;Y )

)
with Ĩ identical to the definition used in MBRI and the same Kneg, Ktot, and similarity function.
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Table 4: Parameter configurations for the synthetic datasets (full-factorial grid).

n
σ = 0.1 σ = 0.3 σ = 0.5

linear quadratic neural linear quadratic neural linear quadratic neural

500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
5000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F.3 PARAMETER CONFIGURATIONS

The synthetic datasets follow a full-factorial design over sample size n ∈ {500, 1000, 2000, 5000},
noise level σ ∈ {0.1, 0.3, 0.5}, and nonlinearity type {linear, quadratic, neural}. The direct effect
is fixed to δ = 0, implying the ground-truth condition T ⊥ Y ∗ | M . For each (n, σ, nonlinearity)
combination, instances are generated under the IM, IY, and DUAL scenarios using identical random
seed and train–validation–test split.

G SUPPORTING EVIDENCE FOR CAUSAL PATHWAY DISCOVERY

G.1 BLOOD PRESSURE → CVD EVIDENCE

The Prospective Studies Collaboration meta-analysis of individual data for one million adults
demonstrates age-specific relevance of usual blood pressure to vascular mortality, showing robust
relationships across age groups Lewington et al. (2002). The Blood Pressure Lowering Treatment
Trialists’ Collaboration individual participant-level data meta-analysis shows pharmacological blood
pressure lowering reduces cardiovascular disease across different blood pressure levels, with each
reduction associated with proportional risk reduction in major adverse cardiovascular events Blood
Pressure Lowering Treatment Trialists’ Collaboration (2021).

G.2 ARTERIAL STIFFNESS → CVD EVIDENCE

Systematic review and meta-analysis demonstrates that arterial stiffness predicts cardiovascular
events and all-cause mortality Vlachopoulos et al. (2010). Individual participant meta-analysis of
17,635 subjects shows aortic pulse wave velocity improves cardiovascular event prediction Ben-
Shlomo et al. (2014).

G.3 RETINAL MICROVASCULAR → CVD EVIDENCE

The Atherosclerosis Risk in Communities Study demonstrates retinal microvascular abnormalities
predict incident stroke Wong et al. (2001). The same cohort study shows retinal arteriolar narrowing
increases risk of coronary heart disease in men and women Wong et al. (2002).

G.4 RENAL FUNCTION → CVD EVIDENCE

Collaborative meta-analysis shows association of estimated glomerular filtration rate and albumin-
uria with all-cause and cardiovascular mortality in general population cohorts Chronic Kidney Dis-
ease Prognosis Consortium et al. (2010). Chronic kidney disease independently associates with risks
of death, cardiovascular events, and hospitalization Go et al. (2004).

G.5 AGE → RETINAL FUNDUS → CVD EVIDENCE

Retinal age gap serves as a predictive biomarker for mortality risk, with biological age differences
between chronological and retinal-predicted age associating with increased mortality Zhu et al.
(2023).
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G.6 INFLAMMATION → MICROVASCULAR → CVD EVIDENCE

C-reactive protein associates with retinal microvascular caliber in multiethnic populations, demon-
strating inflammation-microvascular connections Cheung et al. (2010). Systematic review and meta-
analysis confirms associations between markers of inflammation and retinal microvascular parame-
ters Liu et al. (2021b).

G.7 SLEEP APNEA → HRV → CVD EVIDENCE

Heart rate variability analysis shows differences in obstructive sleep apnea patients with and without
excessive daytime sleepiness Ucak et al. (2024). Meta-analysis demonstrates heart rate variability
predicts first cardiovascular event in populations without known cardiovascular disease Hillebrand
et al. (2013).

G.8 BMI → METABOLISM → CVD EVIDENCE

Pooled analysis of 97 prospective cohorts with 1.8 million participants identifies metabolic media-
tors of body-mass index effects on coronary heart disease and stroke Global Burden of Metabolic
Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects) et al. (2014).

G.9 GUT MICROBIOME → METABOLISM → CVD EVIDENCE

Landmark studies demonstrate gut bacterial metabolism of choline and phosphatidylcholine pro-
motes cardiovascular disease through production of proatherogenic metabolite TMAO Wang et al.
(2011). NEJM research confirms intestinal microbial metabolism of phosphatidylcholine associates
with cardiovascular risk in humans Tang et al. (2013). Nature Medicine studies reveal intestinal
microbiota metabolism of L-carnitine, abundant in red meat, also produces TMAO and promotes
atherosclerosis, establishing the ”microbiome-metabolism-atherosclerosis” pathway Koeth et al.
(2013).

H REAL DATA

H.1 DESCRIPTION OF HUMAN PHENOTYPE PROJECT DATASET

Comprehensive biomedical datasets that integrate multiple modalities are essential for understand-
ing the complex interplay between different physiological systems. The Human Phenotype Project
(HPP) provides such a resource, representing a large-scale, longitudinal collection of deep pheno-
typic profiles. Our study utilizes data from 6,366 adult participants (3,043 male and 3,323 female)
within this cohort, with a mean age of 52.4±7.7 years and a mean BMI of 26.1±4.1kg/m2. The
project collected a wide array of clinical, physiological, behavioral, and multi-omic profiling data,
categorized into 17 major body systems Kohn et al. (2025).

A key strength of the HPP cohort is its rich, multi-modal structure, encompassing tabular data, time-
series signals, and medical imaging. For instance, the sleep data alone consists of 448 characteristics
collected over 16,812 nights of home sleep apnea testing, providing high-resolution time-series in-
formation. This is complemented by other modalities such as tabular data from anthropometrics
and body composition (120 features), blood tests for inflammation and immune system markers (12
features), and medical imaging from retinal fundus scans, which is part of the cardiovascular assess-
ment (162 features). In this work, we focus on data spanning six key systems: Anthropometrics,
Sleep, Cardiovascular, Fundus, Metabolic Pathway, and Inflammation. The integration of these dis-
tinct yet causally related modalities, each with a high-dimensional feature set, provides a unique
opportunity to apply cross-modality causal inference methods, aiming to uncover the underlying
mechanisms connecting these physiological domains.

H.2 BODY SYSTEM-DERIVED FEATURES

Sleep Monitoring The sleep monitoring data is a high-resolution, time-series dataset designed to
capture the complex dynamics of sleep. Each participant underwent at least one series of home sleep
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Table 5: Complete experimental results across varying sample sizes, noise levels, and nonlinearity
functions. Performance metrics include Causal Structure Index (CSI), Markov Boundary Retention
Index (MBRI), Monotonic Alignment Consistency (MAC), Structural Accuracy, and averaged Rep-
resentation Information Content (RIC-avg).

