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Abstract

Persistence diagrams concisely represent the topology of a point cloud whilst
having strong theoretical guarantees. Most current approaches to integrating
topological information into machine learning implicitly map persistence diagrams
to a Hilbert space, resulting in deformation of the underlying metric structure whilst
also generally requiring prior knowledge about the true topology of the space. In
this paper we give an algorithm for Fuzzy c-Means (FCM) clustering directly on the
space of persistence diagrams, enabling unsupervised learning that automatically
captures the topological structure of data, with no prior knowledge or additional
processing of persistence diagrams. We prove the same convergence guarantees
as traditional FCM clustering: every convergent subsequence of iterates tends to a
local minimum or saddle point. We end by presenting experiments where the fuzzy
nature of our topological clustering is capitalised on: lattice structure classification
in materials science and pre-trained model selection in machine learning.

1 Introduction

Persistence diagrams, a concise representation of the topology of a point cloud with strong theoretical
guarantees, have emerged as a new tool in the field of data analysis (Edelsbrunner and Harer, 2010).
However, the non-Hilbertian nature of the space of persistence diagrams (Bubenik and Wagner, 2019)
means it is difficult to directly use persistence diagrams for machine learning. In order to better
integrate diagrams into machine learning workflows, efforts have been made to map them into a more
manageable form; primarily through embeddings into finite feature vectors (Kališnik, 2018; Fabio
and Ferri, 2015; Chepushtanova et al., 2015), functional summaries (Bubenik, 2015; Rieck et al.,
2019), or by defining a positive-definite kernel on diagram space (Reininghaus et al., 2015; Carrière
et al., 2017; Le and Yamada, 2018). In all cases this embeds diagrams into a Hilbert space, deforming
the metric structure and potentially losing important information (Wagner, 2019; Carrière and Bauer,
2019). These vectorisations have been integrated into deep learning either by learning parameters for
the embedding (Hofer et al., 2017; Carrière et al., 2020; Kim et al., 2020; Zhao and Wang, 2019), or
as part of a topological loss or regulariser (Chen et al., 2018; Gabrielsson et al., 2020; Clough et al.,
2020; Moor et al., 2019). However, the latter technique requires prior knowledge about the correct
topology of the dataset, which is clearly not feasible in most scenarios.

Against this background, we give an algorithm to perform Fuzzy c-Means (FCM) clustering (Bezdek,
1980) directly on collections of persistence diagrams, enabling learning from persistence diagrams
without prior knowledge of the topology or deformation of the metric structure. We perform the
convergence analysis for our algorithm, giving the same guarantees as traditional FCM clustering:
every convergent subsequence of iterates tends to a local minimum or saddle point. We apply our
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technique in two settings: lattice structures in materials science and the decision boundaries of learnt
models. A key property for machine learning in materials science has been identified as “invariance to
the basis symmetries of physics... rotation, reflection, translation” (Schmidt et al., 2019). Geometric
clustering algorithms do not have this invariance, but persistence diagrams do, making them ideally
suited for this application; we can cluster transformed lattice structure datasets where geometric
equivalents fail. In addition to this, our probabilistic membership values allow us to rank the top-k
most likely lattices assigned to a cluster. This is particularly important in materials science, as further
investigation requires expensive laboratory time and expertise. Our second application clusters the
persistence diagrams of learnt decision boundaries. We use our algorithm to cluster models and tasks,
showing that we are able to successfully cluster models to the correct task, and that higher fuzzy
membership values imply better performance on unseen tasks.

1.1 Related work

Our work relies on the existence of statistics in the space of persistence diagrams. Mileyko et al.
(2011) first showed that means and expectations are well-defined in the space of persistence diagrams.
Turner et al. (2012) then developed an algorithm to compute the Fréchet mean. Lacombe et al. (2018)
framed the computation of means and barycentres in the space of persistence diagram as an optimal
transport problem, allowing them to use the Sinkhorn algorithm (Cuturi and Doucet, 2014) for fast
computation of approximate solutions. Maroulas et al. (2017) gave an algorithm for hard clustering
persistence diagrams based on Turner et al.’s algorithm. In comparison to hard clustering, our fuzzy
algorithm allows probablistic top-k ranking in situations where verifying correctness is expensive,
and provides information about proximity to all clusters which we can exploit. We demonstrate these
advantages in the experiments. Wasserstein barycentre clustering (WBC) also offers similarities
to our algorithm; it clusters datasets of point clouds by the Wasserstein distance between the point
clouds, rather than the Wasserstein distance between their persistence diagrams. We compare our
algorithm experimentally to WBC using ADMM (Ye and Li, 2014), Bregman ADMM (Ye et al.,
2017), Subgradient Descent (Cuturi and Doucet, 2014), Iterative Bregman Projection (Benamou et al.,
2015), and full linear programming (Li and Wang, 2008). Each of these algorithms computes or
approximates the Wasserstein barycentre in different ways. Theoretically, fuzzy discrete distribution
clustering (d. A. T. de Carvalho et al., 2015) is similar to our algorithm, but the addition of the
diagonal in the persistence diagram makes our work distinct.

