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Abstract

We present a novel way to predict molecular
conformers through a simple formulation that
sidesteps many of the heuristics of prior works
and achieves state of the art results by using the
advantages of scale. By training a diffusion gen-
erative model directly on 3D atomic positions
without making assumptions about the explicit
structure of molecules (e.g. modeling torsional
angles) we are able to radically simplify struc-
ture learning, and make it trivial to scale up the
model sizes. This model, called Molecular Con-
former Fields (MCF), works by parameterizing
conformer structures as functions that map ele-
ments from a molecular graph directly to their 3D
location in space. This formulation allows us to
boil down the essence of structure prediction to
learning a distribution over functions. Experimen-
tal results show that scaling up the model capacity
leads to large gains in generalization performance
without enforcing inductive biases like rotational
equivariance. MCF represents an advance in ex-
tending diffusion models to handle complex scien-
tific problems in a conceptually simple, scalable
and effective manner.

1. Introduction

In this paper we tackle the problem of molecular conformer
generation, i.e. predicting the diverse low-energy three-
dimensional conformers of molecules. Molecular conformer
generation is a fundamental problem in computational drug
discovery and chemo-informatics, where understanding the
intricate interactions between molecular and protein struc-
tures in 3D space is critical, affecting aspects such as charge
distribution, potential energy, etc. (Batzner et al., 2022).
The core challenge associated with conformer generation
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is the vast complexity of the 3D structure space, encom-
passing factors such as bond lengths and torsional angles.
Despite the molecular graph dictating potential 3D conform-
ers through specific constraints, such as bond types and
spatial arrangements determined by chiral centers, the con-
formational space experiences exponential growth with the
expansion of the graph size and the number of rotatable
bonds (Axelrod & Gomez-Bombarelli, 2022). This compli-
cates brute force and exhaustive approaches, making them
virtually unfeasible for even moderately small molecules.

Systematic methods, like OMEGA (Hawkins et al., 2010),
offer rapid processing through rule-based generators and
curated torsion templates. Despite their efficiency, these
models typically fail on complex molecules, as they of-
ten overlook global interactions and are tricky to extend to
inputs like transition states or open-shell molecules. Clas-
sic stochastic methods, like molecular dynamics (MD) and
Markov chain Monte Carlo (MCMC), rely on extensively ex-
ploring the energy landscape to find low-energy conformers.
Such techniques suffer from sampling inefficiency for large
molecules and struggle to generate diverse representative
conformers (Hawkins, 2017; Wilson et al., 1991; Grebner
et al., 2011). In the domain of learning-based approaches,
several works have looked at conformer generation prob-
lems through the lens of probabilistic modeling, using either
normalizing flows (Xu et al., 2021a) or diffusion models
(Xu et al., 2022; Jing et al., 2022). These approaches tend to
use equivariant network architectures to deal with molecular
graphs (Xu et al., 2022) or model domain-specific factors
like torsional angles (Ganea et al., 2021; Jing et al., 2022).
However, explicitly enforcing these domain-specific induc-
tive biases come at a cost. For example, Torsional Diffu-
sion models rely on rule-based methods to find rotatable
bonds which may fail especially for complex molecules.
Ultimately, the quality of generated conformers is destined
to suffer from errors of the non-differentiable cheminfor-
matic methods used to predict local substructures. On the
other hand, recent works have proposed domain-agnostic ap-
proaches for generative modeling of data in function space
(Du et al., 2021; Dupont et al., 2022b;a; Zhuang et al., 2023)
obtaining great performance. As an example, Zhuang et al.
(2023) use a diffusion model to learn a distribution over
functions f, showing great results on different data domains
like images (i.e. f : R? — R3) or 3D geometry (i.e.
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Figure 1. Overview of proposed MCF. The structure of molecular graph is encoded through eigenvectors of Laplacian eigen-decomposition
” (V) and atomic features A. MCF directly operates on atom coordinates in 3D space and trains the diffusion model to denoise the
function in 3D coordinates. The score network is developed with attention-based PerceiverlO architecture. Context pairs C; attend to a
latent array of learnable parameters via cross attention and the latent array goes through several self attention blocks. Finally, the query
pairs Q; cross-attend to the latent array to produce the final noise prediction /, in 3D space.

f : R3 = R, where the domain of the function R" is
fixed across functions. Such frameworks provide a valuable
paradigm to investigate whether domain-agnostic methods
with little to no inductive biases can be successfully trans-
ferred to solve scientific problems (e.g. molecular conformer
generation).

To this end, we present Molecular Conformer Fields (MCF),
a simple and scalable approach to learn generative models
of molecular conformers. We leverage a domain-agnostic
architecture that makes no assumptions about molecular
structures and trivially benefits from scale. We formulate
the molecular conformer generation problem as learning
a distribution over functions/fields (we use both terms ex-
changeably), an approach that has been applied widely to
various data domains (Zhuang et al., 2023). Specifically,
conformers are interpreted as functions that map points on
graph Gj to atom coordinates in R3, fi : Gi — R3, which
we call a conformer field. Unlike many prior efforts that
shoe-horn inductive biases of molecular structures into the
model (e.g. developing equivariant diffusion process, mod-
eling torsional angles, etc.) (Xu et al., 2022; Ganea et al.,
2021; Jing et al., 2022), MCF operates directly on 3D atom
coordinates, without enforcing molecular constraints explic-
itly, letting the model learn these directly from the data.