Sample Size Noise Nonlinearity CSI MBRI MAC Structural RIC-avg

500 0.1 linear 1.0000 0.5284 0.5312 0.4506 0.4483
500 0.1 quadratic 1.0000 0.5152 0.5484 0.4994 0.4539
500 0.1 neural 1.0000 0.4877 0.5292 0.6013 0.4388
500 0.3 linear 1.0000 0.5350 0.5419 0.4741 0.4534
500 0.3 quadratic 1.0000 0.5380 0.5696 0.5514 0.4526
500 0.3 neural 1.0000 0.5089 0.5358 0.6001 0.4313
500 0.5 linear 1.0000 0.5159 0.5243 0.4526 0.4293
500 0.5 quadratic 1.0000 0.5267 0.5490 0.5242 0.4273
500 0.5 neural 1.0000 0.4840 0.5327 0.5821 0.4323
1000 0.1 linear 1.0000 0.5088 0.5847 0.6693 0.4408
1000 0.1 quadratic 1.0000 0.5405 0.5894 0.6584 0.4388
1000 0.1 neural 1.0000 0.4692 0.5665 0.7075 0.4518
1000 0.3 linear 1.0000 0.5149 0.5953 0.6762 0.4419
1000 0.3 quadratic 1.0000 0.5463 0.6068 0.6884 0.4404
1000 0.3 neural 1.0000 0.4980 0.5702 0.7102 0.4545
1000 0.5 linear 1.0000 0.5097 0.5804 0.6565 0.4284
1000 0.5 quadratic 1.0000 0.5337 0.5938 0.6651 0.4196
1000 0.5 neural 1.0000 0.4819 0.5658 0.6954 0.4364
2000 0.1 linear 1.0000 0.5660 0.6301 0.6893 0.4176
2000 0.1 quadratic 1.0000 0.6027 0.6484 0.6784 0.4212
2000 0.1 neural 1.0000 0.5102 0.6285 0.7275 0.4298
2000 0.3 linear 1.0000 0.5893 0.6352 0.6962 0.4248
2000 0.3 quadratic 1.0000 0.6500 0.6536 0.7084 0.4346
2000 0.3 neural 1.0000 0.5354 0.6320 0.7300 0.4308
2000 0.5 linear 1.0000 0.5808 0.6174 0.6765 0.4133
2000 0.5 quadratic 1.0000 0.6421 0.6362 0.6851 0.4257
2000 0.5 neural 1.0000 0.5013 0.6128 0.7154 0.4256
5000 0.1 linear 1.0000 0.6141 0.6432 0.7093 0.3948
5000 0.1 quadratic 1.0000 0.6344 0.6507 0.6984 0.3954
5000 0.1 neural 1.0000 0.6193 0.6384 0.7300 0.4231
5000 0.3 linear 1.0000 0.6437 0.6515 0.7162 0.4024
5000 0.3 quadratic 1.0000 0.6600 0.6609 0.7284 0.4070
5000 0.3 neural 1.0000 0.6209 0.6457 0.7300 0.4240
5000 0.5 linear 1.0000 0.6238 0.6397 0.6965 0.3949
5000 0.5 quadratic 1.0000 0.6500 0.6441 0.7051 0.4112
5000 0.5 neural 1.0000 0.6062 0.6252 0.7300 0.4221

monitoring tests, with each series consisting of three nights of continuous recording within a two-
week timeframe. This multi-night protocol allows for a more reliable assessment by accounting for
night-to-night variability. The collected data encompasses a wide range of metrics, including sleep
architecture (sleep stages), body position, respiratory events, pulse rate, peripheral blood oxygen
saturation (SpO2), and snoring. Figure 5 provides an example of raw time-series records on selected
sleep channels, illustrating the continuous nature of the data collected, such as respiratory move-
ment, SpO2, and body position. A primary focus of this dataset is the study of Obstructive Sleep
Apnea (OSA), a prevalent sleep disorder characterized by repeated interruptions in breathing due to
upper airway obstruction. These interruptions often lead to significant physiological responses, such
as loud snoring, reductions in blood oxygen levels, awakenings, and fragmented sleep.
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Figure 5: Example of Raw Time-Series Records on Selected Sleep Channels. The figure displays
8 hours of continuous data from a single participant, showing five different channels: Respiratory
Movement (top), Sleep Stage, Snore (dB), Peripheral Oxygen Saturation (SpO2), and Body Position
(bottom). This illustrates the high-resolution, multi-channel nature of the raw sleep monitoring data.

The raw signals collected by devices are processed by clinically-validated algorithms to extract
a rich set of 448 features for each participant. These features include key diagnostic indices for
OSA, such as the peripheral Apnea-Hypopnea Index (pAHI), the Respiratory Disturbance Index
(RDI), and the Oxygen Desaturation Index (ODI). Figure 7a shows the distribution of pAHI for male
and female participants at the baseline visit. The histograms and empirical cumulative distribution
functions (ECDF) clearly indicate that the male population exhibits a tendency towards higher pAHI
values compared to the female population. In addition to respiratory events, the algorithms provide
detailed statistics on sleep architecture, including the percentage of time spent in different sleep
stages and overall sleep efficiency. Figure 6 further illustrates the derived events during sleep, such
as sleep stages, various respiratory events, and pulse rate changes, highlighting the granular insights
extracted from the raw channels. Furthermore, to capture autonomic nervous system activity, 348
Pulse Rate Variability (PRV) features are computed from the PAT channel, spanning time-domain,
frequency-domain, and non-linear metrics. Table 6 provides a statistical summary of the key sleep-
derived measurements for the cohort at their first visit (N=6,336).

Fundus imaging The fundus data modality provides a non-invasive window into both ocular and
systemic health through high-resolution imaging of the interior surface of the eye. In the HPP
cohort, center-view 45° retinal images were collected for both eyes of each participant without pupil
dilation, using the iCare DRSplus confocal fundus imaging system. This technique allows for the
detailed visualization of critical structures within the fundus, including the retina, optic disc, macula,
and the retinal microvasculature. The resulting images are essential for diagnosing and monitoring
a variety of eye conditions, as the appearance of these structures, particularly the network of small
blood vessels, offers valuable information about the health of the eye and the central nervous system.

To transform the raw images into a quantitative dataset suitable for analysis, the HPP employs
an open-source deep learning pipeline known as AutoMorph Zhou et al. (2022). This automated
pipeline processes the fundus images through several stages, including pre-processing, image qual-
ity grading, and anatomical segmentation of the optic disc and retinal vessels into arteries and veins.
Following segmentation, a comprehensive set of morphological features is extracted, such as vessel
caliber, tortuosity, density, and fractal dimension. Figure 7b provides an example of one such ex-
tracted feature, showing the distribution of left eye vessel density for male and female participants
at the baseline visit. By quantifying the intricate geometry of the retinal microvasculature, this data
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Figure 6: Derived Events During Sleep from Raw Channels. This figure presents a timeline of
clinically relevant events and metrics derived from the raw sleep monitoring data. It includes sleep
stages (Ap.V.Sleep, Deep Sleep, Light Sleep, REM Period, Wake), various respiratory events (e.g.,
A/H obstructive, Resp. Event), and other physiological events (e.g., HR changed, Desaturation),
providing a summary of key sleep patterns and disturbances.

(a) Apnea-Hypopnea Index (AHI).
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(b) Left Eye Vessel Density.

