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Abstract

We propose a topological description of neural network expressive power. We adopt
the topology of the space of decision boundaries realized by a neural architecture
as a measure of its intrinsic expressive power. By sampling a large number of
neural architectures with different sizes and design, we show how such measure of
expressive power depends on the properties of the architectures, like depth, width
and other related quantities.

1 Introduction

Approaches to Neural Network Expressiveness. Given a neural network, how many different
problems can it solve? This important and open question in deep learning is usually referred to as the
problem of the expressive power of a neural network. Poole et al. [2016] proposed an elegant and
–currently the most influential– account of expressive power: they tracked the trajectory growth of
a closed curve through successive layers of a deep neural network, showing that the length of such
curve grows exponentially with network depth. This observation has also some other interesting
implications, for example, based on this, it is possible to predict how a perturbation at a certain depth
will propagate throughout the rest of the network. Similarly, Montúfar et al. [2014] showed that
neural networks with piecewise linear activation functions, such as ReLU, describe a piecewise-linear
function by dividing the input space into linear regions, and in so doing, they acquire the capacity
to build complex decision boundaries. In particular, the authors showed that the number of linear
regions increases exponentially with the number of layers, leading to a natural measure of network
expressive power.

Interestingly, another concept related to expressive power is that of capacity of neural network. This
has been studied since the early days of neural networks: for example, Cover [1965], Gardner and
Derrida [1988] explored the architecture’s capacity to memorize a certain number of uncorrelated
samples; more recently, Collins et al. [2016] explored the same capacity-per-parameter for RNN
(Recurrent Neural Networks), and Baldi and Vershynin [2019] approaches an architecture’s capacity
as the logarithm of the cardinality of the set of functions that can be generated. However, there is an
important difference between expressive power and capacity. The former quantifies the number and
breadth of different problems that a given architecture could solve. The latter focuses on predicting
what architectures –typically minimal ones– can solve a given problem. In the first the focus is on
the network, in the second it is on the problem. Note that all the approaches described so far are
inherently geometrical.

Against this background, topological approaches to neural networks have become progressively more
common in recent years. For example, Bianchini and Scarselli [2014] present upper bounds on the
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topological complexity that certain architectures are able to achieve, while Guss and Salakhutdinov
[2018] empirically shows that neural networks require a certain architecture complexity in order to
be able to classify accurately problems with topologically complex data. Ho [2004] and Lorena et al.
[2018] study the geometric complexity of classification problems. In both works the authors recognize
boundary complexity as the closest one to the notion of the intrinsic difficulty of a classification
problem.

(a) (b)

Figure 1: Concept: A top) Decision boundaries of two paths in the parameter space of two different
architectures. A very simple one F0 (top row) and another with one hidden layer (bottom row). A
bottom) example of a decision boundary with trivial homology along with examples of boundaries
with increasing H0 and H1 dimension, B) Comparison of two classification problems where in both
cases classes have the same homology yet bottom is a linearly separable problem.

1.1 Our contribution.

The idea. Let F be the family of neural networks of a given architecture F with n parameters. It is
common to study the set F by studying its corresponding space of parameters Rn, since for each
vector in Rn there exists a neural network with those parameters, and each neural network describes
a decision boundary. The interesting question is now: given a network architecture, what are the
decision boundaries that this architecture can reproduce? Take, for example, the simple architecture
F0 = {σ(w0x+ w1y + w2) | (w0, w1, w2) ∈ R3} where σ is the sigmoid function. While maybe
different, the decision boundary of any element of F0 is always going to be a straight line, for any and
all w ∈ R3 (Fig. 1A, top). The set of possible decision boundaries becomes richer when considering
another (hidden) layer (Fig. 1A, top). In particular, even in this simple example, the possible decision
boundaries become more topologically complex than simple planes.