Instead of using Graph Neural Networks with intricate equiv-
ariance designs, MCF builds a score network using Perceive-
IO (Jaegle et al., 2022) (see Fig. 1) which is a scalable and
efficient variant of the Transformer architecture. Our model
is simple to implement and efficient to scale. Experiments
on recent conformer generation benchmarks show MCF sur-
passes strong baselines by a gap that gets larger as we scale

model capacity, potentially revealing a bitter lesson (Sut-
ton, 2019) moment for conformer generation, when large
models with fewer domain-specific architectural inductive
biases lead to better performance. Superior performance of
MCEF on molecular conformation generation highlights the
potential for building a singe domain-agnostic method that
is simple and scalable to work on many different problems.

Our contributions are summarized as follows:

* We introduce a novel approach for molecular con-
former generation that has strong scaling properties
and surpasses previous methods by a large margin on
standard benchmarks.

* Our approach directly predicts the 3D position of atoms
as opposed to domain-specific variables, providing a
simple and scalable training recipe.

* MCEF shows that enforcing inductive biases like rota-
tional equivariance or modeling torsional angles is not
required for generalization.

2. Related Work

Recent works have tackled the problem of molecular con-
former generation using learning-based generative models.
Simm & Hernandez-Lobato (2019) and Xu et al. (2021b)
develop two-stage methods which first generate interatomic
distances following VAE framework and then predict con-
formers based on the distances. Guan et al. (2021) propose
neural energy minimization to optimize low-quality con-
formers. In Xu et al. (2021a), a normalizing flow approach
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is proposed as an alternative to VAEs. To avoid the accu3. Preliminaries
mulative errors from two-stage generation, Shi et al. (2021 i#usi babilistic Field
implement score-based generative model to directly modef-1- Diffusion Probabilistic Fields

the gradient of logarithm density of atomic coordinates. Inpiffusion Probabilistic Fields (DPF) (Zhuang et al., 2023)
GeoDiff (Xu et al., 2022), a diffusion model is used which pelongs to the broad family of latent variable models
focuses on crafting equivariant forward and backward pro¢everett, 2013) and can be consider a generalization of
cesses with equivariant graph neural networks. In GeoMobppMs (Ho et al., 2020) to deal with functiohs: M ! Y
(Ganea et al., 2021), the authors rst predict 1-hop localwhich are in nite dimensional. Conceptually speaking,
structures and then propose a regression objective couplgsPF (zhuang et al., 2023) parameterizes functibns
with an Optlmal Transport loss to predlct the torsional aNwith a set of context pairs Containing input_outputs to
gles that assemble substructures of a molecule. FoIIowinghe function. Using these context pairs as input to DPF,
this, Torsional Diffusion (Jing et al., 2022) proposed a diffu-the model is trained to denoise any query coordinatg (
sion model on the torsional angles of the bonds rather thaguery pairs) in the domain of the function at timestep
a regression model used in Ganea et al. (2021). t (as shown in Fig. 1). In order to learn a parametric

Our approach extends recent efforts in generative modlistribution over functionsp (fo) from an empirical
els for functions in Euclidean space (Zhuang et al., 2023distribution of functions (f o), DPF reverses a diffusion
Dupont et al., 2022b;a; Du et al., 2021), to functions deMarkov Chain that generates function lateffiisr by

ned over graphs €g. chemical structure of molecules). 9radually adding Gaussian noise to (context) input-output
Different approaches have been proposed to learn distrib@@irs randomly drawn frorh  g(fo) for T time-steps as
tions over elds in Euclidean space; GASP (Dupont et al.follows: q(fejfe 1) = N (fe 157 «fo; (1 )1). Here,
2022b) leverages a GAN whose generator produces eld t IS the cumulative product of xed variances with a
data whereas a point cloud discriminator operates on digiandcrafted scheduling up to time-stepDPF (Zhuang
cretized data and aims to differentiate real and generateff &l-» 2023) follows the training recipe in Ho et al. (2020)
functions. Two-stage approaches (Dupont et al., 202240 Which: i) The forward process adopts sampling in closed
Du et al., 2021) adopt a latent eld parameterization (Parkform. if) reversing the diffusion process is equivalent to
et al., 2019) where functions are parameterized via a hypel€aMing a sequence of denoising (or score) networks
network (Ha et al., 2017) and a generative model is learnf/ith tigiwelgBts. Reparameterizing the forward process as
in latent spaceMCF presents a generalization over theseft = tfo+ 1 ¢ resultsin tBe;smpIB” DDPM '05523
approaches to deal with training sets where each functiofrt [0:TIfo a(fo); N (0:1) k ( _th_+ .1 5k,
fi is de ned on a different grapl , as opposed to in Eu- wh|9h makes learning of t_he data dls.tr|but|pr(f o) both
clidean space. In additioMCF also related to recent work €f cient and scalable. At inference time, DPF computes
focusing on tting a function on a manifold using an intrin- fo P (fo) via ancestral sampling (Zhuang et al., 2023).
sic coordinate system (Koestler et al., 2022; Grattarola &0Oncretely, DPF starts by sampling dense query coordinates

Vandergheynst, 2022), and generalizes it to the problem gi"d assigning a gaussian value to them N (0;1).
learning a probabilistic model over multiple functions de-1 €M, it iteratively applies the score networkto denoise

ned on different graphs. Intrinsic coordinate systems have - thus reversing the diffusion Markov Chain to obtéin

also been used in Graph Transformers to tackle supervisdf Practice, DPFs have obtained amazing results for signals
learning tasks (Maskey et al., 2022; Sharp et al., 2022; H&ving in an Euclidean geometry.
et al., 2022; Dwivedi et al., 2020).