1.2 Our contributions

Our main contribution is an algorithm for Fuzzy c-Means clustering of persistence diagrams, along
with the convergence analysis. We show that every convergent subsequence of iterates of our algorithm
tends to a local minimum or saddle point of the cost function. This is the same convergence guarantee
provided by traditional FCM clustering (Bezdek et al., 1987). Updating the cluster centres requires
computing the weighted Fréchet mean. We extend the algorithm given by Turner et al. (2012) to the
weighted case, justifying our addition of weights by extending their proof to show that the updated
algorithm converges. We implement our algorithm in Python, available in the supplementary materials.
It works with persistence diagrams from commonly used open-source libraries for Topological Data
Analysis (Dionysus and Ripser) so is available for easy integration into current workflows, offering a
powerful unsupervised learning algorithm to data science practitioners using TDA. We demonstrate
the application of our algorithm to lattice structures from materials science and decision boundaries.
Our algorithm classifies lattice structures where geometric equivalents fail, whilst giving probabilistic
rankings to help prioritise expensive further investigation. We also cluster the persistence diagrams of
decision boundaries, showing that our fuzzy clustering captures information about model performance
on unseen tasks.

2 Background

A persistence diagram is a multiset in the extended plane that concisely represents the topology of a
dataset. See Edelsbrunner and Harer (2010) for an introduction to computational topology. We utilise
filtered complexes by Barannikov (1994). We use the 2-Wasserstein L2 metric on the space of persis-
tence diagrams, as it is stable on persistence diagrams of finite point clouds (Chazal et al., 2012). Given
diagrams D1,D2, the distance is W2(D1,D2) =

(
infγ:D1→D2

∑
x∈D1

||x− γ(x)||22
)1/2

, where the
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(a) Synthetic datasets (b) 1-PH persistence diagrams (c) Cluster centres

Figure 1: Our algorithm successfully clustered the datasets by their topology.

infimum is taken over all bijections γ : D1 → D2. We work in DL2 = {D : W2(D,∆) < ∞}, a
complete and separable metric space (Mileyko et al., 2011).

3 Algorithmic design

Given a collection of persistence diagrams {Dj}nj=1 ⊂ DL2 and a fixed number of clusters c, we
wish to find cluster centres {Mk}ck=1 ⊂ DL2 , along with membership values rjk ∈ [0, 1] that denote
the extent to which Dj is associated with cluster Mk. We follow probabilistic fuzzy clustering, so
that

∑
k rjk = 1 for each j. We extend the FCM algorithm originally proposed by Bezdek (1980).

Our rjk is the same as traditional FCM clustering, adapted with the Wasserstein distance. That is,

rjk =

(
c∑
l=1

W2(Mk,Dj)
W2(Ml,Dj)

)−1

.

To update Mk, we compute the weighted Fréchet mean of the persistence diagrams {Dj}nj=1 with
the weights {r2

jk}nj=1. Specifically, Mk = arg minD̂
∑n
j=1 r

2
jkW2(D̂,Dj)2, for k = 1, . . . , c. By

alternatively updating cluster centres and membership values we get a sequence of iterates. We show
in Appendix A that every convergent subsequence of these iterates tends to a local minimum or saddle
point. To compute the weighted Fréchet mean we extend the algorithm for the unweighted case
proposed by Turner et al. (2012). We also extend their proof of convergence, justifying the addition
of the weights. The details of this work are in Appendix B.

4 Experiments

4.1 Synthetic data

We demonstrate our algorithm on a synthetic dataset designed to highlight its ability to cluster based
on the topology of the underlying datasets. We produce nine datasets, each with either zero, one, or
two holes and compute the corresponding 1-PH persistence diagrams. Our algorithm successfully
clusters the diagrams based on their topology: Figure 1 shows that the cluster centres have zero, one,
or two off-diagonal points. Because we are reducing the cardinality and dimensionality of datasets by
mapping into persistence diagrams, we also demonstrate a speed-up of at least an order of magnitude
over Wasserstein barycentre clustering methods. Details of these experiments are in Appendix C.1.

4.2 Lattice structures

A key property for machine learning in materials science has been identified as “invariance to the
basis symmetries of physics... rotation, reflection, translation” (Schmidt et al., 2019). Removing the
need for a standardised coordinate system allows machine learning methods to be applied to a broader
range of existing coordinate datasets. Persistence diagrams, which capture affine transformation-
invariant properties of datasets, are ideally suited for application in this domain. Additionally, the
fuzzy membership values allow top-k ranking of candidates suggested by our algorithm. This is
particularly important in materials science, where further investigation of materials can be extremely
costly. We apply our algorithm to two examples of lattice structures from materials science: cubic
structures and carbon allotropes. The most common lattice mettalic structures are face-centred
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Figure 2: From left to right: FCC and BCC cubic structures, and diamond and cis-hinger polydiacety-
lene. Our algorithm clusters transformed lattice structures where WBC algorithms fails.