Figure 7: (a) Distribution of AHI for male (N=2,777) and female (N=2,785) participants at Baseline
Visit. The left panel is a histogram, and the right panel is an ECDF. The data indicate that the
AHI distribution for males is generally shifted towards higher values compared to females. (b)
Distribution of Left Eye Vessel Density for male (N=2,369) and female (N=2,458) participants at
Baseline Visit. The left panel is a histogram, and the right panel is an ECDF.

modality provides a rich set of features for investigating the links between microvascular health and
broader systemic disease processes. Figure 8 displays the colored fundus images and corresponding
segmentation results in HPP cohort.

Anthropometrics The systematic measurement of the size, weight, and proportions of the human
body, serves as a fundamental modality in the HPP cohort for assessing health and nutritional status.
This dataset is primarily composed of tabular data collected through standardized protocols. To en-
sure precision and consistency, these measurements were taken using specific equipment, including
a Shekel Stadiometer for height and weight. This set of measurements provides essential baseline
characteristics for evaluating body composition and identifying potential health risks like obesity.

From these basic anthropometric measurements, important indices such as the Body Mass Index
(BMI) can be derived. BMI is a key covariate used in a wide range of phenome-wide association
studies. Figure 9a illustrates the distribution of BMI across the cohort at the baseline visit, stratified
by sex. The histograms and ECDF clearly show that male participants (N=4,943) in this cohort
tend to have a higher BMI compared to female participants (N=5,439). This quantitative, tabular
data provides a foundational layer for our cross-modality causal analysis, allowing us to control and
investigate the effects of body composition on other physiological systems.

Cardiovascular System The cardiovascular system assessment within the HPP is a comprehen-
sive and multi-modal evaluation, designed to provide a holistic view of cardiac and vascular health.
This modality integrates data from several distinct, non-invasive measurement techniques, including
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Table 6: Summary of Key Sleep-Derived Measurements.
Second visit (n=574)First visit (n=6,336)

Parameters
P10 / P90Meand (s.d.)Min / MaxP10 / P90Mean (s.d.)Min / Max

0.27 / 4.161.80 (1.59)0.02 / 8.330.22 / 3.931.63 (1.54)0.01 / 10.77Snore events above 40 dB (h)

4.51 / 7.526.08 (1.21)2.00 / 11.584.54 / 7.516.07 (1.21)2.00 / 11.50Total sleep time (h)

81.3 / 94.288.5 (5.4)45.1 / 98.081.1 / 94.388.4 (5.6)43.0 / 97.9Sleep efficiency (%)

2 / 126.5 (3.9)1 / 342 / 126.5 (3.9)1 / 39Number of wakes (events)

10.5 / 24.217.3 (5.4)0 / 37.710.8 / 24.317.6 (5.3)0 / 38.8Percentage of deep sleep time (%)

13.8 / 3323.8 (7.4)2.4 / 44.814.2 / 33.223.9 (7.3)1.8 / 45.2Percentage of REM sleep time (%)

1.5 / 23.710.5 (10.4)0 / 91.51.5 / 24.410.8 (10.5)0 / 90.8Apnea-Hypopnea Index (events per h)

0.3 / 11.24.6 (7.1)0 / 96.30.4 / 11.34.5 (6.4)0 / 86.6Oxygen Desaturation Index (events per h)

50 / 7060.2 (8.1)35 / 9350 / 7059.7 (8.0)35 / 98Mean heart rate during sleep (BPM)

81 / 10894.8 (11.6)55 / 18082 / 10995.3 (11.7)55 / 180Maximum heart rate during sleep (BPM)

38 / 5646.9 (7.1)30 / 7938 / 5546.3 (6.8)30 / 79Minimum heart rate during sleep (BPM)

50.1 / 70.560.3 (8.1)31.9 / 92.849.8 / 70.259.8 (8.0)33.5 / 97.8Mean heart rate during NREM sleep (BPM)

51.5 / 72.661.9 (8.2)33.8 / 95.451.2 / 72.161.4 (8.2)33.1 / 107.9Mean heart rate during REM sleep (BPM)

53.6 / 74.864.0 (8.3)34.3 / 100.053.4 / 74.363.7 (8.3)31.9 / 97.6Mean heart rate during wakefulness (BPM)

89.6 / 93.791.7 (1.8)69 / 9790 / 9492.1 (1.8)67 / 98Mean nadir of desaturations (%)
Summary of key sleep-derived measurements for the first visit (n=6,336) and the second visit (n=574). Data are presented as the minimum and maximum values (Min / Max), the mean and standard deviation
(Mean (s.d.)), and the 10th and 90th percentiles (P10 / P90). For example, for the 'Total sleep time' during the first visit, the value ‘6.07 (1.21)’ represents a mean sleep time of 6.07 hours with a standard
deviation (s.d.) of 1.21 hours. Similarly, ‘4.54 / 7.51’ in the same row indicates that the 10th percentile (P10) for sleep time was 4.54 hours and the 90th percentile (P90) was 7.51 hours for the same group.
AHI, Apnea-Hypopnea Index; BPM, beats per minute.
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Figure 8: Example of fundus images in HPP. From left to right: (1) The original color fundus image;
(2) Vessel segmentation; (3) Vein segmentation; and (4) Artery/Vein classification, distinguishing
vessels into arteries (red) and veins (blue).

assessments of peripheral vascular health, multi-positional blood pressure readings, carotid ultra-
sound imaging, and electrocardiography (ECG). The combination of these methods yields a rich
dataset that includes tabular data (e.g., blood pressure, PWV/ABI values, derived ECG features),
medical imaging (e.g., carotid ultrasound), and raw time-series signals (e.g., ECG waveforms), mak-
ing it an ideal modality for cross-modal analysis.

Vascular health is quantified through multiple techniques. Arterial stiffness, a key predictor of fu-
ture cardiovascular events, is measured via Pulse Wave Velocity (PWV), specifically the leg PWV
(faPWV). Peripheral Arterial Disease (PAD) is assessed using the Ankle-Brachial Index (ABI),
which is the ratio of ankle to arm systolic blood pressure. Figure 9b shows the distribution of the
right Ankle-Brachial Index (r abi) across different sexes, where the values are concentrated around
1.1, consistent with the normal range for a healthy population. Both PWV and ABI are measured
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(a) Body Mass Index (BMI). (b) Right Ankle-Brachial Index (ABI)

Figure 9: (a) Distribution of BMI for male (N=4,943) and female (N=5,439) at Baseline Visit. The
left panel is a histogram, and the right panel is an ECDF. The data indicate that the BMI distribution
for males is generally shifted towards higher values compared to females. (b) Distribution of Right
ABI for male (N=4,290) and female (N=4,560) participants at Baseline Visit. The left panel is a
histogram, and the right panel is an ECDF.

using a Falcon (Viasonix) device. Table 7 details the descriptive statistics for these key peripheral
vascular health measurements. Furthermore, early signs of atherosclerosis are evaluated by mea-
suring the Carotid Intima-Media Thickness (CIMT) from ultrasound images of the carotid arteries,
performed with a Supersonic Aixplorer MACH 30 system. Figure 10a provides a distribution exam-
ple of the left Carotid Intima-Media Thickness (imt left), showing the specific numerical range
of this feature within the cohort, with males showing a slight tendency towards higher values. Blood
pressure is also systematically recorded with multiple readings taken while the participant is seated,
lying down, and standing to capture a comprehensive hemodynamic profile. Table 8 summarizes the
detailed statistical data of these key blood pressure measurements across different positions.