) ] ) . . _3.2. Conformers as Functions on Graphs
Recent strides in the domain of protein folding dynamics

have witnessed revolutionary progress, with modern method=ollowing the setting in previous work (Xu et al., 2022;
ologies capable of predicting crystallized 3D structuresGaneaetal., 2021; Jing et al., 2022) a molecule wititoms
solely from amino-acid sequences using auto-regressivié represented as an undirected gr&h hV, Ei, where
models like AlphaFold (Jumper et al., 2021). However,Y = fvigl, is the set of vertices representing atoms and
transferring these approaches seamlessly to general molde= fe;j j(i;j) jVj jVjg isthe set of edges representing
ular data is fraught with challenges. Molecules presentnter-atomic bonds. We further use to denote atomic

a unique set of complexities, manifested in their highlyfeatures which also are leveraged by our generative model.
branched graphs, varying bond types, and chiral informah this paper, we parameterize a molecule’s conformer as a
tion, aspects that make the direct application of proteirfunctionf : G ! R® that takes atomse(g. vertices) in the

folding strategies to molecular data a challenging endeavomolecular grapt& and maps them to 3D space, we call this
function aconformer eld The training set is composed of

conformer eldsf; : G ! RS2, where each eld maps atoms
of a different molecul&s to a 3D point. We then formulate
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the task of conformer generation as learning a prior over & the form of an empirical distributiohy  g(fo) over
training set of conformer elds. We drop the subsciijir elds where a eldfy : G! R® maps vertices 2 G on a
the remainder of the text for notation simplicity. molecular grapl to 3D spacedR®.

We learn a denoising diffusion generative modelTo tackle the problem of learning a diffusion generative
(Ho et al.,, 2020) over conformer eld$. In par- model over conformer elds we extend the recipe in DPF
ticular, given conformer eld sampledg d(fo)  (Zhuang etal., 2023), generalizing from elds de ned in am-
the forward process takes the form of a Markovbient Euclidean space to functions on graphg. conformer
Chain with progr%ssively increasing Gaussian noiseelds). In order to do this, we compute theleading eigen-
q(f 1;ijob = Ll q(f¢jfe 1); a(f¢jfe 1) = vectors of the normalized graph Laplaciarg (Maskey
N (fy 1; fo; (2 ol). We train MCF using etal., 2022; Sharp et al., 2022) as positional encoding for
the denoising objective functioB in (Hop et al., 2020): points in the graph. The eigen-decomposition of the nor-

Et [0:T1f0 qfo): N (:1) K ( fot 1 ¢ ;t)k? . malized graph Laplacian can be computed ef ciently using
sparse eigen-problem solvers (Hernandez et al., 2009) and

3.3. Equivariance in Conformer Generation only needs IB be computed once before training. We use the
term' (V) = ' n[' 1(v);' 2(v);:::;" k(V)] 2 RK to denote

Equivariance has become an important topic of study ifpe normalized Laplacian eigenvector representation of a
generative models (Abbott et al., 2023; 2022; Kanwar et alyartexy 2 G.

2020). In particular, enforcing equivariance as an explicit

inductive bias in neural networks can lead to improved genWe adopt an explicit eld parametrization where a eld is
eralization (Kohler et al., 2020) by constraining the space ofcharacterized by uniformly sampling a set of vertex-signal
functions that can be represented by a model. On the othd@airsf (' (Vc);¥Y(c;0))9 Ve 2 G;Y(c.0) 2 R®, which is de-
hand, recent literature shows that models that can learn the§®ted aontext setWe row-wise stack the context set and
symmetries from data rather than explicitly enforcing themrefer to the resulting matrix vi€o = [' (Vc); Y (c:0]-

(e.g. Transformers vs CNNSs) tend to perform better as theyiere," (Vc) denotes the Laplacian eigenvector represen-

are more amenable to optimization (Bai et al., 2021). tation context vertices and o) denotes the 3D position

o . ) i of context vertices at timeé = 0. We de ne the forward
Equivariance also plays an interesting role in conformer

; arr SO T Igrocess for the context set by diffusing the 3D positions and
generation. On one hand, itis |mpor_tan_twhen training I'ke“'keeping Laplacian eigenvectors xed:

hood models of conformers, as the likelihood of a conformer
is invariant to roto-translations @ler et al., 2020). On the
other hand, when training models to generate conformers
given a molecular graph, explicitly baking roto-translation
equivariance might not be as necessary. This is because
the intrinsic structure of the conformer encodes far morévhere ¢ N (0;1) is a noise vector of the appropriate size.
information about its properties than the extrinsic coordinaté/Ve Now turn to the task of formulating a score network for
system (eg. rotation and translation) in which the conformer€lds. The score network needs to take as input the context
is generated (Ruddigkeit et al., 2012). In addition, recenf€t (-e. the eld parametrization), and needs to accept
approaches for learning simulations on graphs (Sancheb€ing evaluated for any point @ We do this by sampling
Gonzalez et al., 2020) or pre-training models for molecula@ query sebf vertex-signal pair$" (vq);Y(q;09- Equiva-
prediction tasks (Zaidi et al., 2022) have successfully reliedently to the context set, we row-wise stack query pairs and
on non-equivariant architectures. denote the resulting matrix & = [' (Vq); Y (q,0]- Note

) ] o . _that the forward diffusion process is equivalently de ned
In this paper, we ask whether inductive biases like rotationator hoth context and query sets:

equivariance can be traded for model scale in general pur-
poses architectures like Transformers. Our empirical results
show that explicitly enforcing roto-translation equivariance
is not a strong requirement for generalization. Furthermore,
we show that scalable approaches that do not explicitly ) . ) .
enforce roto-translation equivariance (like ours) can outpet¥here ¢ N (0;1) is a noise vector of the appropriate size.
form approaches that do by a large margin . The underlying eld is solely.de ned by t'he context set, and
the query set are the function evaluations to be de-noised.