cubic (FCC) structures and body-centred cubic (BCC) structures (Putnis, 1992). Carbon allotropes
are important because they are widely anticipated to revolutionise electronics and optoelectronics
(Wang et al., 2016). We use atomic positions for the unit-cells of iron mp-150 and iron mp-13
from the Materials Project (Jain et al., 2013), representing BCC and FCC structures respectively, for
our first experiment. For our second experiment we use diamond and cis-hinged polydiacetylene
unit-cell atomic positions from the Samara Carbon Allotrope Database (Hoffmann et al., 2016).
These are shown in Figure 2. We simulate distinct collections of lattices by transforming the atomic
coordinates, with no information about bonds given to the algorithms. We successfully cluster the
atomic coordinates of the lattice structures regardless of transformations applied. In comparison, we
run Wasserstein barycentre clustering on the same datasets using several state-of-the-art algorithms
for barycentre computation and approximation. Each can only successfully cluster the cubic structures
after reflection, and none of them successfully cluster the carbon allotropes after any transformations.
We give specifics in Appendix C.2.

4.3 Decision boundaries

Learnt models have been shown to perform better on datasets which have a similar persistence
diagram to the model’s decision boundary (Ramamurthy et al., 2019). In fact, topological complexity
has been shown to correlate with generalisation ability (Guss and Salakhutdinov, 2018; Gabrielsson
and Carlsson, 2019). We utilise our algorithm to cluster the topology of models and tasks, showing
that high membership values imply better performance on tasks. Specifically, given a dataset with n
classes, we fix one class to define n− 1 binary classification tasks. On each of these tasks, we train
a model. We compute the decision boundary of the model f , defined as (x1, . . . , xm, f(x)) where
f(x) is the model’s prediction for x = (xi)i, and the decision boundary of the tasks, defined via the
labelled dataset as (x1, . . . , xm, y) where y is the true label. We compute the 1-persistence diagrams
of the tasks’ and models’ decision boundaries and cluster them to obtain membership values and
cluster centres. To view task and model proximity through our clustering, we find the cluster centre
with the highest membership value for each task, and consider the models closest to that cluster centre.
Note that in general you cannot do this with hard clustering: most of the time a path will not exist
from task to cluster centre to model, because each task/model is only associated with a single cluster.
This contrasts with fuzzy clustering, where you have information about how close each model/task is
to each cluster centre. We further discuss why this does not work for hard clustering in Appendix C.3.

Table 1: Performance change over baseline when using fuzzy membership values for model selection.

Top-3 Top-2 Top-1

MNIST +6.17±2.18 +10.81±1.88 +20.88±4.08

FashionMNIST +16.46±4.00 +21.94±4.73 +23.30±8.72

Kuzushiji +6.61±1.78 +11.18±2.45 +21.89±5.54

To assess the ability of our model/task clustering, we performed the above experiment on MNIST
(LeCun et al., 2010), FashionMNIST (Xiao et al., 2017), and Kuzushiji-MNIST (Clanuwat et al.,
2018). Our goal is to evaluate whether or not the clustering is capturing information about model
performance on tasks, so as a baseline we use the average performance of models on a fixed task. We
start by verifying what happens if we use the model nearest a task (i.e., top-1). We see a significant
increase in performance, indicating that the topological fuzzy clustering has selected the model
trained on the task. We also compute the top-3 and top-2 performance change over average. We
still see a statistically significant increase in performance, indicating that our membership values are
capturing information about model performance on unseen tasks (Table 1).
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5 Conclusion

We have developed FCM clustering on the space of persistence diagrams, giving an important class
of unsupervised learning algorithm to data science practitioners using TDA.
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A Convergence of the FCM clustering algorithm

We first need to consider our separate updates as a single update procedure. Let F : M 7→ R be
defined by (1) and G : R 7→M be defined by (2), and for R = {rjk} and M = {Mk} consider the
sequence {

T (l)(R,M) : l = 0, 1, . . .
}
, where T (R,M) = (F ◦G(R), G(R)).

We wish to show convergence of the iterates of T to a local minimum or saddle point of the cost
function

J(R,M) =

n∑
j=1

c∑
k=1

r2
jkW2(Mk,Dj)2.

The two stage update process of T is too complicated to use standard fixed point theorems, so as in
Bezdek (1980) we shall use the following result, which is proven in Zangwill (1969).
Theorem 1 (Zangwill’s Convergence Theorem). Let A : X → 2X be a point-to-set algorithm acting
onX . Given x0 ∈ X , generate a sequence {xk}∞k=1 such that xk+1 ∈ A(xk) for every k. Let Γ ⊂ X
be a solution set, and suppose that the following hold.

(i) The sequence {xk} ⊂ S ⊂ X for a compact set S.

(ii) There exists a continuous function Z on X such that if x 6∈ Γ then Z(y) < Z(x) for all
y ∈ A(x), and if x ∈ Γ then Z(y) ≤ Z(x) for all y ∈ A(x). The function Z is called a descent
function.