Topological expressive power. Along this line, we propose to measure the topological expressive
power of a neural network in terms of how topologically diverse are the decision boundaries it can
learn. Similarly to Ramamurthy et al. [2018], this approach considers the persistent homology of the
decision boundary as an inherent measure of its complexity. However, at difference with Guss and
Salakhutdinov [2018], we do not focus on the homology of each class as a measure of complexity, but
rather on the homology of the decision boundary. This is due to the fact that the classes’ homology
can sometimes be misleading, because topologically complex classes might be linearly separable, e.g.
the task of classifying between two concentric circles is challenging not because they are circles, but
because they are concentric (Fig. 1B top versus bottom).

The rest of this contribution is organized as follows: i) we first introduce a pipeline to compute the
complexity of a classification problem based on the homology of its decision boundary; ii) we show
how to sample the space of decision boundaries and quantify the topological expressive power in
terms of the manifold spread of the decision boundary space; iii) we provide preliminary results on
how topological expressive power depends on network parameters, like depth, width, or number of
parameters.
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2 Pipeline

We need four steps to characterize the topological expressive power of a neural network (Fig. 1D):

1. given an architecture F with n parameters and input space dimension d, we sample from the
associated F to collect a large number of neural network instances {f ∈ F};

2. for each sampled instance f we compute (an approximation of) its decision boundary
DBf ⊂ Rd;

3. for each decision boundary DB, we compute its persistent diagrams Di(DB) for i =
0, 1, . . . ..., d− 1;

4. finally, using Wasserstein distances between persistence diagrams, we build a metric space
M for the decision boundaries and compute its spread [Willerton, 2012] as a measure of
diversity.

Figure 2: Sketch of the analytical pipeline. Details in the main text.

2.1 Sampling F

Given a network architecture F with n parameters, let F be the family of neural networks built by
assigning values in R to the nF parameters of F. It is trivial to see that there is a direct mapping
φ : F → RnF . We can therefore easily explore F by sampling vectors from RnF . In the rest of the
paper, we restrict ourselves to neural networks with parameters defined in the unitary hypercube in
RnF . That is, we uniformly sample a set of parameter vectors {w0, w1 . . . wk | wi ∈ [−1, 1]nF} and
consider the set of neural networks {fi ∈ F | fi = φ(wi)}. All architectures have input dimension 2,
such that an analysis of only H0 and H1 homology classes is exhaustive, and output dimension 1.
All layers have relu activation except for the output layer which has sigmoid activation function, as
per usual for binary classification problems. For each architecture F, 2000 vectors were uniformly
sampled in the parameter space [−1, 1]nF .

2.2 Approximating the decision boundaries

The decision boundary for a given problem is not unique. We consider here one that maximizes the
distance between each class. This is reasonable since any other disparity metric (for example support)
is based on distance. Under this assumption, the decision boundary we aim to approximate is the
union of the edges of adjacent Voronoi cells corresponding to points of different classes and is unique.
Intuitively, the Voronoi cell of a point si is the set of all the points that are the closest to si than to
any other datapoint. Given two points of different classes ai, bi, if they have adjacent Voronoi cells,
their edge is the set:

DBai,bi = {x ∈ Rn | d(x, ai) = d(x, bi) ≤ d(x, sj)} (1)

We call decision boundary the collection of all these edges. Therefore, for a classification problem in
Rn the decision boundary is a n− 1-manifold.

A problem that ensues is that, although Voronoi diagrams are fundamental structures, computing one
on n points in Rd requires O(n log n+ndd/2e)[Aurenhammer and Klein, 1996] making it prohibitive
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in high dimensions. We bypass this hurdle by taking advantage of the fact that we do not require
the complete boundary but only enough as to compute its topology. To do this, we introduce an
algorithm to sample the decision boundary that is theoretically exact and computationally feasible for
high dimensions. The central idea is to sample randomly a point and then “push” it into the decision
boundary, by iteratively projecting it to the hyperplane orthogonal to its closest points belonging to
different classes. This sampling method through k epochs to calculate the decision boundary using n

points in Rd has average complexity of O
((√

d+ log n
)k)

. Which is orders of magnitude faster

than calculating the Voronoi diagram while maintaining its guarantees. We provide the pseudocode
and proof of convergence in the Appendix, along with some notes on its stability and scalability. A
procedure for capturing the persistent homology of decision boundaries has been previously attempted
by Ramamurthy et al. [2018]. Our method differs in that it actually samples points in the decision
boundary rather than constructing a simplicial filtration. It relies on less hyper parameters is faster
and is extendable for multiclassification.