The resultingscore eld model is formulated as follows,
4. Method b
g (Ci;t Qv).

. p— p_—
Ce=[" (V)i Y(cet) = tY@ot 1 tci (1)

. p— p—
Qt=["(VaiYaen = tYagot 1 4l (2

MCF is a diffusion generative model that captures distriysing the explicit eld characterization and the score eld
butions over conformer elds. We are given observationsnetwork, we obtain the training and inference procedures

4
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Algorithm 1 Training

1. &'i="i i/l Compute Laplacian eigenvectors
2: repeat

3t (Co;Qo0)  Uniform( q(fo))
4: 't Uniform(f1;:::;TQ)
5 ¢ N (O;I),pq N (O;I)p
6

7

8

9

Ci=1[" (Vc);pTY(c;o)+ 1 t c]
Qu=["(Va)i" Yo+ 1 td
Take gradient descent step on
©r kg (Cut QoK
10: until converged

Figure 2.Left: MCF training algorithm.Right: Visual depiction of a training iteration for a conformer eld. See Sect. 4 for de nitions (.

Algorithm 2 Sampling
1: &'i="i i/lILBO eigen-decomposition
2: Q7 =[" (Va);Y gty N (Oq;lq)]
3: Cy Qr fRandom subsgt
4: fort=T;:::;1do
z N (0;1)ift> 1,elsez =0

5

6: Y v = Y P = (Cut Q) + 12
70 Qe a=[" (Vo) Yt vl _

8. C:i: 1 Q: 1fSame subsetasinstep?2

9: end for

10: return fo evaluated at coordinatégVy)

Figure 3.Left: MCF sampling algorithmRight: Visual depiction of the sampling process of a conformer eld.

in Alg. 1 and Alg. 2, respectively, which are accompanied2022; He et al., 2022; Dwivedi et al., 2020) which have
by illustrative examples of sampling a conformer eld. For recently gained popularity in the supervised learning setting.
training, we uniformly sample context and query sets fromThe score eld network is primarily implemented using

fo  Uniform(q(fo)) and only corrupt their signal using PerceiverlO (Jaegle et al., 2022), an effective Transformer
the forward process in Eg. equation 1 and Eq. equation 2ncoder-decoder architecture. A PerceiverlO is chosen due
We train the score eld network to denoise the signal por- to its nature of a general-purposed architecture that can han-
tion of the query set, given the context set. During samplingdle data of a wide variety domains. It provides a suitable
to generate a conformer eldy p (fo) we rstdenea  test bed for evaluating how well models without domain-
query seQt = [' (Vg); Y1)y N (0; I)] ofrandom specicinductive bias¢.g. equivariance) perform in solving
atom positions to be de-noised. We set the context set to b&cienti ¢ problems é.g. molecular conformer generation

a random subset of the query set. We use the context set &s investigated in this work). PerceiverlO encodes interac-
denoise the query set and follow ancestral sampling as in théons between elements in sets using attention, which has
vanilla DDPM (Ho et al., 2020). Note that during inference been demonstrated to be scalable in many previous works
the eigen-function representatibiv) of the context and (Brown et al., 2020). Fig. 1 demonstrates how these sets are
query sets does not change, only their corresponding signalsed within the PerceiverlO architecture. To elaborate, the

value €.g. their 3D position). encoder maps the context set into latent arrags @ group
of learnable vectors) through a cross-attention layer, while
4.1. Score Field Network the decoder does the same for query set. For a more de-

. ) . tailed analysis of the PerceiverlO architecture refer to (Jae-
In MCF, the score eld's design space covers all archltec-gle et al., 2022).The time-stepis incorporated into the

tures that can process irregularly sampled data, such & computation by concatenating a positional embedding
Transformers (Vaswani et al., 2017) and their CorreSpondr'epresentation dfto both context and query sets.
ing Graph counterparts (Maskey et al., 2022; Sharp et al.,
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Recall Precision Recall Precision
cov* AMR # cov* AMR # cov* AMR # cov* AMR #
mean median mean median mean median mean median mean median mean median mean median mean median
CGCF 69.5 96.2 0425 0.374 382 333 0.711 0.695 GeoDiff 42.1 378 0.835 0.809 249 145 1.136 1.090
GeoDiff 76.5 100.0 0.297 0.229 50.0 335 0.524 0.510 GeoMol 446 414 0875 0.834 43.0 36.4 0.928 0.841
GeoMol 91.5 100.0 0.225 0.193 87.6 100.0 0.270 0.241 Tor. Diff. 727 80.0 0582 0565 552 56.9 0.778 0.729
Tor. Diff. 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195 MCF-S 794 875 0512 0492 574 576 0761 0715
MCF 95.0 100.0 0.103 0.044 93.7 100.0 0.119 0.055 MCF-B  84.0 915 0.427 0402 640 66.2 0.667 0.605

MCF-L 847 922 0390 0.247 66.8 713 0.618 0.530

Table 1.Molecule conformer generation results on GEOM-QM?9.