(iii) The algorithm A is closed on X \ Γ.

Then every convergent subsequence of {xk} tends to a point in the solution set Γ.

Our algorithm is the update function T . We define our solution set as

Γ =
{

(R,M) : J(R,M) < J(R̂, M̂) ∀ (R̂, M̂) ∈ B((R,M), r)
}

for some r > 0, where the ball surrounding R is the Euclidean ball in Rnc and the ball surrounding
M is ∪ck=1BW2(Mk, r). This set contains the local minima and saddle points of the cost function
(Bezdek et al., 1987). We wish to show that our cost function J(R,M) is the descent function Z. We
proceed by verifying each of the requirements for Zangwill’s Convergence Theorem.
Lemma 2. Every iterate T (l)(R,M) ∈ [0, 1]nc × conv(D)c, where

conv(D) =

c⋃
k=1

⋃
γj

m⋃
i=1

conv{γj(y(i)) : j = 1, . . . , n},

with γj a bijection Mk → Dj and conv{γj(y(i)) : j = 1, . . . , n} the ordinary convex hull in the
plane. Furthermore, [0, 1]nc × conv(D)c is compact.

Proof. By construction, every rjk ∈ [0, 1]. Since j = 1, . . . , n and k = 1, . . . , c, we can view R
as a point in [0, 1]nc, and so every iterate of R is in [0, 1]nc. We shall show that for a fixed k and a
fixed bijection γj : Mk → Dj , each updated y(i) is contained in a convex combination of {γj(y(i)) :

j = 1, . . . , n}. Where γj(y(i)) = ∆, let γj(y(i)) = w∆ as defined in (4), as this is the update point
we use for the diagonal. Since there are a finite number of off-diagonal points, each updated Mk

is therefore contained in the union over all bijections and all points y(i) of the convex combination
of {γj(y(i)) : j = 1, . . . , n}. By also taking the union over each k, we show that every iterate of
M must be contained in the finite triple-union of the convex combination of each possible bijection.
To show that each updated y(i) is contained in a convex combination of {γj(y(i)) : j = 1, . . . , n},

recall that y(i) =
(∑n

j=1 r
2
jk

)−1∑n
j=1 r

2
jkγj(y

(i)). Letting t(i)j = r2
jk

(∑n
j=1 r

2
jk

)−1

, clearly each

t
(i)
j > 0 and

∑n
j=1 t

(i)
j = 1. Since y(i) =

∑n
j=1 t

(i)
j γj(y

(i)), each y(i) is contained in the convex
combination. Therefore T (l)(R,M) ∈ [0, 1]nc × conv(D)c for each l = 0, 1, . . . .

Now, [0, 1] is closed and bounded, so is compact. The convex hull of points in the plane is closed and
bounded, so conv{γj(y(i)) : j = 1, . . . , n} is compact. Since finite unions and finite direct products
of compact sets are compact, [0, 1]nc × conv(D)c is also compact.
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Lemma 3. The cost function J(R,M) is a descent function, as defined in Theorem 1(ii).

Proof. The cost function J is continuous, as it’s a sum, product and composition of continuous
functions. Furthermore, we have that for any (R,M) 6∈ Γ,

J(T (R,M)) = J(F ◦G(R), G(R)) < J(R,G(R)) < J(R,M),

where the first inequality is due to Proposition 1 in Bezdek (1980), and the second inequality comes
from the definition of the Fréchet mean. If (R,M) ∈ Γ then the strict inequalities include equality
throughout.

Theorem 4. For any (R,M), every convergent subsequence of {T (l)(R,M) : l = 0, 1, . . . } tends to
a local minimum or saddle point of the cost function J .

Proof. We proceed with Zangwill’s Convergence Theorem. Our algorithm is the update function
T , our solution set is Γ, and our descent function is the cost function J(R,M). By Lemma 2, every
iterate is contained within a compact set. By Lemma 3, J is a descent function. Finally, since our
function T only maps points in the plane to points in the plane, it is a closed map. The theorem
follows by applying Theorem 1.

Algorithm 1 FPDCluster
Input Diagrams D = {Dj}nj=1, number of clusters c, maximum iterations MAXITER

Output Cluster centres M = {Mk}ck=1, membership values R = {rjk}

1: D = ADDDIAGONALS(D)
2: M = INITCENTRES(D)
3: for count in 1..MAXITER do
4: for j in 1..n do
5: for k in 1..c do
6: rjk ←

(∑c
l=1

W2(Mk,Dj)
W2(Ml,Dj)

)−1

7: end for
8: end for
9: for k in 1..c do

10: Mk ← WFRECHETMEAN(D, Rk)
11: end for
12: end for
13: return M, R

B Computing the weighted Fréchet mean

Turner et al. (2012) give an algorithm for the computation of Fréchet means. In this section we
extend their algorithm and proof of convergence to the weighted case. In Algorithm 1 we add copies
of the diagonal to ensure that each diagram has the same cardinality; denote this cardinality as
m. To compute the weighted Fréchet mean, we need to find Mk = {y(i)}mi=1 that minimises the
Fréchet function when we update our cluster centre. Implicit to the Wasserstein distance is a bijection
γj : y(i) 7→ x

(i)
j for each j. Supposing we know these bijections, we can rearrange the Fréchet

function into the form F (Mk) =
∑n
j=1 r

2
jkW2(Mk,Dj)2 =

∑m
i=1

∑n
j=1 r

2
jk||y(i) − x(i)

j ||2.