2.3 Topological Properties of Decision Boundaries

To characterize the decision boundaries topologically we compute their persistent homology. We
leverage the information contained in the resulting persistence diagrams in two ways. First, given
a decision boundary DB, we measure its k-dimensional complexity as the Wasserstein distance
between the k-persistence diagram Dk(DB) and the empty persistence diagram, which effectly
encodes the distance of DB from trivial homology in dimension k Fig 1 A, bottom. We compute the
persistent homology using the python package Ripser (Tralie et al. [2018]). Secondly, given homology
dimension k, we define the metric spaceMF = (X, dk) of decision boundaries of architecture F,
where X = {f |f ∈ F} and dk,p(f, f ′) = Wp(Dk(DBf ),Dk(DBf ′)), where Wp the p-th order
Wasserstein distance. Finally, we quantify the diversity ofMF using the notion of spread of a metric

space, defined by Willerton [2012], as: Ek,p0 (tX) =
∑
x∈X

(∑
y∈X e

−tdk,p(x,y)
)−1

.

(a) (b) (c)

Figure 3: Summary of results. a) Dependence of spread (top row) and topological complexity
(bottom row) on l, forH0 (left) andH1 (right), for networks of fixed nw. b) For the same architectures,
Spearman correlations between all the quantities described. All correlations are significant (p <
0.001) and rather strong. c) Dependence of spread on l and total number of neurons for 200
architectures with arbitrary structure but fixed total number of parameters nF = 5000.

3 Results and Discussion.

Spread grows with network depth and width. We first investigated how the spread E0(MF)
depended on the structural properties of F. We studied architectures with two input neurons, a fixed
number of neurons per layers nw (width, nw = 5, 7, 9, 10, 50) and increasing depth l. For each
architecture F we sampled 2000 points from the corresponding RnF , where nF is the number of
parameters of nF. We find that spreads for both H0 and H1 grow monotonically with l, with the
slope monotonically increasing with nw too (Figure 3A, top row).

Spread is summarised by complexity. For the same type of architectures, we also ask how the
average topological complexities for H0 and H1 grow with nw and l(Figure 3A, bottom row). We
find that complexity too increases with both quantities, similarly to spread (Figure 3B). In addition,
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we also find that complexity and spread correlate strongly with each other. This might perhaps appear
unsurprising, but we believe it to be interesting, because it implies that architectures producing richer
topological can produce many different types of richer topologies. That is, it is not only that more
complex topologies have more ways in which to be different, but that they actually take all these ways,
increasing in spread. As a final comment, complexity is computationally much lighter to compute
than spread. In fact, computing the complexity of a set of N diagrams is linear in N , while the spread
of the same set is quadratic in N . The former therefore constitutes a promising proxy observable in
cases where computing spread becomes prohibitive. Figure 3B summarises the correlations between
all the quantities described.