MCF obtains better results than the state-of-the-art baselines. 1able 2.Molecule conformer generation results on GEOM-

DRUGS.MCF surpasses state-of-the-art baselines by large mar-
gin.

5. Experiments

We use two popular datasets: GEOM-QM9 and GEOMmetric factors important in conformers like torsional angles.
DRUGS (Axelrod & Gomez-Bombarelli, 2022). Datasets This makesMCF simpler to implement and applicable to
are preprocessed and split as described in Ganea et ather settings in which intrinsic geometric factors are not
(2021). We deploy PerceiverlO with small (S), base (B)known or expensive to compute.

and large (L) sizes, which contain 13M, 64M and 242M

parameters respectively. More implementation details cag.2. GEOM-DRUGS

be found in Appendix A.2. We provide additional experi-

ments that validate the design choices for the score network? test the capacity dVICF to deal with larger molecules we
architecture, as well as empirically validating the chemical?/SO report experiments on GEOM-DRUGS, the largest and

properties of generated conformers in the Appendix A.3. most pharmaceutically relevant part of the GEOM dataset
(Axelrod & Gomez-Bombarelli, 2022) — consisting of 304k

) drug-like molecules (average 44 atoms). We report our re-
5.1. GEOM-QM9 sults in Tab. 2 and compare with GeoDiff (Xu et al., 2022),
Following the standard setting for molecule conformer preGeoMol (Ganea et al., 2021) and Torsional Diff. (Jing et al.,
diction we use the GEOM-QM9 dataset which contains2022). Note again that all baseline approaches make strong
13K molecules ranging from 3 to 29 atoms. We reportassumptions about the geometric structure of molecules and
our results with base size modeéle( MCF-B) in Tab. 1  model domain-speci c characteristics like torsional angles
and compare with CGCF (Xu et al., 2021a), GeoDiff (Xu of bonds.MCF simply models the distribution of 3D coor-
et al., 2022), GeoMol (Ganea et al., 2021) and Torsionaflinates of atoms without making any assumptions about the
Diff. (Jing et al., 2022). Note that all baselines make strongunderlying structure.
assumptions about the geometric structure of molecule
They either develop equivariant diffusion process (Xu et al. . . .
202%) or model d(?mgin-speci c charactgristics Ii(ke inter-basellne approaches by substantial marginsMAIF mod-

atomic distances (Xu et al., 2021a) and torsional angles 0(ils achieve better performance than previous state-of-the-art

rotatable bonds (Ganea et al., 2021; Jing et al., 2022). Ig?gsr:]c;\?laslizDéﬁclﬂggfjs(a)léﬁ)rn:sstgsr?l%&rilic?:;l FI?)ri?fCEM:CFrox-
contrast MCF simply models the distribution of 3D coordi- P - Dy app

imately 15%. This indicates that our propoSd@F not

nates of atoms without making any assumptions about thgnly generates high-quality conformers that are close with

underlying structure. Finally we report the same metrics as . .
Torsional Diff. (Jing et al., 2022) to compare the generate round truth but also covers a wide variety of conform-
) ” ers in the distribution. In addition, it is important to note

and ground truth conformer ensembles: average minimurﬂ]atMCF does not make any assumptions about the intrin-

RMSD (AMR) and coverage (COV). These metrics are re- . : . : X
sic geometric factors in conformers like torsional angles

ported both for precision, measuring the accuracy of thé : . :
. and thus provides a simple recipe to scale up the model.
generated conformers, and recall, measuring how well th

generated enseriecovrs e groun utherseroe (" SONTE LT Pt e ey
tails about metrics can be found in Appendix A.2.4). We P b

) metrics. In particular, when compared wiMCF-S, MCF-
generat@K conformers for a molecule witk ground truth . o -
conformers. B shows approximately 15% improvement on precision and

even largeMCF-L improves it by approximately 20%. The
Tab. 1 shows thatICF outperforms previous approaches by experimental results demonstrate the power of scaling up
a substantial margin. In addition, it is important to note thatproposedCF in better solving conformer generation prob-
MCF is a general approach for learning functions on graphdem. Since our proposed method simply operates on 3D
that does not make any assumptions about the intrinsic geatomic positions, it provides a straightforward recipe for

Results on Tab. 2 are where we $46F outperforms strong

6
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(@) (b) (€)

Figure 4.(a) Recall coverage and (b) precision coverage as a function of the threshold didM&teeutperforms Torsional Diff. across
the full spectrum of thresholds. (c) Averaged AMR of recall and precision as a function of the number of atoms in molecules.

scaling up the model. This sheds light on how scaling law AMR-P#  AMR-R# #mols
could potentially bene t applications of deep generative mean median mean median
models to scienti ¢ domains. GeoDiff 202 262 335 3.15 j
In Fig. 4, we further show a breakc'jown of the performance -(?;f)'\[/)li?fl. 22 '6157 12 '833 2_39520 2.?;'6}4 .
on GEOM-DRUGS oMCF with different sizes vs. Tor- MCE-S 222 197 317 281 102
sional diffusion (Jing et al., 2022) as a function of the thresh- MCF-B 201 170 3.03 264 102
old distance, as well as a function of the number of atoms in MCF-L 197 160 294 243 102
molecules MCF outperforms Torsional Diff. across the full  Tor. Diff. (oureval) 1.93 1.86 2.84 2.71 77
spectrum of thresholds in both recall and precision. When MCF-S 202 187 29 269 "7
looking at the break-down AMR on different number of MCF-B 171 161 269 244 77