Table 7: Summary of key peripheral vascular health measurements
Second visit (n=1,878)First visit (n=7,632)

Parameters
P10 / P90Meand (s.d.)Min / MaxP10 / P90Mean (s.d.)Min / Max

91 / 139114.5 (19.5)61 / 22092 / 139114.8 (19.4)25 / 240Right brachial pressure (mmHg)

94 / 139116 (18.7)28 / 21794 / 139115.6 (19.4)24 / 291Left brachial pressure (mmHg)

0.97 / 1.301.14 (0.14)0.45 / 2.091.0 / 1.31.1 (0.1)0.3 / 2.2Right ABI (ratio)

0.98 / 1.301.14 (0.14)0.49 / 2.230.96 / 1.291.13 (0.14)0.46 / 2.19Left ABI (ratio)

5.5 / 9.57.4 (1.6)3.2 / 18.55.9 / 10.58.1 (1.8)3.3 / 18.3PWV from right thigh to right ankle (m/s)

5.6 / 9.57.5 (1.6)3.6 / 16.35.9 / 10.58.1 (1.8)3.3 / 17.2PWV from left thigh to left ankle (m/s)
Summary of key peripheral vascular health measurements for the first visit (n=7,632) and the second visit (n=1,878). Data are presented as the minimum and maximum values (Min / Max), the mean and
standard deviation (Mean (s.d.)), and the 10th and 90th percentiles (P10 / P90). For example, for the 'Right brachial pressure' during the first visit, the value ‘114.8 (19.4)’ represents a mean pressure of
114.8 mmHg with a standard deviation (s.d.) of 19.4 mmHg. Similarly, ‘92 / 139’ in the same row indicates that the 10th percentile (P10) was 92 mmHg and the 90th percentile (P90) was 139 mmHg for the
same group. ABI, Ankle-Brachial Index; PWV, Pulse Wave Velocity.

The electrical activity of the heart is captured using a resting 12-lead electrocardiogram (ECG),
as shown in Figure 11. A significant feature of the HPP’s ECG data is its dual format. For each
participant, the dataset includes not only a set of automatically extracted tabular features (e.g., P-
wave duration, QT interval) but also the complete raw 10-second waveform signal from all 12 leads,
recorded at a high sampling rate of 1000Hz. For example, Figure 10b shows the distributional
difference of one of the key derived features, P wave duration (p ms), between male and female par-
ticipants, highlighting sex-specific variations in cardiac electrical activity. This dual output provides
an exceptionally detailed characterization of cardiac function, suitable for both traditional feature-
based analysis and advanced signal processing techniques.

Inflammation The inflammation modality in the HPP is characterized through a panel of hemato-
logical and biochemical measurements. The data for this modality primarily originates from blood
tests conducted during participants’ regular medical care at their respective Health Maintenance Or-
ganizations (HMOs), which are then uploaded by the participants themselves. This dataset is entirely
tabular, providing a quantitative snapshot of systemic immune and inflammatory status.

The core of this modality consists of the complete blood count (CBC), which includes the total white
blood cell count and a detailed differential of its major subtypes: the absolute counts and relative
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Table 8: Summary of key blood pressure measurements
Second visit (n=2,020)First visit (n=8,090)

Parameters
P10 / P90Meand (s.d.)Min / MaxP10 / P90Mean (s.d.)Min / Max

67 / 8776.7 (7.4)61 / 9467 / 8776.5 (7.6)61 / 94Lying diastolic blood pressure (mmHg)

50 / 7461.9 (9.6)35 / 10551 / 7562.4 (9.7)35 / 110Lying blood pressure pulse rate (BMP)

101 / 138119.5 (15.0)72 / 189101 / 138119.2 (14.9)74 / 199Lying systolic blood pressure (mmHg)

66 / 9077.6 (9.5)41 / 11966 / 9178.4 (10.1)47 / 140Sitting diastolic blood pressure (mmHg)

53 / 8066.3 (10.4)36 / 11654 / 8066.6 (10.6)35 / 113Sitting blood pressure pulse rate (BMP)

100 / 142119.8 (16.6)62 / 203100 / 142120.1 (16.6)73 / 215Sitting systolic blood pressure (mmHg)

66 / 8977.2 (9.4)47 / 10465 / 9077.7 (10.0)47 / 117Sitting second diastolic blood pressure (mmHg)

53 / 7865.2 (10.2)37 / 11054 / 8066.3 (10.6)40 / 108Sitting second blood pressure pulse rate (BMP)

98.7 / 136116.5 (15.0)76 / 17198 / 137116.6 (15.8)77 / 219Sitting second systolic blood pressure (mmHg)

71 / 9482.2 (9.3)55 / 12770 / 9482.1 (9.6)38 / 138Standing one minute diastolic blood pressure (mmHg)

58 / 8873.4 (12.0)35 / 11959 / 8973.6 (12.0)36 / 122Standing one minute blood pressure  pulse rate (BMP)

97 / 138116.8 (16.1)79 / 19798 / 137116.9 (16.0)66 / 214Standing one minute systolic blood pressure (mmHg)

72 / 9382.5 (7.8)66 / 10172 / 9382.4 (7.9)66 / 101Standing three minute diastolic blood pressure

59 / 8772.8 (11.2)35 / 12759 / 8872.9 (11.4)37 / 122Standing three minute blood pressure pulse rate (BMP)

99 / 139118.1 (15.8)76 / 21799 / 137117.7 (15.5)69 / 214Standing three minute systolic blood pressure (mmHg)
Summary statistics of key blood pressure measurements for the first and second visits (n=8,090). Data are presented as the minimum and maximum values (Min / Max), the mean and standard deviation (Mean (s.d.)),
and the 10th and 90th percentiles (P10 / P90). For example, for the 'Lying diastolic blood pressure' during the first visit, the value ‘76.5 (7.6)’ represents a mean of 76.5 mmHg with a standard deviation (s.d.) of 7.6
mmHg. Similarly, ‘67 / 87’ in the same row indicates that the 10th percentile (P10) value was 67 mmHg and the 90th percentile (P90) value was 87 mmHg for the same group.

(a) Left Carotid Intima-Media Thickness (IMT). (b) ECG P-wave Duration

Figure 10: (a) Distribution of Left Carotid IMT for male (N=3,089) and female (N=3,202) partici-
pants at Baseline Visit. The left panel is a histogram, and the right panel is an ECDF. (b)Distribution
of ECG P-wave Duration (p ms) for male (N=3,606) and female (N=3,949) participants at Baseline
Visit. The left panel is a histogram, and the right panel is an ECDF, with the data showing that males
generally have a longer P-wave duration than females.

percentages of neutrophils, lymphocytes, monocytes, eosinophils, and basophils. Furthermore, this
modality is enriched with other key inflammatory markers, such as C-reactive protein (CRP) and
ferritin, which are widely used clinical indicators for assessing systemic inflammation levels. This
comprehensive panel of tests provides a solid foundation for studying baseline inflammatory states
and their associations with other physiological systems.

