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ABSTRACT

Graph Convolutional Networks (GCNs) gained traction for graph representation
learning, with recent attention on improving performance on heterophilic graphs
for various real-world applications. The localized feature aggregation in a typi-
cal message-passing paradigm hinders the capturing of long-range dependencies
between non-local nodes of the same class. The inherent connectivity structure
in heterophilic graphs often conflicts with information sharing between distant
nodes of same class. We propose structure learning to rewire edges in shallow
GCNs itself to avoid performance degradation in downstream discriminative tasks
due to oversmoothing. Parameterizing the adjacency matrix to learn connections
between non-local nodes and extend the hop span of shallow GCNs facilitates the
capturing of long-range dependencies. However, our method is not generalizable
across heterophilic graphs and performs inconsistently on node classification task
contingent to the graph structure. 1

1 INTRODUCTION

The application of Graph Convolutional Networks (GCNs) (Kipf & Welling, 2016) (Chen et al.,
2020) (Song et al., 2023) (Yu et al., 2024) gained momentum for their efficacy in learning from
graph-structured data. Shallow GCNs are typically fail to harness information from distant nodes
through conventional message-passing, and the trivial solution to stack numerous convolution layers
to incrementally aggregate multi-hop information leads to oversmoothing (Li et al., 2018) conse-
quently hurting performance on downstream tasks. In the past there have been attempts (Yan et al.,
2021) (Zheng et al., 2022) to develop more expressive GNN architectures for heterophilic graph
datasets. However Structure Learning (SL) (Wu et al., 2023) emerges as a potential alternative
to deep GCNs, utilizing a transformed adjacency matrix that adapts graph structure to the down-
stream tasks thus tackling the problem of unexplored non-local topology as explained in Zheng
et al. (2022). Empirical evaluations reveal a correspondence between the performance of GCN and
the graph properties.
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Figure 1: Distribution of the node degrees are presented for 6 heterophilic graphs

2 PROPOSED METHOD

Assume G is a heterophilic graph with node feature matrix X ∈ Rn× d and adjacency matrix
A ∈ Rn× n where n and d are the number of nodes and feature dimension respectively. To apply

1Code is available at: https://github.com/GARV-k/GSL
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Structure Learning on the graph’s adjacency matrix we define a transformation on A as follows :

Â = σ(AW̃ + b), (1)

where W̃ ∈ Rn× n and b ∈ Rn are end to end trainable parameters , stagnant for all layers of the
proposed network and Â denotes the transformed adjacency matrix with σ(.) as ReLu activation.
We term our method as Graph Structure Learning (GSL) and suggest to feed the transformed
adjacency Â to the GCN model, as follows,

X(l + 1) = GCN(Â,X(l),W (l + 1)), (2)

where Xl is the updated node features at the lth layer and W (l + 1) is the trainable parameter of the
(l+1)th layer of the GCN. It is important to note that W̃ and W (l + 1) are trained simultaneously in
contrast to Zheng et al. (2020), solely by backpropagation from the conventional cross entropy loss
applied on the predicted and ground truth labels for the nodes. This startegy offers a notion of the
edge rewiring (Barbero et al., 2024) of the original graph connections. The transformed adjacency
matrix introduces continuous-valued edge weights enhancing the expressiveness of our framework.

Table 1: Properties of six heterophilic graphs are presented

Properties Chameleon Squirrel Actor Cornell Texas Wisconsin

Edge Homophily 0.23 0.22 0.22 0.3 0.11 0.21
# Isolated Nodes(%) 0 0 8.37 47.54 39.89 32.27
Avg. Degree 15.85 41.74 3.95 1.63 1.78 2.05
Edge density 0.0139 0.016 0.001 0.0178 0.0195 0.0164

3 EXPERIMENTS

We compare our results to GCN (Kipf & Welling, 2016) and GCNII (Chen et al., 2020) on 6 het-
erophilic datasets (Table 1) as our proposed method has a backbone of GCN. Figure 2 demonstrates
that our method performs well on heterophilic graphs with high average degree and edge density
such as Chameleon and Squirrel. However, it exhibits poor test accuracy on other datasets with
skewed degree distributions (Figure 1).

(%
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Figure 2: Performance of 6 datasets with 10-fold cross-validation.

4 CONCLUSION

Despite the intuitive hypothesis of adaptive adjacency matrix’s ability to extend the hop span of
shallow GCNs to circumvent the adverse effects of oversmoothing in deeper GCNs, such a structure
learning approach does not result in consistent performance across heterophilic graphs.
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