atoms in Fig. 4(c)MCF also demonstrates its superior per- MCF-L 164 151 257 226

formance for molecules of different sizes. Itis indicated that
MCF better captures the ne intrinsic geometric structure
of conformers and scaling up the model helps improve the

performance of proposed model. Also, as the number of pE(2022), we use the GEOM-XL dataset, a subset of GEOM-
rameters increaseSICF demonstrates better performance \;q1acyleNet that contains 102 molecules with more than

across all threshold levels in terms of both recall and Preroo atoms. Note that this evaluation not only tests the ca-
cision. This provides further evidence on the performancepacity of models to generalize to larger and more complex

gain from increasing the models sizeMCF which is de- 5160 1es but also serves as an out-of-distribution general-
signed to be scalable in a straightforward way. We furthet, ..o - experiment.

investigate the ensemble properties of generated conformers o
in Appendix A.3.3. Fig. 10 in the Appendix shows examples!n Tab. 3 we report AMR for both precision and recall and

Table 3.Generalization results on GEOM-XL.

of MCF generated conformers in GEOM-DRUGS. compare with GeoDiff (Xu et al., 2022), GeoMol (Ganea
et al., 2021) and Torsional Diff. (Jing et al., 2022). In
5.3. Generalization to GEOM-XL particular, when taking the numbers directly from Jing et al.

(2022),MCF-B achieves better or comparable performance

We now turn to the task of evaluating how well a modelthan Torsional Diff. Further, in running the checkpoint
trained on GEOM-DRUGS transfers to unseen moleculegrovided by Torsional Diff. and following their validation

with large numbers of atoms. Following Jing et al.process we found that 25 molecules failed to be generated,

7
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(@) (b)
(@) (b)
Figure 5.(a) Mean Coverage and (b) mean AMR of different ro-
tation augmentation strategies on GEOM-QM9 when compared
with training on original dataset.
this is due to the fact that Torsional Diff. generates torsional © )

angles conditioned on the molecular gradphnd the local
structures obtained from RDKit. And RDKit can fail to
nd local structures and Torsional Diff. cannot generate
conformers in these cases. In our experiments with th
same 77 molecules in GEOM-XL from our repliddCF
surpasses Torsional Diff. by a large margin. Leveraging
little or no inductive bias in modeling molecular conformers,
our proposed method is adaptable to wider variety of data

Figure 6.Inference wall clock time v.s. (@) precision coverage,
b) recall coverage, (c) precision AMR, and (d) recall AMR with
orsional Diff. and our MCF-.

fact that the DFT simulations used to generate the data might
be implicitly encoding a canonical coordinate system, which
Results also show that scaling up the model sizZd &L affects generalization if broken. Finally, applying a random
further improves the generalizability to large and unseenotation to each conformer on each training epoch forces
molecules in GEOM-XL. In our replicaMCF-L demon-  the model to be invariant to any coordinate system, which is
strates better performance than smaller model counterparésmore challenging task. Notably, though randomly rotating
(i.e. MCF-S andMCF-B) and surpasses Torsional Diff. by each conformer leads to worse results in recall, the perfor-
a large margin. The results highlight the generalizability ofmance drop is still marginal. Finally, by training a bigger
MCF to large and complex molecules, which may shed amodel on this randomly rotated training se¢( Random-L)
light on pre-training molecular conformer generation modelwe can recover most of the performance gap in comparison
with training on the original dataset.

5.4. Why does MCF generalize? These experiments show that inductive biases like roto-

A natural question to ask is why doBKCF generalize given ~equivariance can be traded for scale in general-purpose mod-
its non-equivariant design. To answer this question we degls. Our results highlight that a domain-agnostic model at
vised an experiment to understand if conformers in trainingscale can achieve better performance than intricate models
and validation sets share a canonical coordinate system. With strong domain-speci ¢ inductive biases in molecular
our experiment we apply different rotation transformationsconformer generation. We hope our ndings will inspire

to GEOM-QM9 and traitMCF on this transformed training the community to develop simple models that are prone
set, while keeping the validation set unchanged. Three rd0 bene t from “scaling laws” especially when taking into
tation transformations are investigated: 1) “Fixed” appliesaccount the fast growth of available scienti ¢ data.

a single random rotation to all conformers, 2) “Variable”

applies a different rotation to each conformer and keeps i.5. Sampling

through training, 3) “Random” applies a different random

: : - . n this section, we investigate the performance of @GF
rotation to each conformer in each training epoch. Fig. - . T X
) . . under limited computation budget in inference. To this end,
shows the results in these different settings.

we report COV and AMR oM CF with respect to differ-
Not surprisingly, applying a xed rotation to the training ent wall-clock sampling times. DDIM (Song et al., 2021),
set minimally affects performance. This is because a xedan ef cient sampler, is applied, which uses a signi cantly
rotation does not break relative SO(3) relations betweesmaller number of sampling steps than vanilla DDRM (
conformers in the training set. However, rotating each cornt000 sample steps). Speci cally, we sample conformers
former independently once during trainingg. “Variable”)  with 3, 5, 10, 20, and 50 sampling steps with DDIM and
negatively impacts performance. This nding points to the compare the performance as well as inference time with

8
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A. Appendix
A.1. Limitations and Future Work

While MCF shows competitive performance in molecular conformer generation, it does encounter limitations and potential
improvements for future explorations. One limitation is that our proposed method is computationally expensive. Extensive
computations rst stem from the Transformer-based (Vaswani et al., 2017) score netwbtf&€Hrnwe use a PerceiverlO