In this form, the summand is minimised for y(i) by the weighted Euclidean centroid of the points
{x(i)

j }nj=1. Therefore to compute the weighted Fréchet mean, we need to find the correct bijections.
We start by using the Hungarian algorithm to find an optimal matching between Mk and each Dj .
Given a Dj , for each point y(i) ∈ Mk, the Hungarian algorithm will assign an optimally matched
point x(i)

j ∈ Dj . Specifically, we find matched points[
x

(i)
j

]m
i=1
←− Hungarian(Mk,Dj), for each j = 1, . . . , n. (1)

Now, for each y(i) ∈ Mk we need to find the weighted average of the matched points
[
x

(i)
j

]n
j=1

.

However, some of these points could be copies of the diagonal, so we need to consider three
distinct cases: that each matched point is off-diagonal, that each one is a copy of the diagonal, or

9



that the points are a mixture of both. We start by partitioning 1, . . . , n into the indices of the off-
diagonal points J(i)

OD =
{
j : x

(i)
j 6= ∆

}
and the indices of the diagonal points J(i)

D =
{
j : x

(i)
j = ∆

}
for each i = 1, . . . ,m. Now, if IOD = ∅ then y(i) is a copy of the diagonal. If not, let w =(∑

j∈J(i)
OD
r2
jk

)−1∑
j∈J(i)

OD
r2
jkx

(i)
j be the weighted mean of the off-diagonal points. If J(i)

D = ∅, then

y(i) = w. Otherwise, let w∆ be the point on the diagonal closest to w. Then our update is

y(i) ←−

∑
j∈J(i)

OD
r2
jkx

(i)
j +

∑
j∈J(i)

D
r2
jkw∆∑n

j=1 r
2
jk

, for i = 1, . . . ,m. (2)

We alternate between (1) and (2) until the matching remains the same. Theorem 5 proves that this
algorithm converges to a local minimum of the Fréchet function.

Theorem 5. Given diagrams Dj , membership values rjk, and the Fréchet function F (D̂) =∑n
j=1 r

2
jkW2(D̂,Dj)2, then Mk = {y(i)}mi=1 is a local minimum of F if and only if there is a

unique optimal pairing from Mk to each of the Dj and each y(i) is updated via (4).

We now prove Theorem 5. Recall that the Fréchet mean is computed by finding the arg min of

F (D̂) =

n∑
j=1

r2
jkFj(D̂), with Fj(D̂) = W2(D̂,Dj)2, (3)

for fixed k. We start by recounting work in Turner et al. (2012), which this section adapts for the
weighted Fréchet mean.1 The proofs we’re adapting use a gradient descent technique to prove local
convergence. In order to use their techniques, we need to define a differential structure on the space
of persistence diagrams.

By Theorem 2.5 in Turner et al. (2012), the space of persistence diagrams DL2 =
{D : W2(D,∆) <∞} is a non-negatively curved Alexandrov space. An optimal bijection γ :
D1 → D2 induces a unit-speed geodesic φ(t) = {(1 − t)x + tγ(x) : x ∈ D1, 0 ≤ t ≤ 1}. For a
point D ∈ DL2 we define the tangent cone TD. Define Σ̂D as the set of all non-trivial unit-speed
geodesics emanating from D. Let φ, η ∈ Σ̂D and define the angle between them as

∠D(φ, η) = arccos

(
lim
s,t↓0

s2 + t2 −W2(φ(s), η(t))2

2st

)
∈ [0, π]

when the limit exists. Then the space of directions (ΣD,∠D) is the completion of Σ̂D/ ∼ with respect
to ∠D, with φ ∼ η ⇐⇒ ∠D(φ, η) = 0. We now define the tangent cone as

TD = (ΣD × [0,∞))/(ΣD × {0}).

Given u = (φ, s), v = (η, t), we define an inner product on the tangent cone by

〈u, v〉 = st cos∠D(φ, η).

Now, for α > 0 denote the space (DL2 , αW2) as αDL2 and define the map iα : αDL2 → DL2 .
For an open set Ω ⊂ DL2 and a function f : Ω → R, the differential of f at D ∈ Ω is defined by
dDf = limα→∞ α(f ◦ iD − f(D)). Finally, we say that s ∈ TD is a supporting vector of f at D if
dDf(x) ≤ −〈s, x〉 for all x ∈ TD.
Lemma 6. The following two results are proven in Turner et al. (2012).