Metabolic Pathways The metabolic pathway data offers a functional perspective on the gut mi-
crobiome by characterizing its metabolic potential. This modality is derived from metagenomic
sequencing of stool samples collected from the participants. Specifically, the data consists of mi-
crobial pathway abundances which are functionally profiled from the metagenomic data using the
HUMAnN3 Beghini et al. (2021) software package. This approach allows for the quantification
of the relative abundance of various metabolic pathways present in an individual’s gut microbial
community. The resulting dataset enables the investigation of associations between the collective
metabolic functions of the gut microbiota and other physiological systems, providing insights into
how microbial activities, such as amino acid biosynthesis or energy metabolism, may influence
overall health and disease states.
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Figure 11: Processed ECG time series

Table 9: Summary of physiological systems, features and medical explanations

System Features Medical Explanation

Body Fat Composition

body fat percentage Quantifies total fat mass relative to body weight; elevated levels indicate obesity, metabolic dysregu-
lation, and increased cardiovascular risk.

AG fat ratio Represents android-to-gynoid fat distribution; a higher ratio signals central obesity and greater risk for
insulin resistance and vascular disease.

Visceral fat volume Measures fat accumulation around internal organs; strongly associated with inflammation, impaired
glucose metabolism, and higher cardiometabolic risk.

Appendicular lean mass Reflects muscle mass in the limbs; reduced levels indicate sarcopenia, frailty, and diminished func-
tional capacity.

OSA-Related Phenotypes
OSA severity Indicates the degree of obstructive sleep apnea; higher values correlate with elevated cardiometabolic

burden and daytime functional impairment.
Snoring severity Captures snoring intensity and frequency; a proxy marker for airway obstruction and OSA risk.
Snoring ratio Proportion of sleep time snoring; higher ratios reflect disrupted sleep and elevated OSA probability.

Sleep Structure Quality

Sleep duration Objective total sleep time; both short and fragmented sleep are linked to metabolic dysfunction, cog-
nitive decline, and cardiovascular morbidity.

Sleep efficiency Ratio of actual sleep to time in bed; reduced efficiency indicates impaired sleep maintenance and
higher risk of fatigue and poor recovery.

Sleep continuity Measures the stability of sleep across the night; lower continuity reflects fragmented sleep, often
associated with inflammation and stress.

Restorative sleep ratio Fraction of deep and REM stages relative to total sleep; lower ratios suggest reduced recovery and
neurocognitive restoration.

Sleep HRV

Night mean HR Average nocturnal heart rate; elevated values suggest reduced autonomic balance and higher stress or
metabolic load.

HRV index Global measure of heart rate variability; lower scores are linked to autonomic dysfunction, systemic
inflammation, and metabolic risk.

HRV stage variation Assesses variability of HRV across sleep stages; reduced variation indicates impaired autonomic adap-
tation and poorer sleep architecture.

HRV wake delta Difference in HRV between wake and sleep states; blunted differences may signal impaired recovery
and autonomic dysregulation.

Nocturnal Hypoxia Burden Oxygen desaturation Degree of blood oxygen drop during sleep; frequent or severe drops indicate hypoxia-related cardio-
vascular and neurocognitive stress.

Oxygen burden Cumulative measure of oxygen deficit across the night; reflects the physiological load of intermittent
hypoxia and links to systemic risk.

Blood Pressure - Lying
Lying diastolic pressure Diastolic blood pressure while lying; helps assess baseline vascular tone and resting blood pressure.
Lying pulse rate Pulse rate measured while lying; serves as a marker of basal autonomic function.
Lying systolic pressure Systolic blood pressure measured while lying; provides baseline arterial load evaluation.

Blood Pressure - Sitting
Sitting diastolic pressure Diastolic pressure in the sitting position; useful for detecting positional blood pressure changes.
Sitting pulse rate Pulse rate while sitting; reflects autonomic balance in a resting seated state.
Sitting systolic pressure Systolic pressure while sitting; indicates systemic pressure load in a neutral posture.

Blood Pressure - Standing

Standing 1min diastolic pressure Diastolic pressure after standing for 1 minute; detects early orthostatic changes.
Standing 1min pulse rate Pulse rate after standing for 1 minute; useful for assessing autonomic responses to posture change.
Standing 1min systolic pressure Systolic pressure after standing for 1 minute; evaluates rapid hemodynamic adjustment.
Standing 3min diastolic pressure Diastolic pressure after 3 minutes of standing; detects delayed orthostatic hypotension.
Standing 3min pulse rate Pulse rate after 3 minutes standing; prolonged elevation may suggest autonomic dysfunction.
Standing 3min systolic pressure Systolic pressure after 3 minutes standing; indicates sustained hemodynamic adaptation.

Blood Pressur - Resting
Resting systolic pressure Baseline systolic blood pressure; high values indicate elevated cardiovascular risk.
Resting diastolic pressure Baseline diastolic pressure; reflects resting vascular resistance.
Resting pulse rate Resting heart rate; higher rates may indicate poor cardiovascular fitness or increased stress.

Blood Pressure - Orthostatic

Orthostatic SBP drop 1min Systolic pressure drop within 1 minute standing; shows autonomic or volume regulation impairment.
Orthostatic DBP change 1min Diastolic change within 1 minute; used to assess autonomic adaptation.
Orthostatic SBP drop 3min Systolic drop after 3 minutes standing; a marker for sustained orthostatic hypotension.
Orthostatic DBP change 3min Diastolic change after 3 minutes; reflects delayed vascular compensation.

Blood Pressure Pulse Pulse rate increase 1min Heart rate rise after 1 minute standing; excessive increase can suggest postural tachycardia.
Pulse rate increase 3min Heart rate rise after 3 minutes standing; persistence indicates autonomic dysfunction.

Vascular Health
ABI min Lowest ankle-brachial index; values below 0.9 signal peripheral artery disease and reduced blood flow.
PWV mean Mean pulse wave velocity; a key indicator of arterial stiffness and vascular aging.
SBP max Peak systolic blood pressure; reflects maximum arterial load and cardiovascular stress.

Carotid Ultrasound IMT

IMT left / right Thickness of intima-media layer of carotid arteries; higher values suggest subclinical atherosclerosis.
IMT window width left / right Measurement region width; ensures consistent assessment of carotid wall structure.
IMT fit left / right Model-derived fit values; provide smoothed, standardized IMT estimation.
Mean CIMT Average intima-media thickness across segments; a robust marker for early vascular aging.
Max CIMT Maximum thickness measured; identifies focal atherosclerotic burden.
Abnormal CIMT Indicates clinically significant thickening beyond risk thresholds.

Carotid Ultrasound Plaque Plaque presence by fit Detection of atherosclerotic plaque by automated fitting algorithms; signals early vascular disease.
Plaque presence by thickness Identifies plaque when IMT exceeds clinical thresholds; related to heightened cardiovascular risk.