(Jaegle et al., 2022) as score network, an ef cient Transformer that allows for sub-quadratic compute, as well as FlashAtten-
tion (Dao et al., 2022) in implementation. Other ef cient Transformer architectures and tricks like Jabri et al. (2022) can
be used to improve training ef ciency. The other factor is computational cost during inferendHnwe iterate 1000
timesteps to sample a conformer following DDPM (Ho et al., 2020). Experiments in Section 5.5 show that ef cient sampling
strategiesi.e. DDIM (Song et al., 2021), can help signi cantly increase inference ef ciency while maintain high-quality

in sampled conformers. Other ef cient variants of diffusion models like consistency model (Song et al., 2023) as well as
distillation approaches (Berthelot et al., 2023) may be adapted to further decrease the sampling to single step. Also, recent
works have demonstrated that diffusion generative model can generate samples following Boltzmann distributions when
provided with Boltzmann-distributed training data (Arts et al., 2023). Driven by this, our propdSéccan be adapted to
generate molecular conformers that follow Boltzmann distributions when trained with corresponding data. Besides, recent
ow matching generative model (Lipman et al., 2022) provides the exibility of mapping between arbitrary distributions
and access to exact log-likelihood estimation. Integrating ow matching framework could help sample molecular conformer
from Boltzmann distribution instead of standard Gaussian. Some recent works (Flam-Shepherd & Aspuru-Guzik, 2023;
O Pinheiro et al., 2024; Gruver et al., 2022) also show that expressive models can learn equivariance from data, but they
have not thoroughly investigated molecular conformer generation.

Another limitation could be how weMCF performs in low data regime. The propsed method may not perform as well as
conformer generation when applied to problems with limited data or related to sequential problems like molecular dynamics
(MD) simulations. In future work, we plan to exteICF to conditional inference. For example, molecular docking can be
formulated as conformer generation problem conditioned on proteins (Corso et al., 2022). Also, current framework can be
expanded tale novadrug designs where no molecule information is provided (Hoogeboom et al., 2022). Besides, scaling up
our model to large molecules, like proteins, can be of great intdv®SE by nature provides the exibility to generate from
partially observed sample, which can be suitable for designing proteins with known functional motifs (Watson et al., 2023).

A.2. Implementation details

In this section we describe implementation details for all our experiments. We also provide hyper-parameters and settings
for the implementation of the score eld network and compute used for each experiment in the paper. In our experiments,

we split GEOM-QM9 and GEOM-DRUGS randomly based on molecules into train/validation/test (80%/10%/10%). At the
end, for each dataset, we report the performance on 1000 test molecules. Thus, the splits contain 106586/13323/1000 and
243473/30433/1000 molecules for GEOM-QM9 and GEOM-DRUGS, respectively. We follow the exact same training splits
for all baselines (Ganea et al., 2021; Jing et al., 2022).

A.2.1. SSOREFIELD NETWORK IMPLEMENTATION DETAILS

The time-steft is incorporated into the score computation by concatenating a positional embedding representation of

the context and query sets. The speci ¢ PerceiverlO settings used in all quantitatively evaluated experiments are presented
in Tab. 4. An AdamW (Loshchilov & Hutter, 2017) optimizer is employed during training with a learning rd& oft.

Cosine learning rate decay is deployed with 30K warmup steps. We use EMA with a dez89@fModels are trained for

300K steps on GEOM-QM9 and 750K steps on GEOM-DRUSG. All models use an effective batch size of 512. A modi ed
version of the publicly available repository is used for PerceivérlSince molecules have different number of atoms, we

set the number of context and query sets as the number of atoms during training and inference.

A.2.2. ATOMIC FEATURES

We include atomic features alongside the graph Laplacians to model the key descriptions of molecules following previous
works (Ganea et al., 2021; Jing et al., 2022). Detailed features are listed in Tab. 5. The atomic features are concatenated
with graph Laplacian eigenvectors in both context and query inputs.

https://huggingface.co/docs/transformers/model_doc/perceiver
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Hyper-parameter Small Base Large
numfreq _pos_embed 128 128 128
num.latent 128 512 1024
d_latennt 256 512 1024
d_model 512 1024 1024
num.enc _block 6 8 12
num.dec _block 2 2 2
numself _attn _per _block 2 2 2
numself _attn _head 4 4 8
numcross _attn _head 4 4 8
# param 13M 64M 242M

Table 4.Hyperparameters and settings for MCF on different datasets.

Name Description Range

atomic Atom type one-hot of 35 elements in dataset
degree Number of bonded neighborsfx : 0 x 6;x 2 Zg

charge Formal charge of atom fx: 1 x 1,x2Zg

valence Implicit valence of atom fx:0 X 6,x2Zg
hybrization Hybrization type fsp, sp, sp’, spd, spd?, otheg
aromatic Whether on a aromatic ring  f True, Falsg

num.rings number of rings atomisin  fx:0 x 3;x2 Zg

Table 5.Atomic features included in MCF.

A.2.3. COMPUTE

For GEOM-QM9, we train models using a machine with 4 Nvidia A100 GPUs using precision BF16. For GEOM-DRUGS,
we train models using precision FP32, whBt€F-B is trained with 8 Nvidia A100 GPUs andCF-L is trained with 16
Nvidia A100 GPUs.