(i) Let D ∈ DL2 . Let Fj(D̂) = W2(D̂,Dj)2. Then if φ is a distance-achieving geodesic from D to
D̂, then the tangent vector to φ at D of length 2W2(D̂,D) is a supporting vector at D of f .

(ii) If D is a local minimum of f and s is a supporting vector of f at D, then s = 0.
1In Turner et al. (2012), the Fréchet mean is defined as the arg min of the Fréchet function F (D̂) =∫
W2(D̂,Dj)

2dρ(D̂) with the empirical measure ρ = n−1∑n
j=1 δDj . We are using the empirical measure

ρ =
(∑n

j=1 r
2
jk

)−1∑n
j=1 r

2
jkδDj , but for ease we drop the scalar

(∑n
j=1 r

2
jk

)−1

as it is positive, so doesn’t
affect the minimum of the function.
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If there is a unique optimal matching γD3

D1
: D1 → D3, we say that it is induced by an optimal

matching γD2

D1
: D1 → D2 if there exists a unique optimal matching γD3

D2
: D2 → D3 such that

γD3

D1
= γD3

D2
◦ γD2

D1
. Proposition 3.2 from Turner et al. (2012) states that an optimal matching at a point

is also locally optimal. In particular, it states the following.
Lemma 7. Let D1,D2 ∈ DL2 such that there is a unique optimal matching from D1 to D2. Then
there exists an r > 0 such that for every D3 ∈ BW2

(D2, r), there is a unique optimal pairing from
D2 to D3 that is induced by the matching from D1 to D2.

The following theorem proves that our algorithm converges to a local minimum of the Fréchet
function.
Theorem 8. Given diagrams Dj , membership values rjk, and the Fréchet function F defined in (3),
then Mk = {y(i)}mi=1 is a local minimum of F if and only if there is a unique optimal pairing from
Mk to each of the Dj , denoted γj , and each y(i) is updated via (2).

Proof. First assume that γj are optimal pairings from Mk to each Dj , and let sj be the vectors in
TMk

that are tangent to the geodesics induced by γj and are distance-achieving. Then by Lemma
6(i), each 2sj is a supporting vector for the function Fj . Furthermore, 2

∑n
j=1 r

2
jksj is a supporting

vector for F , as for any D̂,

dMk
F (D̂) = dMk

 n∑
j=1

r2
jkFj(D̂)

 =

n∑
j=1

r2
jkdMk

Fj(D̂)

≤
n∑
j=1

−r2
jk〈2sj , D̂〉 = −

〈
2

n∑
j=1

r2
jksj , D̂

〉
.

By Lemma 6(ii), 2
∑n
j=1 r

2
jksj = 0. Putting sj = γj(y

(i)) − y(i) and rearranging gives that y(i)

updates via (4), as required. Note that when γj(y(i)) = ∆, we let γj(y(i)) = w∆ as defined in
(4), because this minimises the transportation cost to the diagonal. Now suppose that γj and γ̃j are
both optimal pairings. Then by the above argument

∑n
j=1 r

2
jksj =

∑n
j=1 r

2
jks̃j = 0, implying that

sj = s̃j and so γj = γ̃j . Therefore the optimal pairing is unique.

To prove the opposite direction, assume that Mk = {y(i)} locally minimises the Fréchet function F .
Observe that for a fixed bijection γj , we have that

F (Mk) =

n∑
j=1

r2
jkW2(Mk,Dj)2

=

n∑
j=1

r2
jk

 inf
γj :M̂→Dj

∑
y∈Mk

||y − γj(y)||2


=

n∑
j=1

r2
jk

m∑
i=1

||y(i) − x(i)
j ||

2

=

m∑
i=1

 n∑
j=1

r2
jk||y(i) − x(i)

j ||
2

 .

The final term in brackets is non-negative, and minimised exactly when y(i) is updated via (2).
Furthermore, the unique optimal pairing from Mk to each of the Dj’s is the same for every M̂ within
the ball BW2

(Mk, r) for some r > 0, by Lemma 7. Therefore, if Mk is a local minimum of F ,
then the y(i)’s are equal to the values found by taking the optimal pairings γj and calculating the
weighted means of γj(y(i)) with the weights r2

jk, as required. It will remain a minimum as long as
the matching stays the same, which happens in the ball BW2(Mk, r), so we are done.
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Algorithm 2 WFrechetMean
Input Diagrams D = {Dj}nj=1, Weights Rk = {rjk}nj=1 (fixed k)
Output Weighted Fréchet mean Mk = {y(i)}mi=1

1: m← max1≤j≤n |Dj |
2: for j in 1..n do
3:

[
x

(i)
j

]m
i=1
← HUNGARIAN(Mk,Dj)

4: end for
5: while

{[
x

(i)
j

]m
i=1

}n
j=1
6=
{[
x̂

(i)
j

]m
i=1

}n
j=1

do
6: for i in 1..m do
7: J

(i)
OD = {j : x

(i)
j 6= ∆}

8: J
(i)
D = {j : x

(i)
j = ∆}

9: if J(i)
OD = ∅ then

10: y(i) ← ∆
11: else
12: w =

(∑
j∈J(i)