Gut Microbiome Abundance

butyrate producers abundance Abundance of butyrate-producing bacteria; linked to anti-inflammatory effects and gut barrier integrity.
propionate producers abundance Propionate-producing bacteria; involved in appetite regulation and metabolism.
probiotic fermenters abundance Probiotic fermenting bacteria; produce lactic acid and other beneficial metabolites.
vitamin producers abundance Bacteria capable of synthesizing vitamins such as B vitamins.
akkermansia abundance Abundance of *Akkermansia*, associated with metabolic health.
LPS producers abundance Bacteria producing lipopolysaccharides (LPS); may promote inflammation.
sulfate reducers abundance Sulfate-reducing bacteria; potentially harmful.
TMA producers abundance Bacteria producing TMA (precursor of TMAO); linked to cardiovascular disease.
proteolytic bacteria abundance Bacteria that degrade proteins; involved in production of toxic metabolites.
shannon diversity index Shannon index; measures richness and evenness of gut microbes — a key marker of gut health.

Retinal Imaging Fundus image

Fundus imaging visualizes the retina, optic disc, macula, and retinal microvasculature. It supports
diagnosis and monitoring of eye diseases (e.g., glaucoma, diabetic retinopathy, macular degeneration)
and serves as a non-invasive marker of systemic microvascular health. Automated analysis quantifies
vascular morphology, such as vessel density, caliber, tortuosity, and fractal dimension, providing ob-
jective metrics for clinical and research use.
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I SYNTHETIC DATASET GENERATION

To facilitate a principled and reproducible evaluation of cross-modal causal inference methods, we
developed a comprehensive data generation pipeline to create a synthetic dataset with a fully speci-
fied, ground-truth causal structure. Our procedure is grounded in a Structural Causal Model (SCM)
that defines the latent causal relationships between variables. The numerical outputs of this model
are then mapped to a set of semantic and style parameters, which in turn deterministically guide a
sequence of transformations applied to base images from the MNIST Lecun et al. (1998) dataset.
This multi-step process allows for precise control over the underlying causal graph, the manifesta-
tion of variables across tabular and visual modalities, and the introduction of realistic complexities
such as nonlinearities and nuisance variables. The technical details are outlined in Algorithm 1.

I.1 CAUSAL GROUNDING VIA STRUCTURAL CAUSAL MODEL

To enable rigorous evaluation of cross-modal causal inference methods, we construct a synthetic
dataset grounded in a fully specified SCM. This approach ensures that all causal relationships are
known by design, providing clear ground truth for method validation. Our SCM implements a
three-variable mediation chain with the structure T → M → Y ∗, where T represents the treatment
variable, M the mediator, and Y ∗ the continuous outcome. The data generating process is defined
through the following system of structural equations:

T = ϵT

M = α1T + ρh1(T ) + ϵM

Y ∗ = α2M + ρh2(M) + δT + ϵY

(24)

where ϵT , ϵM , ϵY ∼ N (0, σ2) are independent Gaussian noise terms with configurable variances
σ2
T , σ

2
M , σ

2
Y . The treatment T is exogenous, while both the mediatorM and outcome Y ∗ incorporate

linear and nonlinear components to model realistic causal complexity.

The linear effects are governed by coefficients α1 and α2, representing the primary causal pathways
T →M and M → Y ∗ respectively. Nonlinear relationships are introduced through functions h1(·)
and h2(·) ∈ {square,sin,tanh}, scaled by parameter ρ ∈ [0, 1]. Crucially, the direct effect
from treatment to outcome is controlled by parameter δ. When δ = 0, all causal influence from
T to Y ∗ flows through the mediator M , ensuring that the conditional independence relationship
T ⊥⊥ Y ∗ | M holds by construction. This parameter allows systematic evaluation of both full
mediation scenarios (δ = 0) and partial mediation with confounding (δ > 0).

I.2 NUMERICAL INSTANTIATION AND AUXILIARY VARIABLES

Following the SCM specification, we numerically instantiate the model by sampling N = 5000
independent observations. This process yields a concrete realization of the core causal variables
(T,M, Y ∗) for each sample. To enhance the dataset’s complexity and support the subsequent cross-
modal synthesis, these core variables are augmented with two distinct types of auxiliary variables.
First, we introduce a set of q = 30 high-dimensional nuisance variables, denoted by the vector
W ∈ RN×q for each sample i. These are generated by drawing each component independently from
a standard normal distribution, such that Wi ∼ N (0, Iq). By design, these variables are causally
independent of the primary T → M → Y ∗ chain, serving as realistic distractors that a robust
inference method must learn to ignore. Second, we sample a scalar style variable Sstyle ∼ N (0, 1),
which is causally orthogonal to the main SCM structure. This is specifically designated to control
stylistic variations in the image generation phase, thereby ensuring a clean separation between the
semantic content driven by the causal variables, and the visual style driven by Sstyle.

I.3 SEMANTIC PARAMETER MAPPING

To bridge the numerical latent space of the SCM with the perceptual domain of the images, we
conducted the semantic parameter mapping. This stage transforms the raw, unbounded variables
generated by the SCM into normalized and interpretable parameters that directly govern the visual
attributes during image synthesis. This transformation is achieved using the standard normal Cumu-
lative Distribution Function (CDF), denoted as Φ(·), which maps input to the interval [0, 1].
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For the core causal variables, the mediator vector M and outcome vector Y∗ are converted into se-
mantic amplitude vectors, aM and aY , respectively. This is accomplished by first standardizing the
variables using their empirical mean (µM , µY ∗ , µS) and standard deviation (σM , σY , σS) calculated
across all N samples, and then applying the CDF. The specific mappings are defined as:

aM = Φ

(
M− µM

σM

)
, aY = Φ

(
Y∗ − µY ∗

σY ∗

)
(25)

An analogous procedure is used to derive the style parameter vector bstyle from the independent style
variable vector Sstyle:

bstyle = Φ

(
Sstyle − µS

σS

)
(26)

This normalization ensures the resulting parameters provide stable and consistent control over the
subsequent image transformations. Critically, this design enforces a clean separation of generative
factors: the semantic parameters aM and aY are exclusively derived from their corresponding causal
variables, while the style parameter bstyle originates from the causally orthogonal variable Sstyle.

I.4 CROSS-MODAL IMAGE GENERATION

With the semantic and style parameters established, we synthesize the cross-modal data by applying
a sequence of deterministic transformations to a set of base images. The base images, denoted as a
collection of matrices {Ibase,i ∈ [0, 1]28×28}Ni=1, are sourced from the MNIST dataset. To prevent the
introduction of spurious correlations, these images are sampled using a class-uniform distribution,
ensuring a balanced representation across all digit classes, cclass ∈ {0, . . . , 9}N . This sampling
is performed independently of the SCM variables, thereby guaranteeing statistical independence
between the semantic amplitudes and the class labels by construction (aM ⊥ cclass and aY ⊥ cclass).

For each of the N samples, a fixed sequence of spatial transformations is applied. The transforma-
tions are parameterized by the corresponding semantic amplitude ai ∈ {aM,i, aY,i} and the style
parameter bstyle,i. The steps are as follows:

Rotation An angular transformation is applied to orient the base image. The rotation angle θ is
linearly determined by the semantic amplitude ai according to the formula:

θ = θdeg · (2ai − 1), (27)

This function maps the full range of semantic amplitudes [0, 1] to a continuous spectrum of rotation
angles spanning from [−θdeg,+θdeg].