A.2.4. EVALUATION METRICS

Following previous works (Xu et al., 2022; Ganea et al., 2021; Jing et al., 2022), we apply Average Minimum RMSD (AMR)
and Coverage (COV) to measure the performance of molecular conformer generatiGy.dsgtote the sets of generated
conformations an€; denote the one with reference conformations. For AMR and CQOV, we report both the Recall (R) and
Precision (P). Recall evaluates how well the model locates ground-truth conformers within the generated samples, while
precision re ects how many generated conformers are of good quality. The expressions of the metrics are given in the
following equations:

X
AMR-R(Cy; C;) = 1 min RMSD(R; R); ®3)
r RZCrﬁzcg
COV-R(Cq4; C;) = jCljij 2 CJRMSD(R;R) < ; R 2 Cqqj; 4)
r
1 X
AMR-P(C;;Cq) = —— min RMSD(R; R); ®)
Cyj R2C,
R2Cq
COV-P(C;;Cy) = jcljjfrfe 2 CgjRMSD(R;R) < ; R 2 C,gj; (6)
g

where is a threshold. In general, a lower AMR scores indicate better accuracy and a higher COV score indicates a
better diversity for the generative model. Following (Jing et al., 2028 set a€):5A for GEOM-QM9 and0:75A for
GEOM-DRUGS.
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A.3. Additional experiments

In this section we include additional experiments ablating architecture choices, as well as prediction the ensemble properties
of generated conformers.

A.3.1. ABLATION EXPERIMENTS

In this section we provide an ablation study over the key design choices of MCF. We run all our ablation experiments on
the GEOM-QMDO dataset following the settings in GeoMol (Ganea et al., 2021) and Torsional Diff. (Jing et al., 2022). In
particular we study: (i) how does performance behave as a function of the number of Laplacian eigenvectors used in ¢(v).
(i) How does the model perform without atom features (e.g. how predictable conformers are given only the graph topology,
without using atom features). Results in Tab. 6 show that the graph topology G encodes a surprising amount of information
for sampling reasonable conformers in GEOM-QMO9, as shown in row 2. In addition, we show how performance of MCF
changes as a function of the number of eigen-functions k. Interestingly, with as few as £ = 2 eigen-functions MCF is able
to generate consistent accurate conformer.

A.3.2. ARCHITECTURAL CHOICES

To further investigate the design choices of architecture in proposed MCF, we include additional experiments on GEOM-
QM0 as shown in Tab. 6. To investigate the effectiveness of using Laplacian eigenvectors from LBO eigen-decomposition
as positional embedding, we leverage SignNet (Lim et al., 2022) as the positional embedding, which explicitly models
symmetries in eigenvectors. Using SignNet does not benefit the performance when compared with the standard MCF.
Though adding edge attributes in SignNet achieves better performance than SignNet alone, the performance is still not rival.
Also, it’s worth mentioning that SignNet includes graph neural networks (Xu et al., 2018) and Set Transformer (Lee et al.,
2019) which makes training less efficient.

In addition, we also report results using a vanilla Transformer encoder-decoder (TF) (Vaswani et al., 2017) as the backbone
instead of PerceiverlO (PIO) (Jaegle et al., 2022). TF-base model contains 6 encoder layers and 6 decoder layers with
4 attention heads while TF-large contains 12 encoder layers and 12 decoder layers. The number of parameters match
approximately with base and large sized PerceiverlO investigated in this work. Tab. 6 shows that TF-base is performing
significantly worse than PIO-base with similar number of parameters. When increasing the model size, TF-large achieves on
par performance as PIO-base, which validates the design choice of architecture in MCF.

Precision Recall
COV 1t AMR | COV ¢t AMR |
k atom feat. PE backbone mean median mean median mean median mean median
28 YES LBO PIO-base 95.00 100.00 0.103 0.044 93.67 100.00 0.119 0.055
28 NO LBO PIO-base 90.70 100.00 0.187 0.124 79.82 93.86 0.295 0.213
16 YES LBO PIO-base 94.87 100.00 0.139 0.093 87.54 100.00 0.220 0.151
8 YES LBO PIO-base 94.28 100.00 0.162 0.109 84.27 100.00 0.261 0.208
4  YES LBO PIO-base 94.57 100.00 0.145 0.093 86.83 100.00 0.225 0.151
2 YES LBO PIO-base 93.15 100.00 0.152 0.088 86.97 100.00 0.211 0.138
28 YES SignNet ~ PIO-base 94.10 100.00 0.153 0.098 87.50 100.0 0.222 0.152
28 YES SignNetyr PIO-base 95.30 100.00 0.143 0.091 90.20 100.00 0.197 0.135
28 YES LBO TF-base 94.92 100.00 0.131 0.083 89.33 100.00 0.194 0.132
28 YES LBO TF-large 95.49 100.00 0.110 0.061 93.48 100.00 0.135 0.073

Table 6. Ablation study with different network architectures on GEOM-QM9.

A.3.3. ENSEMBLE PROPERTIES

To fully assess the quality of generated conformers we also compute chemical property resemblance between the synthesized
and the authentic ground truth ensembles. We select a random group of 100 molecules from the GEOM-DRUGS and
produce a minimum of 2K and a maximum of 32 conformers for each molecule following (Jing et al., 2022). Subsequently,
we undertake a comparison of the Boltzmann-weighted attributes of the created and the true ensembles. To elaborate,
we calculate the following characteristics using XTB (as documented by (Bannwarth et al., 2019)): energy (E), dipole
moment (u), the gap between HOMO and LUMO (Ace), and the lowest possible energy, denoted as ;. Since we don’t
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