OD
r2
jk

)−1∑
j∈J(i)

OD
r2
jkx

(i)
j

13: if J(i)
D = ∅ then

14: y(i) ← w
15: else

16: y(i) ←
∑

j∈J
(i)
OD
r2
jkx

(i)
j +

∑
j∈J

(i)
D
r2
jkw∆∑n

j=1 r
2
jk

17: end if
18: end if
19: end for
20:

{[
x̂

(i)
j

]m
i=1

}n
j=1
←
{[
x

(i)
j

]m
i=1

}n
j=1

21: for j in 1..n do
22:

[
x

(i)
j

]m
i=1
← HUNGARIAN(Mk,Dj)

23: end for
24: end while
25: return {y(i)}mi=1

C Experimental details

C.1 Synthetic data

Membership values. The membership values for the synthetic datasets are in Table 2. Datasets 1-3
are the datasets of noise, datasets 4-6 are the datasets with one ring, and datasets 7-9 are the datasets
with two rings. We ran our algorithm for 20 iterations.

Table 2: Membership values for the synthetic dataset

Dataset 1 2 3 4 5 6 7 8 9

Cluster 1 0.6336 0.5730 0.5205 0.2760 0.2503 0.1974 0.2921 0.2128 0.2292
Cluster 2 0.1768 0.2057 0.2327 0.5361 0.5329 0.6371 0.2452 0.2291 0.1822
Cluster 3 0.1900 0.2212 0.2468 0.1879 0.2169 0.1655 0.4627 0.5580 0.5885

Timing experiments. For the timing experiments we divide the total number of points equally
between four distributions, two of which are noise and two of which are shaped in a ring. Each
clustering algorithm was run for five iterations on one core of a 2019 MacBook Pro with a 1.4GHz
Intel Core i5. We included the time taken to compute the persistence diagrams in the running times
for our algorithm.

We also use synthetic data to empirically compare the running time of our algorithm to other dataset
clustering algorithms available. Computing the Wasserstein distance has super-cubic time complexity
(Ling and Okada, 2007), so is a significant bottleneck both for our algorithm and comparable
Wasserstein barycentre clustering algorithms (Benamou et al., 2015; Cuturi and Doucet, 2014; Li
and Wang, 2008; Ye and Li, 2014; Ye et al., 2017). Persistence diagrams generally reduce both the
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Table 3: Seconds per clustering iteration

Points 100 200 300 400 500 600 700 800 900 1000

FPDCluster 0.01552 0.1975 0.9358 2.229 5.694 12.29 19.27 34.50 53.20 77.81
ADMM 5.622 34.86 161.3 617.6 - - - - - -
BADMM 0.2020 2.188 26.38 112.6 - - - - - -
SubGD 0.4217 2.273 22.17 103.4 - - - - - -
IterBP 0.3825 2.226 21.57 108.9 - - - - - -
LP 0.3922 2.031 22.32 117.3 - - - - - -

dimensionality and number of points in a dataset,2 so we in turn reduce the computational bottleneck.
To demonstrate this, we evaluated the average time per iteration of our persistence diagram clustering
algorithm, as well as the average iteration time for comparable Wasserstein barycentre clustering
algorithms. We included the time taken to compute the persistence diagrams from the datasets when
timing our clustering algorithm. We give the results in Table 3, leaving an entry blank where it
became unpractical to run a test (e.g. it takes too long to return a solution and the algorithm becomes
unresponsive). We show at least an order of magnitude improvement in performance over comparable
Wasserstein barycentre clustering algorithms.

C.2 Lattice structures

The results obtained are in Tables 5-8. The fuzzy values for FPDCluster are given as floats, although
in each case they converged to an absolute cluster. We simulate distinct collections of lattices by
transforming the atomic coordinates, with no information about bonds given to the algorithms. The
Wasserstein barycentre clustering algorithms each have discrete labels. The correct labellings are
for 1-3 and 4-6 to be clustered together in each case. We clustered the 2-PH diagrams. We denote a
label as having been assigned by 1, or not assigned by 0. We ran each algorithm for five iterations.
We obtained our datasets as cif files, converted them to xyz files, and then to csv files, producing a
list of the coordinates of each atom in R3. We create three copies of each structure. For rotation, we
rotate two of them by 180o around different axes. For reflection, we reflect two of them in different
axes. For translation, we translate them up or down by the length of the unit-cell. We use our own
python implementation of FPDCluster, available in the supplementary materials. For each of the other
algorithms, we use the implementation provided at https://github.com/bobye/WBC_Matlab, a
copy of which is in the supplementary materials. We do not limit the number of points in the diagram
when clustering.