Brightness Adjustment The overall brightness of the image is modified through an additive shift
∆. This shift is calculated as:

∆ = β · (ai − 0.5), (28)
where the hyperparameter β controls the strength of the effect. This ensures that the image becomes
progressively brighter as the semantic amplitude ai increases from 0 to 1.

Contrast Enhancement The contrast of image is adjusted by scaling pixel values around the mean
brightness µi. The transformation is controlled by a multiplicative gain factor:

g = 1 + γ(2ai − 1), (29)

where γ is a hyperparameter for the effect strength. A value of ai > 0.5 results in increased contrast,
while ai < 0.5 reduces it.

Style-Dependent Noise To introduce stylistic variation that is independent of the causal semantics,
we add Gaussian noise to the image. The standard deviation of noise σ is controlled by the style
parameter bstyle,i via the relation σ = σpix · bstyle,i. where σpix is the configurable base noise level.

Each step in this transformation pipeline is followed by a clipping operation to maintain all pixel
values within the valid range of [0, 1]. This complete sequence ensures that the final visual features
of the generated images systematically and monotonically vary with their corresponding semantic
or style parameters.
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I.5 DUAL-SCENARIO FRAMEWORK

Our data generation framework is designed to produce two distinct yet causally equivalent cross-
modal scenarios from a single underlying SCM. This unique design allows for a comprehensive and
controlled evaluation of causal inference methods by systematically altering which variable in the
causal chain T → M → Y ∗ is manifested in the visual modality. This approach tests a model’s
ability to reason flexibly across different modal configurations while the ground-truth causal graph
remains fixed. The two scenarios are detailed below:

IM Scenario (Image as Mediator). In this scenario, the mediator is represented by image data,
resulting in a Tabular→Image→Tabular causal chain. The mediator images, denoted as IM ,
are synthesized using the semantic amplitudes aM , which are themselves a direct function of the la-
tent tabular mediator variableM . This configuration is designed to test a model’s ability to correctly
identify a mediated causal pathway (T → M → Y ∗) where the intermediate step is only observ-
able through high-dimensional visual data. To succeed, a model must effectively learn to extract
the causally salient information encoded in the visual features of IM and use it to reason about the
relationship between the tabular treatment T and outcome Y ∗. This setup mimics real-world scien-
tific and industrial problems, such as medical diagnostics where a treatment’s effect on a patient’s
outcome is mediated by changes observable only through medical imaging.

IY Scenario (Image as Outcome). This scenario creates a Tabular→Tabular→Image
causal chain. The outcome images IY are generated using the semantic amplitudes aY , which are
derived from the latent tabular outcome variable Y ∗. This configuration evaluates a model’s capacity
to discover causal relationships where a low-dimensional tabular mediator (M ) directly influences
a high-dimensional, complex visual outcome (IY ). This scenario presents a different but equally
important challenge, requiring the model to understand how changes in an abstract tabular variable
manifest as structured visual changes. It reflects problems such as predicting the visual outcomes of
a manufacturing process based on machine settings or determining the effect of drug treatments on
cellular morphology.

I.6 GROUND TRUTH SPECIFICATION AND ROBUSTNESS TESTING

To facilitate a systematic and rigorous evaluation of inference methods, we explicitly define a set of
testable ground truth hypotheses, denoted as H, for each scenario. These hypotheses serve as the
benchmark against which model performance is measured. For the IM scenario, the corresponding
set of hypotheses, HM , requires a model to correctly identify: (i) the causal dependence between
treatment and mediator (T ⊥̸ M ); (ii) the dependence between the mediator and the final outcome
(M ⊥̸ Y ∗); and (iii) the crucial conditional independence of the treatment and outcome given the
mediator (T ⊥⊥ Y ∗ |M ) when the direct causal path is absent (δ = 0).

Beyond the core causal chain, we specify two critical sanity checks. The first is semantic-class
independence (aM ⊥ cclass), which verifies that no spurious correlations exist between the seman-
tic amplitude and the underlying MNIST digit class, a condition guaranteed by our independent
sampling procedure. The second is a test of Monotonic Amplitude-Correspondence (MAC):

MAC(aM , ϕ(IM )) > τ. (30)

This metric quantifies the Spearman correlation between the vector of semantic amplitudes and
the feature distances of their corresponding images, where ϕ(·) is a predefined feature extraction
function. A high MAC score confirms that the semantic information is faithfully encoded in the
visual modality, a fundamental prerequisite for cross-modal reasoning. An analogous set of hy-
potheses,HY , is defined for the IY scenario with the appropriate variable substitutions (e.g., testing
M ⊥̸ ϕ(IY )).
To assess model robustness against corrupted data, we introduce an optional permutation step.
By randomly shuffling a fraction of the generated images, controlled by permutation ratios ρM
and ρY , we deliberately break the semantic-visual correspondence for a subset of the data. This
serves as a critical negative control, enabling the evaluation of both a model’s sensitivity (ability
to discover true causal links in unpermuted data) and its specificity (ability to avoid discovering
spurious relationships in permuted data).
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The final generated dataset D = {Dtab,Dimg,S, {HM ,HY }}, is a comprehensive package. It in-
cludes the complete tabular data Dtab, the cross-modal images Dimg, stratified train/validation/test
splits S, and the full ground truth specification H. This principled construction provides a robust
and transparent benchmark for the evaluation of cross-modal causal inference methods.

Algorithm 1 Cross-Modal Causal Synthetic Dataset Generation

Require: Sample size N , SCM parameters {α1, α2, ρ, δ}, noise variances {σ2
T , σ

2
M , σ2

Y }, nonlinear func-
tions {h1, h2}, imaging parameters {θdeg, β, γ, σpix}, cross-modal flags {useIM , useIY }, permutation ra-
tios {ρM , ρY }, nuisance dimension q

Ensure: Synthetic datasetD with tabular data, images, ground-truth causal relationships, and evaluation splits
// Step 1: Structural Causal Model Sampling

1: for i = 1 to N do
2: Ti ← ϵT,i; ϵT,i ∼ N (0, σ2

T ) ▷ T is exogenous treatment variable
3: Mi ← α1Ti + ρh1(Ti) + ϵM,i; ϵM,i ∼ N (0, σ2

M ) ▷ Mediator with linear + nonlinear effects
4: Y ∗

i ← α2Mi + ρh2(Mi) + δTi + ϵY,i; ϵY,i ∼ N (0, σ2
Y ) ▷ Outcome with mediation + direct effect

5: Wi ∼ N (0, Iq) ▷ q-dimensional nuisance variables
6: Sstyle,i ∼ N (0, 1) ▷ Independent style variable for imaging
7: end for

// Step 2: Semantic Parameter Mapping
8: Let Φ denote the standard normal cumulative distribution function
9: aM ← Φ ((M− µM )/σM ); µM ← mean(M), σM ← std(M) ▷ Semantic amplitudes for mediator

10: aY ← Φ ((Y∗ − µY ∗)/σY ∗); µY ∗ ← mean(Y∗), σY ∗ ← std(Y∗) ▷ Semantic amplitudes for outcome
11: bstyle ← Φ ((Sstyle − µS)/σS); µS ← mean(Sstyle), σS ← std(Sstyle) ▷ Style parameters in [0, 1]