Spread depends weakly on the total number of parameters. We found that the total number of
parameters in networks with fixed nw and increasing l is indeed correlated with the topological mea-
sures (spread and complexity), but surprisingly the correlation is weaker than with other architectural
quantities, like nw and l. This is surprising because it implies that the expressive power of a network
can be increased more by choosing its structure carefully than just by adding more degrees of freedom
(Fig. 3B and 7). To investigate further this point, we sampled 200 arbitrary architectures F with the
only constrain that the total number of parameters was fixed to nF = 5000. Note that in this case
we also allowed networks with variable nw, which also included autoencoder-like bottlenecks and
other complex architectures. If {n0w, n1w, . . . nlw} is the number of neurons for each layers then we
have that nF =

∑l
i n

i−1
w (niw + 1), as such we can have situations where the total number of neurons

increases and so does the depth but the number of parameters doesn’t. We find again that depth
correlates with spread and complexity (Spearman r = 0.64 and r = 0.22 respectively) and so does
–more weakly but significantly– the total number of neurons (

∑l
i=0 n

i
w), showing that even at fixed

number of parameters, different architectures can have very different expressive power.

Open problems and future directions. The results reported here are interesting but leave many
questions open. Mainly regarding:

1. The results: for example, we observed an apparently linear growth of spread with l, where
instead Poole et al. [2016] observe an exponential growth of geometric properties. It would
be interesting to relate these two approaches.

2. The method: It would be interesting to extrapolate the method beyond input dimension
2 as to evaluate homology groups beyond H0 and H1, and how spread and topological
complexity scale with input dimension.

3. Neural Networks: the natural question is now to understand how does spread relate with
accuracy and how do other architecture aspects (such as activation function and the presence
of a bottleneck) affect spread.

4. Broader implementations: our proposed pipeline for evaluating the topological expressive
power is not bound to Neural Networks. It could be adapted to explore other models
such as Random Forests or Decision Trees. It requires only a map f : F → Rn from a
family of models to a space of parameters. Finally, it would be interesting to investigate
how this construction could be generalized to other types of problems that are not strictly
classifications.
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A Additional definitions

Definition A.1 (Voronoi Cell). Let (X, d) be a metric space and S = {s1, ..., sk} be a set of elements
of X . The Voronoi cell associated with point si is the set:

Vsi = {x ∈ X | d(x, si) ≤ d(x, sj)∀i 6= j} (2)

To the collection (Vs)s∈S we call Voronoi Cover (or Voronoi Diagram).

Definition A.2 (Decision Boundary). Let S = A tB, given points of different classes a ∈ A and
b ∈ B their decision boundary is the set:

DBaibj = Vai ∩ Vbj = {x ∈ Rn | d(x, ai) = d(x, bi) ≤ d(x, s) ∀s ∈ S} (3)

We call Decision Boundary to the union:
⋃
a∈A,b∈B DBab

Definition A.1 (Wasserstein distance). Let γ be a bijection between two persistence diagrams d1, d2,
the p-th order Wasserstein distance between two persistence diagrams d1, d2 is defined as

Wp(d1, d2) = inf
γ

(∑
x∈d1

‖x− γ(x)‖p
) 1

p

(4)

Definition A.2 (Topological Complexity). Given a k-persistence diagram Dk, we call Topological
Complexity its Wasserstein Distance to the empty diagram. That is, let γ be such that it maps each
point x ∈ Dk to its closest point in the diagonal. Then Topological Complexity is given by:(∑

x∈Dk

‖x− γ(x)‖p

) 1
p

(5)

Throughout all experiments, for both topological complexity and Wasserstein distance we considered
p = 1.

Definition A.3 (Spread Willerton [2012]). Given a (X, d) a metric space we define spread by

E0(tX) =
∑
x∈X

∑
y∈X

e−td(x,y)

−1 (6)

B Sampling algorithm for decision boundary

Algorithm to sample n points from the edges of adjacent cells of points belonging to different classes.