C.3 Decision boundaries

Why hard clustering doesn’t work. In order to assign each task to the top-ranked models, we need
to have a path from a task to the nearest cluster centre, then from that cluster centre to the k-nearest
models (note that when we refer to models/tasks, we’re implicitly referring to the persistence diagram
of their decision boundary). We can always find that route when fuzzy clustering, as the fractional
membership values mean that we have information about the proximity of every model/task with
every cluster centre. However, with hard clustering we cannot always find that route. Firstly, the
hard labelling means that you lose a lot of information about the proximity of models/tasks to cluster
centres. Therefore, in order to find a route, we need a every task to be assigned to a cluster centre
that also has a model assigned to it. However, there are no guarantees that will happen. We show an
example where no path exists in Figure 3.

Experimental details. All code used for computation is available in the supplementary materials.
For models, we trained the standard Pytorch CNN available at https://github.com/pytorch/
examples/blob/master/mnist/main.py. We trained them on MNIST, FashionMNIST, and
KMNIST, each obtained using the Torchvision.datasets package. We split the data into 9 binary
datasets for classification, class 0 vs each of the remaining classes. We trained three of each model,

2Persistence diagrams are always planar, so if the data is in Rd, d > 2, then there is a dimensionality
reduction. For p > 0, the persistence diagram of p-PH always has less points than the dataset when computed
with the Rips complex.
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Figure 3: With hard clustering, we cannot always find a path from a task to a model.

seeded with 0, 1, and 2 respectively. MNIST and KMNIST were each trained for five epochs,
FashionMNIST was trained for 14 epochs. We used Ripser to compute the 1-persistence diagrams
using default settings. We limited the number of points in the diagram to the 25 most persistent when
clustering. Our percentage improvement values use the membership values after 16 iterations. We
compute the standard error bounds when calculating the percentage improvement.

Table 4: Clustering results after transformation

Cubic Structures Carbon Allotropes
None Rotate Reflect Translate None Rotate Reflect Translate

FPDCluster 4 4 4 4 4 4 4 4
ADMM 3 7 3 7 3 7 7 7
BADMM 3 7 3 7 3 7 7 7
SubGD 3 7 3 7 3 7 7 7
IterBP 3 7 3 7 3 7 7 7
LP 3 7 3 7 3 7 7 7

Table 5: Membership values for non-transformed datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

BADMM Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

SubGD Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

IterBP Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1

LP Cluster 1 1 1 1 0 0 0 1 1 1 0 0 0
Cluster 2 0 0 0 1 1 1 0 0 0 1 1 1
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Table 6: Membership values for rotated datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 0 0 1 0 0 1 1 0 1 1 0 1
Cluster 2 1 1 0 1 1 0 0 1 0 0 1 0

BADMM Cluster 1 0 1 1 0 1 1 1 1 0 1 1 0
Cluster 2 1 0 0 1 0 0 0 0 1 0 0 1

SubGD Cluster 1 0 1 1 0 1 1 1 0 0 1 0 0
Cluster 2 1 0 0 1 0 0 0 1 1 0 1 1

IterBP Cluster 1 0 1 0 0 1 0 0 1 1 0 1 1
Cluster 2 1 0 1 1 0 1 1 0 0 1 0 0

LP Cluster 1 1 0 1 1 0 1 0 1 0 0 1 0
Cluster 2 0 1 0 0 1 0 1 0 1 1 0 1

Table 7: Membership values for reflected datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 1 1 1 0 0 0 0 0 0 1 1 0
Cluster 2 0 0 0 1 1 1 1 1 1 0 0 1

BADMM Cluster 1 1 1 1 0 0 0 0 0 0 1 1 0
Cluster 2 0 0 0 1 1 1 1 1 1 0 0 1

SubGD Cluster 1 1 1 1 0 0 0 1 1 1 1 1 0
Cluster 2 0 0 0 1 1 1 0 0 0 0 0 1

IterBP Cluster 1 1 1 1 0 0 0 0 0 0 0 0 1
Cluster 2 0 0 0 1 1 1 1 1 1 1 1 0

LP Cluster 1 1 1 1 0 0 0 0 0 0 0 1 1
Cluster 2 0 0 0 1 1 1 1 1 1 1 0 0

Table 8: Membership values for translated datasets

Cubic Structure Datasets Carbon Allotrope Datasets
1 2 3 4 5 6 1 2 3 4 5 6

FPDCluster Cluster 1 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000
Cluster 2 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

ADMM Cluster 1 0 0 1 0 0 1 0 0 1 0 0 1
Cluster 2 1 1 0 1 1 0 1 1 0 1 1 0

BADMM Cluster 1 0 1 0 1 1 0 1 1 0 1 1 0
Cluster 2 1 0 1 0 0 1 0 0 1 0 0 1

SubGD Cluster 1 0 0 1 0 0 1 0 1 0 0 1 0
Cluster 2 1 1 0 1 1 0 1 0 1 1 0 1

IterBP Cluster 1 0 1 0 0 1 0 0 0 1 0 0 1
Cluster 2 1 0 1 1 0 1 1 1 0 1 1 0

LP Cluster 1 0 0 1 0 0 1 1 0 1 1 0 1
Cluster 2 1 1 0 1 1 0 0 1 0 0 1 0
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