// Step 3: Base Image Sampling with Class Independence
12: {Ibase, cclass, idbase} ← Sample N MNIST images with class-uniform distribution

// Step 4: Cross-Modal Generation
13: for scenario ∈ {IM , IY } do ▷ Image as mediator or outcome
14: Select semantic amplitudes: a← aM if IM , else aY

15: for i = 1 to N do
16: I′i ← Rotate(Ibase,i, θdeg · (2ai − 1)) ▷ Rotation
17: I′′i ← clip[0,1](I

′
i + β · (ai − 0.5)) ▷ Brightness

18: I′′′i ← clip[0,1](µi + (1 + γ(2ai − 1))(I′′i − µi)) ▷ Contrast
19: Iscenario

i ← clip[0,1](I
′′′
i +N (0, (σpixbstyle,i)

2)) ▷ Noise
20: end for
21: end for

Optional: Apply random permutation to fraction {ρM , ρY } of images
// Step 5: Data Assembly and Stratified Split Generation

22: Dtab ← {T,M,Y∗,W,aM ,aY ,bstyle, cclass}
23: Dimg ← {IM , IY }
24: Create stratified train/validation/test splits using cclass: S = {Itrain, Ival, Itest}

// Step 6: Ground Truth Specification
25: For IM scenario (image as mediator):
26: HM

1 : T ̸⊥M ▷ Treatment causally affects mediator
27: HM

2 : M ̸⊥ Y ∗ ▷ Mediator causally affects outcome
28: HM

3 : T ⊥ Y ∗ |M ⇔ δ = 0 ▷ Conditional independence test
29: HM

4 : aM ⊥ cclass ▷ Semantic-class independence
30: HM

5 : MAC(aM , ϕ(IM )) > τ ▷ Monotonic correspondence
31: For IY scenario (image as outcome):
32: HY

1 : T ̸⊥M ▷ Treatment causally affects mediator
33: HY

2 : M ̸⊥ ϕ(IY ) ▷ Mediator causally affects image features
34: HY

3 : T ⊥ ϕ(IY ) |M ⇔ δ = 0 ▷ Conditional independence test
35: HY

4 : aY ⊥ cclass ▷ Semantic-class independence
36: HY

5 : MAC(aY , ϕ(IY )) > τ ▷ Monotonic correspondence
37: return D = {Dtab,Dimg,S, {HM ,HY }}

I.7 SYNTHETIC DATA SAMPLE

To provide an intuitive understanding of the generated data’s properties, we present a series of
visualizations. Figure 12 illustrates the statistical relationships within the Image as Mediator (IM )
scenario, which corresponds to the Tabular→Image→Tabular causal chain. The plots show
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the relationships between the latent treatment variable (T ), the final outcome (Y ∗), and four distinct
visual features extracted from the synthesized mediator images (IM ). These visualizations serve
as an empirical confirmation of the dependencies and conditional independencies specified by our
ground-truth SCM.

Figure 12: Visualization of the causal relationships in the Image as Mediator (IM ) scenario. Top:
The causal link between the treatment T and the visual features of the mediator image. Middle:
The marginal correlation between the mediator’s visual features and the outcome Y ∗. Bottom: The
conditional relationship between the mediator’s features and the outcome, controlling for T . “Resid”
denotes the residuals of each variable after being regressed on T , confirming the M → Y ∗ link.

Figure 13 provides an empirical analysis of the Image as Outcome (IY scenario), which instantiates
a Tabular→Tabular→Image causal chain. The visualizations confirm that the relationships
defined in our SCM are successfully propagated through to the final generated images. The scatter
plots illustrate the foundational causal links, starting with the correlation between the tabular treat-
ment T and mediator M . They then show how M directly influences various visual features (e.g.,
brightness, contrast) extracted from the outcome images, IY . The residual plots in the middle rows
confirm that this influence from M to the visual features persists even after controlling for T . The
image panels at the bottom provide compelling qualitative evidence by showing a clear, monotonic
progression in visual characteristics as the value of the mediator M increases across its quantiles,
visually demonstrating that the causal information is successfully encoded in the image domain.
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Figure 13: Visualization of the causal relationships in the Image as Outcome (IY ) scenario. Top
& Middle Rows: Scatter plots showing the tabular causal link T → M , the marginal relationships
between the mediator M and visual features extracted from the outcome images IY , and the condi-
tional relationships (⊥ T ) between M and the image features after controlling for T . Bottom Row:
Example images from the dataset, sorted into columns by quantiles of the mediator M (left) and by
quantiles of their extracted brightness and contrast. The visible progression in rotation, brightness,
and contrast across the M quantiles provides a qualitative confirmation of the M → IY causal link.

Figure 14: Synthetic data sample in setting 1 (n = 5000, σ = 0.1 and high linear), T →M → Y ∗.
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Figure 15: Synthetic data sample in setting 2 (n = 5000, σ = 0.1 and high linear), T →M∗ → Y .

Figure 16: Synthetic data sample in setting 3 (n = 5000, σ = 0.1 and high neural), T →M → Y ∗.
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Figure 17: Synthetic data sample in setting 4 (n = 5000, σ = 0.1 and high neural), T →M∗ → Y .

Figure 18: Synthetic data sample in setting 5 (n = 5000, σ = 0.1 and high polynomial), T →M →
Y ∗.
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Figure 19: Synthetic data sample in setting 6 (n = 5000, σ = 0.1 and high polynomial), T →
M∗ → Y .

Figure 20: Synthetic data sample in setting 7 (n = 5000, σ = 0.1 and low linear), T →M → Y ∗.
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Figure 21: Synthetic data sample in setting 8 (n = 5000, σ = 0.1 and low linear), T →M∗ → Y .

Figure 22: Synthetic data sample in setting 9 (n = 5000, σ = 0.1 and low neural), T →M → Y ∗.
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Figure 23: Synthetic data sample in setting 10 (n = 5000, σ = 0.1 and low neural), T →M∗ → Y .

Figure 24: Synthetic data sample in setting 11 (n = 5000, σ = 0.1 and low polynomial), T →
M → Y ∗.
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Figure 25: Synthetic data sample in setting 12 (n = 5000, σ = 0.1 and low polynomial), T →
M∗ → Y .

Figure 26: Synthetic data sample in setting 13 (n = 5000, σ = 0.1 and medium linear), T →M →
Y ∗.
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Figure 27: Synthetic data sample in setting 14 (n = 5000, σ = 0.1 and medium linear), T →
M∗ → Y .

Figure 28: Synthetic data sample in setting 15 (n = 5000, σ = 0.1 and medium neural), T →M →
Y ∗.
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Figure 29: Synthetic data sample in setting 16 (n = 5000, σ = 0.1 and medium neural), T →
M∗ → Y .

Figure 30: Synthetic data sample in setting 17 (n = 5000, σ = 0.1 and medium polynomial),
T →M → Y ∗.
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Figure 31: Synthetic data sample in setting 18 (n = 5000, σ = 0.1 and medium polynomial),
T →M∗ → Y .

Figure 32: Synthetic data sample in setting 19 (n = 5000, σ = 0.3 and high linear), T →M → Y ∗.
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