Algorithm 1: Sample the decision boundary
Input: A← list of points class A

B ← list of points of class B
n← number of points to sample from boundary
iteration← number of iterations

Output: Q← list of n points in the decision boundary of A and B
Q← Sample n points uniformly.;
for each iteration do

for each point p in Q do
pA ← Nearest Neighbour of p in A ;
pB ← Nearest Neighbour of p in B ;
project p to the hyperplane orthogonal to pA − pB ;
p← proj(pA−pB)⊥(p) ;

end
end

Proposition B.1 (Convergence). The algorithm converges to the edges of adjacent Voronoi cells
corresponding to points of different classes.
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(a) (b) (c)

Figure 4: Example of the decision boundary sampling algorithm given two classes (orange and green).
a) Example of an iteration when sampling just one point (black). It first finds its closest neighbour of
each class. Then does an orthogonal projection to the orthogonal subspace of the vector between its
neighbors. The Voronoi Diagram is presented in grey. b) Example of 3 iteration of the algorithm
with a uniform sample of 1000 points. c) Points sampled from the decision boundary (black) along
with the Voronoi Diagram (grey). Note that all points always fall on the edges of Voronoi Cells of
adjacent points of different classes (decision boundary).

Proof. By definition the Voronoi cell associated with point si ∈ S is the set {x ∈ Rn | d(x, si) ≤
d(x, sj)∀i 6= j}. Given a point ai belonging to a class, and bi belonging to another class, we have
that the set of points in the common edge of their Voronoi cells is given by: DBab = {x ∈ Rn |
d(x, ai) = d(x, bi) ≤ d(x, sj)}.
Therefore, at a given iteration of the algorithm, if point P does not belong to the set DBab then, by
definition of Voronoi cell, there has to exist a point aj (or bj) such that d(P, aj) < d(P, ai) = d(P, bi).
And therefore this point is considered the new closest neighbor in the next iteration. It follows that
the algorithm only stops when all points reach the decision boundary.

B.1 Complexity, Stability and Scalability

As mentioned before, using our method through k epochs to calculate the decision boundary using

n points in Rd has an average complexity of O
((√

d+ log n
)k)

. This is a few orders faster than

calculating the Voronoi diagram in standard fashion making it very reliable also for high dimensions
(above 1000) (Fig. 5).

Additionally, our method has better scalability with respect to the method in Ramamurthy et al.
[2018]. The latter only allows only binary classification, while the method presented here scales
easily to multiclassification problems. At a given iteration for each point p we compute its closest
neighbours pA and pB . The only requirement is that these belong to different classes. Consider a
multiclassification problem, given by a dataset S = {s0, s1, . . . sn} = A0

⊔
A1

⊔
. . . Ak where k

is the number of classes. At a given iteration for each points p we compute its closest neighbours
pAi

and pAj
here the only requirement is that i 6= j. This is an advantage because the presence of

multiple classes does not change the algorithm complexity.

C Additional figures
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(a) (b)

Figure 5: a): Theoretical Comparison of the time complexity of our proposed sampling method
and the common calculation of the Voronoi diagram for varying dimensions (Top) and number of
points (Bottom). To provide a comparison benchmark, we also add the time complexities of the
standard SVM algorithm O(n2d+n3) (worst-case) and Linear Regression O(nd2+d3) (worst-case).
Note the logarithmic scale on both axes. b): Empirical comparison of the observed wall time of our
proposed sampling method and the one proposed by Ramamurthy et al. [2018]. Again, for comparison
benchmark, we add the running time for UMAP McInnes et al. [2018]. (Top) While the scaling of
our algorithm with dimension is worse, it only becomes slower when the number of dimensions is
above 700. (Bottom) The time complexity scaling with the number of points of our methods is much
lower than for Ramamurthy et al. [2018], which already displays poorer performances for datasets
with ' 5000 points.

Figure 6: Left: Sampling 20,50,100 and 200 points (black) in the decision boundary of two classes
(orange and green). Center: The persistence diagrams associated to each set of sampled points (from
the decision boundary). Right: The Wasserstein Distance matrix of the H1 persistence diagrams of
decision boundaries sampled from 10 to 1000 points.

9



Figure 7: Correlations between architectural and topological quantities. The correlation reported
refer to architectures with fixed layer width nw and variable l. These are the correlation values present
in the heatmap in Fig. 3
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